Two-phase flow measurements with advanced instrumented spool pieces
Turnage, K.C.
1980-09-01
A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.
Recent advances in two-phase flow numerics
Mahaffy, J.H.; Macian, R.
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Final Report - Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock
Nicholl, Michael J.
2006-07-10
The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or ''structure'' of the fluid phases (air/water or water/DNAPL) within the subsurface. It has also been shown that even under steady boundary conditions, the influence of fractures can lead to complex and dynamic phase structure that controls system behavior, with or without the presence of a porous rock matrix. Complicated phase structures within the fracture network can facilitate rapid transport, and lead to a sparsely populated and widespread distribution of concentrated contaminants; these qualities are highly difficult to describe with current conceptual models. The focus of our work is to improve predictive modeling through the development of advanced conceptual models for two-phase flow in fractured rock.
Advanced numerical methods for three dimensional two-phase flow calculations
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
NASA Technical Reports Server (NTRS)
Witte, Larry C.
1994-01-01
The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.
NASA Technical Reports Server (NTRS)
Wallis, Graham B.
1989-01-01
Some features of two recent approaches of two-phase potential flow are presented. The first approach is based on a set of progressive examples that can be analyzed using common techniques, such as conservation laws, and taken together appear to lead in the direction of a general theory. The second approach is based on variational methods, a classical approach to conservative mechanical systems that has a respectable history of application to single phase flows. This latter approach, exemplified by several recent papers by Geurst, appears generally to be consistent with the former approach, at least in those cases for which it is possible to obtain comparable results. Each approach has a justifiable theoretical base and is self-consistent. Moreover, both approaches appear to give the right prediction for several well-defined situations.
Advanced Two-Phase Flow Instrumentation Program. Quarterly progress report, April-June 1980
Turnage, K.G.; Davis, C.E.; Anderson, R.L.; Miller, G.N.
1980-12-01
Work performed to develop and evaluate liquid level sensors for in-vessel use in pressurized water reactors is described. Experiments were performed with three thermal-type level sensors in natural convection to saturated water and steam. Pressures in those tests ranged from 0.1 to 8.6 MPa (15 to 1250 psia). Thermal-type sensors were also tested in steam-water forced convection at low and moderate pressures. Sensor response was found to be insensitive to flow velocity and void fraction but sensitive to the presence or absence of a liquid phase. A series of meetings was held with representatives of three pressurized water reactor vendors regarding research goals and implementation of reactor-vessel monitoring instrumentation.
Large-Scale Water-Vapor Two-Phase Flow Simulations in Advanced Light Water Reactor Cores
Hiroyuki, Yoshida; Kazuyuki, Takase; Hidesada, Tamai; Hajime, Akimoto; Yasuo, Ose
2004-07-01
Fluid flow characteristics in a fuel bundle of a reduced-moderation light water reactor (RMWR) with a tight-lattice core were analyzed numerically using a newly developed two-phase flow analysis code under the full bundle size condition. Conventional analysis methods such as subchannel codes need composition equations based on the experimental data. In case that there are no experimental data regarding to the thermal-hydraulics in the tight-lattice core, therefore, it is difficult to obtain high prediction accuracy on the thermal design of the RMWR. Then the large-scale direct numerical simulations with a super computer were chosen. The axial velocity distribution in a fuel bundle changed sharply around a spacer. Momentum transfer of vapor in a tight-lattice core is linear along the flow direction. The interface characteristics between water and vapor were clarified quantitatively. (authors)
Two-Phase Flow Separator Investigation
The goal of the Two-Phase Flow Separator investigation is to help increase understanding of how to separate gases and liquids in microgravity. Many systems on the space station contain both liquids...
Advanced Nanostructures for Two-Phase Fluid and Thermal Transport
2014-08-07
AFRL-OSR-VA-TR-2014-0183 (YIP 11) Advanced Nanostructures for Two-Phase Fluid and Thermal Transport Evelyn Wang MASSACHUSETTS INSTITUTE OF TECHNOLOGY...Advanced Nanostructures for Two-Phase Fluid and Thermal Transport AFOSR Grant FA9550-11-1-0059 Final Report Evelyn N. Wang Associate Professor...heated channel wall. Small fluctuations in the measured heater surface temperature (± 3-8 °C) indicated increased flow stability, and the heat transfer
Two-phase-flow models and their limitations
Ishii, M.; Kocamustafaogullari, G.
1982-01-01
An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper.
Apparatus for monitoring two-phase flow
Sheppard, John D.; Tong, Long S.
1977-03-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Daniels, L.
1995-06-01
Gas- and vapor-liquid flows through pipework or equipment often pose major difficulties in both design and operation. Typically, two-phase fluid systems are susceptible to flow instabilities, blockages, and pressure and temperature fluctuations. As a result, gas-liquid flows are avoided whenever possible by separating the two phases into individual streams of nearly homogeneous gas and liquid. However, certain process conditions require or inevitably produce two phases. Examples include condensate-return lines flashing into steam, vapor-liquid feed lines entering distillation columns, and refrigerant-return lines that must maintain a specific vapor-liquid ratio for efficient operation. The thermohydraulic behavior of two-phase systems includes variations in pressure drop, flow patterns, and liquid holdup or void fraction. Increasing the pipe diameter reduces the pressure drop for a given flowrate, or alternatively produces an increase in the flowrate for a given pressure drop in a piping system. However, increased pipeline diameters lead to higher costs, and may require installation of more expensive equipment to accommodate the resulting larger slug volumes. There have been numerous improvements in correlations and methods for the prediction of pressure drop in gas-liquid flows. A few of them attempt to take into account the highly complex flow structure of a two-phase flow. One must keep in mind that the flow structure varies with time and position in the pipework. The paper discusses empirical correlations, pressure drop due to friction, gravity, and acceleration, transitions in flow patterns, liquid inventories, and erosion. 46 refs.
Two-phase flow in horizontal pipes
Maeder, P.F.; Michaelides, E.E.; DiPippo, R.
1981-09-01
A method is developed in this paper which calculates the two-phase flow friction factor at any state of the fluid in the pipe. The mixing-length theory was employed for the calculation of the Reynolds stresses in turbulent two-phase flow. The friction factors obtained this way are in good agreement with experimental data. It is clear that the choice of the parameter m, or the density distribution, is rather arbitrary. Careful experimentation is required to refine the analysis given in this study, and in particular to provide guidance in the proper selection of the parameter m.
NASA Technical Reports Server (NTRS)
McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian
2003-01-01
The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.
Microgravity Two-Phase Flow Transition
NASA Technical Reports Server (NTRS)
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Pressure drop in two-phase flow
NASA Astrophysics Data System (ADS)
Akashah, S. A.
1980-12-01
A computer program was developed containing some of the methods for predicting pressure drop in two-phase flow. The program contains accurate methods for predicting phase behavior and physical properties and can be used to calculate pressure drops for horizontal, inclined and vertical phases. The program was used to solve test cases for many types of flow, varying the diameter, roughness, composition, overall heat transfer coefficient, angle of inclination, and length. The Lockhart-Martinelli correlation predicts the highest pressure drop while the Beggs and Brill method predicts the lowest. The American Gas Association-American Petroleum Institute method is consistent and proved to be reliable in vertical, horizontal and inclined flow. The roughness of the pipe diameter had great effect on pressure drop in two-phase flow, while the overall heat transfer coefficient had little effect.
Stability of oscillatory two phase Couette flow
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.
1993-01-01
We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.
NASA Technical Reports Server (NTRS)
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
Next steps in two-phase flow: executive summary
DiPippo, R.
1980-09-01
The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)
Two-Phase Flow Pressure Drop of High Quality Steam
Curtis, J. M.; Coffield, R. D.
2001-10-01
Two-phase pressure drop across a straight test pipe was experimentally determined for high Reynolds (Re) number steam flow for a flow quality range of 0.995 to 1.0. The testing described has been performed in order to reduce uncertainties associated with the effects of two-phase flow on pressure drop. Two-phase flow develops in steam piping because a small fraction of the steam flow condenses due to heat loss to the surroundings. There has been very limited two-phase pressure drop data in open literature for the tested flow quality range. The two-phase pressure drop data obtained in this test has enabled development of a correlation between friction factor, Reynolds number, and flow quality.
Interfacial characteristic measurements in horizontal bubbly two-phase flow
NASA Astrophysics Data System (ADS)
Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.
1990-10-01
Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.
Void fraction correlations in two-phase horizontal flow
Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.
1983-05-01
This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.
NASA Astrophysics Data System (ADS)
Mergili, Martin; Fischer, Jan-Thomas; Krenn, Julia; Pudasaini, Shiva P.
2017-02-01
r.avaflow represents an innovative open-source computational tool for routing rapid mass flows, avalanches, or process chains from a defined release area down an arbitrary topography to a deposition area. In contrast to most existing computational tools, r.avaflow (i) employs a two-phase, interacting solid and fluid mixture model (Pudasaini, 2012); (ii) is suitable for modelling more or less complex process chains and interactions; (iii) explicitly considers both entrainment and stopping with deposition, i.e. the change of the basal topography; (iv) allows for the definition of multiple release masses, and/or hydrographs; and (v) serves with built-in functionalities for validation, parameter optimization, and sensitivity analysis. r.avaflow is freely available as a raster module of the GRASS GIS software, employing the programming languages Python and C along with the statistical software R. We exemplify the functionalities of r.avaflow by means of two sets of computational experiments: (1) generic process chains consisting in bulk mass and hydrograph release into a reservoir with entrainment of the dam and impact downstream; (2) the prehistoric Acheron rock avalanche, New Zealand. The simulation results are generally plausible for (1) and, after the optimization of two key parameters, reasonably in line with the corresponding observations for (2). However, we identify some potential to enhance the analytic and numerical concepts. Further, thorough parameter studies will be necessary in order to make r.avaflow fit for reliable forward simulations of possible future mass flow events.
Momentum flux in two phase two component low quality flow
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Graham, R. W.; Henry, R. E.
1972-01-01
In two phase flow systems line losses comprise frictional and momentum pressure drops. For design purposes, it would be desirable to estimate the line losses employing a one-dimensional calculation. Two methods for computing one-dimensional momentum flux at a test section discharge station are compared to the experimental value for a range of two-phase flow conditions. The one-dimensional homogeneous model appears to be more accurate generally in predicting the momentum than the variable slip model.
Studies on Normal and Microgravity Annular Two Phase Flows
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.
1999-01-01
Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.
Definition of two-phase flow behaviors for spacecraft design
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.
A turbulent two-phase flow model for nebula flows
NASA Technical Reports Server (NTRS)
Champney, Joelle M.; Cuzzi, Jeffrey N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles.
Two-phase flow in helical and spiral coils
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Bush, Mia L.; Omrani, Adel; Yan, An
1995-01-01
Coiled tube heat exchangers involving two-phase flows are used in a variety of application areas, extending from the aerospace industry to petrochemical, refrigeration land power generation industries. The optimal design in each situation requires a fundamental understanding of the heat, mass and momentum transfer characteristic of the flowing two-phase mixture. However, two-phase flows in lengths of horizontal or vertical straight channels with heat transfer are often quite difficult in themselves to understand sufficiently well to permit accurate system designs. The present study has the following general objectives: (1) Observe two-phase flow patterns of air-water and R-113 working fluids over a range of flow conditions, for helical and spiral coil geometries, of circular and rectangular cross-section; (2) Compare observed flow patterns with predictions of existing flow maps; (3) Study criteria for flow regime transitions for possible modifications of existing flow pattern maps; and (4) Measure associated pressure drops across the coiled test sections over the rage of flow conditions specified.
Method and apparatus for monitoring two-phase flow. [PWR
Sheppard, J.D.; Tong, L.S.
1975-12-19
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Two-phase flow regime map predictions under microgravity
Karri, S.B.R.; Mathur, V.K.
1988-01-01
In this paper, the widely used models of Taitel-Dukler and Weisman et al. are extrapolated to microgravity levels to compare predicted flow pattern boundaries for horizontal and vertical flows. Efforts have been made to analyze how the two-phase flow models available in the literature predict flow regime transitions in microgravity. The models of Taitel-Dukler and Weisman et al. have been found to be more suitable for extrapolation to a wide range of system parameters than the other two-phase flow regime maps available in the literature. The original criteria for all cases are used to predict the transition lines, except for the transition to dispersed flow regime in case of the Weisman model for horizontal flow. The constant 0.97 on the righthand side of this correlation should be two times that value, i.e., 1.94, in order to match this transition line in their original paper.
Two Phase Flow and Space-Based Applications
NASA Technical Reports Server (NTRS)
McQuillen, John
1999-01-01
A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.
Low gravity two-phase flow with heat transfer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1991-01-01
A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.
Two-phase flow instabilities in a vertical annular channel
Babelli, I.; Nair, S.; Ishii, M.
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Two-Phase Flow Hydrodynamics in Superhydrophobic Channels
NASA Astrophysics Data System (ADS)
Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian
2016-11-01
Superhydrophobic surfaces have been shown to reduce drag in single-phase channel flow; however, little work has been done to characterize the drag reduction found in two-phase channel flow. Adiabatic, air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics which might be present in flow condensation. Pressure drop in a parallel plate channel with one superhydrophobic wall (cross-section 0.5 x 10 mm) and a transparent hydrophilic wall were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-215 and 50-210, respectively, were obtained for superhydrophobic surfaces with three different cavity fractions. Agreement between experimentally obtained two-phase pressure drops and correlations in the literature for conventional smooth control surfaces was better than 20 percent. The reduction in pressure drop for channels with a single superhydrophobic wall were found to be more significant than that for single phase flow. The effect of cavity fraction on drag reduction was within experimental error.
Neutron Imaging of a Two-Phase Refrigerant Flow
Geoghegan, Patrick J
2015-01-01
Void fraction remains a crucial parameter in understanding and characterizing two-phase flow. It appears as a key variable in both heat transfer and pressure drop correlations of two-phase flows, from the macro to micro- channel scale. Void fraction estimation dictates the sizing of both evaporating and condensing phase change heat exchangers, for example. In order to measure void fraction some invasive approach is necessary. Typically, visualization is achieved either downstream of the test section or on top by machining to expose the channel. Both approaches can lead to inaccuracies. The former assumes the flow will not be affected moving from the heat exchanger surface to the transparent section. The latter distorts the heat flow path. Neutron Imaging can provide a non-invasive measurement because metals such as Aluminum are essentially transparent to neutrons. Hence, if a refrigerant is selected that provides suitable neutron attenuation; steady-state void fraction measurements in two-phase flow are attainable in-situ without disturbing the fluid flow or heat flow path. Neutron Imaging has been used in the past to qualitatively describe the flow in heat exchangers in terms of maldistributions without providing void fraction data. This work is distinguished from previous efforts because the heat exchanger has been designed and the refrigerant selected to avail of neutron imaging. This work describes the experimental flow loop that enables a boiling two-phase flow; the heat exchanger test section and downstream transparent section are described. The flow loop controls the degree of subcooling and the refrigerant flowrate. Heating cartridges embedded in the test section are employed to control the heat input. Neutron-imaged steady-state void fraction measurements are captured and compared to representative high-speed videography captured at the visualization section. This allows a qualitative comparison between neutron imaged and traditional techniques. The
Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.
1999-01-01
This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.
Two-fluid model for two-phase flow
Ishii, M.
1987-01-01
The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research. 87 refs.
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Two-phase flows in solid rocket motors
NASA Astrophysics Data System (ADS)
Murakami, Takuji; Shimada, Toru
Axisymmetric gas-particle two-phase flows in solid-rocket-motor combustion chambers and nozzles with small throat radius of curvature and with submerged configuration are investigated numerically by utilizing a second-order finite-volume method with van Leer's flux-vector splitting in conjunction with a technique of body-fitted cell system. Effects of the particle radius and the particle mass fraction on the two-phase flow, especially on the particle density distribution, the particle-free zone, and the rate of deceleration of the gas are studied. The scheme can capture the particle-free zone with a relatively coarse cell system without numerical oscillation, being benefited by internal dissipative effect which this high-resolution upwind method involves. The validity of the present numerical simulation is thus confirmed.
Heat transfer analysis of two-phase dispersed swirl flow
Chang Ching.
1991-01-01
A thermodynamic nonequilibrium model was developed for a two-phase, vapor and liquid droplet, dispersed swirl flow in a vertical tube with a twisted-tape insert. It takes account of the heat transfer phenomena between two phases, and each phase with solid boundary where a variable heat flux along axial direction is imposed. A numerical method is developed to solve the system of nonlinear differential equations. The local equilibrium conditions of the fluid at the point of critical heat flux (CHF) are chosen as the initial conditions to start the numerical integration to the downstream. Wall temperature, superheat vapor temperature, heat transfer rate from two phases, and velocity distributions of two phases were predicted and analyzed, which were then verified by comparing them with the low wall-superheat heat exchanger experimental data of water-steam in the range of 900.0 {le} G {le} 1,900.0, 2.51 {le} y {le} 7.53, X{sub CHF} {ge} 0.444. Additional parametric studies of the CHF quality, mass flux, and tape-twist ratio are presented. It is found that higher mass flux, lower tape-twist ratio, and low wall-superheat will give a stronger direct wall-droplet interaction and less superheating of vapor.
Similarity considerations in one-component two-phase flow
Maeder, P.F.; DiPippo, R.; Dickinson, D.A.; Nikitopoulos, D.E.
1984-07-01
The simplified model fluid presented here for two-phase flow can serve as a basis for the similarity analysis of a variety of substance flows. For the special case of water and R114, it is seen that exact similarity does not exist in the range of interest for geothermal applications, but that conditions can be found for reasonable similarity which permit one to replace water with R114 in laboratory-size apparatus. Thus experimental data and results obtained using R114 in a properly scaled laboratory setup can be converted with reasonable accuracy to those for water.
Investigation of single-substance horizontal two-phase flow
Dickinson, D.A.; Maeder, P.F.
1984-03-01
Despite the abundance of work in the field of two-phase flow, it seems as though a consensus has not been reached on some of the fundamental points. Although exceptions exist, adequate physical interpretation of the flow seems to be hindered either by complexity of analysis or, in the opposite extreme, the trend toward limited-range analysis and correlations. The dissertation presents the derivation of basic conservation equations for the phases. The combined equations are used to examine the phenomenon of slip and its practical limitations, the Fanno line for single-substance flow and the effect of slip on choking. Equations for critical mass flux in the presence of slip are derived. The Mach, Reynolds and Froude numbers based on conditions at flashing are introduced as the characteristic parameters, and the importance of compressibility in single-substance two-phase flow is discussed. Experimental measurements of pressure change and void fraction for flow in the highly compressible range (.5 < Ma < 1) are presented. The working fluid is Refrigerant R-114, at room temperature, in a test section of diameter 5 cm and length 8 m. The effect of the Froude and Mach numbers is examined. The experimental facility is operated intermittently with running times of approximately two minutes and is instrumented for rapid measurements using a computer data acquisition and control system. A description of the facility and procedure is provided.
Biofluid dynamics of two phase stratified flow through flexible membranes
NASA Astrophysics Data System (ADS)
Bhagavatula Nvssr, Dinesh; Pushpavanam, S.
2016-11-01
Two phase stratified flows between flexible membranes arise in biological flows like lung airway reopening, blood flow in arteries and movement of spinal cord. It is important to understand the physics behind the interaction of flexible membranes and the fluid flow. In this work, a theoretical model is developed and different types of instabilities that arise due to the fluid flow are understood. The solid membrane is modeled as an incompressible linear viscoelastic solid. To simplify the analysis, inertia in the solid is neglected. Linear stability analysis is carried around the base state velocity of the fluid and displacement field of the solid. The flow is perturbed by a small disturbance and a normal mode analysis is carried out to study the growth rate of the disturbance. An eigenvalue problem in formulated using Chebyshev spectral method and is solved to obtain the growth rate of the disturbance. The effect of different parameters such as thickness of the flexible membrane, Reynolds number, viscosity ratio, density ratio, Capillary number and Weissenberg number on the stability characteristics of the flow is studied in detail. Dispersion curves are obtained which explain the stability of the flow. A detail energy analysis is carried out to determine different ways through which energy transfers from the base flow to the disturbed flow.
Two-phase flow key to offshore line design
Corteville, J.; Besse, J.; Grouvel, J.M.; Roux, A.
1981-08-10
The aim of the research project is to supply engineers with a good knowledge of two-phase oil and gas flow and the means to predict flow regimes; average pressure drop; average liquid hold-up; and, for slug flow, the volume, frequency, and velocity of slugs. The research group has developed a theoretical stratified flow model based on the equations published by Y. Taitel and A.E. Dukler, J.M. Fitremann, and others. This model considers the gas and the liquid layers independently and takes into account the interaction at the interface. Standard fluid mechanics is applied to each phase. The geometry and the transfer characteristics of the interface are modeled semiempirically. The coefficients are obtained from regression analysis of the experimental data measured in the 6-in. test loop. This model gives the liquid hold-up as well as the pressure drop. 7 refs.
A real two-phase submarine debris flow and tsunami
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.; Miller, Stephen A.
2012-09-01
The general two-phase debris flow model proposed by Pudasaini [1] is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
A real two-phase submarine debris flow and tsunami
Pudasaini, Shiva P.; Miller, Stephen A.
2012-09-26
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Sound speed criterion for two-phase critical flow
NASA Astrophysics Data System (ADS)
Chung, M.-S.; Park, S.-B.; Lee, H.-K.
2004-09-01
Critical flow simulation for non-homogeneous, non-equilibrium two-phase flows is improved by applying a new sound speed model which is derived from the characteristic analysis of hyperbolic two-fluid model. The hyperbolicity of two-fluid model was based on the concept of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speeds in the bubbly flow regime that agree well with the existing experimental data. The analytic sound speed is consistent with that obtained by the earlier study of Nguyen et al. though there is a difference between them especially in the limiting condition. The present sound speed shows more reasonable result in that condition than Nguyen et al.'s does. The present critical flow criterion derived by the present sound speed is employed in the MARS code and is assessed by treating several nozzle flow tests. The assessment results, without any adjustment made by some discharge coefficients, demonstrate more accurate predictions of critical flow rate than those of the earlier critical flow calculations in the bubbly flow regime.
Particle-fluid two-phase flow modeling
Mortensen, G.A.; Trapp, J.A. |
1992-09-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Particle-fluid two-phase flow modeling
Mortensen, G.A. ); Trapp, J.A. Idaho National Engineering Lab., Idaho Falls, ID )
1992-01-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Two Phase Flow Mapping and Transition Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Parang, Masood; Chao, David F.
1998-01-01
In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Gu, Hao; Duits, Michel H. G.; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459
Turbulent transition modification in dispersed two-phase pipe flow
NASA Astrophysics Data System (ADS)
Winters, Kyle; Longmire, Ellen
2014-11-01
In a pipe flow, transition to turbulence occurs at some critical Reynolds number, Rec , and transition is associated with intermittent swirling structures extending over the pipe cross section. Depending on the magnitude of Rec , these structures are known either as puffs or slugs. When a dispersed second liquid phase is added to a liquid pipe flow, Rec can be modified. To explore the mechanism for this modification, an experiment was designed to track and measure these transitional structures. The facility is a pump-driven circuit with a 9m development and test section of diameter 44mm. Static mixers are placed upstream to generate an even dispersion of silicone oil in a water-glycerine flow. Pressure signals were used to identify transitional structures and trigger a high repetition rate stereo-PIV system downstream. Stereo-PIV measurements were obtained in planes normal to the flow, and Taylor's Hypothesis was employed to infer details of the volumetric flow structure. The presentation will describe the sensing and imaging methods along with preliminary results for the single and two-phase flows. Supported by Nanodispersions Technology.
Flooding in counter-current two-phase flow
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Two-phase flow cell for chemiluminescence and bioluminescence measurements
Mullin, J.L.; Seitz, W.R.
1984-01-01
A new approach to two-phase CL (chemiluminescence) measurements is reported. A magnetically stirred reagent phase is separated from the analyte phase by a dialysis membrane so that only smaller molecules can go from one phase to the other. The system is designed so that the analyte phase flows through a spiral groove on an aluminum block that is flush against the dialysis membrane. As solution flows through the spiral grove, analyte diffuses into the reagent phase where it reacts to produce light. A simple model is developed to predict how this system will behave. Experimentally, the system is evaluated by using the luminol reaction catalyzed by peroxidase, the firefly reaction, and the bacterial bioluminescence reaction. 10 references, 4 tables, 6 figures.
Interfacial shear modeling in two-phase annular flow
Kumar, R.; Edwards, D.P.
1996-11-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.
Interfacial shear modeling in two-phase annular flow
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.
Conceptual design for spacelab two-phase flow experiments
NASA Technical Reports Server (NTRS)
Bradshaw, R. D.; King, C. D.
1977-01-01
KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.
Tsunami Generated by a Two-Phase Submarine Debris Flow
NASA Astrophysics Data System (ADS)
Pudasaini, S. P.
2012-04-01
The general two-phase debris flow model proposed by Pudasaini (2011) is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model includes several essential physical aspects, including Mohr-Coulomb plasticity for the solid stress, while the fluid stress is modelled as a solid volume fraction gradient enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes the viscous drag, buoyancy, and the virtual mass. The generalized drag covers both the solid-like and fluid-like contributions, and can be applied to linear to quadratic drags. Strong couplings exist between the solid and the fluid momentum transfer. The advantage of the real two-phase debris flow model over classical single-phase or quasi-two-phase models is that by considering the solid (and/or the fluid) volume fraction appropriately, the initial mass can be divided into several (even mutually disjoint) parts; a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This offers a unique and innovative opportunity within a single framework to simultaneously simulate (a) the sliding debris (or landslide), (b) the water lake or ocean, (c) the debris impact at the lake or ocean, (d) tsunami generation and propagation, (e) mixing and separation between the solid and the fluid phases, and (f) sediment transport and deposition process in the bathymetric surface. The new model is applied to two-phase subaerial and submarine debris flows. Benchmark numerical simulations reveal that the dynamics of the debris impact induced tsunamis are fundamentally different than the tsunami generated by pure rock avalanche and landslides. Special attention is paid to study the basic features of the debris impact to the mountain lakes or oceans. This includes the generation, amplification and propagation of the multiple
Synchrotron 4-dimensional imaging of two-phase flow through porous media
Kim, F.H.; Penumadu, D.; Patel, P.; Xiao, X.; Garboczi, E.J.; Moylan, S.P.; Donmez, M.A.
2016-01-01
Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media. PMID:27891248
Vapor core turbulence in annular two-phase flow
Trabold, T.A.; Kumar, R.
1998-06-01
This paper reports a new technique to measure vapor turbulence in two-phase flows using hot-film anemometry. Continuous vapor turbulence measurements along with local void fraction, droplet frequency, droplet velocity and droplet diameter were measured in a thin, vertical duct. By first eliminating the portion of the output voltage signal resulting from the interaction of dispersed liquid droplets with the HFA sensor, the discrete voltage samples associated with the vapor phase were separately analyzed. The data revealed that, over the range of liquid droplet sizes and concentrations encountered, the presence of the droplet field acts to enhance vapor turbulence. In addition, there is evidence that vapor turbulence is significantly influenced by the wall-bounded liquid film. The present results are qualitatively consistent with the limited data available in the open literature.
Measurement of two-phase flow momentum with force transducers
Hardy, J.E.; Smith, J.E.
1990-01-01
Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs.
Higher order time integration methods for two-phase flow
NASA Astrophysics Data System (ADS)
Kees, Christopher E.; Miller, Cass T.
Time integration methods that adapt in both the order of approximation and time step have been shown to provide efficient solutions to Richards' equation. In this work, we extend the same method of lines approach to solve a set of two-phase flow formulations and address some mass conservation issues from the previous work. We analyze these formulations and the nonlinear systems that result from applying the integration methods, placing particular emphasis on their index, range of applicability, and mass conservation characteristics. We conduct numerical experiments to study the behavior of the numerical models for three test problems. We demonstrate that higher order integration in time is more efficient than standard low-order methods for a variety of practical grids and integration tolerances, that the adaptive scheme successfully varies the step size in response to changing conditions, and that mass balance can be maintained efficiently using variable-order integration and an appropriately chosen numerical model formulation.
Unsteady flow analysis of a two-phase hydraulic coupling
NASA Astrophysics Data System (ADS)
Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.
2016-06-01
Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.
Particle migration in two-phase, viscoelastic flows
NASA Astrophysics Data System (ADS)
Jaensson, Nick; Hulsen, Martien; Anderson, Patrick
2014-11-01
Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
Two-phase flow research. Phase I. Two-phase nozzle research. Final report
Toner, S.J.
1981-07-01
An investigation of energy transfer in two-phase nozzles was conducted. Experimental performance of converging-diverging nozzles operating on air-water mixtures is presented for a wide range of parameters. Thrust measurements characterized the performance and photographic documentation was used to visually observe the off-design regimes. Thirty-six nozzle configurations were tested to determine the effects of convergence angle, area ratio, and nozzle length. In addition, the pressure ratio and mass flowrate ratio were varied to experimentally map off-design performance. The test results indicate the effects of wall friction and infer temperature and velocity differences between phases and the effect on nozzle performance. The major conclusions reached were: the slip ratio between the phases, gas velocity to liquid velocity, is shown to be below about 4 or 5, and, in most of the test cases run, was estimated to between about 1-1/2 to 2-1/2; in all cases except the free-jet the mass )
Tracking Interfaces in Vertical Two-Phase Flows
Aktas, Birol
2002-07-01
The presence of stratified liquid-gas interfaces in vertical flows poses difficulties to most classes of solution methods for two-phase flows of practical interest in the field of reactor safety and thermal-hydraulics. These difficulties can plague the reactor simulations unless handled with proper care. To illustrate these difficulties, the US NRC Consolidated Thermal-hydraulics Code (TRAC-M) was exercised with selected numerical bench-mark problems. These numerical benchmarks demonstrate that the use of an average void fraction for computational volumes simulating vertical flows is inadequate when these volumes consist of stratified liquid-gas interfaces. In these computational volumes, there are really two regions separated by the liquid-gas interface and each region has a distinct flow topology. An accurate description of these divided computational volumes require that separate void fractions be assigned to each region. This strategy requires that the liquid-gas interfaces be tracked in order to determine their location, the volumes of regions separated by the interface, and the void fractions in these regions. The idea of tracking stratified liquid-gas interfaces is not new. There are examples of tracking methods that were developed for reactor safety codes and applied to reactor simulations in the past with some limited success. The users of these safety codes were warned against potential flow oscillations, conflicting water levels, and pressure disturbances which could be caused by the tracking methods themselves. An example of these methods is the level tracking method of TRAC-M. A review of this method is given here to explore the reasons behind its failures. The review shows that modifications to the field equations are mostly responsible for these failures. Following the review, a systematic approach to incorporate interface tracking methods is outlined. This approach is applicable to most classes of solution methods. For demonstration, the approach to
2013-11-01
state operation of the channel. Measurement and detection of changes in flow regime improve thermal management system modeling efforts. Historically...identification and classification of horizontal two-phase flow regimes relies on human interpretation of measured signals. Variations in flow...Tomography (ECT) is a non-invasive impedance measurement method that produces mean normalized permittivity ratio, ̅, values that are directly linked
Investigation of Two-Phase Flows in Piping Bends and Elbows
NASA Technical Reports Server (NTRS)
Duncan, Allen B.; Sciascia, Vincent M.
1996-01-01
An experimental investigation of the hydrodynamic characteristics of two-phase R-113 flow has been carried out. Straight tube pressure drop data, as a function of mass flow rate (mass flux) and flow quality has been obtained using the Two-Phase Flow Test Facility located in the Advanced Thermal Laboratories of the Crew and Thermal Systems Division at the Lyndon B. Johnson Space Center. Additionally, after successfully obtaining the straight tube pressure drop data, the test facility was modified in order to obtain pressure drop data for the flow of two-phase R-113 through 180 deg piping bends. Inherent instabilities of the test facility prevented the successful acquisition of pressure drop data through the piping bends. The experimental straight tube data will be presented and compared with existing predictive correlations in an attempt to gain insight into the utility of such correlations as the basis for developing design criteria. A discussion of the instabilities which rendered successful acquisition of the piping bend data will be presented and suggestions will be made for eliminating these system tendencies. Finally, recommendations for future investigations, based on successful reconfiguration of the test facility, will be made.
Analysis of nanoscale two-phase flow of argon using molecular dynamics
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-09
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
Analysis of nanoscale two-phase flow of argon using molecular dynamics
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-01
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
Advanced two-phase digestion of sewage sludge
Ghosh, S.
1984-01-01
This paper describes the development and operating results of a novel configuration of the two-phase digestion concept. The two-phase system, comprises two custom-designed upflow digesters, which were operated in tandem to optimize the liquefying-acidification and acetogenesis-methanation reactions. The results are based on system operation for more than one year with a high-metal-content sewage sludge. During the operating period, the system exhibited an increasing methane yield at hydraulic retention times (HRT) of less than 6 days. With continuing culture enrichment and improvements in reactor design, the methane yield increased from 5 to 6.8 SCF/lb VS added, and then to 7.7 SCF/lb VS added. This methane yield was about 80% of the theoretical methane yield achievable with this sewage sludge--and the highest methane yield reported for sludge at this HRT. Operation of the novel process configuration was very stable and superior to that of conventional single-stage digestion in terms of methane yield, gas generation rate, and net energy production. About 75 weight percent of the organic solids was gasified; this could be the maximum attainable feed conversion efficiency for sludge, considering that between 75% and 80% of this feed is normally biodegradable. 3 references, 7 tables.
Targeted delivery by smart capsules for controlling two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Fan, Jing; Abbaspourrad, Alireza; Weitz, David; Harvard Weitzgroup Team
2015-11-01
Two-phase flow in porous media is significantly influenced by the physical properties of the fluids and the geometry of the medium. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for targeted surfactant delivery to the vicinity of oil-water interface and targeted microgel delivery for improving the homogeneity of the porous medium, respectively. We further prove the concept by monitoring the capsule location and the fluid structure in the porous media by micro-CT and confocal microscopy. This technique not only is of particular importance to the relevant industry applications especially in the oil industry but also opens a new window to study the mechanism of two-phase flow in porous media. Advanced Energy Consortium BEG08-027.
Design of an advanced two-phase capillary cold plate
NASA Technical Reports Server (NTRS)
Chalmers, D. R.; Kroliczek, E. J.; Ku, J.
1986-01-01
The functional principles and implementation of capillary pumped loop (CPL) two phase heat transport system for various elements of the Space Station program are described. Circulation of the working fluid by the surface-tension forces in a fine-pore capillary wick is the core principle of CPL systems. The liquid, usually NH3 at the moment, is changed into a vapor by heat absorption at one end of the loop, and the vapor is carrried back along the wick by the surface tension within the wick. NASA specifications and the results of mechanical and thermal tests for prototype cold plate and the capillary pump designs are outlined. The CPL is targeted for installation on free-flying platforms, attached payloads, and power subsystem thermal control systems.
Two parametric flow measurement in gas-liquid two-phase flow
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, C.; Xu, Y.; Zhao, Z.
The importance and current development of two parametric measurement during two-phase flow are briefly reviewed in this paper. Gas-liquid two-phase two parametric metering experiments were conducted by using an oval gear meter and a sharp edged orifice mounted in series in a horizontal pipe. Compressed air and water were used as gas and liquid phases respectively. The correlations, which can be used to predict the total flow rate and volumetric quality of two-phase flow or volumetric flow rate of each phase, have also been proposed in this paper. Comparison of the calculated values of flow rate of each phase from the correlations with the test data showed that the root mean square fractional deviation for gas flow rate is 2.9 percent and for liquid flow rate 4.4 percent. The method proposed in this paper can be used to measure the gas and liquid flow rate in two-phase flow region without having to separate the phases.
Fusion Research of Electrical Tomography with Other Sensors for Two-phase Flow Measurement
NASA Astrophysics Data System (ADS)
Deng, Xiang; Yang, W. Q.
2012-01-01
The two-phase flow widely exists in the nature and industrial processes. The measurement of two-phase flows, including gas/solids, gas/liquid and liquid/liquid flows, is still challenging. Fusions of electrical tomography with conventional sensors provide possibilities to improve two-phase flow accurate measurement. In this paper, fusions of (1) electrical resistance tomography (ERT) with electromagnetic (EM) flowmeter, (2) electrical capacitance tomography (ECT) with ERT and (3) ECT with electrostatic sensor are introduced. Some research results of fusion methods are presented and discussed. This paper can provide the theoretical support for the multi-sensor fusion for two-phase flow measurement.
A chaotic system of two-phase flow in a small, horizontal, rectangular channel
Cai, Y.; Wambsganss, M.W.; Jendrzejczyk, J.A.
1995-07-01
Various measurement tools that are used in chaos theory were applied to analyze two-phase pressure signals with the objective of identifying and interpreting flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identifying certain two-phase flow patterns and transitions.
Analysis of two-phase flow included vibrations in piping systems
Hiramatsu, T.; Komura, Y.; Yano, S.
1982-01-01
The purpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a horizontally supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. A theoretical analysis is achieved using the transfer method for vibration responses of the system excited by the forces of traveling liquid piston and the momentum change of two-phase flow. Comparing experimental and theoretical studies, the author concluded that the vibrational behavior of piping systems conveying two-phase flowing fluid can be predicted quantitatively. 8 refs.
Two-phase flows simulation in closed volume
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Lavruk, S. A.
2016-10-01
In this paper gas flow field was considered in the model volumes that correspond to real experimental ones. During simulation flow fields were defined in volumes, matching of the flow fields in different volumes and comparison of the velocity values along the plate that models fuel tank element was done.
Switching moving boundary models for two-phase flow evaporators and condensers
NASA Astrophysics Data System (ADS)
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Stability of stratified two-phase flows in inclined channels
NASA Astrophysics Data System (ADS)
Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.
2016-08-01
Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.
2006-01-01
The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.
Irreversible entropy production in two-phase flows with evaporating drops
NASA Technical Reports Server (NTRS)
Bellan, J.; Okong'o, N. A.
2002-01-01
A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.
Two-phase flow research using the learjet apparatus
NASA Astrophysics Data System (ADS)
McQuillen, John B.; Neumann, Eric S.
1995-05-01
Low-gravity, gas-liquid flow research can be conducted aboard the NASA Lewis Learjet, the Lewis DC-9, or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with an inner diameter of 1.27 cm and lengths up to 1.5 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall-shear stress, and acceleration data are measured and recorded throughout the 20 sec duration of the experiment. Flow is visualized by photographing at 400 frames with a high-speed, 16-mm camera.
Two-phase flow research using the learjet apparatus
NASA Technical Reports Server (NTRS)
Mcquillen, John B.; Neumann, Eric S.
1995-01-01
Low-gravity, gas-liquid flow research can be conducted aboard the NASA Lewis Learjet, the Lewis DC-9, or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with an inner diameter of 1.27 cm and lengths up to 1.5 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall-shear stress, and acceleration data are measured and recorded throughout the 20 sec duration of the experiment. Flow is visualized by photographing at 400 frames with a high-speed, 16-mm camera.
Development and validation of an X-ray tomograph for two-phase flow.
Hervieu, Eric; Jouet, Emmanuel; Desbat, Laurent
2002-10-01
This paper describes the development and validation of a high spatial resolution X-ray tomograph designed for the investigation of air-water two-phase flow. The device hardware mainly comprises a 60 keV X-ray source, a detector, and an accurate mechanical bench. Our study concentrated on accurate quantification with emphasis on the reconstruction procedure. As is well known, absorption gradients induce reconstruction artifacts when using standard algorithms based on uniform regularization. In the particular case of two-phase flow in a pipe, this leads to poor measurement accuracy in the vicinity of the walls. To overcome such effects, improved algorithms were developed during this study that involve spatially adaptive regularization methods. Preliminary calibration performed on static phantoms clearly exhibited the benefits of the advanced reconstruction algorithms. A validation procedure was carried out on an air-water bubble column, equipped with an optical probe, which could be translated in order to explore the 80 mm x 80 mm square cross section. Comparisons of local void fraction measurements were performed pixel by pixel. They demonstrate the accuracy improvement induced by the advanced reconstruction algorithms.
Flow regime classification in air-magnetic fluid two-phase flow.
Kuwahara, T; De Vuyst, F; Yamaguchi, H
2008-05-21
A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.
Flow regime classification in air magnetic fluid two-phase flow
NASA Astrophysics Data System (ADS)
Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.
2008-05-01
A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.
An improved stochastic separated flow model for turbulent two-phase flow
NASA Astrophysics Data System (ADS)
Chan, C. K.; Zhang, H. Q.; Lau, K. S.
An improved stochastic separated flow model is proposed to obtain reasonable statistical characteristics of a two-phase flow. Effects of the history of a particle and its current trajectory position on the mean-square fluctuating velocity of the dispersed phase are continuously considered in this model. Comparing with the conventional model, results using the improved model are more reasonable and can also be obtained more easily. Furthermore, the improved model requires less computational particles for simulating dispersed-phase turbulence at the beginning of the stochastic trajectory. In this paper, an application in turbulent two-phase flow of planar mixing layer is carried out. Numerical results including velocity, mean-square fluctuating velocity, particle number density and pdf of fluctuation velocity of dispersed phase are shown to compare well with experimental data.
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
NASA Astrophysics Data System (ADS)
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
Deposition in two phase flow in porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.
2007-12-01
The study of dispersion and deposition of an active tracer in multiphase flow through a porous medium is a difficult topic which has not received much attention in the past though it has a lot of practical and fundamental interest. For instance, asphaltene flocculation implies its deposition on the solid walls and this has two effects. The first one is to change the wettability of the walls; if they are initially water wet, they may become oil wet. The second one is to reduce the pore space. In both cases, the flow properties of the porous medium are expected to be influenced. Our purpose was to develop a new tool to analyse these two effects; this new tool had to be constructed by integrating existing codes. First, the basic ingredients which are necessary for the determination of dispersion and deposition at the local scale are presented. The pore space can be generated by means of the method of reconstructed media (1). The instantaneous phase distribution and the velocity fields are computed by an Immiscible Lattice Boltzmann model (2). The solute dispersion is obtained by the Random Walk technique (3); its deposition at the walls is supposed to follow a first order reaction (4). Finally, the rules for the solid and/or wettability changes will be precised. The main results of our calculations can be summarized as follows. The possibilities of the code are demonstrated on a three-dimensional medium; the evolution of the solid space, of the wettability properties and of the phase configurations are illustrated; dramatic results are shown for the evolution of the relative permeabilities and of the capillary pressures. Then, various parameters are studied in a systematic way, such as the porosity, the partition coefficient, the diffusion coefficient, the saturation and the kinetic coefficients. Some concluding remarks end up this study. Ref: (1) Adler P.M., Jacquin C.G., Quibier J.A., 1990, Flow in simulated porous media, Int. J. Multiphase flow, 16, 691- 712. (2
Analysis of Developing Gas/liquid Two-Phase Flows
Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal; Donna Post Guillen; Matthias Beyer; Dirk Lucas
2010-06-01
The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made in simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.
Experimental study of flow oscillations in parallel evaporators of a carbon dioxide two-phase loop
NASA Astrophysics Data System (ADS)
Sun, Xihui; He, Zhenhui; Huang, Zhencheng
2013-07-01
Stability is a key factor that limits the application of liquid-vapor two-phase loop. in this paper, we investigated the two-phase flow stability boundaries of two evaporators in parallel in a mechanically pumped CO2 two-phase loop(MPTL), which distinguish steady flow, flow oscillations at the inlet, and temperature oscillations at the outlets of the evaporators. We inferred that the instability is the result of density wave oscillation (DWO), and found that the periods of the flow oscillations are comparable with the residence time of CO2 fluid particle in the evaporator.
Experimental investigation of two-phase flow in rock salt
Malama, Bwalya; Howard, Clifford L.
2014-07-01
This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
A Level Set Method for vaporizing two-phase flows
NASA Astrophysics Data System (ADS)
Tanguy, Sébastien; Ménard, Thibaut; Berlemont, Alain
2007-02-01
Development and applications of numerical methods devoted to reactive interface simulations are presented. Emphasis is put on vaporization, where numerical difficulties arise in imposing accurate jump conditions for heat and mass transfers. We use both the Level Set Method and the Ghost Fluid Method to capture the interface motion accurately and to handle suitable jump conditions. A local vaporization mass flow rate per unit of surface area is defined and Stefan flow is involved in the process. Specific care has been devoted to the extension of discontinuous variables across the interface to populate ghost cells, in order to avoid parasitic currents and numerical diffusion across the interface. A projection method is set up to impose both the velocity field continuity and a divergence-free condition for the extended velocity field across the interface. The d2 law is verified in the numerical simulations of the vaporization of an isolated static drop. Results are then presented for a water droplet moving in air. Vapor mass fraction and temperature fields inside and outside the droplet are presented.
Two-phase flow in a chemically active porous medium
Darmon, Alexandre Dauchot, Olivier; Benzaquen, Michael; Salez, Thomas
2014-12-28
We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species, in a one-dimensional macroscopic description, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy’s law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor.
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
NASA Astrophysics Data System (ADS)
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-01-01
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-12-31
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.
A two phase Mach number description of the equilibrium flow of nitrogen in ducts
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.; Adcock, J. B.
1979-01-01
Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.
Single and two-phase flow fluid dynamics in parallel helical coils
NASA Astrophysics Data System (ADS)
De Salve, M.; Orio, M.; Panella, B.
2014-04-01
The design of helical coiled steam generators requires the knowledge of the single and two-phase fluid dynamics. The present work reports the results of an experimental campaign on single-phase and two phase pressure drops and void fraction in three parallel helicoidal pipes, in which the total water flow rate is splitted by means of a branch. With this test configuration the distribution of the water flow rate in the helicoidal pipes and the phenomena of the instability of the two-phase flow have been experimentally investigated.
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Staedtke, H.; Franchello, G.; Worth, B.
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Adaptive Multi-Scale Pore Network Method for Two-Phase Flow in Porous Media
NASA Astrophysics Data System (ADS)
Meyer, D. W.; Khayrat, K.; Jenny, P.
2015-12-01
Dynamic pore network simulators are important tools in studying macroscopic quantities in two-phase flow through porous media. However, these simulators have a time complexity of order N2 for N pore bodies, which limits their usage to small domains. Quasi-static pore network simulators, which assume capillary dominated flow, are more efficient with a time complexity of order N log(N), but are unable to capture phenomena caused by viscous effects such as viscous fingering and stable displacement. It has been experimentally observed that, in several flow scenarios, capillary forces are dominant at the pore scale and viscous forces at larger scales. In order to take advantage of this behaviour and to reduce the time complexity of existing dynamic pore network simulators, we propose a multi-scale pore-network method for two phase flow. In our solution algorithm, the pore network is first divided into smaller subnetworks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. Here, a multi-point flux scheme is used. 2) Depending on the local capillary number computed in the subnetwork, either an invasion percolation algorithm or a dynamic network algorithm is used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. 3) The transmissibilities for the meso-scale equation are updated based on the updated fluid configurations in each subnetwork. For this purpose the methodoloy of the existing multi-scale finite volume (MSFV) method is employed. An important feature of the multi-scale pore-network method is that it maintains consistency of both fluid occupancy and fluxes at subnetwork interfaces. Viscous effects such as viscous fingering (see figure) can be captured at a decreased computational cost compared to dynamic pore network
Scalewise investigation of two-phase flow turbulence in upward turbulent bubbly pipe flows
NASA Astrophysics Data System (ADS)
Lee, Jun Ho; Kim, Hyunseok; Park, Hyungmin
2015-11-01
In the present study, the two-phase flow turbulence in upward turbulent bubbly pipe flows (at the Reynolds number of 5300) is invesgitated, especially focusing on the changes in flow structures with bubbles depending on the length scales. For the scalewise investigation, we perform the wavelet multi-resolution analysis on the velocity fields at three streamwise locations, measured with high-speed two-phase particle image velocimetry technology. While we intentaionlly introduce asymmetrically distributed bubbles at the pipe inlet, the mean volume void fraction is varied from from 0.3% to 1.86% and the considered mean bubble diameter is roughly maintained at 3.8 mm. With the present condition, turbulence enhancement is achieived for most cases but the turbulent suppression is also captured near the wall for the smallest void fraction case. Comparing the scalewise energy contribution, it is understood that the flow structures with length scales between bubble radius and bubble wake size are enhanced due to bubbles, resulting in the turbulence enhancement. On the other hand, flow structure with smaller length scales (mostly existing near the wall) may decrease depending on the bubble condition, which may be one of the explanations in turbulence suppression with bubbles. Supported by the NRF grant funded by the Korea government (NRF-2012M2A8A4055647) via SNU-IAMD.
Future directions in two-phase flow and heat transfer in space
NASA Technical Reports Server (NTRS)
Bankoff, S. George
1994-01-01
Some areas of opportunity for future research in microgravity two-phase flow and heat transfer are pointed out. These satisfy the dual requirements of relevance to current and future needs, and scientific/engineering interest.
A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance
NASA Technical Reports Server (NTRS)
Mueller, Donn C.; Turns, Stephen R.
1993-01-01
A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.
Two-phase air-water stratified flow measurement using ultrasonic techniques
Fan, Shiwei; Yan, Tinghu; Yeung, Hoi
2014-04-11
In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.
Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity
NASA Technical Reports Server (NTRS)
Kamotani, Yasuhiro
1996-01-01
An experimental and theoretical research program is described herein to study bubble generation in a liquid flow in a pipe under reduced gravity conditions. The objective of the work is to study the bubble size and frequency of the generation and the resulting two-phase flow but it also concerns the fluid mechanical aspects of boiling in forced flow in microgravity. By injecting a gas into a liquid flow in a pipe through a small hole in the pipe wall we will investigate how the bubble expands and detaches from the wall, without involving the complexities of boiling. The experiments will be conducted both under isothermal conditions and with heat transfer from the wall. In the experiments with heat transfer the effect of thermocapillarity on the bubble formation and detachment will be the main subject.
Ong, C.L.; Thome, J.R.
2011-01-15
The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co {approx} 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co {approx} 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co {approx} 1 with a transition (or mesoscale) region in-between. (author)
Study of momentum transfer in two-fluid formulation of two-phase flow
NASA Astrophysics Data System (ADS)
Egely, G.; Saha, P.
Advanced nuclear safety codes such as TRAC and BFIAP5 use two-fluid hydraulic models. However, there are uncertainties for the application of different correlations. The effects and importance of a number of correlations for wall friction, interphase drag, and virtual mass are shown. The homogeneous wall shear model yields good results up to the annular flow regime, the single bubble drag correlation is acceptable, and the inclusion of virtual mass coefficient is helpful. The critical Weber number is not appropriate for bubble radius calculation; it predicts an opposing tendency when compared with the test data. Also, a two phase diffuser efficiency is required for diverging ducts and a correlation for the same was proposed.
Two-phase liquid-liquid flows generated by impinging liquid jets
NASA Astrophysics Data System (ADS)
Tsaoulidis, Dimitrios; Li, Qi; Angeli, Panagiota
2015-11-01
Two-phase flows in intensified small-scale systems find increasing applications in (bio)chemical analysis and synthesis, fuel cells, polymerisation, and separation processes (solvent extraction). Current nuclear spent fuel reprocessing separation technologies have been developed many decades ago and have not taken account recent advances on process intensification which can drive down plant size and economics. In this work, intensified impinging jets will be developed to create dispersions by bringing the two liquid phases into contact through opposing small channels. A systematic set of experiments has been undertaken, to investigate the hydrodynamic characteristics, to develop predictive models, and enable comparisons with other contactors. Drop size distribution and mixing intensity will be investigated for liquid-liquid mixtures as a function of various parameters using high speed imaging and conductivity probes.
Simulation of two-phase flow using lattice gas automata methods
Tsumaya, Akira; Ohashi, Hirotada; Akiyama, Mamoru
1996-08-01
Two-phase flow simulation has been primarily based on experimental data in the sense that constitutive relations necessary for solving fundamental equations are experimentally determined. This assures validity of simulation of two-phase flow within the experimental conditions, but it is difficult to predict the behavior of two-phase flow under extreme or complex conditions which occur, for example, in severe accidents of nuclear reactors. Lattice gas automaton (LGA) simulation has recently attracted attention as a method for numerical simulation of multi phase flow. The authors extend phase-separation LGA models and develop methods for two-phase flow simulation. First, they newly added a flow model to the immiscible lattice gas model and applied it to two-dimensional Poiseuille flow. They obtained a result looking like lubricated pipelining of crude oil with water. Also, considering the gravity effect, they introduced a buoyancy force into the liquid-gas model. As a result, they demonstrated that gas bubbles of various diameters rise and gradually coalesce each other turning into larger bubbles. Using these newly developed LGA models, they succeeded in simulating various flow patterns of two-phase flow.
DSMC simulation of two-phase plume flow with UV radiation
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling
2014-12-09
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
A study of two-phase flow in a reduced gravity environment
NASA Technical Reports Server (NTRS)
Hill, D.; Downing, Robert S.
1987-01-01
A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.
The bubbly-slug transition in a boiling two-phase flow under microgravity
NASA Technical Reports Server (NTRS)
Kiper, Ali M.; Swanson, T. D.
1993-01-01
A theory is presented to describe, in reduced gravity flow boiling, the transition from bubbly two-phase flow to slug flow. It is shown that characteristics of the bubbly flow and the transition were controlled by the mechanism of vapor bubble growth dynamics. By considering in nucleate boiling, behavior of vapor bubbles at departure from a heated surface a condition required for transition was determined. Although required, this condition alone could not ensure coalescence of bubbles to cause the transition to slug two-phase flow. The condition leading to coalescence, therefore, was obtained by examining oscillations of vapor bubbles following their departure from the heated surface. The predicted transition conditions were compared with the prediction and test data reported for adiabatic reduced gravity two-phase flow, and good qualitative agreement was found.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Brauner, N.; Rovinsky, J.; Maron, D.M.
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Scaling of Two-Phase Flows to Partial-Earth Gravity
NASA Technical Reports Server (NTRS)
Hurlbert, Kathryn M.; Witte, Larry C.
2003-01-01
A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.
Gas-liquid two-phase flow across a bank of micropillars
NASA Astrophysics Data System (ADS)
Krishnamurthy, Santosh; Peles, Yoav
2007-04-01
Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.
NASA Astrophysics Data System (ADS)
Pettigrew, M. J.; Zhang, C.; Mureithi, N. W.; Pamfil, D.
2005-05-01
Two-phase cross-flow exists in many shell-and-tube heat exchangers. A detailed knowledge of the characteristics of two-phase cross-flow in tube bundles is required to understand and formulate flow-induced vibration parameters such as damping, fluidelastic instability, and random excitation due to turbulence. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. The array is made of relatively large diameter cylinders (38 mm) to allow for detailed two-phase flow measurements between cylinders. Fiber-optic probes were developed to measure local void fraction. Local flow velocities and bubble diameters or characteristic lengths of the two-phase mixture are obtained by using double probes. Both the dynamic lift and drag forces were measured with a strain gauge instrumented cylinder.
Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps
NASA Astrophysics Data System (ADS)
Polzin, A.-E.; Kabelac, S.; de Vries, B.
2016-09-01
Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.
Characterization of annular two-phase gas-liquid flows in microgravity
NASA Astrophysics Data System (ADS)
Bousman, W. Scott; McQuillen, John B.
1994-08-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
Characterization of annular two-phase gas-liquid flows in microgravity
NASA Technical Reports Server (NTRS)
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
Air-water two-phase flow in a 3-mm horizontal tube
NASA Astrophysics Data System (ADS)
Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung
2000-01-01
Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe
2011-01-01
A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer. PMID:21711823
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.
Park, Yu Sun; Chang, Soon Heung
2011-04-04
A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Determination and characteristics of the transition to two-phase slug flow in small channels
Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.
1992-12-01
Two-phase pressure drop was measured in a small horizontal rectangular channel (hydraulic diameter = 5.44 mm). The two-phase fluid was an air/water mixture at atmospheric pressure tested over a mass flux range of 50 to 2000 kg/m{sup 2}{center_dot}s. Two-phase flow patterns were identified and an objective method was found for determining the flow pattern transition from bubble or plug flow to slug flow. The method is based on an RMS pressure measurement. In particular, it is shown that the transition is accompanied by a clear and abrupt increase in the RMS pressure when plotted as a function of mass quality. Use of the RMS pressure as a two-phase flow pattern transition indicator is shown to have advantages over pressure-versus-time trace evaluations reported in the literature. The transition is substantiated by a clear local change in slope in the curve of two-phase pressure drop plotted as a function of either Martinelli parameter or mass quality. For high mass fluxes, the change in slope is distinguished by a local peak. Some degree of substantiation was found in previous work for both of the results (the RMS pressure change and the local pressure drop change) at the transition to slug flow.
Determination and characteristics of the transition to two-phase slug flow in small channels
Wambsganss, M.W.; Jendrzejczyk, J.A. ); France, D.M. . Dept. of Mechanical Engineering)
1992-01-01
Two-phase pressure drop was measured in a small horizontal rectangular channel (hydraulic diameter = 5.44 mm). The two-phase fluid was an air/water mixture at atmospheric pressure tested over a mass flux range of 50 to 2000 kg/m[sup 2][center dot]s. Two-phase flow patterns were identified and an objective method was found for determining the flow pattern transition from bubble or plug flow to slug flow. The method is based on an RMS pressure measurement. In particular, it is shown that the transition is accompanied by a clear and abrupt increase in the RMS pressure when plotted as a function of mass quality. Use of the RMS pressure as a two-phase flow pattern transition indicator is shown to have advantages over pressure-versus-time trace evaluations reported in the literature. The transition is substantiated by a clear local change in slope in the curve of two-phase pressure drop plotted as a function of either Martinelli parameter or mass quality. For high mass fluxes, the change in slope is distinguished by a local peak. Some degree of substantiation was found in previous work for both of the results (the RMS pressure change and the local pressure drop change) at the transition to slug flow.
A new two-phase erosion-deposition model for mass flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.; Fischer, Jan-Thomas
2016-04-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity
NASA Technical Reports Server (NTRS)
Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.
1999-01-01
The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a
Study of two-phase flow and heat transfer in reduced gravities
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Barez, Fred
1994-01-01
Design of the two-phase systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and perform a series of experiments to generate the data for the Critical Heat Flux (CHF) and onset of instability under reduced gravities. In addition to low gravity airplane trajectory testing, the experimental program consists of a set of laboratory tests with vertical upflow and downflow configurations. Modularity is considered in the design of this experiment and the test loop in instrumented to provide data for two-phase pressure drop and flow regime behavior. Since the program is in the final stages of the design and construction task, this article is intended to discuss the phenomena, design approach, and the description of the test loop.
Hydrodynamic dryout in two-phase flows: Observations of low bond number systems
NASA Astrophysics Data System (ADS)
Weislogel, Mark M.; McQuillen, John B.
1998-01-01
Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Reg~O(103), Rel~O(104), and Ca~O(10-1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. From such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with ``hot spots.'' A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.
Hydrodynamic Dryout in Two-Phase Flows: Observations of Low Bond Number Systems
NASA Technical Reports Server (NTRS)
Weislogel, Mark M.; McQuillen, John B.
1998-01-01
Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Re(sub g) approximately 0(10(exp 3)), Re(sub l) approximately 0(10(exp 4)), and Ca approximately 0(10(exp -1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. Rom such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with "hot spots." A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.
Reduced-gravity two-phase flow experiments in the NASA KC-135
NASA Technical Reports Server (NTRS)
Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.
1988-01-01
An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.
Two-phase flow characterization for fluid components and variable gravity conditions
NASA Technical Reports Server (NTRS)
Dzenitis, John M.; Miller, Kathryn M.
1992-01-01
This paper describes a program initiated by the NASA Johnson Space Center to investigate vapor-liquid flow regimes and pressure drops in pipe components and variable gravity conditions. This program supports the Space Station Freedom External Active Thermal Control System design and future space missions, including the Space Exploration Initiative activities. The objectives for this program include studying two-phase flow behavior in fluid components (smooth pipes, bellows lines, quick-disconnect fittings), expanding the two-phase database for zero-g conditions, developing a database for low-g conditions (for example, Moon-g, Mars-g), and validating models for two-phase flow analyses. Zero-g and low-g data will be gathered using a Freon-12 flow loop during four test series on the KC-135 aircraft beginning in August 1991.
Air/water two-phase flow test tunnel for airfoil studies
NASA Astrophysics Data System (ADS)
Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.
1990-02-01
A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.
Air/water two-phase flow test tunnel for airfoil studies
NASA Astrophysics Data System (ADS)
Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.
1994-01-01
A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.
Magnetic liquid metal two-phase flow research. Phase 1. Final report
Graves, R.D.
1983-04-01
The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure.
On the peculiarities of LDA method in two-phase flows with high concentrations of particles
NASA Astrophysics Data System (ADS)
Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.
2016-10-01
Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.
Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop
NASA Technical Reports Server (NTRS)
Jain, K. C.
1969-01-01
Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.
Toward the use of similarity theory in two-phase choked flows
NASA Technical Reports Server (NTRS)
Hendericks, R. C.; Sengers, J. V.; Simoneau, R. J.
1980-01-01
Comparison of two phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component loci are significant.
Toward the use of similarity theory in two-phase choked flows
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.; Sengers, J. V.
1980-01-01
Comparison of two-phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component locii are significant.
Three dimensional numerical prediction of two phase flow in industrial CFB boiler
Balzer, G.; Simonin, O.
1997-12-31
Gas-solid two phase flows are encountered in number of industrial applications such as pneumatic transport, catalytic cracking, coal combustors. The paper aims at presenting the numerical model of gas-solid flows which have been developed for several years at the Laboratoire National d`Hydraulique of Electricite de France and its application to the prediction of an industrial CFB Boiler.
Phase distribution of nitrogen-water two-phase flow in parallel micro channels
NASA Astrophysics Data System (ADS)
Zhou, Mi; Wang, Shuangfeng; Zhou, You
2016-08-01
The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.
Well logging interpretation of production profile in horizontal oil-water two phase flow pipes
NASA Astrophysics Data System (ADS)
Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke
2012-03-01
Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
Nilpueng, Kitti; Wongwises, Somchai
2010-11-15
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)
Two-phase flow and pressure drop in flow passages of compact heat exchangers
Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.
1992-01-01
Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.
Two-phase flow and pressure drop in flow passages of compact heat exchangers
Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.
1992-02-01
Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.
Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube
NASA Astrophysics Data System (ADS)
Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo
Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.
Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow
NASA Astrophysics Data System (ADS)
Nakagawa, Masafumi; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones
Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump
NASA Astrophysics Data System (ADS)
Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu
2013-01-01
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ɛ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.
Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Wang, Z. H.; Wang, C. Y.; Chen, K. S.
Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm -2 for dry inlet air.
Experimental and Analytical Study of Two-Phase Flow in Microgravity
NASA Technical Reports Server (NTRS)
Abdollahian, D.; Howerton, J.; Barez, F.; McQuillen, John
1999-01-01
A two-phase test loop has been designed and constructed to generate the necessary data for two-phase pressure drop and Critical Heat Flux (CHF) under reduced gravity conditions. A series of airplane trajectory tests aboard NASA KC-135 were performed and the data was used to evaluate the applicability of the earth gravity models for prediction of the reduced gravity data. Several commonly used correlations for the two-phase friction multiplier and critical heat flux were used to predict the data. It was generally concluded that the two-phase pressure drop can be predicted by the earth gravity correlations. The critical heat flux under reduced gravity conditions did not show a strong dependence on mass flow rate and the measured CHF were generally lower than the equivalent 1g conditions. The earth gravity models need to be modified for application to reduced gravities.
Cryogenic two-phase flow and phase-change heat transfer in microgravity
NASA Astrophysics Data System (ADS)
Tai, Cheng-Feng
The applications of cryogenic flow and heat transfer are found in many different types of industries, whether it be the liquid fuel for propulsion or the cryogenic cooling in medical applications. It is very common to find the transportation of cryogenic flow under microgravity in space missions. For example, the liquid oxygen and hydrogen are used to power launch vehicles and helium is used for pressurizing the fuel tank. During the transportation process in pipes, because of high temperature and heat flux from the pipe wall, the cryogenic flow is always in a two-phase condition. As a result, the physics of cryogenic two-phase flow and heat transfer is an important topic for research. In this research, numerical simulation is employed to study fluid flow and heat transfer. The Sharp Interface Method (SIM) with a Cut-cell approach (SIMCC) is adopted to handle the two-phase flow and heat transfer computation. In SIMCC, the background grid is Cartesian and explicit true interfaces are immersed into the computational domain to divide the entire domain into different sub-domains/phases. In SIMCC, each phase comes with its own governing equations and the interfacial conditions act as the bridge to connect the information between the two phases. The Cut-cell approach is applied to handle nonrectangular cells cut by the interfaces and boundaries in SIMCC. With the Cut-cell approach, the conservative properties can be maintained better near the interface. This research will focus on developing the numerical techniques to simulate the two-phase flow and phase change phenomena for one of the major flow patterns in film boiling, the inverted annular flow.
Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration
NASA Technical Reports Server (NTRS)
Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.
2005-01-01
NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
Two-phase flow patterns characteristics analysis based on image and conductance sensors
NASA Astrophysics Data System (ADS)
Wang, Zhenya; Jin, Ningde; Wang, Chun; Wang, Jinxiang
2008-10-01
In order to study the temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern, the two-phase flow monitoring system composed of high-speed dynamic camera and Vertical Multi-Electrode Array conductance sensor (VMEA) was utilized to shoot dynamic images and acquire the conductance fluctuating signals of 5 typical vertical gas-liquid two-phase flow patterns in a 125mm i.d. upward pipe. Gray level co-occurrence matrix (GLCM) was used to extract four time-varying characteristic parameter indices which represented different flow image texture structures and also Lempel-Ziv complexity of them were calculated. Then the transition of flow structure and flow property were comprehensively analyzed, combining the result derived from image information with recurrence plots (RPs) and Lempel-Ziv complexity of conductance fluctuating signals. The study showed that the line texture structure of RPs enabled to indicate flow pattern characteristics; the flow image texture structure characteristic parameters sequence described the variance of flow structure and dynamical complexity of different flow patterns.
Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen
Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.
Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code
Ortiz-Ramirez, Jaime
1983-06-01
A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.
Two-phase flow stability structure in a natural circulation system
Zhou, Zhiwei
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Measurement and prediction of two-phase flow patterns for new refrigerants inside horizontal tubes
Kattan, N.; Favrat, D.; Thome, J.R.
1995-12-31
Two-phase flow pattern data were obtained with 12-mm-bore sight glasses for five refrigerants: R-123, R-134a, R-502, R-402A, and R-404A. The existing flow pattern maps of Taitel and Dukler (1976) and Hashizume (1983) poorly represented the data, while, with the exception of mist flows, the VDI map identified the flow patterns successfully. Methods used in horizontal flow boiling correlations to determine the threshold between all wet wall and partially wet wall flows were shown to be unreliable.
Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows
NASA Technical Reports Server (NTRS)
Rezkallah, Kamiel S.
1996-01-01
Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.
Implementation of the interfacial area transport equation in trace for boiling two-phase flows
NASA Astrophysics Data System (ADS)
Bernard, Matthew S.
Correctly predicting the interfacial area concentration (a i) is vital to the overall accuracy of the two-fluid model because ai describes the amount of surface area that exists between the two-phases, and is therefore directly related to interfacial mass, momentum and energy transfer. The conventional method for specifying ai in the two-fluid model is through flow regime-based empirical correlations coupled with regime transition criteria. However, a more physically consistent approach to predicting ai is through the interfacial area transport equation (IATE), which can address the deficiencies of the flow regime-based approach. Some previous studies have been performed to demonstrate the feasibility of IATE in developmental versions of the nuclear reactor systems analysis code, TRACE. However, a full TRACE version capable of predicting boiling two-phase flows with the IATE has not been established. Therefore, the current work develops a version of TRACE that is capable of predicting boiling two-phase flows using the IATE. The development is carried out in stages. First, a version of TRACE which employs the two-group IATE for adiabatic, vertical upward, air-water conditions is developed. An in-depth assessment on the existing experimental database is performed to select reliable experimental data for code assessment. Then, the implementation is assessed against the qualified air-water two-phase flow experimental data. Good agreement is observed between the experimental data for ai and the TRACE code with an average error of +/-9% for all conditions. Following the initial development, one-group IATE models for vertical downward and horizontal two-phase flows are implemented and assessed against qualified data. Finally, IATE models capable of predicting subcooled boiling two-phase flows are implemented. An assessment of the models shows that TRACE is capable of generating ai in subcooled boiling two-phase flows with the IATE and that heat transfer effects dominate
Modelling of two-phase flow in a minichannel using level-set method
NASA Astrophysics Data System (ADS)
Grzybowski, H.; Mosdorf, R.
2014-08-01
Today there is a great interest in micro-scale multiphase fluid flow. In the paper, the numerical simulation of two-phase flow inside 3 mm minichannel was carried out. The liquid- gas interface was captured using the level-set method. During the calculation, the stabilization and reinitialization of level set function was performed in order to obtain the proper accuracy of the simulation. Incompressible Navier-Stokes equations were solved using the COMSOL Multiphysics® on a two-dimensional mesh. The process of formation of different two-phase flow patterns in the minichannel has been investigated. During the simulation it has been analysed three flow patterns: the bubbly flow and two kinds of slug flow with short and long slugs. It has been shown that unsteady flow at the inlet of the minichannel is responsible for the chaotic character of changes of the slug and bubble sizes. Such unsteady flow modifies the distance between the bubbles and slugs. It has been shown that for the low water inlet velocity the two-phase flow pattern becomes more stable.
Film boiling on spheres in single- and two-phase flows. Final report
Liu, C.; Theofanous, T.G.
1994-12-01
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40{degrees}C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900{degrees}C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-{alpha}){sup 1/4} (with {alpha} being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.
Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes
NASA Technical Reports Server (NTRS)
Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.
1992-01-01
The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.
Evaluation of the Sensitivity of Two-Phase Flow Model for the Steam Separator Analysis
Michio Murase; Masao Chaki
2006-07-01
Reducing of the pressure losses of steam separator systems of boiling water reactor (BWR) plants is useful to reduce the required pump head and enhance core stability design margin. The need to reduce the pressure losses of steam separator systems is especially important in BWR plants that have high power density cores and natural circulation systems. The core flow rate of a BWR plant with a natural circulation system is affected by the pressure losses of steam separator systems. In BWR plants with high power density cores, the core stability design margin is affected by these pressure losses. Generally, reducing the pressure losses of the steam separator systems leads to increased carry-under and carryover. Reducing the pressure losses while keeping the characteristics of both carry-under and carryover is desired, so many studies have been done. The steam separator of a BWR plant consists of a standpipe section, a swirl vane section and three-barrel sections. Two-phase flow of steam and water enters the steam separator through the standpipe section and reaches the swirl vane section. In the swirl vane section, the two-phase flow is given centrifugal force and is basically separated into steam and water. Therefore investigating the two-phase flow characteristics of the swirl vane section is very important. After the swirl vane section, the two-phase flow enters the barrel sections. Each barrel has a pick-off ring. The water in the barrel section is mainly removed by these pick-off rings because the water mainly flows upward as a liquid film in the barrel section due to the centrifugal force given in the swirl vane section. We researched the effect of using the drag force model of the swirling two-phase flow in analyzing a steam separator and we found that the drag force model greatly affects the results of the analysis. (authors)
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1988-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.
Entropy analysis on non-equilibrium two-phase flow models
Karwat, H.; Ruan, Y.Q.
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
NASA Astrophysics Data System (ADS)
Dong, S.
2014-06-01
We present an effective outflow boundary condition, and an associated numerical algorithm, within the phase-field framework for dealing with two-phase outflows or open boundaries. The set of two-phase outflow boundary conditions for the phase-field and flow variables are designed to prevent the un-controlled growth in the total energy of the two-phase system, even in situations where strong backflows or vortices may be present at the outflow boundaries. We also present an additional boundary condition for the phase field function, which together with the usual Dirichlet condition can work effectively as the phase-field inflow conditions. The numerical algorithm for dealing with these boundary conditions is developed on top of a strategy for de-coupling the computations of all flow variables and for overcoming the performance bottleneck caused by variable coefficient matrices associated with variable density/viscosity. The algorithm contains special constructions, for treating the variable dynamic viscosity in the outflow boundary condition, and for preventing a numerical locking at the outflow boundaries for time-dependent problems. Extensive numerical tests with incompressible two-phase flows involving inflow and outflow boundaries demonstrate that, the two-phase outflow boundary conditions and the numerical algorithm developed herein allow for the fluid interface and the two-phase flow to pass through the outflow or open boundaries in a smooth and seamless fashion, and that our method produces stable simulations when large density ratios and large viscosity ratios are involved and when strong backflows are present at the outflow boundaries.
NASA Astrophysics Data System (ADS)
Deubelbeiss, Y.; Kaus, B. J. P.; Connolly, J. A. D.
2010-02-01
We analyze the mechanical behavior of a two-phase system consisting of rigid grains and an interconnected pore fluid. For this purpose we use 2D direct numerical simulations on the spatial scale of individual grains for Newtonian and non-Newtonian fluid rheology. By using the stress-strain rate relation we derive scaling laws for effective viscosity of two-phase particle suspensions. We demonstrate that the effective rheology of the assemblage is non-Newtonian only if the fluid has a non-Newtonian rheology. At small fluid fraction, inter-granular strain rates are up to 3 orders of magnitude higher than the applied background strain rate. We suggest that this effect explains the experimentally observed change at higher strain rates in rheology, from Newtonian to non-Newtonian aggregate rheology. To establish the conditions at which the fluid-solid aggregate deforms coherently as a consequence of Rayleigh-Taylor instabilities we studied flow patterns of particle suspensions and characterized them as a function of fluid fraction, viscosity, density, shape and size of the grains. From initial conditions with homogeneously distributed grains and interstitial fluid above a layer of pure fluid, our results show that the Rayleigh-Taylor instability dominates for moderate to large fluid fractions. At large fluid fractions, we observed a transition to a Stokes suspension mode, in which grains do not interact but sink independently. An analytical expression is derived that predicts the transition from Rayleigh-Taylor instability to Stokes suspension mode. The transition is a function of fluid fraction, radius of the grains, height of the interface and initial amplitude. Systematic numerical simulations are in good agreement with the analytical predictions.
Experimental and Analytical Study of Two-Phase Flow in Microgravity
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Abdollahian, Davood; Quintal, J.; Zahm, J.
1996-01-01
Design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer parameters in reduced gravities. A program has been initiated by NASA to design a two-phase test loop and to perform a series of experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop is also instrumented to generate data for two-phase pressure drop. In addition to low gravity airplane trajectory testing, the experimental program consisted of a set of laboratory tests which were intended to generate data under the bounding conditions (+1 g and -1 g) in order to plan the test matrix. One set of airplane trajectory tests has been performed and several modifications to the test set-up have been identified. Preliminary test results have been used to demonstrate the applicability of the earth gravity models for prediction of the two-phase friction pressure drop.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
NASA Astrophysics Data System (ADS)
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA
A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...
Waves, Instabilities, and Rivulets in High Quality Microgap Two-Phase Flow
NASA Astrophysics Data System (ADS)
Bar-Cohen, A.; Holloway, C.
2016-09-01
Two-phase flow in sub-millimeter microgap channels offers highly potent thermal management capability and is the foundation for the emerging "embedded cooling" paradigm of electronic cooling. While the thermofluid characteristics and operational limits of such microcoolers are intimately tied to distinct forms of vapor-liquid aggregation in the microgap channel, insufficient attention has been paid to the formation of distinct wave patterns and instabilities on the thin liquid films associated with high-quality microgap channel flow. This paper focuses on the results of visualization and heat transfer studies of such two-phase flows, under both adiabatic and diabatic conditions, for FC-72 flowing in a 184 micron microgap channel at a mass flux of 230 kg/(m2.s). The study has revealed the existence of a post-annular, high-quality Rivulet flow regime, in which the liquid film breakdown and local wall dryout drives large surface anisothermalities and limits the heat transfer rate from the wall. As predicted by the prevailing flow regime models, annular flow is found to be the dominant flow regime for this microgap configuration.. For the adiabatic conditions, flow qualities ranged between 27% and 81%, and widely spaced, 3D waves, with a wavelength that decreases with increasing flow quality, were observed on the liquid-vapor interface. For the diabatic condition, the inlet flow quality was maintained at 36% and the exit flow quality varied between 47% and 97%. For exit qualities greater than 61%, the liquid film would periodically rupture into rivulet of varying width and length. The spacing, length, and width of the rivulets varied considerably, and can easily stretch well into dryout region. The axial variation of the wall heat transfer coefficient was found to reflect and confirm the expected axial propagation of the two- phase flow regimes and the onset of local dryout associated with the newly-defined Rivulet regime.
Two phase choke flow in tubes with very large L/D
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.
1977-01-01
Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.
Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays
NASA Astrophysics Data System (ADS)
Moran, Joaquin E.
An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass
Coupling of two-phase flow in fractured-vuggy reservoir with filling medium
NASA Astrophysics Data System (ADS)
Xie, Haojun; Li, Aifen; Huang, Zhaoqin; Gao, Bo; Peng, Ruigang
2017-01-01
Caves in fractured-vuggy reservoir usually contain lots of filling medium, so the two-phase flow in formations is the coupling of free flow and porous flow, and that usually leads to low oil recovery. Considering geological interpretation results, the physical filled cave models with different filling mediums are designed. Through physical experiment, the displacement mechanism between un-filled areas and the filling medium was studied. Based on the experiment model, we built a mathematical model of laminar two-phase coupling flow considering wettability of the porous media. The free fluid region was modeled using the Navier-Stokes and Cahn-Hilliard equations, and the two-phase flow in porous media used Darcy's theory. Extended BJS conditions were also applied at the coupling interface. The numerical simulation matched the experiment very well, so this numerical model can be used for two-phase flow in fracture-vuggy reservoir. In the simulations, fluid flow between inlet and outlet is free flow, so the pressure difference was relatively low compared with capillary pressure. In the process of water injection, the capillary resistance on the surface of oil-wet filling medium may hinder the oil-water gravity differentiation, leading to no fluid exchange on coupling interface and remaining oil in the filling medium. But for the water-wet filling medium, capillary force on the surface will coordinate with gravity. So it will lead to water imbibition and fluid exchange on the interface, high oil recovery will finally be reached at last.
Interfacial area transport for reduced-gravity two-phase flows
NASA Astrophysics Data System (ADS)
Vasavada, Shilp
An extensive experimental and theoretical study of two-phase flow behavior in reduced-gravity conditions has been performed as part of the current research and the results of the same are presented in this thesis. The research was undertaken to understand the behavior of two-phase flows in an environment where the gravity field is reduced as compared to that on earth. The goal of the study was to develop a model capable of predicting the flow behavior. An experimental program was developed and accomplished which simulated reduced-gravity conditions on earth by using two liquids of similar density, thereby decreasing the body force effect akin to actual reduced-gravity conditions. The justification and validation of this approach has been provided based on physical arguments as well as comparison of acquired data with that obtained aboard parabolic flights by previous researchers. The experimental program produced an extensive dataset of local and averaged two-phase flow parameters using state-of-the-art instrumentation. Such data were acquired for a wide range of flow conditions at different radial and axial locations in a 25 mm inner diameter test facility. The current dataset is, in the author's opinion, the most extensive and detailed dataset available for such conditions at present. Analysis of the data revealed important differences between two-phase flows in normal and reduced-gravity conditions. The data analysis also highlighted key interaction mechanisms between the fluid particles and physical phenomena occurring in two-phase flows under reduced-gravity conditions. The interfacial area transport equation (IATE) for reduced-gravity conditions has been developed by considering two groups of bubbles/drops and mechanistically modeling the interaction mechanisms. The developed model has been benchmarked against the acquired data and the predictions of the model compared favorably against the experimental data. This signifies the success achieved in modeling
Stochastic Discrete Equation Method (sDEM) for two-phase flows
Abgrall, R.; Congedo, P.M.; Geraci, G.; Rodio, M.G.
2015-10-15
A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.
An ALE Finite Element Approach for Two-Phase Flow with Phase Change
NASA Astrophysics Data System (ADS)
Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team
2016-11-01
In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.
Approaches to myosin modelling in a two-phase flow model for cell motility
NASA Astrophysics Data System (ADS)
Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.
2016-04-01
A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.
Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings
Baroncini, Virgínia H.V.; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E.M.
2015-01-01
Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494
Single- and two-phase flow characterization using optical fiber bragg gratings.
Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M
2015-03-17
Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.
Deledicque, Vincent; Papalexandris, Miltiadis V.
2008-11-10
In this article, we present and analyze a conservative approximation to reduced one-pressure one-velocity models for compressible two-phase flows that contain non-conservative products. This approximation is valid when certain material properties of the two phases are considerably different from each other. Although it cannot be applied to arbitrary mixtures, it is applicable to many heterogeneous mixtures of technological interest. Herein, we derive the Rankine-Hugoniot relations and Riemann invariants for the homogeneous part of the proposed model and develop an exact Riemann solver for it. Further, we investigate the structure of the steady two-phase detonation waves, with inert or reactive solid particles, admitted by the proposed model. Comparisons with the corresponding gaseous detonations are also made. Moreover, we derive a lower limit for the propagation speed of steady two-phase detonations in the case of reactive particles. At the limiting case of very dilute mixtures, this minimum speed tends to the Chapman-Jouguet velocity of gaseous detonations. Finally, we report on numerical simulations of the transmission of a purely gaseous detonation to heterogeneous mixtures containing inert or reactive solid particles. The effect of the solid particles on the structure of the resulting two-phase detonation is discussed in detail.
Interfacial structures of confined air-water two-phase bubbly flow
Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.
2000-08-01
The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.
Use of two-phase flow heat transfer method in spacecraft thermal system
NASA Technical Reports Server (NTRS)
Hye, A.
1985-01-01
In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.
A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector
NASA Astrophysics Data System (ADS)
Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.
2016-09-01
In this study, the homogenous relaxation model (HRM) for CO2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates.
A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows
NASA Technical Reports Server (NTRS)
Apte, S. V.; Mahesh, K.; Lundgren, T.
2003-01-01
Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.
A two-phase solid/fluid model for dense granular flows including dilatancy effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To
Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant
2010-01-01
Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the
Design and construction of an experiment for two-phase flow in fractured porous media
Ayala, R.E.G.; Aziz, K.
1993-08-01
In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.
Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors
NASA Astrophysics Data System (ADS)
Tan, Chao; Yuan, Ye; Dong, Xiaoxiao; Dong, Feng
2016-12-01
A combination of ultrasonic transducers operated in continuous mode and a conductance/capacitance sensor (UTCC) is proposed to estimate the individual flow velocities in oil-water two-phase flows. Based on the Doppler effect, the transducers measure the flow velocity and the conductance/capacitance sensor estimates the phase fraction. A set of theoretical correlations based on the boundary layer models of the oil-water two-phase flow was proposed to describe the velocity profile. The models were separately established for the dispersion flow and the separate flow. The superficial flow velocity of each phase is calculated with the velocity measured in the sampling volume of the ultrasonic transducer with the phase fraction through the velocity profile models. The measuring system of the UTCC was designed and experimentally verified on a multiphase flow loop. The results indicate that the proposed system and correlations estimate the overall flow velocity at an uncertainty of U J = 0.038 m s-1, and the water superficial velocity at U Jw = 0.026 m s-1, and oil superficial velocity at U Jo = 0.034 m s-1. The influencing factors of uncertainty were analyzed.
Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant
Howarth, S.M.
1993-07-01
The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass
Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
Yang, Zhaochu; Dong, Tao; Halvorsen, Einar
2014-01-01
This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.
Ensemble distribution for immiscible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Savani, Isha; Bedeaux, Dick; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex
2017-02-01
We construct an ensemble distribution to describe steady immiscible two-phase flow of two incompressible fluids in a porous medium. The system is found to be ergodic. The distribution is used to compute macroscopic flow parameters. In particular, we find an expression for the overall mobility of the system from the ensemble distribution. The entropy production at the scale of the porous medium is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. We test numerically some of the central theoretical results.
Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen
1990-01-01
A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.
A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows
Ray A. Berry; Richard Saurel; Fabien Petitpas
2009-05-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.
Internal structure and interfacial area in two-phase flow systems
Kojasoy, G.
1991-01-01
The interfacial transfer terms and the importance of the interfacial area concentration are reviewed first with respect to the two-fluid model formulation of two-phase flow systems. Then the available measurement techniques for interfacial area are reviewed. At present, it appears that various methods such as the chemical, light attenuation, photographic, ultrasound attenuation and probe techniques have a number of limitations. Among these measurement techniques, however, the local probe method using one or more double sensors seems to have the greatest potential in terns of accuracy and wider applicability in various two-phase flow patterns. From the brief review of existing interfacial area modeling methods, it is concluded that the conventional approaches might not be sufficient, and new directions are indicated. Recent experimental results on local interfacial structural characteristics of horizontal bubbly two-phase flow and internal flow structure development are presented. More specifically, experimental results on local void fraction, interfacial area concentration, bubble size, bubble interface velocity and bubble frequency are documented in detail. Finally, a theoretical model predicting the mean bubble size and interfacial area concentration is proposed. The theoretically predicted bubble size and interfacial area concentration are found to agree reasonably well with those measured by using a double-sensor resistivity technique.
Internal structure and interfacial area in two-phase flow systems
Kojasoy, G.
1991-12-31
The interfacial transfer terms and the importance of the interfacial area concentration are reviewed first with respect to the two-fluid model formulation of two-phase flow systems. Then the available measurement techniques for interfacial area are reviewed. At present, it appears that various methods such as the chemical, light attenuation, photographic, ultrasound attenuation and probe techniques have a number of limitations. Among these measurement techniques, however, the local probe method using one or more double sensors seems to have the greatest potential in terns of accuracy and wider applicability in various two-phase flow patterns. From the brief review of existing interfacial area modeling methods, it is concluded that the conventional approaches might not be sufficient, and new directions are indicated. Recent experimental results on local interfacial structural characteristics of horizontal bubbly two-phase flow and internal flow structure development are presented. More specifically, experimental results on local void fraction, interfacial area concentration, bubble size, bubble interface velocity and bubble frequency are documented in detail. Finally, a theoretical model predicting the mean bubble size and interfacial area concentration is proposed. The theoretically predicted bubble size and interfacial area concentration are found to agree reasonably well with those measured by using a double-sensor resistivity technique.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
Simulation experiments for hot-leg U-bend two-phase flow phenomena
Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.
1986-01-01
In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions.
NASA Astrophysics Data System (ADS)
Burkholder, Michael B.; Litster, Shawn
2016-05-01
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.
Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe
NASA Astrophysics Data System (ADS)
Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy
2016-06-01
Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.
A numerical method for a model of two-phase flow in a coupled free flow and porous media system
NASA Astrophysics Data System (ADS)
Chen, Jie; Sun, Shuyu; Wang, Xiao-Ping
2014-07-01
In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method.
Performance of WPA Conductivity Sensor during Two-Phase Fluid Flow in Microgravity
NASA Technical Reports Server (NTRS)
Carter, Layne; O'Connor, Edward W.; Snowdon, Doug
2003-01-01
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.
Decay of the 3D inviscid liquid-gas two-phase flow model
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-06-01
We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.
Some issues in the simulation of two-phase flows: The relative velocity
NASA Astrophysics Data System (ADS)
Gräbel, J.; Hensel, S.; Ueberholz, P.; Zeidan, D.; Farber, P.
2016-06-01
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.
Not Available
1991-07-01
The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.
Membrane-less micro fuel cell based on two-phase flow
NASA Astrophysics Data System (ADS)
Hashemi, S. M. H.; Neuenschwander, M.; Hadikhani, P.; Modestino, M. A.; Psaltis, D.
2017-04-01
Most microfluidic fuel cells use highly soluble fuels and oxidants in streams of liquid electrolytes to overcome the mass transport limitations that result from the low solubility of gaseous reactants such as hydrogen and oxygen. In this work, we address these limitations by implementing controlled two-phase flows of these gases in a set of microchannels electrolytically connected through a narrow gap. Annular flows of the gases reshape the concentration boundary layer over the surface of electrodes and increase the mass-transport limited current density in the system. Our results show that the power density of a two-phase system with hydrogen and oxygen streams is an order of magnitude higher than that of single phase system consisting of liquid electrolytes saturated with the same reactants. The reactor design described here can be employed to boost the performance of MFFCs and put them in a more competitive position compared to membrane based fuel cells.
Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media
NASA Astrophysics Data System (ADS)
Fan, J.; Weitz, D.
2015-12-01
Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)
Vertical two-phase flow regimes and pressure gradients: Effect of viscosity
Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.
2007-05-15
The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)
Cai, Y.; Wambsganss, M.W.; Jendrzejczyk, J.A.
1996-02-01
Various measurement tools of chaos theory were applied to analyze two-phase pressure signals with the objective to identify and interpret flow pattern transitions for two-phase flows in a small, horizontal rectangular channel. These measurement tools included power spectral density function, autocorrelation function, pseudo-phase-plane trajectory, Lyapunov exponents, and fractal dimensions. It was demonstrated that the randomlike pressure fluctuations characteristic of two-phase flow in small rectangular channels are chaotic in nature. As such, they are governed by a high-order deterministic system. The correlation dimension is potentially a new approach for identification of certain two-phase flow patterns and transitions.
Two-phase flow interfacial structures in a rod bundle geometry
NASA Astrophysics Data System (ADS)
Paranjape, Sidharth S.
Interfacial structure of air-water two-phase flow in a scaled nuclear reactor rod bundle geometry was studied in this research. Global and local flow regimes were obtained for the rod bundle geometry. Local two-phase flow parameters were measured at various axial locations in order to understand the transport of interfacial structures. A one-dimensional two-group interfacial area transport model was evaluated using the local parameter database. Air-water two-phase flow experiments were performed in an 8 X 8 rod bundle test section to obtain flow regime maps at various axial locations. Area averaged void fraction was measured using parallel plate type impedance void meters. The cumulative probability distribution functions of the signals from the impedance void meters were used along with a self organizing neural network to identify flow regimes. Local flow regime maps revealed the cross-sectional distribution of flow regimes in the bundle. Local parameters that characterize interfacial structure, that is, void fraction alpha, interfacial area concentration, ai, bubble Sauter mean diameter, DSm and bubble velocity, vg were measured using four sensor conductivity probe technique. The local data revealed the distribution of the interfacial structure in the radial direction, as well as its development in the axial direction. In addition to this, the effect of spacer grid on the flow structure at different gas and liquid velocities was revealed by local parameter measurements across the spacer grids. A two-group interfacial area transport equation (IATE) specific to rod bundle geometry was derived. The derivation of two-group IATE required certain assumption on the bubble shapes in the subchannels and the bubbles spanning more than a subchannel. It was found that the geometrical relationship between the volume and the area of a cap bubble distorted by rods was similar to the one derived for a confined channel under a specific geometrical transformation. The one
Numerical Study of Two-Phase Flow Field in a Simplified Swirl Cup Combustor (Preprint)
2007-09-24
Article 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Numerical Study of Two-Phase Flow Field in a Simplified Swirl Cup...swirl provides a recirculation zone which enhances mixing and flame stability. Some high-performance aircraft engines such as in GE/SNECMA CFM56 ...downstream of a GE/SNECMA CFM56 engine combustor swirl cup in which the primary and secondary swirlers provide co-axial, counter-swirling airstreams
Analytical study on two-phase MHD flow of electrically conducting magnetic fluid
Okubo, Masaaki; Ishimoto, Jun; Nishiyama, Hideya; Kamiyama, Shinichi
1994-01-01
An energy conversion system using magnetic fluids proposed by Resler and Rosensweig was based on the principle that the magnetization of magnetic fluids changes with temperature. However, significant results have not been obtained up to the present. To overcome this limit and to increase the acceleration of fluid flow the authors have contributed a new energy conversion system using two-phase flow produced by heat addition. This idea came from the two-phase liquid-metal MHD power generation system proposed by Petrick and Branover. If temperature sensitive magnetic fluids are used, such a system can produce a larger force than conventional systems because the properties of apparent magnetization change not only by temperature rise but also by gas inclusion. In the present paper, an analytical study is extended to the case of electrically conducting magnetic fluid as a basic study for demonstrating the possibility of application of electrically conducting magnetic fluid to working fluid in a liquid-metal MHD power generation system. Electrically conducting magnetic fluid is usually prepared by dispersing fine iron particles into a liquid metal such as mercury. To prevent a solidification of particles and keep a homogeneous dispersion, a thin film of tin is attached to the particle`s surface. Thus the electrically conducting liquid behaves as fluid itself having magnetization. The equations governing a one-dimensional boiling two-phase duct flow of such an electrically conducting magnetic fluid in a traverse magnetic field are numerically solved. The analytical results of the two-phase flow characteristics of the magnetic fluid are compared with ones of an electrically conducting nonmagnetic fluid.
Two-phase flow and heat transfer in porous beds under variable body forces, part 7
NASA Technical Reports Server (NTRS)
Henry, H. R.
1970-01-01
The design of an experiment to determine the behavior of two-phase vapor-liquid and gas-liquid flow through porous beds in low gravity environments is discussed. The selection of porous materials, liquids, and gases is described. The parameters necessary for the design and development of a flight experimental system are examined. The general specifications for system elements requiring additional development are identified.
Disturbed zone effects: Two phase flow in regionally water-saturated fractured rock
Geller, J.T.; Doughty, C.; Long, J.C.S.
1995-01-01
Field evidence suggests that two-phase flow may develop near underground excavations in regionally-saturated fractured crystalline rock, resulting in lower inflow rates compared to undisturbed rock. Mechanisms for the development of two-phase flow conditions include depressurization of formation water that is supersaturated with dissolved gas and buoyancy-driven air invasion into fractures from the drift. Models that assume gas-liquid phase equilibrium indicate that for constant head boundary conditions, the build-up of pressure behind the gas phase evolving from depressurization should redissolve the gas and maintain higher flowrates, requiring unreasonably high dissolved gas concentrations to produce observed flow reductions at the Stripa Mine in Sweden. This discrepancy initiated a laboratory-scale investigation. Gas evolution following depressurization is simulated in two different 8 cm x 8 cm transparent fracture replicas for linear flow with constant head boundary conditions. Gas forms and accumulates in the large apertures and the extent of flow reduction is greater when the flow through the fracture is controlled by a large aperture channel, compared to a fracture where large aperture regions are relatively isolated. An effective continuum numerical model (TOUGH2) is used to describe the development of two-phase flow under degassing conditions. Numerical simulations were made for a homogeneous porous medium and for a heterogeneous medium using the aperture distribution of one of the fractures used in the laboratory experiments, which allows a direct comparison between laboratory and numerical results. The incorporation of kinetic expressions into the numerical model will allow the prediction of resaturation rates of a repository following closure.
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1989-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the
Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat
NASA Astrophysics Data System (ADS)
Yamanaka, H.; Nakagawa, M.
2013-04-01
Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.
Two-phase flow in geothermal energy sources. Final technical report
Not Available
1981-07-01
A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.
Shadow imaging in bubbly gas-liquid two-phase flow in porous structures
NASA Astrophysics Data System (ADS)
Altheimer, Marco; Häfeli, Richard; Wälchli, Carmen; Rudolf von Rohr, Philipp
2015-09-01
Shadow imaging is used for the investigation of bubbly gas-liquid two-phase flow in a porous structure. The porous structure is made of Somos WaterShed XC 11122, a clear epoxy resin used in rapid prototyping. Optical access is provided by using an aqueous solution of sodium iodide and zinc iodide having the same refractive index as the structure material (). Nitrogen is injected into the continuous phase at volumetric transport fractions in the range of resulting in a hold-up of . The obtained images of overlapping bubble shadows are processed to measure the bubble dimensions. Therefore, a new processing sequence is developed to determine bubble dimensions from overlapping bubble shadows by ellipse fitting. The accuracy of the bubble detection and sizing routine is assessed processing synthetic images. It is shown that the developed technique is suitable for volumetric two-phase flow measurements. Important global quantities such as gas hold-up and total interfacial area can be measured with only one camera. Operation parameters for gas-liquid two-phase flows are determined to improve mass and heat transfer between the phases.
Experimental study on interfacial area transport in downward two-phase flow
NASA Astrophysics Data System (ADS)
Wang, Guanyi
In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter
Network simulation of steady-state two-phase flow in consolidated porous media
Constantinides, G.N.; Payatakes, A.C.
1996-02-01
Multiphase flow in porous media is a complex process encountered in many fields of practical engineering interest, such as oil recovery from reservoir rocks, aquifer pollution by liquid wastes and soil reconstitution, and agricultural irrigation. A computer-aided simulator of steady-state two-phase flow in consolidated porous media is developed. The porous medium is modeled as a 3-D pore network of suitably shaped and randomly sized unit cells of the constricted-tube type. The problem of two-phase flow is solved using the network approach. The wetting phase saturation, the viscosity ratio, the capillary number, and the probability of coalescence between two colliding ganglia are changed systematically, where as the geometrical and topological characteristics of the porous medium and wettability (dynamic contact angles) are kept constant. In the range of the parameter values investigated, the flow behavior observed is ganglion population dynamics (intrinsically unsteady, but giving a time-averaged steady state). The mean ganglion size and fraction of the nonwetting phase in the form of stranded ganglia are studied as functions of the main dimensionless parameters. Fractional flows and relative permeabilities are determined and correlated with flow phenomena at pore level. Effects of the wetting phase saturation, the viscosity ratio, the capillary number, and the coalescence factor on relative permeabilities are examined.
Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro
2001-01-01
This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.
Characterization of flooding and two-phase flow in polymer electrolyte membrane fuel cell stacks
NASA Astrophysics Data System (ADS)
Karimi, G.; Jafarpour, F.; Li, X.
A partially flooded gas diffusion layer (GDL) model is proposed and solved simultaneously with a stack flow network model to estimate the operating conditions under which water flooding could be initiated in a polymer electrolyte membrane (PEM) fuel cell stack. The models were applied to the cathode side of a stack, which is more sensitive to the inception of GDL flooding and/or flow channel two-phase flow. The model can predict the stack performance in terms of pressure, species concentrations, GDL flooding and quality distributions in the flow fields as well as the geometrical specifications of the PEM fuel cell stack. The simulation results have revealed that under certain operating conditions, the GDL is fully flooded and the quality is lower than one for parts of the stack flow fields. Effects of current density, operating pressure, and level of inlet humidity on flooding are investigated.
Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation
NASA Technical Reports Server (NTRS)
Lin, J. T.; Ovacik, L.; Jones, O. C.
1991-01-01
The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.
Prediction of gas-liquid two-phase flow regime in microgravity
NASA Technical Reports Server (NTRS)
Lee, Jinho; Platt, Jonathan A.
1993-01-01
An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.
Two phase flow and heat transfer in porous beds under variable body forces, part 2
NASA Technical Reports Server (NTRS)
Evers, J. L.; Henry, H. R.
1969-01-01
Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.
Separated Vs. homogeneous two-phase flow in violent strombolian activity
NASA Astrophysics Data System (ADS)
Pioli, L.; Cashman, K.; Wallace, P.
2007-12-01
The term "violent Strombolian" was first used to describe mafic eruptions that formed ash-charged columns up to 6 km high, and dispersed material up to a few hundred km from the source (Walker, 1971). These eruptions are often discontinuous and strongly pulsatory and are typically associated with simultaneous effusive activity: they form composite deposits constituted by a cinder cone, tephra blanket, and lava flows spreading from lateral vents. This eruptive regime is typical of water-rich mafic magmas and is characterized by average mass flows (103-105 kg/s) intermediate between Hawaiian and subplinian regimes. Within this interval, there is a direct correlation between explosivity, as defined by tephra production, and magma flux. When magma flow exceeds 105 kg/s, gas segregation is no longer possible and eruptive activity takes the form of sustained columns (subplinian to plinian activity). At eruption rates below 103 kg/s passive degassing processes dominate, causing lava effusion and/or mild explosive activity (Strombolian to Hawaiian). We suggest that very shallow gas segregation processes play a fundamental role in violent strombolian dynamics, affecting both explosive and effusive activity. Simultaneous eruption of tephra from the cone and lava flows from lateral vents requires both a gas-rich mixture ascending the central conduit and gas-poor lava flowing in the lateral system. Uneven distribution of liquid and gas phases is possible only when gas and magma are characterized by different momentum, i.e. the flow is separated. At a first approximation, the phase distribution is controlled by the two-phase flow regime (bubbly, slug, churn or annular), both gas and liquid fluxes, and the ratio between conduit and dike diameters. To quantify this process, we analyze in detail the dynamics of a particularly long-lived and well-known eruption of the last century- the Paricutin eruption (1943-1952) of central Mexico. Specific two-phase flow models are then used to
Device for measuring the liquid portion of a two-phase flow of gas and liquid
Schleimann-Jensen, A.H.
1986-09-02
A device is described for measuring the liquid portion of a two-phase flow of gas and liquid, particularly in conveying a liquid by means of a gas, in which two-phase flow the ratio of mixture between gas and liquid is widely varying. The device consists of a tubular housing and a turbine wheel with axial throw-flow rotatably mounted therein, the turbine wheel being provided with at least one magnetic element at a radially outward portion thereof, the element having limited extent axially and peripherally of the turbine wheel. The device furthermore consists of magnetic pick-up means adapted to emit output signals responsive to the rotary speed of the turbine wheel, the wheel being mounted for axial movement in the direction of flow from an initial position against a biassing force, characterized in that pick-up means are arranged axially spaced along the housing for allowing a measuring of rotary speed of the turbine wheel at various positions of movement within the housing responsive to density as well as speed changes of the flow and hence a determination of the liquid portion thereof by means of a converting device connected to all of the pick-up means. The tubular housing preferably is mounted vertically with the turbine wheel in its initial position being located lowermost.
NASA Astrophysics Data System (ADS)
Ramon, Jorge; Schreiber, Willard
2009-11-01
A novel atomization mechanism known as Flow Blurring (FB) mixes air with liquid to produce a fine spray. While the geometry of Flow Blurring is simple, the fluid mechanics of the two-phase mixing is complicated. CFD modeling of the Flow Blurring injector has been attempted previously assuming laminar one phase mixing between two different density gases. The objective of the present work was to study the effect of adding turbulence and two-phase flow to the previous CFD model. The k-ɛ, k-φ, and Reynolds stress models were investigated for representing turbulence. The k-ɛ realizable model produces the best results both from the standpoint of physical realism and numerical convergence and allows the Reynolds number based on flow characteristics of the FB injector to be increased by a factor of six. Three models of two-phase flow were examined: Volume of Fluid, Mixture, and Eulerian, none of which satisfactorily simulated two-phase mixing in the FB atomizer.
Central Upwind Scheme for a Compressible Two-Phase Flow Model
Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242
A 3D moving mesh Finite Element Method for two-phase flows
NASA Astrophysics Data System (ADS)
Anjos, G. R.; Borhani, N.; Mangiavacchi, N.; Thome, J. R.
2014-08-01
A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles.
Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging
Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim
2002-07-01
This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
NASA Astrophysics Data System (ADS)
ten Eikelder, M. F. P.; Daude, F.; Koren, B.; Tijsseling, A. S.
2017-02-01
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow
Chang, H.T.; Hourng, L.W.; Chien, L.C.
1997-05-01
A time-splitting method for the numerical simulation of stiff nonequilibrium combustion problem was developed. The algorithm has been applied to simulate the shock-induced combustion and to investigate a supersonic one-and two-phase flowfield. The results are physically reasonable and demonstrate that the presence of particles has a dramatic effect on the nozzle flowfield and the thrust. Supersonic combustion usually happens in high speed flying aerodynamic problems, such as supersonic combustion ramjet (scramjet) engine for hypersonic airbreathing vehicles. Particularly for the scramjet engine, due to short residence time in the combustion chamber, it still contains incomplete combustion fuel as it enters the nozzle. For solid propellant rocket motors, the exhaust stream contains particles of aluminum oxide. In these two-phase nozzle flows, transfer of momentum and heat between gas particles often result in a decrease of nozzle efficiency.
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
NASA Astrophysics Data System (ADS)
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
NASA Astrophysics Data System (ADS)
Seyed Ahmadi, Mehran; Argyropoulos, Stavros A.; Bussmann, Markus; Doutre, Don
2015-03-01
Following on a study of Si dissolution in molten Al, the effect of gas agitation is examined. The effects of gas flow rate, liquid bulk velocity, the position of a top injection lance, and bath temperature on the dissolution rate are quantified. A higher gas flow rate produced larger bubbles while bubble frequency remained relatively unchanged. This resulted in larger bubble-induced fluctuating velocities which in turn increased the dissolution rate. At lower bulk velocities, the effect of gas agitation is localized around the lance. By increasing the velocity, the effect of gas agitation is transported further into the bath. The dissolution rate enhancement varies with increasing bulk velocity, and explanations are provided. When combined with a bulk flow, gas agitation increases the dissolution rate regardless of lance position. Also, the enhancement of dissolution rate due to gas injection decreases at higher superheats, as the higher bath temperature increases the mass boundary thickness. In addition, the dissolution rate without gas agitation (single-phase flow) and with gas agitation (two-phase flow) is compared in terms of mean mass transfer coefficients. It was found that for the same liquid bulk velocities, the mean mass transfer coefficients are higher in two-phase flow than in single-phase flow. Finally, an increment to the single-phase flow bulk velocity that would be required to gain parity with the two-phase flow dissolution rate rise is demonstrated.
Two-phase Flow Patterns in High Temperature Generator of Absorption Chiller / Heater
NASA Astrophysics Data System (ADS)
Furukawa, Masahiro; Kanuma, Hitoshi; Sekoguchi, Kotohiko; Takeishi, Masayuki
There is a lack of information about vapor-liquid two-phase flow patterns determined using void signals in high temperature generator of absorption chiller/heater. Sensing void fraction has been hampered because lithium bromide aqueous solution of strong alkalinity is employed as working fluid at high temperature and high level of vacuum. New void sensor applicable to such difficult conditions was developed. The void Fractions at 48 locations in a high temperature generator were measured simultaneously in both cooling and heating operations. Analysis of void signals detected reveals that the most violent boiling occurs at the upper part of rear plate of combustion chamber and the first line of vertical tubes located in the flue. The flow patterns are strongly affected by the system pressure difference between the cooling and heating operations: there appear bubbly, slug and froth flows in the cooling operation, but only bubbly flow in the heating operation.
Non-equilibrium one-dimensional two-phase flow in variable area channels
NASA Technical Reports Server (NTRS)
Rohatgi, U. S.; Reshotko, E.
1975-01-01
A one-dimensional nonequilibrium flow analysis has been formulated for a one component two phase flow. The flow is considered homogeneous and essentially isothermal. Phase change is assumed to occur at heterogeneous nucleation sites and the growth of the vapor bubbles is governed by heat conduction from the liquid to the bubble. The analysis adjusted for friction is applied to liquid nitrogen flow in a venturi and comparison is made with the NASA experimental results of Simoneau. Good agreement with the experiments is obtained when one assumes the effective activation energy for nucleus formation to be small but nonzero. The computed pressure distributions deviate from the experimental results in the throat region of the venturi in a manner consistent with centrifugal effects not accounted for in the one-dimensional theory. The results are shown to depend not only on cavitation number but on additional dimensionless parameters governing the nonequilibrium production and subsequent growth of nuclei.
Development of electro-optical instrumentation for annular two-phase flow studies
NASA Astrophysics Data System (ADS)
Leskovar, B.
1981-05-01
Th development of new electro-optical instrumentation for studying the annular dispersed two phase flow regime is described. The system measures the thickness of the water film and droplet size and velocity distributions which would be encountered in such a flow regime. The water film thickness is measured by an improved capacitance method with a short time constant using newly developed sensor electrodes. The electrodes are made flush with the inner wall of a cylindrical tube and do not disturb the flow. In the test equipment, steady, laminar flow of water along the inner wall of the tube is controlled by appropriate valves and a porous jacket while droplets are introduced by means of a special spray nozzle.
Two-phase Flow Characteristics in a Gas-Flow Channel of Polymer Electrolyte Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Cho, Sung Chan
Fuel cells, converting chemical energy of fuels directly into electricity, have become an integral part of alternative energy and energy efficiency. They provide a power source of high energy-conversion efficiency and zero emission, meeting the critical demands of a rapidly growing society. The proton exchange membrane (PEM) fuel cells, also called polymer electrolyte fuel cells (PEFCs), are the major type of fuel cells for transportation, portable and small-scale stationary applications. They provide high-power capability, work quietly at low temperatures, produce only water byproduct and no emission, and can be compactly assembled, making them one of the leading candidates for the next generation of power sources. Water management is one of the key issues in PEM fuel cells: appropriate humidification is critical for the ionic conductivity of membrane while excessive water causes flooding and consequently reduces cell performance. For efficient liquid water removal from gas flow channels of PEM fuel cells, in-depth understanding on droplet dynamics and two-phase flow characteristics is required. In this dissertation, theoretical analysis, numerical simulation, and experimental testing with visualization are carried out to understand the two-phase flow characteristics in PEM fuel cell channels. Two aspects of two-phase phenomena will be targeted: one is the droplet dynamics at the GDL surface; the other is the two-phase flow phenomena in gas flow channels. In the former, forces over a droplet, droplet deformation, and detachment are studied. Analytical solutions of droplet deformation and droplet detachment velocity are obtained. Both experiments and numerical simulation are conducted to validate analytical results. The effects of contact angle, channel geometry, superficial air velocity, properties of gas phase fluids are examined and criteria for the detachment velocity are derived to relate the Reynolds number to the Weber number. In the latter, two-phase flow
Ishii, M.; Denten, J.P.
1988-01-01
Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs.
Numerical simulation of two-phase flow in horizontal interconnected subchannels
Shourki, M.; Carver, M.B.; Tahir, A.
1985-11-01
Different subchannel computer codes have been successfully used for the thermal-hydraulic analysis of coolant flow in vertical fuel channels. None of these methods, however, is suitable for two-phase flow in horizontal fuel channels, such as those of the CANDU nuclear reactors, due to the lack of appropriate constitutive relationships that can correctly account for the gravity separation effects. A transverse vapor drift model that accounts for the combined effect of gravity separation and turbulent diffusion has been incorporated into the existing subchannel computer code SAGA. Although the basic structure of the code remains similar to SAGA III, some modifications in both the mathematical formulation and numerical solution have been incorporated. These modifications resulted in significant improvements in the code's ability to model horizontal two-phase subchannel flow. The new version of the code was tested and found to be capable of simulating the complex exchange phenomenon between adjacent horizontal subchannels caused by the interaction of turbulent diffusion, pressure gradient, and gravity-induced cross flows. The code predictions were compared with experimental data obtained from two different sources and showed good agreement.
Formation of parallel two-phase flow in nanochannel and application to solvent extraction
NASA Astrophysics Data System (ADS)
Kazoe, Yutaka; Ugajin, Takuya; Ohta, Ryoichi; Mawatari, Kazuma; Kitamori, Takehiko; The University of Tokyo Team
2015-11-01
Micro chemical systems have realized high-throughput analysis in ultra small volumes. Our group has established unit operations such as extraction, separation and reaction, and a concept of integration of chemical processes using parallel multi-phase flows in microchannels. Recently, the research field has been extended to 10-1000 nm space (extended-nanospace). Exploiting extended-nanospace, we developed ultra high performance chemical operations such as aL-chromatography and single molecule immunoassay. However, formation of parallel multi-phase flow in nanochannels has been difficult. The challenge is to control liquid-liquid/gas-liquid interfaces in 100 nm-scale. For this purpose, this study developed a partial surface modification method of nanochannel and verified formation of parallel two-phase flow. We achieved partial hydrophobic modification using focused ion beam (FIB). Using this method, formation of parallel water/dodecane two-phase flow in a nanochannel of 1500 nm width and 890 nm depth was succeeded. Solvent extraction of lipid, which is a basic separation in bioanalysis, was achieved in 25 fL volume much smaller than single cell. This study will greatly contribute to develop novel nanofluidic devices for chemical analysis and chemical synthesis. This work was supported by Japan Science and Technology Agency, Core Research for Evolutional Science and Technology.
Bilicki, Z.; Kestin, J.
1980-12-01
A derivation of the field equations for two-phase flow is presented, based on the classical methods of thermodynamics of irreversible processes and resulting in a homogeneous diffusion model. The equations are local and instantaneous and ignore turbulent fluctuations as well as the observable fluctuations of the phase boundaries. (MHR)
Garg, P.; Picardo, J. R.; Pushpavanam, S.
2014-07-15
In this work, we investigate the fully developed flow field of two vertically stratified fluids (one phase flowing above the other) in a curved channel of rectangular cross section. The domain perturbation technique is applied to obtain an analytical solution in the asymptotic limit of low Reynolds numbers and small curvature ratios (the ratio of the width of the channel to its radius of curvature). The accuracy of this solution is verified by comparison with numerical simulations of the nonlinear equations. The flow is characterized by helical vortices within each fluid, which are driven by centrifugal forces. The number of vortices and their direction of circulation varies with the parameters of the system (the volume fraction, viscosity ratio, and Reynolds numbers). We identify nine distinct flow patterns and organize the parameter space into corresponding flow regimes. We show that the fully developed interface between the fluids is not horizontal, in general, but is deformed by normal stresses associated with the circulatory flow. The results are especially significant for flows in microchannels, where the Reynolds numbers are small. The mathematical results in this paper include an analytical solution to two coupled biharmonic partial differential equations; these equations arise in two-phase, two-dimensional Stokes flows.
NASA Astrophysics Data System (ADS)
Goto, H.; Aichi, M.; Tokunaga, T.; Yamamoto, H.; Ogawa, T.; Aoki, T.
2013-12-01
Coupled two-phase fluid flow and deformation of Berea sandstone was discussed through laboratory experiments and numerical simulation. In the experiment, a triaxial compression apparatus with flow pipes to pass fluids through a rock sample was used. The experimental procedures were as follows. Firstly, external stresses close to hydrostatic condition were applied to a water saturated cylindrical Berea sandstone sample. Then, compressed air was infiltrated from the bottom of the sample. During the experiment, both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were measured. Both strains showed sudden extensions after a few seconds, and monotonically extended thereafter. The volumetric discharge of water showed that air breakthrough occurred in around 100 seconds after the commencement of the air injection. Numerical simulations based on thermodynamically consistent constitutive equations were conducted in order to quantitatively analyze the experimental results. In a simulation in which the material was assumed to be homogeneous isotropic, the axial strain at half the height of the sample and the volumetric discharge of water at the outlet were reproduced well by using reasonable parameters, while that was not the case with the circumferential strain at half the height of the sample. On the other hand, in a simulation in which anisotropy of the material was introduced, all experimental data were reproduced well by using reasonable parameters. This result is reasonable because Berea sandstone is well known to be anisotropic under such Terzaghi effective stress condition as used in our experiment, i.e., 3.0 MPa (Hart and Wang, 1999; Hart, 2000). Our results indicate that the theory of poroelasticity for two-phase fluid system can explain the strain behavior of porous media for two-phase fluid flow observed in laboratory experiments.
Dynamic model for horizontal two-phase flow predicting low head flooding
Saarinen, M. . Nuclear Engineering Lab.)
1994-10-01
The countercurrent flow of gas and water in a short horizontal pipe is studied numerically with a two-phase flow model. It is observed that the onset of flooding cannot be predicted at low liquid flow rates using conventional one-dimensional equations. The conventional equations yield the same underestimated results as the Taitel-Dukler criterion. Utilizing physical reasoning, improved equations have been derived. The basic idea is that the distribution of the phase velocities should not be treated as uniform in the cross-sectional area occupied by phases but transverse dependencies for the velocities should be allowed. By comparing measurement data and calculated results, it is shown that flooding transition can be predicted accurately with these equations.
Zero-G experiments in two-phase fluids flow regimes
NASA Technical Reports Server (NTRS)
Heppner, D. B.; King, C. D.; Littles, J. W.
1975-01-01
The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.
Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment
NASA Technical Reports Server (NTRS)
Chung, Jacob N.
1994-01-01
The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.
Behavior of embedded phase in shock-driven two-phase flow
NASA Astrophysics Data System (ADS)
Kuehner, Garrett; Wayne, Patrick; Olmstead, Dell; Corbin, Clint; Bernard, Tennille; Vorobieff, Peter; Truman, C. Randall
2013-11-01
We present an experimental study of droplet acceleration in a shock-driven two-phase flow (air with embedded liquid droplets). The droplets (propylene glycol, diameter 0.5-3 μm) were pre-mixed with the air in the test section of a shock tube, then impulsively accelerated with planar shock wave with a Mach number of 1.7. A cross-section of the flow is illuminated with multiple pulses from Nd:YAG lasers, producing time-resolved visualizations of the seeded volume. The images are then analyzed to quantify droplet velocity and acceleration from the shock passage to about 1.5 ms after the shock. Based on the velocity measurements, we can resolve the droplet lag after the shock, when the massive droplets ``catch up'' with the flow of the surrounding air, as well as validate our earlier estimates of boundary layer growth. This research is supported by NNSA (US National Nuclear Security Agency).
Flow in geothermal wells. Part IV. Transition criteria for two-phase flow patterns
Bilicki, Z.; Kestin, J.
1980-12-01
Detailed considerations justifying the criteria for transitions between flow patterns are presented. The following are covered: transition from bubble to plug (or slug) flow, transition from plug flow to froth flow, transition from froth to annular mist flow, and model comparisons. (MHR)
Parasitic Currents in Diffuse-Interface Two-Phase Flow Simulations
NASA Astrophysics Data System (ADS)
Milani, Pedro; Mirjalili, Seyedshahabaddin; Mani, Ali
2016-11-01
Two phase flow phenomena are important in a wide range of applications, such as bubble generation in ocean waves and droplet dynamics in fuel injectors. Several methods can be used to simulate such phenomena. The focus of this study is the diffuse-interface method, in which the interface is described via a mixing energy and spans a few computational cells, while surface tension is modeled as a force density term on the right-hand side of the momentum equation. The advantages of this method include the ability to easily simulate complex geometries since it does not require special treatment around the interface, and to conserve mass exactly. However, this method suffers from parasitic currents, an unphysical velocity field generated close to the interface due to numerical imprecisions in the surface tension term. This can be a serious problem in low speed flows, where the parasitic currents are significant compared to the velocity scale of the problem. In this study, we consider a wide range of diffuse-interface schemes for two-phase flows, including different options for discrete representation of the surface tension force. By presenting an assessment of each method's performance in scenarios involving parasitic currents, we develop accuracy estimates and guidelines for selection among these models. Supported by the ONR.
Two Phase Compressible Flow Fields in One Dimensional and Eulerian Grid Framework
NASA Astrophysics Data System (ADS)
Lee, Sungsu; Park, Chan Wook
2008-11-01
Numerical investigation for two phase compressible flow fields of air-water in one dimensional tube are performed in the fixed Eulerian grid framework. Using an equation of states of Tait's type for a multiphase cell, the two phase compressible flow is modeled as equivalent single phase which is discretized using the Roe`s approximate Riemann solver, while the phase interface is captured via volume fractions of each phase. The most common problem found in the computational approaches in compressible multiphase flow is occurrence of the pressure oscillation at the phase interface. In order to suppress that phenomenon, tried are two approaches; a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The results show that the direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. This work was supported by a research fund granted from Agency for Defense Development, South Korea
Decay of the 3D viscous liquid-gas two-phase flow model with damping
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-08-01
We establish the optimal Lp - L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp - L2 estimates for the linearized equations, and delicate energy estimates.
Two-Phase Flow Research on the ISS for Thermal Control Applications
NASA Technical Reports Server (NTRS)
Motil, Brian J.
2013-01-01
With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.
Experimental and modeling studies of two-phase flow in pipelines
Manabe, Ryo; Tochikawa, Tetsuro; Tsukuda, M.; Arihara, Norio
1997-11-01
The objectives of this study are to develop and evaluate a mechanistic model for gas/liquid two-phase flow in pipelines. A mechanistic model has been developed by combining currently available models and correlations. The approach of the modeling study was based on the work by Xiao et al. Modifications have been made on the annular flow model by implementing the currently developed film-thickness-distribution model. An experimental database has been developed for model evaluation. Seventy-five runs of steady-state air/water flow tests in horizontal and slightly inclined pipes were conducted using a large-scale experimental facility. The experimental program was set up in a wide range of experimental conditions to cover the intermittent, dispersed bubble, and annular flow patterns. An evaluation of the model was carried out for each flow pattern, namely, intermittent, dispersed bubble, and annular flow. The comparisons between the measured and calculated pressure drops show good agreement for each flow pattern. Also, overall evaluation revealed that the proposed model provided the best performance among the commonly used empirical correlations, such as Beggs and Brill, Mukherjee and Brill, and Dukler et al.
A combined experimental-numerical approach for two-phase flow boiling in a minichannel
NASA Astrophysics Data System (ADS)
Hożejowska, Sylwia; Grabowski, Mirosław
2016-03-01
The paper addresses experimental and numerical modeling of the two-phase flows in an asymmetrically heated horizontal minichannel. Experimental measurements concerned flows of evaporating ethanol in a minichannel with rectangular cross section 1.8mm × 2 mm. In order to observe the flows, measuring system was designed and built. The system measured and recorded basic heat and flow parameters of flowing fluid, and the temperature of external surface of the heater by using infrared camera and recorded images of flow with high-speed camera. The second aim of the paper was to formulate appropriate flow boiling heat transfer model, which would minimises the use of experimentally determined constants. The procedure of calculating the temperature of the ethanol is coupled with concurrent process of determining the temperature distributions in the isolating foil and the heating surface. The two-dimensional temperature distributions in three subsequent domains were calculated with Trefftz method. Due to the Robin condition, heat transfer coefficient at the heating surface-ethanol interface was calculated based on the known temperature distributions of the foil and liquid. Additionally, the paper describes the relation between two sets of functions used in the calculation. Numerical calculations made by Trefftz method were performed with using experimental data.
Experimental study of liquid-solid two phase flow over a step using PIV
NASA Astrophysics Data System (ADS)
Cando, E. H.; Luo, X. W.; Hidalgo, V. H.; Zhu, L.; Aguinaga, A. G.
2016-05-01
The present investigation focuses on the water-sand flow through a rectangular tunnel with a step using the Particle Image Velocimetry (PIV). Two cameras with appropriate optical filters have been used to capture each phase image separately. The optical filters were selected according to the optical properties of the sand and fluorescent tracers. Through data processing the experimental flow field such as the velocity profiles of sand and water had been obtained. In order to compare with the experiment, the steady state two phase flow fields were simulated using RANS method with k-ω SST turbulence model. It is noted that the numerical results matches the experimental results fairly good. Furthermore, the flow rates obtained from experimental and numerical velocity profiles also have a good match with the measurement by flow meter. The flow analysis shows that the water velocity variation induced by the presence of the step in the water-sand flow is equivalent to those cases with low sand concentration. However, the sand velocity in downstream region is 5% greater than the water velocity when the cross section is reduced in 25%.
Bottoni, M.; Ajuha, S.; Sengpiel, W.
1994-12-31
Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy derived for a two-phase flow by volume-averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration; bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities makes the rigorously formulated terms useless for computational purposes, modeling of these terms is discussed.
Bottoni, M.; Sengpiel, W.
1992-12-01
Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.
Bottoni, M. . Materials and Components Technology Div.); Sengpiel, W. . Inst. fuer Reaktorsicherheit)
1992-01-01
Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.
Sub-grid combustion modeling for compressible two-phase reacting flows
NASA Astrophysics Data System (ADS)
Sankaran, Vaidyanathan
2003-06-01
A generic formulation for modeling the turbulent combustion in compressible, high Reynolds number, two-phase; reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of complex flow-fields such as those encountered in many combustion systems. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. The gas phase LES velocity fields are used to estimate the instantaneous gas velocity at the droplet location. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Aircraft Engines combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Quantitative and qualitative comparison with the results of spectral DNS exhibits good agreement. Simulations using the current LES-LEM for freely propagating partially premixed flame in a droplet-laden isotropic turbulent field correctly captures the flame structure in the partially premixed flames. Due to the strong spatial variation of equivalence ratio a broad flame similar to a premixed flame is realized. The current
NASA Astrophysics Data System (ADS)
Seymour, Joseph Daniel
Nuclear magnetic resonance (NMR) imaging, a non -invasive spectroscopic technique, is used to measure velocity in the fluid phase of suspensions in tube flow by a position encode pulsed gradient spin echo (PGSE) technique. The mean velocity of an ensemble of nuclei within a discrete volume element (voxel) of the sample, localized by the NMR experiment, causes a residual phase shift in nuclei precession and random displacements due to Brownian motion of the nuclei and fluctuations about the mean velocity cause attenuation of signal. The average macroscopic and fluctuating velocity distributions in suspensions of spheres and fibers at concentrations from the dilute to concentrated regimes are measured. The fluctuational motion in low Reynolds number flow is due to the many body hydrodynamic interactions of the non-colloidal particles. The fluctuational motion measured depends on the length and time scales of the NMR experiment and it is the stationary Gaussian Markov statistics of the fluctuation in motion that is measured. Interpretation of the signal in NMR PGSE experiments depends on a model of the motion and the fluctuations are modelled as a colored noise stochastic process. The stochastic model is connected to the averaged theory of two-phase flow through formulation of the averaged theory as an equivalent stochastic differential equation. Tube flow is studied to increase understanding of NMR measurements in two-phase solid-liquid systems and provide data on systems inaccessible to standard velocity measurement techniques. Macroscopic rheological characterization of materials by NMR imaging is possible using 1-D and 2 -D NMR velocity phase encoded data. 1-D velocity probability distribution data is used to characterize the macroscopic material flow behavior of a Newtonian standard, a 3% polyacrylamide solution, tomato juice and paper pulp. The measurement of yield stress rheological behavior using 2-D position dependent velocity data is presented and used to
Two phase flow of liquids in a narrow gap: Phase interference and hysteresis
NASA Astrophysics Data System (ADS)
Raza, Salim; Hejazi, S. Hossein; Gates, Ian D.
2016-07-01
Co-current flow of two immiscible liquids, such as oil and water in a planar fracture, exhibits nonlinear structures which become important in many natural and engineering systems such as subsurface flows, multiphase flows in lubrication joints, and coating flows. In this context, co-current flow of oil and water with variable rates is experimentally studied in a Hele-Shaw cell, various flow regimes are classified, and relative permeabilities for the phases are analysed thoroughly. Similar to multiphase pipe flows, multiphase flow in planar gaps shows various flow regimes, each having different flow rate/pressure gradient behaviour. As well as recovering the known results in the immiscible displacements in Hele-Shaw cell where the fluid-fluid interface remains stable/unstable for favorable/adverse viscosity ratios, it is found that the co-current flow of two fluids with different viscosities results in three distinct flow regimes. Before breakthrough of non-wetting phase, i.e, water, a "linear displacement" flow regime initially establishes at very low water injection rates. This stable movement turns into a "fingering advancement" flow regime at high water flow rates and Saffman-Taylor instability develops normal to the direction of the flow. After the breakthrough, a "droplet formation" flow regime is identified where the droplets of wetting phase, oil, are trapped in the water phase. For subsurface flow applications, we quantify these regimes through relative permeability curves. It is reported that as the water flow rate increases, the relative permeabilities and flow channels become smooth and regular. This behaviour of relative permeability and saturations shows dominance of capillary forces at low flow rates and viscous forces at higher flow rates. Variable injection rates provide the interface structures for both drainage and imbibition process, where the wetting phase saturation decreases and increases respectively. It is shown that relative permeability
Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions
NASA Technical Reports Server (NTRS)
Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.
1996-01-01
The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same
Photochromic flow visualization in single-phase and two-phase flows
NASA Astrophysics Data System (ADS)
Davis, J.; Bottcher, J.; Johnson, G.; Marschall, E.
A photochromic flow visualization technique that was originally introduced by Popovich and Hummel permits qualitative and quantitative velocity information to be obtained in a variety of complex flow situations. Examples of flow visualization studies include drop and bubble formation, distortion of flow fields caused by velocity probes, and others. While qualitative information on flow velocities can be obtained with relative ease, quantitative information cannot be extracted as readily and requires a modification of the visualization technique or use of an iterative evaluation method.
Basic study on an energy conversion system using gas-liquid two-phase flows of magnetic fluid
Okubo, Masaaki; Ishimoto, Jun; Kamiyama, Schinichi.
1994-12-31
The mechanism of the pressure rise in a gas-liquid two-phase pipe flow of magnetic fluid under a nonuniform magnetic field is investigated in detail both theoretically and experimentally. First, governing equations of one-dimensional gas-liquid two-phase magnetic fluid flow are presented and numerically solved. Next, the pressure distribution in a nonuniform magnetic wild region is measured in the cases of two-phase flow, single-phase flow and the stationary state using a new experimental apparatus for the flow system. From the numerical measurement results, the magnitude of the pressure components which contribute to the total driving force is accurately estimated. These results on the pressure distribution will contribute to the development of the new energy conversion system using a gas-liquid two-phase magnetic fluid flow.
Multi-camera PIV of two-phase oscillating sheet flow
NASA Astrophysics Data System (ADS)
Liu, Chang; Kiger, Ken
2016-11-01
We present a multi-camera thin light sheet imaging method to accurately measure dispersed phase concentration and velocity up to optical densities of close to O [1]. The work is an extension of prior single camera methods that utilize particle image characteristics to identify the dispersed phase and infer the effective measurement volume thickness. By introducing multiple camera perspectives, stereo photogrammetry can be combined with the redundancy of information available in the images to provide 1) increased accuracy in determining individual particle locations, and 2) increased reliability in identifying all of the dispersed phase objects. As a byproduct, the velocity of all three components is also available. As an example, this new method is directly applied to oscillating sheet flow conditions. From a single image pair, individual particles are identified and tracked, giving the instantaneous volume concentration and dispersed phase velocity. A median filter method is used to isolate an image composed only of the much smaller tracer particles, and processed to generate a 3-component continuous phase velocity field. Given the concentration and velocities of the two phases, two-phase flow properties such as the sedimentation rate and momentum coupling will be reported.
A consistent projection-based SUPG/PSPG XFEM for incompressible two-phase flows
NASA Astrophysics Data System (ADS)
Liao, Jian-Hui; Zhuang, Zhuo
2012-10-01
In this paper, a consistent projection-based streamline upwind/pressure stabilizing Petrov-Galerkin (SUPG/PSPG) extended finite element method (XFEM) is presented to model incompressible immiscible two-phase flows. As the application of linear elements in SUPG/PSPG schemes gives rise to inconsistency in stabilization terms due to the inability to regenerate the diffusive term from viscous stresses, the numerical accuracy would deteriorate dramatically. To address this issue, projections of convection and pressure gradient terms are constructed and incorporated into the stabilization formulation in our method. This would substantially recover the consistency and free the practitioner from burdensome computations of most items in the residual. Moreover, the XFEM is employed to consider in a convenient way the fluid properties that have interfacial jumps leading to discontinuities in the velocity and pressure fields as well as the projections. A number of numerical examples are analyzed to demonstrate the complete recovery of consistency, the reproduction of interfacial discontinuities and the ability of the proposed projection-based SUPG/PSPG XFEM to model two-phase flows with open and closed interfaces.
Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1996-01-01
A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.
One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.
2012-01-01
Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.
An Interactive Tool for Discrete Phase Analysis in Two-Phase Flows
NASA Technical Reports Server (NTRS)
Dejong, Frederik J.; Thoren, Stephen J.
1993-01-01
Under a NASA MSFC SBIR Phase 1 effort an interactive software package has been developed for the analysis of discrete (particulate) phase dynamics in two-phase flows in which the discrete phase does not significantly affect the continuous phase. This package contains a Graphical User Interface (based on the X Window system and the Motif tool kit) coupled to a particle tracing program, which allows the user to interactively set up and run a case for which a continuous phase grid and flow field are available. The software has been applied to a solid rocket motor problem, to demonstrate its ease of use and its suitability for problems of engineering interest, and has been delivered to NASA Marshall Space Flight Center.
Two-phase flow of solid hydrogen particles and liquid helium
NASA Astrophysics Data System (ADS)
Xu, J.; Rouelle, A.; Smith, K. M.; Celik, D.; Hussaini, M. Y.; Van Sciver, S. W.
2004-06-01
Atomic hydrogen propellant feed systems may require transporting solid hydrogen particles containing atomic species from storage tanks to the engines using liquid helium as the carrier fluid. In this paper, a three-dimensional two-phase mixture model, along with the standard k- ɛ mixture turbulence model is employed to study the turbulent mixing of the fluid-particle slurry system. Numerical results show that turbulent flow is required to keep the hydrogen particles in suspension, which otherwise form a sliding layer of particles on top of the helium layer. Hydrogen particle concentration profiles in the slurry system are functions of particle size, flow velocity, and influx volume fraction of hydrogen particles. Particle dispersion at different Stokes numbers, different Kolmogorov length scales, and different time scales are discussed.
Two-phase flow in regionally saturated fractured rock near excavations
Geller, J.T.; Doughty, C.; Long, J.C.S.
1994-11-01
Hydrologic characterization for potential nuclear waste repositories relies upon data obtained from testing in excavations. The Simulated Drift Experiment in the Stripa Mine in Sweden, a fractured granitic formation below the water table, investigated excavation effects on hydrologic response. Measured water inflow to the drift at atmospheric pressure was nine times less than the value predicted from the inflow to boreholes with pressure held at 2.7 bars. This flow reduction may be due to dissolved gas that comes out of solution at pressures below 2.7 bars, creating a two-phase regime. To investigate this possibility, theoretical studies of flow through fractures when the water is super-saturated with respect to dissolved gas are carried out, using a simple analytical solution followed by a numerical model which relaxes some of the simplifying assumptions. Laboratory experiments that simulate degassing in transparent fracture replicas are conducted to test the assumptions used in the theoretical studies.
Effects of two-phase flow on the deflagration of porous energetic materials
Margolis, S.B.; Williams, F.A.
1994-07-01
Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids, such as degraded nitramine propellants, that experience significant gas flow in the solid preheat region and are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces. Relative motion between the gas and condensed phases is taken into account in both regions, and expressions for the mass burning rate and other quantities of interest, such as temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure effects through the gas-phase equation of state. As a consequence, it is demonstrated how most aspects of the deflagration wave, including its structure, propagation speed and final temperature, depend on the local pressure in the two-phase regions.
Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight
NASA Technical Reports Server (NTRS)
Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip
2016-01-01
The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.
A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.
2014-12-01
We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the
A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys
2015-04-01
We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the
Interfacial area and two-phase flow structure development measured by a double-sensor probe
Leung, Waihung; Revankar, S.T.; Ishii, Yoshihiko; Ishii, Mamoru.
1992-06-01
In this report, we studied the local phasic characters of dispersed flow regime both at the entrance and at the fully developed regions. Since the dispersed phase is distributed randomly in the medium and enclosed in relatively small interfaces, the phasic measurement becomes difficult to obtain. Local probe must be made with a miniaturized sensor in order to reduce the interface distortion. The double-sensor resistivity probe has been widely used in local void fraction and interface velocity measurements because the are small in comparison with the interfaces. It has been tested and proved to be an accurate local phasic measurement tool. In these experiments, a double-sensor probe was employed to measure the local void fraction and interface velocity in an air-water system. The test section was flow regime can be determined by visualization. Furthermore, local phasic measurements can be verified by photographic studies. We concentrated our study on the bubbly flow regime only. The local measurements were conducted at two axial locations, L/D = 8 and 60, in which the first measurement represents the entrance region where the flow develops, and the second measurement represents the fully developed flow region where the radial profile does not change as the flow moves along the axial direction. Four liquid flow rates were chosen in combination with four different gas injection rates. The superficial liquid velocities were j{sub t} = 1.0, 0.6,0.4, and 0.1 m/s and superficial gas velocities were j{sub g} = 0.0965, 0.0696, 0.0384, and 0.0192 m/s. These combinations put the two-phase flow well in the bubbly flow regime. In this sequence of phenomenological studies, the local void fraction, interface area concentration, sauter mean diameter, bubble velocity and bubble frequency were measured.
Steam-water two-phase flow in large diameter vertical piping at high pressures and temperatures
Hasanein, H.A.; Kawaji, Masahiro; Chan, A.M.C.; Yoshioka, Yuzuru
1996-08-01
No information on steam/water two-phase flow behavior in large diameter pipes (10 inch or larger) at elevated pressures is available in the open literature. However, there are many applications, in the nuclear, chemical and petroleum industries among others where two-phase flows in large diameter pipes at elevated pressures and temperatures are encountered routinely or under accident scenarios. Experimental data on steam-water two-phase flow in a large diameter (20 inch, 50.08 cm I.D.) vertical pipe at elevated pressures and temperatures (2.8 MPa/230 C--6.4 MPa/280 C) have been obtained. Void fraction, two-phase mass flux, phase and velocity distributions as well as pressure drop along the test pipe have been measured using the Ontario Hydro Technologies (OHT) Pump Test Loop. The void fraction distributions were found to be axially symmetric and nearly flat over a wide range of two-phase flow conditions. The two-phase flow regime could be inferred from the dynamic void fluctuations data. For the 280 C tests, the flow was found to be relatively stable with bubbly flow at low average void fractions and churn turbulent or wispy-annular flow at higher void fractions. At 230 C, the flow became rather oscillatory and slugging was suspected at relatively low voids. It has also been found that the average void fractions in the test section can be determined reasonably accurately using the axial pressure drop data.
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Bianchi, Marco; Zhou, Quanlin; Illangasekare, Tissa
2014-12-31
During CO_{2} injection and storage in deep reservoirs, the injected CO_{2} enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO_{2}, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO_{2}, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...
2014-12-31
During CO2 injection and storage in deep reservoirs, the injected CO2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role formore » the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and
Two-phase electro-hydrodynamic flow modeling by a conservative level set model.
Lin, Yuan
2013-03-01
The principles of electro-hydrodynamic (EHD) flow have been known for more than a century and have been adopted for various industrial applications, for example, fluid mixing and demixing. Analytical solutions of such EHD flow only exist in a limited number of scenarios, for example, predicting a small deformation of a single droplet in a uniform electric field. Numerical modeling of such phenomena can provide significant insights about EHDs multiphase flows. During the last decade, many numerical results have been reported to provide novel and useful tools of studying the multiphase EHD flow. Based on a conservative level set method, the proposed model is able to simulate large deformations of a droplet by a steady electric field, which is beyond the region of theoretic prediction. The model is validated for both leaky dielectrics and perfect dielectrics, and is found to be in excellent agreement with existing analytical solutions and numerical studies in the literature. Furthermore, simulations of the deformation of a water droplet in decyl alcohol in a steady electric field match better with published experimental data than the theoretical prediction for large deformations. Therefore the proposed model can serve as a practical and accurate tool for simulating two-phase EHD flow.
A novel gravity-induced flow transition in two-phase fluids
NASA Astrophysics Data System (ADS)
d'Avila, M. A.; Shapley, N. C.; Walton, J. H.; Phillips, R. J.; Powell, R. L.; Dungan, S. R.
2006-10-01
Experimental results are reported that show a gravity-induced flow transition in well-mixed suspensions and emulsions, even when the buoyancy-driven velocity of isolated drops or particles is several orders of magnitude smaller than the imposed velocity. The experiments were conducted with emulsions of isooctane in water and suspensions of polymethyl-methacrylate particles in water. Both the drop and particle diameters were approximately 3-5μm, and concentrations of the dispersed phases ranged from dilute (2%) to concentrated (40%). The two-phase fluids were confined to a horizontal, concentric-cylinder apparatus in which the outer cylinder was rotated, and the velocity profiles were measured by nuclear magnetic resonance imaging. The results show that the flow transition is relatively insensitive to the volume fraction of the dispersed phase. The flow transition occurs because, although the buoyancy-driven velocity is relatively small on the length scale of the particle or drop dimension, the flow itself induces a slight variation in the suspension concentration and, hence, density. Although only on the order of 10-4g/cm3, this density difference spans a macroscopic length scale, making the buoyancy effect competitive with the imposed flow. These arguments yield a dimensionless parameter that predicts very closely the nonequilibrium phase diagram generated by the experiments.
Gas-liquid two phase flow through a vertical 90 elbow bend
Spedding, P.L.; Benard, E.
2007-07-15
Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90 elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s{sup -1}. The elbow bend pressure drop was best correlated in terms of l{sub e}/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data. (author)
Two-phase flow in complex geometries: A diffuse domain approach
Aland, S.; Voigt, A.
2011-01-01
We present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. We combine the diffuse domain method for solving PDEs in complex geometries with the diffuse-interface (phase-field) method for simulating multiphase flows. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. The method is straightforward to implement using standard software packages; we use adaptive finite elements here. We present numerical examples demonstrating the effectiveness of the algorithm. We simulate multiphase flow in a driven cavity on an extended domain and find very good agreement with results obtained by solving the equations and boundary conditions in the original domain. We then consider successively more complex geometries and simulate a droplet sliding down a rippled ramp in 2D and 3D, a droplet flowing through a Y-junction in a microfluidic network and finally chaotic mixing in a droplet flowing through a winding, serpentine channel. The latter example actually incorporates two different diffuse domains: one describes the evolving droplet where mixing occurs while the other describes the channel. PMID:21918638
NASA Astrophysics Data System (ADS)
Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Wang, Yang
2013-07-01
Effects of rolling motion on single-phase and two-phase flow resistance were compared experimentally under ambient temperature and pressure. In the single-phase flow experiments, the different pump head was obtained by a variable speed electromotor, and the flow rate was adjusted combining with a regulating valve. However, for the two-phase pressure drop measurements, the pump delivering water operated with an invariable pressure head of 48m, in order to neglect the effect of pump head on flow fluctuation. The results indicated that effects of rolling motion on single-phase flow resistance depend on the pump head. The fluctuation amplitude of flow rate and frictional pressure drop decreases rapidly as the pump head increases, finally, the flow will tend to be steady if the pump head dramatically exceeds the additional pressure drop. Different from the case of single-phase flow, transient frictional pressure drop of two-phase flow fluctuates synchronously with the rolling motion when liquid Reynolds number is less than 1400, whereas keeps a stable steady state without obvious oscillation for other cases. The fluctuation amplitude is independent of rolling period and amplitude and decreases with the increase of flow rate. The inclination angle and phase interface distribution is taken into account in analyzing the influence of rolling motion on two-phase flow resistance. Comparing with the vertical condition, rolling motion nearly has no effects on time-averaged frictional resistance for both the single-phase and two-phase flow.
NASA Astrophysics Data System (ADS)
Li, R. N.; Y Wang, H.; Han, W.; Ma, W.; Shen, Z. J.
2013-12-01
The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance.
Two-phase flow instability and dryout in parallel channels in natural circulation
Duffey, R.B.; Rohatgi, U.S.; Hughes, E.D.
1993-06-01
The unique feature of parallel channel flows is that the pressure drop or driving head for the flow is maintained constant across any given channel by the flow in all the others, or by having a large downcomer or bypass in a natural circulation loop. This boundary condition is common in all heat exchangers, reactor cores and boilers, it is well known that the two-phase flow in parallel channels can exhibit both so-called static and dynamic instability. This leads to the question of the separability of the flow and pressure drop boundary conditions in the study of stability and dryout. For the areas of practical interest, the flow can be considered as incompressible. The dynamic instability is characterized by density (kinematic) or continuity waves, and the static instability by inertial (pressure drop) or manometric escalations. The static has been considered to be the zero-frequency or lowest mode of the dynamic case. We briefly review the status of the existing literature on both parallel channel static and dynamic instability, and the latest developments in theory and experiment. The difference between the two derivations lies in the retention of the time-dependent terms in the conservation equations. The effects and impact of design options are also discussed. Since dryout in parallel systems follows instability, it has been traditional to determine the dryout power for a parallel channel by testing a single channel with a given (inlet) flow boundary condition without particular regard for the pressure drop. Thus all modern dryout correlations are based on constant or fixed flow tests, a so-called hard inlet, and subchannel and multiple bundle effects are corrected for separately. We review the thinking that lead to this approach, and suggest that for all multiple channel and natural circulation systems close attention should be paid to the actual (untested) pressure drop conditions. A conceptual formulation is suggested as a basis for discussion.
Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model.
Zhang, Qiulan; Karadimitriou, N K; Hassanizadeh, S M; Kleingeld, P J; Imhof, A
2013-07-01
As a representation of a porous medium, a closed micro-fluidic device made of polydimethylsiloxane (PDMS), with uniform wettability and stable hydrophobic properties, was designed and fabricated. A flow network, with a mean pore size of 30 μm, was formed in a PDMS slab, covering an area of 1 mm × 10 mm. The PDMS slab was covered and bonded with a 120-μm-thick glass plate to seal the model. The glass plate was first spin-coated with a thin layer, roughly 10 μm, of PDMS. The micro-model was treated with silane in order to make it uniformly and stably hydrophobic. Fluorescent particles of 300 μm in diameter were used as colloids. It is known that more removal of colloids occurs under unsaturated conditions, compared to saturated flow in soil. At the same time, the change of saturation has been observed to cause remobilization of attached colloids. The mechanisms for these phenomena are not well understood. This is the first time that a closed micro-model, made of PDMS with uniform and stable wettability, has been used in combination with confocal microscopy to study colloid transport under transient two-phase flow conditions. With confocal microscopy, the movement of fluorescent particles and flow of two liquids within the pores can be studied. One can focus at different depths within the pores and thus determine where the particles exactly are. Thus, remobilization of attached colloids by moving fluid-fluid interfaces was visualized. In order to allow for the deposition and subsequent remobilization of colloids during two-phase flow, three micro-channels for the injection of liquids with and without colloids were constructed. An outlet channel was designed where effluent concentration breakthrough curves can be quantified by measuring the fluorescence intensity. A peak concentration also indicated in the breakthrough curve with the drainage event. The acquired images and breakthrough curve successfully confirmed the utility of the combination of such a PDMS
Le Chenadec, Vincent; Pitsch, Heinz
2013-09-15
This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier–Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensional tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization.
Gamma-ray CT from incomplete projections for two-phase pipe flow
NASA Astrophysics Data System (ADS)
Xin, S.; Wang, H. X.
2017-02-01
A low-energy low-dose γ-ray computed tomography (CT) system used in the gas-liquid two-phase pipe flow measurement has been studied at Tianjin University in recent years. The γ-ray CT system, having a third-generation X-ray CT scanning configuration, is comprised of one 300mCi 241Am source and 17 CdZnTe detector units and achieves a spatial image resolution of about 7 mm. It is primarily intended to measure the two-phase pipe flow and provide improvement suggestions for industrial CT system. Recently we improve the design for image reconstruction from incomplete projection to optimize the scanning parameters and reduce the radiation dose. First, tomographic problem from incomplete projections is briefly described. Next, a system structure and a hardware circuit design are listed and explained, especially on time parameter setting of the pulse shaper. And then a detailed system analysis is provided in Section II, mainly focusing on spatial resolution, temporal resolution, system noise, and imaging algorithm. Finally, we carry on necessary static and dynamic experiments in a full scan (360°) and two sets of partial scan reconstruction tests to determine the feasibility of this γ-ray CT system for reconstructing the images from insufficient projections. And based on an A-variable algebraic reconstruction technique method, a specially designed algorithm, we evaluate the system performance and noise level of this CT system working quantitatively and qualitatively. Results of dynamic test indicate that the acceptable results can be acquired using a multi-source γ-ray CT system with the same parameters when the flow rate is less than 0.04 m/s and the imaging speed is slower than 33 frames/s.
Optical Measurement of Mass Flow of a Two-Phase Fluid
NASA Technical Reports Server (NTRS)
Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don
2008-01-01
An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical
Interface-capturing lattice Boltzmann equation model for two-phase flows
NASA Astrophysics Data System (ADS)
Lou, Qin; Guo, Zhaoli
2015-01-01
In this work, an interface-capturing lattice Boltzmann equation (LBE) model is proposed for two-phase flows. In the model, a Lax-Wendroff propagation scheme and a properly chosen equilibrium distribution function are employed. The Lax-Wendroff scheme is used to provide an adjustable Courant-Friedrichs-Lewy (CFL) number, and the equilibrium distribution is presented to remove the dependence of the relaxation time on the CFL number. As a result, the interface can be captured accurately by decreasing the CFL number. A theoretical expression is derived for the chemical potential gradient by solving the LBE directly for a two-phase system with a flat interface. The result shows that the gradient of the chemical potential is proportional to the square of the CFL number, which explains why the proposed model is able to capture the interface naturally with a small CFL number, and why large interface error exists in the standard LBE model. Numerical tests, including a one-dimensional flat interface problem, a two-dimensional circular droplet problem, and a three-dimensional spherical droplet problem, demonstrate that the proposed LBE model performs well and can capture a sharp interface with a suitable CFL number.
Interface-capturing lattice Boltzmann equation model for two-phase flows.
Lou, Qin; Guo, Zhaoli
2015-01-01
In this work, an interface-capturing lattice Boltzmann equation (LBE) model is proposed for two-phase flows. In the model, a Lax-Wendroff propagation scheme and a properly chosen equilibrium distribution function are employed. The Lax-Wendroff scheme is used to provide an adjustable Courant-Friedrichs-Lewy (CFL) number, and the equilibrium distribution is presented to remove the dependence of the relaxation time on the CFL number. As a result, the interface can be captured accurately by decreasing the CFL number. A theoretical expression is derived for the chemical potential gradient by solving the LBE directly for a two-phase system with a flat interface. The result shows that the gradient of the chemical potential is proportional to the square of the CFL number, which explains why the proposed model is able to capture the interface naturally with a small CFL number, and why large interface error exists in the standard LBE model. Numerical tests, including a one-dimensional flat interface problem, a two-dimensional circular droplet problem, and a three-dimensional spherical droplet problem, demonstrate that the proposed LBE model performs well and can capture a sharp interface with a suitable CFL number.
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Thermal effects in two-phase flow through face seals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Basu, Prithwish
1988-01-01
When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.
A simplified approach for the computation of steady two-phase flow in inverted siphons.
Diogo, A Freire; Oliveira, Maria C
2016-01-15
Hydraulic, sanitary, and sulfide control conditions of inverted siphons, particularly in large wastewater systems, can be substantially improved by continuous air injection in the base of the inclined rising branch. This paper presents a simplified approach that was developed for the two-phase flow of the rising branch using the energy equation for a steady pipe flow, based on the average fluid fraction, observed slippage between phases, and isothermal assumption. As in a conventional siphon design, open channel steady uniform flow is assumed in inlet and outlet chambers, corresponding to the wastewater hydraulic characteristics in the upstream and downstream sewers, and the descending branch operates in steady uniform single-phase pipe flow. The proposed approach is tested and compared with data obtained in an experimental siphon setup with two plastic barrels of different diameters operating separately as in a single-barrel siphon. Although the formulations developed are very simple, the results show a good adjustment for the set of the parameters used and conditions tested and are promising mainly for sanitary siphons with relatively moderate heights of the ascending branch.
Lateral Mixing Mechanisms in Vertical and Horizontal Interconnected Subchannel Two-Phase Flows
Gencay, Sarman; Teyssedou, Alberto; Tye, Peter
2002-05-15
A lateral mixing model based on equal volume exchange between two laterally interconnected subchannels is presented. The following mixing mechanisms are taken into account in this model: (a) diversion cross flow, caused by the lateral pressure difference between adjacent subchannels; (b) turbulent void diffusion, which is governed by the lateral void fraction difference between the subchannels; (c) void drift, responsible for the tendency of the vapor phase to drift toward unobstructed regions; and (d) buoyancy drift, which takes into account the effect of gravity in horizontal flows. Experimental two-phase air-water data obtained using two test sections having different geometries and orientations are used to determine the diffusion coefficients required by the mixing model. Under the absence of diversion crossflow, i.e., negligible lateral pressure difference between the subchannels, it is observed that the diffusion coefficient increases with increasing average void fraction in the subchannels. Moreover, for vertical flows turbulent void diffusion seems to be considerably affected by the geometry of the subchannels. For horizontal flows under nonsymmetric inlet void fraction conditions, even though the interconnected subchannels have the same geometry, different turbulent void diffusion and void drift coefficients are required to satisfy the conditions of hydrodynamic equilibrium. In the present study this condition is achieved by introducing a new void drift coefficient expressed as a correction term applied to the turbulent void drift term.
Numerical Simulation of Two-phase flow with Phase Change Using the Level-set Method
NASA Astrophysics Data System (ADS)
Li, Hongying; Lou, Jing; Pan, Lunsheng; Yap, Yitfatt
2016-11-01
Multiphase flow with phase change is widely encountered in many engineering applications. A distinct feature involves in these applications is the phase transition from one phase to another due to the non-uniform temperature distribution. Such kind of process generally releases or absorbs large amount of energy with mass transfer happened simultaneously. It demands great cautions occasionally such as the high pressure due to evaporation. This article presents a numerical model for simulation of two-fluid flow with phase change problem. In these two fluids, one of them changes its state due to phase change. Such a problem then involves two substances with three phases as well as two different interfaces, i.e. the interface between two substances and the interface of one substance between its two phases. Two level-set functions are used to capture the two interfaces in the current problem. The current model is validated against one-dimensional and two-dimensional liquid evaporation. With the code validated, it is applied to different phase change problems including (1) a falling evaporating droplet and the rising of one bubble and (2) two-fluid stratified flow with solidification of one fluid. Comparisons on the bubble and droplet topologies, flow and temperature fields are made for the first case between the falling evaporating droplet and the falling droplet without evaporation. For the second demonstration case, the effect of the superheated temperature on the solidification process is investigated.
The stability of two-phase flow over a swept-wing
NASA Technical Reports Server (NTRS)
Coward, Adrian; Hall, Philip
1994-01-01
We use numerical and asymptotic techniques to study the stability of a two-phase air/water flow above a flat porous plate. This flow is a model of the boundary layer which forms on a yawed cylinder and can be used as a useful approximation to the air flow over swept wings during heavy rainfall. We show that the interface between the water and air layers can significantly destabilize the flow, leading to traveling wave disturbances which move along the attachment line. This instability occurs for lower Reynolds numbers than in the case of the absence of a water layer. We also investigate the instability of inviscid stationary modes. We calculate the effective wavenumber and orientation of the stationary disturbance when the fluids have identical physical properties. Using perturbation methods we obtain corrections due to a small stratification in viscosity, thus quantifying the interfacial effects. Our analytical results are in agreement with the numerical solution which we obtain for arbitrary fluid properties.
A combined experimental and theoretical study of supercooling by two-phase mist flows
Yang Zhihua.
1991-01-01
A combined experimental and theoretical study of cooling enhancement by mist flow was performed for a square channel with a smooth wall. A new method is proposed for the turbulent deposition of droplets from two-phase mist flow into the wall of the channel. The proposed analytical model shows satisfactory agreement with observations from an experimental measurement using a particle-sizing two-dimensional reference-model laser-Doppler anemometry technique. Supercooling is defined as the simultaneous attainment of high heat flux and a low temperature of a surface to be cooled. Surface cooling is by evaporation from the exposed side of the film. The film is maintained by the continuous deposition of a stream of turbulent mist. An analytical model is provided for the heat-transfer enhancement coefficient due to mist supercooling. Also, experiments were carried out to investigate cooling enhancement. A substantial supercooling by mist flow is reported. The effects on supercooling of flow rate, droplet concentration and size, and wall heat flux are also reported.
Two-phase flow research using the DC-9/KC-135 apparatus
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Neumann, Eric S.; Shoemaker, J. Michael
1996-01-01
Low-gravity gas-liquid flow research can be conducted aboard the NASA Lewis Research Center DC-9 or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with constant or variable inner diameters of approximately 2.54 cm and lengths of up to 3.0 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall shear stress, and acceleration data are measured and recorded at data rates of up to 1000 Hz throughout the 20-sec duration of the experiment. Flow is visualized with a high-speed video system. In addition, the apparatus has a heat-transfer capability whereby sensible heat is transferred between the test-section wall and a subcooled liquid phase so that the heat-transfer characteristics of gas-liquid two-phase flows can be determined.
Migration of rigid particles in two-phase shear flow of viscoelastic fluids
NASA Astrophysics Data System (ADS)
Anderson, Patrick; Jaensson, Nick; Hulsen, Martien
2015-11-01
In the Stokes regime, non-Brownian, rigid particles in a shear flow will not migrate across streamlines if the fluid is Newtonian. In viscoelastic fluids, however, particles will migrate across streamlines away from areas of higher elastic stresses, e.g. towards the outer cylinder in a wide-gap Couette flow. This migration is believed to be due to a difference in normal stresses. We simulate the two-phase case where this difference in normal stresses is not due to the flow field, but rather due to the properties of the fluids. We apply the diffuse-interface model for the interface between the two fluids, which can naturally handle a changing topology of the interface, e.g. during particle adsorption. Furthermore, the diffuse-interface model includes an accurate description of surface tension and can be used for a moving contact line. A sharp interface is assumed between the particles and the fluids. Initially, a particle is placed close to an interface of two fluids with different viscoelastic properties in a shear flow. We show that based on the properties of the fluids and the interfacial tension, four regimes can be defined: 1) migration away from the interface, 2) halted migration towards the interface, 3) adsorption of the particle at the interface and 4) penetration of the particle into the other fluid. This research forms part of the research programme of the Dutch Polymer Institute (DPI), Project #746.
Condensation of Forced Convection Two-Phase Flow in a Miniature Tube
NASA Technical Reports Server (NTRS)
Begg, E.; Faghri, A.; Krustalev, D.
1999-01-01
A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.
PTV implementation on two-phase flow in a forced impinging jet
NASA Astrophysics Data System (ADS)
Mulinti, Rahul; Kiger, Kenneth
2011-11-01
Two-phase flow experiments have been conducted to predict particle suspension and sedimentation within coupled particle-laden flows relevant to rotorcraft brownout conditions. A hybrid PIV/PTV technique has been implemented to improve the performance in high concentration regions, while still retaining the flexibility inherent to PTV to resolve multi-valued velocity displacements within a given interrogation region. These processing tools have been optimized and their reliability has been validated using synthetic particle images in a prescribed Taylor-Green vortex flow model. The parametric space of investigation included particle image density, Stokes number and image delay times. Experiments have been conducted to study the interaction of a mobile sediment bed with characteristic flow structures similar to those within a rotor wake. The mobilization conditions and wall-normal flux of particulates by the vortex-wall interaction will be reported for different particle size classes, and are correlated to the local vortex conditions such as vortex decay and its subsequent three dimensionalization. The effect of turbulent coupling between the particle and fluid momentum, as based on a point-particle drag law valid for dilute concentrations of particles has been examined. Work supported by AFOSR under grant FA9550-08-1-0406.
Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids
Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.; Cimbala, J.M.
2002-07-01
Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained from operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces
Metal cooldown, flow instability, and heat transfer in two-phase hydrogen flow
NASA Technical Reports Server (NTRS)
Manson, L.; Miller, W. S.
1970-01-01
Studies of the properties of five metals with varying tube-wall thickness, with or without and internal coating of trifluorochloroethylene polymer, show that wall characteristics influence flow stability, affect heat transfer coefficients, and influence the transition point from dry- to wet-wall flow.
Pointer, William David; Shaver, Dillon; Liu, Yang; Vegendla, Prasad; Tentner, Adrian
2016-09-30
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.
Jones, O.C.
1993-05-01
This progress report details the theoretical development, numerical results, experimental design (mechanical), experimental design (electronic), and experimental results for the research program for the development of an electrical impedance computed tomographic two-phase flow analyzer.
A model for sound velocity in a two-phase air-water bubbly flow
Chung, N.M.; Lin, W.K.; Pei, B.S.; Hsu, Y.Y. )
1992-07-01
In this paper, wave propagation in a homogeneous, low void fraction, two-phase air-water bubbly flow is analyzed through the compressibility of a single bubble to derive a P({rho}) relation; the dispersion relation is then derived by a homogeneous model. The phase velocity and attenuation calculated from the model are compared with existing data and are in good agreement. The momentum transfer effect is considered through the virtual mass term and is significant at a higher void fraction. The interfacial heat transfer between phases is significant at low frequency, while bubble scattering effects are important at high frequency (near resonance). Bubble behavior at both low and high frequency is derived based on the isothermal and the adiabatic cases, respectively. The phase velocity occurs at the limiting condition in both cases. Furthermore, resonance is present in the model, and the resonant frequency is determined.
A TEMPERATURE DROP MODEL FOR TWO-PHASE FLOW IN GEOTHERMAL WELLBORES
Michels, D.E.
1985-01-22
This temperature-drop model is formulated as an answer to the question, ''How much further up the wellbore will a unit mass of fluid be when its temperature is exactly one-degree cooler than at its current position''. The repeated calculation yields a temperature profile extending upwardly from the bubble point. This approach is based on a paradigm that emphasizes temperature and volume for a system that is dominated by one component. It has only a small overlap with the more popular paradigm for this topic which involves mechanical pressures and energy balances. A set of plots is given which shows the effects on temperature and pressure profiles due to changes of single factors when all other factors are held constant. The factors include common wellbore and reservoir parameters. These latter plots give considerable insight into wellbore processes and the nature of constraints on two-phase flow for an essentially one-component substance.
Effects of porosity and mixed convection on MHD two phase fluid flow in an inclined channel.
Hasnain, Jafar; Abbas, Zaheer; Sajid, Muhammad
2015-01-01
The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy's and modified Darcy's laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail.
Effects of Porosity and Mixed Convection on MHD Two Phase Fluid Flow in an Inclined Channel
Hasnain, Jafar; Abbas, Zaheer; Sajid, Muhammad
2015-01-01
The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy's and modified Darcy's laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail. PMID:25803360
GPU-centric resolved-particle disperse two-phase flow simulation using the Physalis method
NASA Astrophysics Data System (ADS)
Sierakowski, Adam J.
2016-10-01
We present work on a new implementation of the Physalis method for resolved-particle disperse two-phase flow simulations. We discuss specifically our GPU-centric programming model that avoids all device-host data communication during the simulation. Summarizing the details underlying the implementation of the Physalis method, we illustrate the application of two GPU-centric parallelization paradigms and record insights on how to best leverage the GPU's prioritization of bandwidth over latency. We perform a comparison of the computational efficiency between the current GPU-centric implementation and a legacy serial-CPU-optimized code and conclude that the GPU hardware accounts for run time improvements up to a factor of 60 by carefully normalizing the run times of both codes.
A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow
NASA Astrophysics Data System (ADS)
Tokareva, S. A.; Toro, E. F.
2016-10-01
Here we extend the Toro-Vázquez flux vector splitting approach (TV), originally proposed for the ideal 1D Euler equations in [1], to the Baer-Nunziato equations of compressible two-phase flow. Following the TV approach we identify corresponding advection and pressure operators. We perform a rigorous analysis of the associated non-conservative pressure system and derive its complete characteristic structure. The choice of the advection numerical flux is obvious. For the pressure system, several schemes are presented. The complete schemes are then implemented in the setting of finite volume and path-conservative methods and are systematically assessed in terms of accuracy and efficiency, through a carefully selected suite of test problems. The presented schemes constitute a building block for the construction of high-order numerical methods for solving the Baer-Nunziato equations. Here, as an illustrative example of such possibility, we present the construction of a second-order scheme.
A diffuse-interface method for two-phase flows with soluble surfactants
Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125
Modeling of Two-Phase Immiscible Flow with Moving Contact Lines
NASA Astrophysics Data System (ADS)
Abu Alsaud, Moataz; Soulaine, Cyprien; Riaz, Amir; Tchelepi, Hamdi; Stanford University Collaboration; University of Maryland, College Park Collaboration
2015-11-01
A new numerical method based on the implicit interface approach on Cartesian grids is proposed for modeling two-phase immiscible flow with moving contact lines. The reinitialization of level-set function by computing the minimum distance to linearly reconstructed interface to obtain signed distance function is extended to include the contact angle boundary condition. The physics of contact line dynamics is implemented using the Cox-Voinov hydrodynamic theory that efficiently captures the effect of the microscopic contact line region. The numerical method is validated through various examples. Parasitic currents are studied in the case of static and constantly advected parabolic interface intersecting the domain boundary with an imposed contact angle. Moving contact line in the viscous dominated regime is studied and verified through comparison with experiments.
On the turbulence-particles interaction in turbulent two-phase flows
NASA Astrophysics Data System (ADS)
Mostafa, A. A.; Mongia, H. C.
1986-01-01
A mathematically simple two-equation turbulence model for two-phase flows has been developed to take into account the extra energy dissipation due to the presence of the particles with the carrier phase. The transport equations of mass, momentum, and kinetic energy and its dissipation rate of the carrier phase using an Eulerian formulation are presented. The Lagrangian approach is used to solve for the particles using the Monte Carlo technique. These equations are solved numerically using a finite difference technique to predict a turbulent round gaseous jet laden with solid particles. The predicted mean and turbulence quantities of the carrier and dispersed phases are in good agreement with the recent experimental data.
Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser
NASA Astrophysics Data System (ADS)
Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki
2012-12-01
An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact
Two-Phase Euler-Lagrange Simulations for Sheet Flow Transport of Mixed Size Sediments
NASA Astrophysics Data System (ADS)
Bateman, S. P.; Calantoni, J.; Hsu, T.
2012-12-01
Intense, collision-dominated bedload transport under sheet flow conditions is a primary agent of nearshore bathymetric evolution. We model the process with a series of two-phase flow simulations, using an Eulerian Reynolds-Averaged Navier-Stokes (RANS) fluid solver for turbulent flow, coupled to a Lagrangian Discrete Element Method (DEM) for modeling the motions of individual sediment grains, in a physically small but statistically relevant domain. For the fluid phase, the one-dimensional in the vertical (1DV) ensemble-averaged continuity and momentum equations are solved using a k-ɛ turbulence closure. For the particle phase, the DEM is fully three-dimensional, where particles have spherical shape and the material properties of quartz. Particle- particle interactions use a modified Walton model to compute the normal and tangential forces at the contact point, with viscous damping achieved through an effective coefficient of restitution calculated from the collisional Stokes number. Fluid-particle interactions include buoyancy, drag, and turbulent suspension, which are implemented through an eddy-particle interaction model based on a random walk. The simulations were performed under oscillatory forcing conditions, where the flow is driven by a second order Stokes wave with a period ranging from T = 5 - 7.5 seconds. The simulations included measured grain size distributions from the laboratory, with mixtures of coarse and fine grains (0.1 mm < D < 0.9 mm). Model results are generally in good agreement with laboratory measurements for net transport rates and time-dependent concentration and velocity profiles within the sheet flow layer. Modeling individual particle motion with the DEM allows the direct incorporation of important grain-scale physical processes, including collisional energy dissipation and vertical sorting of grains by size in the active layer. We compare the results of simulations with uniform sized particles versus simulations with the measured
Investigation of two-phase flow processes in coal slurry/hydrogen heaters. Final report
Sam, R.G.; Crowley, C.J.
1986-08-01
Experimental and analytical results are presented for two-phase slug flow in a horizontal, transparent pipe at large diameter (6.75 in.) at high gas density (20 times the density of air at atmospheric pressure) and at liquid viscosities ranging from 1 to 1000 centipoise. The test section replicates 1 1/2 rectangular coils (40 ft by 10 ft) of a fired heater in a coal liquefaction plant. Regime transtion, pressure drop, void fraction, and slug characteristic data have been obtained for liquid superficial velocities ranging from 0.2 to 6 ft/s and gas superficial velocities ranging from 0.2 to 12 ft/s. Regime transition results have been compared with the Taitel-Dukler analytical flow regime map. The transition from stratified to slug flow, which is underpredicted by the original analysis, has been studied in particular. Comparison with the dimensionless transition criterion (gas Froude number) shows that increased liquid viscosity increases the liquid level at which the transition occurs. Pressure drop data at the transition have been used to evaluate the interfacial shear and to show that it is greater than is assumed in the Taitel-Dukler analysis. Sensitivity studies for the transition criterion and interfacial shear illustrate exactly why the transition is underpredicted on the flow regime map and how the predictions can be improved. Photos of the flow patterns illustrate the mechanism of slug formation at high viscosity compared with low viscosity. Pressure drop, void fraction, and slug characteristic results are compared with an analysis for pressure drop in slug flow, demonstrating better predictive capability of this model at large pipe size, high gas density, and high viscosity, compared with correlations from the literature. The pressure drop model is also shown to be in excellent agreement with coal liquefaction pilot plant data. 34 refs.
Macroscopic laws for immiscible two-phase flow in porous media: Results From numerical experiments
NASA Astrophysics Data System (ADS)
Rothman, Daniel H.
1990-06-01
Flow through porous media may be described at either of two length scales. At the scale of a single pore, fluids flow according to the Navier-Stokes equations and the appropriate boundary conditions. At a larger, volume-averaged scale, the flow is usually thought to obey a linear Darcy law relating flow rates to pressure gradients and body forces via phenomenological permeability coefficients. Aside from the value of the permeability coefficient, the slow flow of a single fluid in a porous medium is well-understood within this framework. The situation is considerably different, however, for the simultaneous flow of two or more fluids: not only are the phenomenological coefficients poorly understood, but the form of the macroscopic laws themselves is subject to question. I describe a numerical study of immiscible two-phase flow in an idealized two-dimensional porous medium constructed at the pore scale. Results show that the macroscopic flow is a nonlinear function of the applied forces for sufficiently low levels of forcing, but linear thereafter. The crossover, which is not predicted by conventional models, occurs when viscous forces begin to dominate capillary forces; i.e., at a sufficiently high capillary number. In the linear regime, the flow may be described by the linear phenomenological law ui = ΣjLijfj, where the flow rate ui of the ith fluid is related to the force fj applied to the jth fluid by the matrix of phenomenological coefficients Lij which depends on the relative concentrations of the two fluids. The diagonal terms are proportional to quantities commonly referred to as "relative permeabilities." The cross terms represent viscous coupling between the two fluids; they are conventionally assumed to be negligible and require special experimental procedures to observe in a laboratory. In contrast, in this numerical study the cross terms are straightforward to measure and are found to be of significant size. The cross terms are additionally observed to
Field testing the role of heterogeneity at the inter-well scale during two phase flow
NASA Astrophysics Data System (ADS)
Hovorka, S. D.; Gulf Coast Carbon Center; Geoseq
2011-12-01
relative permeability evolution guide flow. Plume evolution was highly non-linear, demonstration dominance of preferential flow though fast paths. CO2 continued to access new flow paths as rate increased and through time; pressure was not linear with injection rate. Over a one year test period at the inter-well test scale, reservoir properties seem more important than either pressure or buoyancy in controlling plume evolution. Three intensively monitored two-phase injection experiments across ranges of inter-well reservoir heterogeneity and flow rate provide data to explore methods for bounding uncertainty. More than 20 fluid flow models from these tests have been or are being built to test approaches to history matching.
Measurement of Two-Phase Flow and Heat Transfer Parameters using Infrared Thermometry
NASA Technical Reports Server (NTRS)
Kim, Tae-Hoon; Kommer, Eric; Dessiatoun, Serguei; Kim, Jungho
2012-01-01
A novel technique to measure heat transfer and liquid film thickness distributions over relatively large areas for two-phase flow and heat transfer phenomena using infrared (IR)thermometry is described. IR thermometry is an established technology that can be used to measure temperatures when optical access to the surface is available in the wavelengths of interest. In this work, a midwave IR camera (3.6-5.1 microns) is used to determine the temperature distribution within a multilayer consisting of a silicon substrate coated with a thin insulator. Since silicon is largely transparent to IR radiation, the temperature of the inner and outer walls of the multilayer can be measured by coating selected areas with a thin, IR opaque film. If the fluid used is also partially transparent to IR, the flow can be visualized and the liquid film thickness can be measured. The theoretical basis for the technique is given along with a description of the test apparatus and data reduction procedure. The technique is demonstrated by determining the heat transfer coefficient distributions produced by droplet evaporation and flow boiling heat transfer.
The Annular Two-phase Flow on Rod Bundle: The Effects of Spacers
NASA Astrophysics Data System (ADS)
Kunugi, Tomoaki; Pham, Son; Kawara, Zensaku; Yokomine, Takehiko
2013-11-01
The annular two-phase flow on rod bundle keeps an important role in many heat exchange systems but our knowledge about it, especially the interaction between the liquid film flowing on the rods' surfaces and the spacers is very limited. This study is aimed to the investigation of how the spacer affects the disturbance waves of the flow in a 3 × 3 simulating BWR fuel rod bundle test section. Firstly, the characteristics of the disturbance waves at both upstream and downstream locations of the spacer were obtained by using reflected light arrangement with a high speed camera Phantom V7.1 (Vision Research Inc.) and a Nikon macro lens 105mm f/2.8. The data showed that the parameters such as frequency and circumferential coherence of the disturbance waves are strongly modified when they go through the spacer. Then, the observations at the locations right before and after the spacer were performed by using the back light arrangement with the same high speed camera and a Cassegrain optical system (Seika Cooperation). The obtained images at micro-scale of time and space provided the descriptions of the wavy interface behaviors right before and after the spacer as well as different droplets creation processes caused by the presence of this spacer.
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Correlation for liquid entrainment in annular two-phase flow of viscous fluid
Ishii, Mamoru; Mishima, Kaichiro
1981-03-01
The droplet entrainment from a liquid film by gas flow is important to mass, momentum, and energy transfer in annular two-phase flow. The amount of entrainment can significantly affect occurrences of the dryout and post-dryout heat flux as well as the rewetting phenomena of a hot dry surface. In view of these, a correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasiequilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, and total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which have not been available previously. (author)
Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct
Trabold, T.A.; Moore, W.E.; Morris, W.O.
1997-06-01
A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 {le} {bar Z} {le} 0.80, where {bar Z} is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets.
"Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow
NASA Technical Reports Server (NTRS)
Gorokhovski, M.; Chtab, A.
2003-01-01
The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.
Acquisition of void fraction of pulsatile gas-liquid two-phase flow in rectangular channel
NASA Astrophysics Data System (ADS)
Zhou, Bao; Liu, Jingxing; Tian, Jingda
2013-07-01
Experiment on two-phase pulsatile flow in a narrow rectangular visualization channel was carried out and photographed. Every frame was treated and restored as a black-white binary picture with the threshold of both gray-scale and gray-scale gradient. The gas-liquid interface in the binary pictures can be recognized well, including some very obvious interface, which either cannot be distinguished, or introduce big wrong-recognized area with the gray-scale threshold only. Then after such as `dilate', `erode', `fill', `filter' and so on operating, the binary pictures can reflect the twophase distinction situation in the experimental channel well; The instantaneous average void frictions at the length that the camera covered were calculated by counting the black and white pixels from the pictures. The average void fractions in the whole length of the test section were calculated with an iteration method. The average void fractions in the special length covered by camera and the ones in the whole length of the test section are different. The former shows that the void frictions dramatically frequently change, while the later at steady flow almost stay peace, at pulsatile flow change smoothly.
Numerical experiments on breaking waves on contrasting beaches using a two-phase flow approach
NASA Astrophysics Data System (ADS)
Bakhtyar, R.; Barry, D. A.; Kees, C. E.
2012-11-01
A mechanistic understanding of beach environments needs to account for interactions of oceanic forcing and beach materials, in particular the role of waves on the evolution of the beach profile. A fully coupled two-phase flow model was used to simulate nearshore fluid-sediment turbulent flow in the cross-shore direction. It includes the Reynolds-Averaged Navier-Stokes equations and turbulent stress closures for each phase, and accounts for inter-granular stresses. The model has previously been validated using laboratory-scale data, so the results are likely more reliable for that scale. It was used to simulate wave breaking and the ensuing hydrodynamics and sediment transport processes in the surf/swash zones. Numerical experiments were conducted to investigate the effects of varying beach and wave characteristics (e.g., beach slope, sediment grain size, wave periods and heights) on the foreshore profile changes. Spilling and plunging breakers occur on dissipative and intermediate beaches, respectively. The impact of these wave/beach types on nearshore zone hydrodynamics and beach morphology was determined. The numerical results showed that turbulent kinetic energy, sediment concentrations and transport rate are greater on intermediate than on dissipative beaches. The results confirmed that wave energy, beach grain size and bed slope are main factors for sediment transport and beach morphodynamics. The location of the maximum sediment transport is near the breaking point for both beach types. Coarse- and fine-sand beaches differ significantly in their erosive characteristics (e.g., foreshore profile evolutions are erosive and accretionary on the fine and coarse sand beaches, respectively). In addition, a new parameter (based on main driving factors) is proposed that can characterize the sediment transport in the surf and swash zones. The results are consistent with existing physical observations, suggesting that the two-phase flow model is suitable for the
Supersonic flow past axisymmetric body with strong local two-phase surface injection
NASA Astrophysics Data System (ADS)
Antonov, V. A.; Gol'Din, V. D.; Grishin, A. M.
1984-01-01
It is known [1 3] that in order to provide heat shield or to improve the aerodynamics of the body strong injection of cooling gas into the supersonic stream is utilized. Analysis of flow characteristics in the neighborhood of the solid body in the presence of strong single-phase injection and the effect of injection on the aerodynamic characteristics of some axisymmetric bodies are given, e.g., in [2 4]. Supersonic flow past a blunt-nosed axisymmetric body with blowing of a mixture of gas and solid particles through a porous segment in the leading edge region is considered in the present paper. Such a situation could occur in modeling the breakdown of the heat shield of a flight vehicle during its reentry into the thick layers of atmosphere and also in the case of forced introduction of particles in the flow of the injected gas in order to break up the leading edge shock and accordingly the variation in the drag of the body [5]. A description of the trajectory of the particles has been obtained as a result of numerical and analytical solution of the problem and their analysis is used to arrive at conclusions on their intersection and, consequently, also on the multiple-valued nature of the flow parameters in the neighborhood of the line dividing the external flow and the injected two-phase mixture. Sufficient conditions for multiple-valuedness have been analytically found which agree with numerical results. It has been established that with a change in composition of sufficiently small particles within the limits 0.1 to 0.6 by weight of the injected mixture the drag coefficient of the body does not change by more than 10%.
The Effect of Numerical Diffusion on Oscillatory Flow in Two-Phase Boiling Channel
Chaiwat Muncharoen; Tatchai Sumitra; Takatoshi Takemoto; Masanori Aritomi
2002-07-01
The purpose of this paper is to study the effect of numerical diffusion on the ill-posedness and the accuracy of the model simulated the thermal-hydraulic instabilities in boiling water reactor channels. The model of the upward flow system in two-phase boiling channel simulating BWR core was developed to investigate the oscillatory flow, which was caused by flow instabilities, by using the drift-flux model. The time step was fixed at 1 millisecond at all time and the mesh size was varied as follows: 400, 200, 100, 50 and 20 mm. Then the numerical diffusion in the conservation equations was analyzed in reference to spatial mesh size. The maximums of the absolute ratios of the first order and the second order approximations of the time derivative terms (A/B) and the convective terms (C/D), including the summations of the second power of the ratios of the second order and the first order approximations of the time derivative terms ({sigma}(B/A){sup 2}) and the convective terms ({sigma}(D/C){sup 2}) were calculated to investigate the ill-posedness and the accuracy of numerical calculation of this model. The results from the model showed that the numerical diffusion in the time derivative term and the convective term play the important role in the drift-flux model for the small mesh size and may cause the ill-posedness and degrade the accuracy of the model. It was found that the A/B, the C/D, the {sigma}(B/A){sup 2} and the {sigma}(D/C){sup 2} in the drift-flux model highly fluctuated at the small mesh size of 50 and 20 mm. More importantly, the numerical diffusion due to the oscillation flow and the mesh size variation may have an effect on the amplitude of the pressure drop of the oscillatory flow at the small mesh size. (authors)
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.
Unfitted Two-Phase Flow Simulations in Pore-Geometries with Accurate
NASA Astrophysics Data System (ADS)
Heimann, Felix; Engwer, Christian; Ippisch, Olaf; Bastian, Peter
2013-04-01
The development of better macro scale models for multi-phase flow in porous media is still impeded by the lack of suitable methods for the simulation of such flow regimes on the pore scale. The highly complicated geometry of natural porous media imposes requirements with regard to stability and computational efficiency which current numerical methods fail to meet. Therefore, current simulation environments are still unable to provide a thorough understanding of porous media in multi-phase regimes and still fail to reproduce well known effects like hysteresis or the more peculiar dynamics of the capillary fringe with satisfying accuracy. Although flow simulations in pore geometries were initially the domain of Lattice-Boltzmann and other particle methods, the development of Galerkin methods for such applications is important as they complement the range of feasible flow and parameter regimes. In the recent past, it has been shown that unfitted Galerkin methods can be applied efficiently to topologically demanding geometries. However, in the context of two-phase flows, the interface of the two immiscible fluids effectively separates the domain in two sub-domains. The exact representation of such setups with multiple independent and time depending geometries exceeds the functionality of common unfitted methods. We present a new approach to pore scale simulations with an unfitted discontinuous Galerkin (UDG) method. Utilizing a recursive sub-triangulation algorithm, we extent the UDG method to setups with multiple independent geometries. This approach allows an accurate representation of the moving contact line and the interface conditions, i.e. the pressure jump across the interface. Example simulations in two and three dimensions illustrate and verify the stability and accuracy of this approach.
Cryogenic two-phase flow during chilldown: Flow transition and nucleate boiling heat transfer
NASA Astrophysics Data System (ADS)
Jackson, Jelliffe Kevin
The recent interest in space exploration has placed a renewed focus on rocket propulsion technology. Cryogenic propellants are the preferred fuel for rocket propulsion since they are more energetic and environmentally friendly compared with other storable fuels. Voracious evaporation occurs while transferring these fluids through a pipeline that is initially in thermal equilibrium with the environment. This phenomenon is referred to as line chilldown. Large temperature differences, rapid transients, pressure fluctuations and the transition from the film boiling to the nucleate boiling regime characterize the chilldown process. Although the existence of the chilldown phenomenon has been known for decades, the process is not well understood. Attempts have been made to model the chilldown process; however the results have been fair at best. A major shortcoming of these models is the use of correlations that were developed for steady, non-cryogenic flows. The development of reliable correlations for cryogenic chilldown has been hindered by the lack of experimental data. An experimental facility was constructed that allows the flow structure, the temperature history and the pressure history to be recorded during the line chilldown process. The temperature history is then utilized in conjunction with an inverse heat conduction procedure that was developed, which allows the unsteady heat transfer coefficient on the interior of the pipe wall to be extracted. This database is used to evaluate present predictive models and correlations for flow regime transition and nucleate boiling heat transfer. It is found that by calibrating the transition between the stratified-wavy and the intermittent/annular regimes of the Taitel and Dukler flow regime map, satisfactory predictions are obtained. It is also found that by utilizing a simple model that includes the effect of flow structure and incorporating the enhancement provided by the local heat flux, significant improvement in the
Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks
2015-12-31
812 × 500 × 546 ~ 2.2 x 108 data points ) to train a neural network. It was proposed that a combina- tion of spatial- and time- averaging together with...For each flow pattern test point (i.e., each heater power and volumetric flow rate combination), 500 tomograms were generated over a sampling period of...running average of εðtÞ was used to determine an acceptable number of data points to estimate hεðtÞi. When the fluctuations in the running average
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
Wang, W.; Rutqvist, J.; Gorke, U.-J.; Birkholzer, J.T.; Kolditz, O.
2010-03-15
The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published data from a laboratory experiment is studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability for both the liquid and the gas phase, only the two-phase flow approach provides reasonable results.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3D code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-03-09
This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less
NASA Astrophysics Data System (ADS)
Wright, Y. M.; Bolla, M.; Boulouchos, K.; Borghesi, G.; Mastorakos, E.
2015-01-01
Energy conversion devices of practical interest such as engines or combustors operate in highly turbulent flow regimes. Due to the nature of the hydrocarbon fuels employed, the oxidation chemistry involves a broad range of time-scales some of which cannot be decoupled from the flow. Among the approaches utilised to tackle the modelling of turbulent combustion, Conditional Moment Closure (CMC), belonging to the computationally efficient class of presumed PDF methods, has shown great potential. For single-phase flows it has been demonstrated on non-premixed turbulent lifted and opposed jets, lifted flames and auto-igniting jets. Here we seek to review recent advances in both modelling and application of CMC for auto-ignition of fuel sprays. The experiments chosen for code validation and model improvement include generic spray test rigs with dimensions of passenger car as well as large two-stroke marine engines. Data for a broad range of operating conditions of a heavy-duty truck engine is additionally employed to assess the predictive capability of the model with respect to NOx emissions. An outlook on future enhancements including e.g. LES-CMC formulation also for two-phase flows as well as developments in the field of soot emissions are summarised briefly.
Reinemann, D J
1996-12-01
Most pipeline systems in dairy and food processing plants are cleaned by circulating cleaning solutions under pressure with a liquid pump. The flow of the circulated solutions is single-phase or flooded flow. Milking system pipelines are subject to special requirements which distinguish them from those in dairy and other food processing plants. Milking system pipelines are considerably larger in diameter than product lines in dairy plants because they must carry both milk and air in a stratified flow condition during the milking process. Milking machine Clean-In-Place (CIP) systems have historically used flooded flow to circulate cleaning solutions. The force to move liquid, however, is typically the vacuum provided by the same vacuum pump used during milking, rather than a positive pressure liquid pump. As the size and complexity of milking machines has increased in recent years, flooded flow CIP systems have become inadequate. The amount of water required to fully flood a milking system becomes impractical with very long and/or large diameter pipelines. The power available to achieve adequate flow velocity is also limited. Air admission has been used to produce two-phase (air/water) slug flow and overcome some of the limitations of fully flooded CIP. Cycled air admission can reduce the amount of water required for circulation and increase flow velocities and thus enhance mechanical cleaning action. Cycled air admission has been implemented in the field largely through trial and error methods. There has been a lack of fundamental design information and testing protocols for air-injected milking machine CIP systems. This has resulted in mixed success in the application of air injected systems. This paper summarizes both laboratory and field research conducted at the University of Wisconsin Milking Research and Instruction lab to provide basic information for the design of air injected CIP systems and methods for field assessment of these systems. Just as properly
Ice melting and downward transport of meltwater by two-phase flow in Europa's ice shell
NASA Astrophysics Data System (ADS)
Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej
2014-03-01
With its young surface, very few impact craters, and the abundance of tectonic and cryovolcanic features, Europa has likely been subjected to relatively recent endogenic activity. Morphological analyses of chaos terrains and double ridges suggest the presence of liquid water within the ice shell a few kilometers below the surface, which may result from enhanced tidal heating. A major issue concerns the thermal/gravitational stability of these water reservoirs. Here we investigate the conditions under which water can be generated and transported through Europa's ice shell. We address particularly the downward two-phase flow by solving the equations for a two-phase mixture of water ice and liquid water in one-dimensional geometry. In the case of purely temperate ice, we show that water is transported downward very efficiently in the form of successive porosity waves. The time needed to transport the water from the subsurface region to the underlying ocean varies between ˜1 and 100 kyr, depending mostly on the ice permeability. We further show that water produced in the head of tidally heated hot plumes never accumulates at shallow depths and is rapidly extracted from the ice shell (within less than a few hundred kiloyears). Our calculations indicate that liquid water will be largely absent in the near subsurface, with the possible exception of cold conductive regions subjected to strong tidal friction. Recently active double ridges subjected to large tidally driven strike-slip motions are perhaps the most likely candidates for the detection of transient water lenses at shallow depths on Europa.
Three-dimensional fluid mechanics of particulate two-phase flows in U-bend and helical conduits
NASA Astrophysics Data System (ADS)
Tiwari, Prashant; Antal, Steven P.; Podowski, Michael Z.
2006-04-01
The results of numerous studies performed to date have shown that the performance of various hydraulic systems can be significantly improved by using curved conduit geometries instead of straight tubes. In particular, the formation of Dean vortices, which enhance the development of centrifugal instabilities, has been identified as a factor behind reducing the near-wall concentration buildup in particulate flow devices (e.g., in membrane filtration modules). Still, several issues regarding the effect of conduit curvature on local multidimensional phenomena governing fluid flow still remain open. A related issue is concerned with the impact that conduit geometry makes on the concentration distribution of a dispersed phase in two-phase flows in general, and in particulate flows (solid/liquid or solid/gas suspensions) in particular. It turns out that only very limited efforts have been made in the past to understand the fluid mechanics of such flows via advanced computer simulations. The purpose of this paper is to present the results of full three-dimensional (3D) theoretical and numerical analyses of single- and two-phase dilute particle/liquid flows in U-bend and helical curved conduits. The numerical analysis is based on computational fluid dynamics (CFD) simulations performed using a state-of-the-art multiphase flow computer code, NPHASE. The major issues discussed in the first part of the paper are concerned with the effect of curved/coiled geometry on the evolution of flow field and the associated wall shear. It has been demonstrated that the primary curvature (a common factor for both the U-bend and helix geometries) may cause a substantial asymmetry in the radial distribution of the main flow velocity. This, in turn, leads to a significant, albeit highly nonuniform, increase in the wall shear stress. Specifically, the wall shear around the outer half of tube circumference may become twice the corresponding value for a straight tube, and gradually decrease to
Rheology of two-phase composites: implications for flow properties of the lower mantle
NASA Astrophysics Data System (ADS)
Wang, Y.; Nishiyama, N.; Hilairet, N.; Fiquet, G.; Tsuchiya, T.
2011-12-01
We examine flow properties and deformation-induced fabric evolution in two-phase composites using the deformation DIA (D-DIA) and the high-pressure x-ray tomography microscope (HPXTM) with monochromatic synchrotron radiation. Stress-strain curves were determined on an analog lower mantle material CaGeO3 perovskite (GePv) plus MgO. The sintered polycrystalline rock was synthesized from the disproportionation reaction of CaMgGeO4 (olivine) - GePv+MgO at 12 GPa and 1573 K for 4 h. The sample contains 28 vol% MgO, and is an excellent analog material for the lower mantle. Scanning electron microscopy showed that the average grain size was about 1 micron. The sample was deformed in the D-DIA at pressures from 4 to 12 GPa, temperatures 600 to 1200 K, and strain rates from 1x to 3x10-5 s-1. The maximum axial strain was 16 %. Elastic constants for GePv were calculated using first-principles with the generalized gradient corrections (GGC) technique. In order to examine effects of the second phase on flow properties, a pure GePv sample was deformed under identical conditions. Flow properties of MgO are available from our previous studies [1]. The relative stress levels in GePv and MgO in the composite sample are in general agreement with numerical simulations [2]. Another analog, a mixture of San Carlos olivine and Fe-S, was examined in the HPXTM. The strength contrast of two phases is similar to that of perovskite and ferropericlase. The initial texture was of the load-bearing framework (LBF) type, with isolated "weak" Fe-S grains sounded by "strong" silicate framework. During shear deformation, a strong shape preferred orientation began to develop in the sample at shear strains above 300%, forming an interconnected weak layer (IWL) texture. The development of deformation fabric was continuously monitored by tomographic imaging under high pressure to a maximum shear strain of 1300%. Applications of these results to dynamics of the lower mantle are discussed. [1] Uchida, T
Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method
NASA Astrophysics Data System (ADS)
Qiao, W.
2015-12-01
The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the
Huh, D; Kuo, C-H; Grotberg, J B
2010-01-01
Here we map gas–liquid two-phase flow regimes observed in polymeric microchannels with different wetting properties. We utilized video and confocal microscopy to examine two-phase flow patterns produced by parallel injection of air and water through a Y-shaped junction into a rectangular microchannel made of poly(dimethylsiloxane) (PDMS). We observed seven flow regimes in microchannels with hydrophobic walls, whereas only two flow patterns were identified in hydrophilic microchannels. Our study demonstrates that surface wettability has a profound influence on the spatial distribution of air and water moving in microchannels. PMID:20126421
NASA Astrophysics Data System (ADS)
Müller, Florian; Jenny, Patrick; Daniel, Meyer
2014-05-01
To a large extent, the flow and transport behaviour within a subsurface reservoir is governed by its permeability. Typically, permeability measurements of a subsurface reservoir are affordable at few spatial locations only. Due to this lack of information, permeability fields are preferably described by stochastic models rather than deterministically. A stochastic method is needed to asses the transition of the input uncertainty in permeability through the system of partial differential equations describing flow and transport to the output quantity of interest. Monte Carlo (MC) is an established method for quantifying uncertainty arising in subsurface flow and transport problems. Although robust and easy to implement, MC suffers from slow statistical convergence. To reduce the computational cost of MC, the multilevel Monte Carlo (MLMC) method was introduced. Instead of sampling a random output quantity of interest on the finest affordable grid as in case of MC, MLMC operates on a hierarchy of grids. If parts of the sampling process are successfully delegated to coarser grids where sampling is inexpensive, MLMC can dramatically outperform MC. MLMC has proven to accelerate MC for several applications including integration problems, stochastic ordinary differential equations in finance as well as stochastic elliptic and hyperbolic partial differential equations. In this study, MLMC is combined with a reservoir simulator to assess uncertain two phase (water/oil) flow and transport within a random permeability field. The performance of MLMC is compared to MC for a two-dimensional reservoir with a multi-point Gaussian logarithmic permeability field. It is found that MLMC yields significant speed-ups with respect to MC while providing results of essentially equal accuracy. This finding holds true not only for one specific Gaussian logarithmic permeability model but for a range of correlation lengths and variances.
An adaptive level set approach for incompressible two-phase flows
Sussman, M.; Almgren, A.S.; Bell, J.B.
1997-04-01
In Sussman, Smereka and Osher, a numerical method using the level set approach was formulated for solving incompressible two-phase flow with surface tension. In the level set approach, the interface is represented as the zero level set of a smooth function; this has the effect of replacing the advection of density, which has steep gradients at the interface, with the advection of the level set function, which is smooth. In addition, the interface can merge or break up with no special treatment. The authors maintain the level set function as the signed distance from the interface in order to robustly compute flows with high density ratios and stiff surface tension effects. In this work, they couple the level set scheme to an adaptive projection method for the incompressible Navier-Stokes equations, in order to achieve higher resolution of the interface with a minimum of additional expense. They present two-dimensional axisymmetric and fully three-dimensional results of air bubble and water drop computations.
Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri
2001-01-01
The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.
Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
NASA Astrophysics Data System (ADS)
Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu
2016-06-01
Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).
The numerical solution of the transient two-phase flow in rigid pipelines
NASA Astrophysics Data System (ADS)
Hadj-Taieb, Ezzeddine; Lili, Taieb
1999-03-01
Consideration is given in this paper to the numerical solution of the transient two-phase flow in rigid pipelines. The governing equations for such flows are two coupled, non-linear, hyperbolic, partial differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered as two principle dependent variables. The fluid is a homogeneous gas-liquid mixture for which the density is defined by an expression averaging the two-component densities where a polytropic process of the gaseous phase is admitted. Instead of the void fraction, which varies with the pressure, the gas-fluid mass ratio (or the quality) is assumed to be constant, and is used in the mathematical formulation. The problem has been solved by the method of non-linear characteristics and the finite difference conservative scheme. To verify their validity, the computed results of the two numerical techniques are compared for different values of the quality, in the case where the liquid compressibility and the pipe wall elasticity are neglected. Copyright
Two-Phase Flow Within Porous Media Analogies: Application Towards CO2 Sequestration
Crandall, D.M. Clarkson University, Potsdam, NY); Ahmadi, G.; Smith, D.H.
2007-04-20
Geologic carbon dioxide sequestration (GCO2S) involves the capture of large quantities of CO2 from point-source emitters and pumping this greenhouse gas to subsurface reservoirs (USDOE, 2006). The mechanisms of two-phase fluid displacement in GCO2S, where a less viscous fluid displaces a more viscous fluid in a heterogeneous porous domain is similar to enhanced oil recovery activities. Direct observation of gas-liquid interface movement in geologic reservoirs is difficult due to location and opacity. Over the past decades, complex, interconnected pore-throat models have been developed and used to study multiphase flow interactions in porous media, both experimentally (Buckley, 1994) and numerically (Blunt, 2001). This work expands upon previous experimental research with the use of a new type of heterogeneous flowcell, created with stereolithography (SL). Numerical solutions using the Volume-of-Fluid (VOF) model with the same flowcell geometry, are shown to be in good agreement with the drainage experiments, where the defending fluid wets the surface. This computational model is then used to model imbibition, the case of the invading fluid preferentially wetting the surface. Low capillary flows and imbibition conditions are shown to increase the storage volume of the invading fluid in the porous medium.
Experimental investigation on front morphology for two-phase flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Heiß, V. I.; Neuweiler, I.; Ochs, S.; FäRber, A.
2011-10-01
In this work, we studied the influence of heterogeneities, fluid properties, and infiltration rates on front morphology during two-phase flow. In our experiments, a sand box, 40 cm × 60 cm × 1.2 cm, was packed with two different structures (either random or periodic) composed of 25% coarse material and 75% fine material. The infiltration process was characterized by the capillary number, Ca, and the viscosity ratio, M, between the fluids. The displacing and the displaced fluid had the same densities, such that gravity effects could be neglected. Similar to the pore scale, the stability of the front depends on the relation between M and Ca. However, on the scale under study, depending on the structure, zones of immobilized wetting fluid developed during drainage. The lifetime of these zones depended on the flow regime. Here we show that immobilized zones have an influence on the length of the transition zone, which could lead to a different time behavior than for that of the front width.
Linear stability analysis of immiscible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Riaz, Amir
2005-11-01
Linear stability analysis of immiscible displacements is carried out for both viscously and gravitationally unstable two-phase flows in porous media with very large adverse viscosity ratios. Capillary dispersion is the proper dissipative mechanism in this case which sets both the preferred length scale and the band width of the spectrum of unstable length scales. The growth rate, the most dangerous and the cutoff wavenumbers, all scale linearly with the capillary number. We show that the instability is governed by fluid properties across the shock rather than those across the full Buckley--Leverett profile. The shock total mobility ratio provides a sufficient condition for the onset of instability; however, it is not an appropriate criterion for predicting the magnitude of the growth rate, particularly for large viscosity ratios. The details of the relative permeability functions are observed to have a significant influence on the stability characteristics. For neutrally buoyant flows the maximum growth rate scales linearly with the viscosity ratio while the most dangerous and the cutoff wavenumbers scale with the square root of the viscosity ratio.
Non-isothermal two-phase flow in low-permeable porous media
NASA Astrophysics Data System (ADS)
Kolditz, O.; De Jonge, J.
In this paper, we consider non-isothermal two-phase flow of two components (air and water) in gaseous and liquid phases in extremely low-permeable porous media through the use of the finite element method (FEM). Interphase mass transfer of the components between any of the phases is evaluated by assuming local thermodynamic equilibrium between the phases. Heat transfer occurs by conduction and multiphase advection. General equations of state for phase changes (Clausius-Clapeyron and Henry law) as well as multiphase properties for the low-permeable bentonites are implemented in the code. Additionally we consider the impact of swelling/shrinking processes on porosity and permeability changes. The numerical model is implemented in the context of the simulator RockFlow/RockMech (RF/RM), which is based on object-oriented programming techniques. The finite element formulations are written in terms of dimensionless quantities. This has proved to be advantageous for preconditioning composite system matrices of coupled multi-field problems. Three application examples are presented. The first one examines differences between the Richards' approximation and the multicomponent/multiphase approach, and between two numerical coupling schemes. The second example serves as partial verification against experimental results and to demonstrate coherence between different element types. The last example shows simultaneous desaturation and resaturation in one system.
Apparent and Actual Dynamic Contact Angles in Confined Two-Phase Flows
NASA Astrophysics Data System (ADS)
Omori, Takeshi; Kajishima, Takeo
2016-11-01
To accurately predict the fluid flow with moving contact lines, it has a crucial importance to use a model for the dynamic contact angle which gives contact angles on the length scale corresponding to the spacial resolution of the fluid solver. The angle which a moving fluid interface forms to a solid surface deviates from an actual (microscopic) dynamic contact angle depending on the distance from the contact line and should be called an apparent (macroscopic) dynamic contact angle. They were, however, often undistinguished especially in the experimental works, on which a number of empirical correlations between a contact angle and a contact line velocity have been proposed. The present study is the first attempt to measure both apparent and actual contact angles from the identical data sets to discuss the difference and the relationship between these two contact angles of difference length scales. The study is conducted by means of numerical simulation, solving the Navier-Stokes equation and the Cahn-Hilliard equation under the generalized Navier boundary condition for the immiscible two-phase flow in channels. The present study also illustrates how the system size and the physical properties of the adjoining fluid affect the apparent and the actual dynamic contact angles. JSPS KAKENHI Grant No. 15K17974.
A two-phase flow model of the stirring of Al-SiC composite melt
NASA Astrophysics Data System (ADS)
Bui, R. T.; Ouellet, R.; Kocaefe, D.
1994-08-01
A two-phase flow, three-dimensional, steady-state model is developed to study the flow field and volume fraction distribution in a stirred tank used in the processing of silicon carbide-reinforced aluminum composites in the melt state. The aim is to optimize the stirring to obtain a good mixing of SiC particles. The model is based on the general-purpose code PHOENICS. In addition to the liquid-aluminum phase, the SiC particles are treated as a nonviscous second phase. Interphase momentum transfer occurs through a drag force. Sedimentation is simulated by assigning a high viscosity to the second phase and removing the gravity force when particle concentration reaches a critical value. The stirrers' blades impart a momentum on both phases, proportional to their respective volume fractions. A water model is simulated first, followed by the real Al-SiC melt. The study reveals the importance of particle size that affects the drag force applied on the particles and hence their motion and distribution. The model can be used to study the effect on mixing of tank geometry and the stirrers' operation.
Hayes, K.F.; Demond, A.H.
1991-08-01
An improved understanding of the factors influencing the movement of a separate organic liquid phase in groundwater aquifers is important to the US Department of Energy's efforts to alleviate groundwater contamination by many common solvents. The overall objective of this project is to investigate how changes in interfacial chemical properties affect two-phase flow relationships. Specifically, the objective is to develop a quantitative theory that will enable the prediction of changes in the capillary pressure-saturation relationship, a fundamental constitutive relationship in multiphase flow modeling, from changes in interfacial properties through a knowledge of their effect on wettability. The work over the past eight months of the project summarized here shows the interrelationship between the surface chemical properties of sorption, electrophoretic mobility, contact angle, surface tension and capillary pressure, and how the effects on capillary pressure might be predicted on the basis of surface tension and contact angle. The model system we have been examining consists of o-xylene, water, silica sand, and cetyltrimethylammonium bromide (CTAB), in which all three interfacial tensions of the system change.
NASA Technical Reports Server (NTRS)
Iwatsubo, T.; Nishino, T.
1994-01-01
A new test apparatus is reconstructed and is applied to investigate static and dynamic characteristics of annular seals leaked by two phase flow (gas and liquid) for turbopumps. The fluid forces acting on the seals are measured for various parameters such as void ratio, the preswirl velocity, the pressure difference between the inlet and outlet of the seal, the whirling amplitude, and the ratio of whirling speed to spinning speed of the rotor. Influence of these parameters on the static and dynamic characteristics is investigated from the experimental results. As a result, with regard to the two phase flow, as the void ratio increases, the flow induced force decreases. Another dynamic characteristic of two phase flow is as almost similar as that of the monophase flow.
Flow regime mapping of vertical two-phase downflow in a ribbed annulus
Kielpinski, A.L.
1992-12-01
Two-phase flow regimes have been mapped for vertical, cocurrent downflow in a narrow annulus which is partially segmented by the presence of longitudinal ribs. This geometry and flow condition has application to the analysis of a Large-Break Loss of Coolant Accident (LB-LOCA) in the production K-Reactor at the Savannah River Site (SRS). The ribbed annular geometry, particularly the presence of non-sealing ribs, gives rise to some unique phenomenological features. The flow behavior is influenced by the partial segmentation of the annulus into four quadrants or subchannels. A random element is induced by the natural bowing of the slender tubes; the width of the azimuthal flow path between two subchannels at a given axial location is indeterminate, and can take on any value between zero and the maximum clearance of 7.6 {times} l0{sup {minus}4} m. When the rib gap is zero at a given location, it is at a maximum 180P away at the same axial location. The range of rib gaps is spanned in a single test section, as it would be also in a reactor assembly. As a result of these effects, flow regime maps obtained by other researchers for downflow in annuli are not accurate for defining flow regimes in a ribbed annulus. Flow regime transitions similar to those noted by, e.g., Bamea, were observed; the locations of these transitions were displaced with respect to the transition equations derived by Bamea. Experimental bubble rise velocity measurements were also obtained in the same test section. The bubble rise velocities were much higher than expected from the theory developed for slug bubbles in tubes, unribbed annuli, and rectangular channels. An elliptical-cap bubble rises faster than a slug bubble of the same area. Large, slug-shaped bubbles injected into the test section were observed to reduce in size as they rose, due to interaction with a longitudinal rib. They thereby adopted a shape more like an elliptical-cap bubble, hence rising faster than the original slug bubble.
Flow regime mapping of vertical two-phase downflow in a ribbed annulus
Kielpinski, A.L.
1992-01-01
Two-phase flow regimes have been mapped for vertical, cocurrent downflow in a narrow annulus which is partially segmented by the presence of longitudinal ribs. This geometry and flow condition has application to the analysis of a Large-Break Loss of Coolant Accident (LB-LOCA) in the production K-Reactor at the Savannah River Site (SRS). The ribbed annular geometry, particularly the presence of non-sealing ribs, gives rise to some unique phenomenological features. The flow behavior is influenced by the partial segmentation of the annulus into four quadrants or subchannels. A random element is induced by the natural bowing of the slender tubes; the width of the azimuthal flow path between two subchannels at a given axial location is indeterminate, and can take on any value between zero and the maximum clearance of 7.6 [times] l0[sup [minus]4] m. When the rib gap is zero at a given location, it is at a maximum 180P away at the same axial location. The range of rib gaps is spanned in a single test section, as it would be also in a reactor assembly. As a result of these effects, flow regime maps obtained by other researchers for downflow in annuli are not accurate for defining flow regimes in a ribbed annulus. Flow regime transitions similar to those noted by, e.g., Bamea, were observed; the locations of these transitions were displaced with respect to the transition equations derived by Bamea. Experimental bubble rise velocity measurements were also obtained in the same test section. The bubble rise velocities were much higher than expected from the theory developed for slug bubbles in tubes, unribbed annuli, and rectangular channels. An elliptical-cap bubble rises faster than a slug bubble of the same area. Large, slug-shaped bubbles injected into the test section were observed to reduce in size as they rose, due to interaction with a longitudinal rib. They thereby adopted a shape more like an elliptical-cap bubble, hence rising faster than the original slug bubble.
Dividing phases in two-phase flow and modeling of interfacial drag
Narumo, T.; Rajamaeki, M.
1997-07-01
Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.
NASA Astrophysics Data System (ADS)
Zhou, J. X.; Shen, X.; Yin, Y. J.; Guo, Z.; Wang, H.
2015-06-01
In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC.
A new contactless impedance sensor for void fraction measurement of gas-liquid two-phase flow
NASA Astrophysics Data System (ADS)
Ji, Haifeng; Chang, Ya; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing
2016-12-01
With impedance elimination principle and phase sensitive demodulation (PSD) technique, this work aims to develop a new contactless impedance sensor, which is suitable for the void fraction measurement of gas-liquid two-phase flow. The impedance elimination principle is used to overcome the unfavorable influences of the coupling capacitances, i.e. the capacitive reactances of the coupling capacitances are eliminated by the inductive reactance of an introduced inductor. PSD technique is used to implement the impedance measurement. Unlike the conventional conductance/impedance sensors which use the equivalent conductance (the real part of the impedance) or the amplitude of the impedance of gas-liquid two-phase flow, the new contactless impedance sensor makes full use of the total impedance information of gas-liquid two-phase flow (including the amplitude, the real part and the imaginary part of the impedance, especially the imaginary part) to implement the void fraction measurement. As a preliminary study, to verify the effectiveness of the new contactless impedance sensor, two prototypes (with different inner diameters of 17.0 mm and 22.0 mm) are developed and experiments are carried out. Two typical flow patterns (bubble flow and stratified flow) of gas-liquid two-phase flow are investigated. The experimental results show that the new contactless impedance sensor is successful and effective. Compared with the conventional conductance/impedance sensors, the new contactless impedance sensor can avoid polarization effect and electrochemical erosion effect. The total impedance information is used and the void fraction measurement performance of the new sensor is satisfactory. The experimental results also indicate that the imaginary part of the impedance of gas-liquid two-phase flow is very useful for the void fraction measurement. Making full use of the total impedance information of gas-liquid two-phase flow can effectively improve the void fraction measurement
Tan, C; Liu, W L; Dong, F
2016-06-28
Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'.
Shanthi, C; Pappa, N
2017-02-13
Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows.
NASA Astrophysics Data System (ADS)
Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.
2011-12-01
Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.
High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.
Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R
2014-08-01
We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed.
On the convergence of the weakly compressible sharp-interface method for two-phase flows
NASA Astrophysics Data System (ADS)
Schranner, Felix S.; Hu, Xiangyu; Adams, Nikolaus A.
2016-11-01
A weakly compressible sharp-interface framework for two-phase flows is presented. Special emphasis is on investigating its convergence properties. For this purpose a well-defined set of benchmark configurations is introduced. These may serve as future references for the verification of sharp-interface methods. Global mass and momentum conservation is ensured by the conservative sharp-interface method. Viscous and capillary stresses are considered directly at the interface. A low-dissipation weakly compressible Roe Riemann solver, in combination with a 5th-order WENO scheme, leads to high spatial accuracy. A wavelet-based adaptive multi-resolution approach permits to combine computational efficiency with physical consistency. The first test configuration is a Rayleigh-Taylor instability at moderate Reynolds number and infinite Eötvös number. A second group of benchmark cases are isolated air bubbles rising in water at high Eötvös numbers, and low to high Reynolds numbers. With these test cases, three distinct types of complex interface evolution, which are typical for a wide range of industrial applications, are realized.
An implicit numerical model for multicomponent compressible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2015-11-01
We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.
Numerical simulation of two-phase flow around flatwater competition kayak design-evolution models.
Mantha, Vishveshwar R; Silva, António J; Marinho, Daniel A; Rouboa, Abel I
2013-06-01
The aim of the current study was to analyze the hydrodynamics of three kayaks: 97-kg-class, single-rower, flatwater sports competition, full-scale design evolution models (Nelo K1 Vanquish LI, LII, and LIII) of M.A.R. Kayaks Lda., Portugal, which are among the fastest frontline kayaks. The effect of kayak design transformation on kayak hydrodynamics performance was studied by the application of computational fluid dynamics (CFD). The steady-state CFD simulations where performed by application of the k-omega turbulent model and the volume-of-fluid method to obtain two-phase flow around the kayaks. The numerical result of viscous, pressure drag, and coefficients along with wave drag at individual average race velocities was obtained. At an average velocity of 4.5 m/s, the reduction in drag was 29.4% for the design change from LI to LII and 15.4% for the change from LII to LIII, thus demonstrating and reaffirming a progressive evolution in design. In addition, the knowledge of drag hydrodynamics presented in the current study facilitates the estimation of the paddling effort required from the athlete during progression at different race velocities. This study finds an application during selection and training, where a coach can select the kayak with better hydrodynamics.
A Simple Volume Tracking Method For Compressible Two-Phase Flow
NASA Astrophysics Data System (ADS)
Shyue, Keh-Ming
2001-12-01
Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.
Determination of volume fractions in two-phase flows from sound speed measurement
Chaudhuri, Anirban; Sinha, Dipen N.; Osterhoudt, Curtis F.
2012-08-15
Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.
Three-dimensional Modelling of Two-phase Flow involving Droplets and Atmospheric Pressure Discharge
NASA Astrophysics Data System (ADS)
Iqbal, M. M.; Stallard, C. P.; Dowling, D. P.; Turner, M. M.
2013-09-01
We employ a three-dimensional coupled fluid-droplet model (FD3d) to describe the complex mechanism of droplet-plasma interaction that occurs when a liquid precursor is injected through a nebulizer into an atmospheric pressure discharge (APD). The formation of conducting channels in the APD plasma illustrates that the electron concentration around the pulse of droplets emitted by the nebulizer is perturbed by the influence of different gas impurities due to the impact of Penning ionization. The development of the sheath potential around the pulse of HMDSO droplets is significantly stronger in the case of He-air than a He-N2 gas mixture, which illustrates the contribution of oxygen impurities. The volumetric density profiles of ionic species are discussed by describing the complex situation of two-phase flow at distinct driving frequencies (5 - 100 kHz). The uniform structure of APD plasma is formed by considering an appropriate size distribution of droplets because the non-uniformities grow due to the existence of larger radii of droplets. The comparison of numerical modelling results of droplet size distributions is performed with experimental measurements using laser diffraction particle size analysis technique. The desired properties of surface coating applications can be predicted by controlling various parameters mentioned in the fluid-droplet model. Science Foundation Ireland under Grant No. 08/SRC/I1411.
Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces
NASA Astrophysics Data System (ADS)
Turkyilmazoglu, Mustafa
2017-01-01
This paper is devoted to the mathematical analysis of a magnetohydrodynamic viscous two-phase dusty fluid flow and heat transfer over permeable stretching or shrinking bodies. The wall boundary is subjected to a linear deformation as well as to a quadratic surface temperature. Such a highly nonlinear phenomenon, for the first time in the literature, is attacked to search for occurrence of exact solutions, whose numerical correspondences are already available for limited wall transpiration velocities. The obtained analytical solutions are found be in perfect line with the numerical computations. Besides this, exact solutions point to the existence of dual solutions for both permeable stretching and shrinking cases, which were not detected from the numerical studies up to date. The existence of such exact solutions and their parameter domain particularly depending on the wall suction or injection are successfully analyzed. The physical outcomes concerning the effects of suspended particles on the momentum and thermal boundary layers well-documented in the open literature can be best understood from the presented exact solutions.
Hayes, K.F.; Demond, A.H.
1990-09-01
The purpose of this project is to investigate how changes in interfacial chemical properties affect two-phase transport relationships. Specifically, the objective is to develop a quantitative theory that will enable the prediction of changes in the capillary pressure-saturation relationship, a fundamental constitutive relationship in multiphase flow modeling, from changes in interfacial properties through a knowledge of their effect on wettability. The information presented here summarizes the progress we have made in the first project period. Based on preliminary adsorption, surface charge and surface potential measurements, we have demonstrated that it is possible to change the wettability of silica in a controlled manner by adsorbing varying quantities of a strongly-binding, cationic surfactant like cetyltrimethylammonium bromide (CTAB). Adsorption, surface charge and surface potential measurements have been made on the silica-water-CTAB system to yield a relationship between the amount adsorbed and the interfacial potential. Our work on the ideal soil model has demonstrated that the incorporation of roughness effects in the ideal soil model improves the prediction of the operative contact angles for drainage and imbibition from the intrinsic contact angle. This leads to better estimates of the capillary pressure-saturation relationships. Preliminary capillary pressure experiments on the silica-water-air system have shown that adsorption of a surfactant at the solid surface changes the capillary pressure-saturation relationship significantly.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis
2015-11-01
Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.
Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity
NASA Technical Reports Server (NTRS)
Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.
2002-01-01
In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were
Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De
2016-01-01
High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427
Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R
2008-07-01
Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.
Fluid-structure interaction of complex bodies in two-phase flows on locally refined grids
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Shen, Lian; Sotiropoulos, Fotis
2016-11-01
Many real-life flow problems in engineering applications involve fluid-structure interaction (FSI) of arbitrarily complex geometries interacting with free surface flows. Despite the recent significant computational advances, conventional numerical methods are inefficient to resolve the prevailing complex dynamics due to the inherent large disparity of spatial and temporal scales that emerge in the air/water phases of the flow and around rigid bodies. To this end, the new generation 3D, unsteady, unstructured Cartesian incompressible flow solver, developed at the Saint Anthony Falls Laboratory (SAFL), is integrated with a FSI immersed boundary method and is coupled with the level-set formulation. The predictive capabilities of our method to simulate non-linear free surface phenomena, with low computational cost, are significantly improved by locally refining the computational grid in the vicinity of solid boundaries and around the free surface interface. We simulate three-dimensional complex flows involving complex rigid bodies interacting with a free surface both with prescribed body motion and coupled FSI and we investigate breaking wave events. In all the cases, very good agreement with benchmark data is found. This material is based upon work supported by the National Science Foundation (CBET-1509071).
The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-11-18
The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.
The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-01-01
The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708
Thermophysics of two-phase flows in microgravity: Russian-American research project
NASA Astrophysics Data System (ADS)
Leontiev, A. I.; Diev, M. D.; Cykhotsky, V. M.; Prokhorov, Y. M.; Bednov, S. M.; Desyatov, A. V.; Blinkov, V. N.; Gorbenko, G. A.; Kopyatkevich, R. M.
1997-01-01
Thermal control systems of space vehicles, being developed and prospective, including heavy weight orbital stations, platforms, interplanetary missions, lunar villages and modules, will be most likely based on two-phase heat transport loops. The paper presents complex program of fundamental and applied studies of two-phase hydrodynamics and heat transfer in microgravity. The program is being performed by four Russian organizations under financial support by NASA. It is directed towards solution of practical problems arising when International Space Station ALPHA Russian Segment (ISSA RS) Two-Phase Thermal Control System (TPS) is being designed.
A Lagrangian vorticity method for two-phase particulate flows with two-way coupling
NASA Astrophysics Data System (ADS)
Chen, Hongbo
1998-11-01
A Lagrangian vorticity-based method for simulating two- way interaction in a two-phase flow with heavy particles is developed in this dissertation. The flow is computed by solving the vorticity transport equation, including the particle-induced vorticity source, and the mass conservation equation for particle concentration on separate sets of fluid and particle control points, respectively. The fluid control points are advected with the local fluid velocity, plus a diffusion velocity for viscous problems to account for the spread of the vorticity support via diffusion. The particle control points are advected by solution of the particle momentum equation. Novel features of the numerical method include the scheme for calculation of the particle-induced vorticity source using a 'moving-least square' differentiation scheme across the two sets of control points and the ability to absorb the vorticity generated by particle forces through an adaptive scheme for generation of new fluid control points. Test calculations with a vortex patch filled with particles show that the numerical results compare well with the results obtained both by a traditional finite-difference method and by an asymptotic approximation valid for small Stokes numbers. The numerical method is employed to study the wakes of particle clouds falling under gravity and the interaction between the wake and nearby vortex structures. By scaling the fluid and particle velocity fields with the particle terminal velocity, the wake is found to depend on two dimensionless parameters: the Stokes number St and the maximum initial particle concentration of the particle cloud c max. Results show that the wake of an isolated particle cloud consists of two vortex sheets with opposite sign vorticity. The wake strength is found to vary with the falling distance and is principally dependent on c max/St. Interaction between multiple particle clouds principally occurs when the area swept out by one cloud intersects with
NASA Astrophysics Data System (ADS)
Nabil, Mahdi; Rattner, Alexander S.
The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.
Dong, S; Wang, X
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.
2000-01-01
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.
Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994
NASA Technical Reports Server (NTRS)
Bousman, William Scott
1995-01-01
Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a
Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor
Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing
2014-01-01
A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879
Measurement of off-diagonal transport coefficients in two-phase flow in porous media.
Ramakrishnan, T S; Goode, P A
2015-07-01
The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation.
Preliminary Modeling of Two-Phase Flow at the Main Endeavour Vent Field
NASA Astrophysics Data System (ADS)
Singh, S.; Lowell, R. P.
2011-12-01
The high temperature hydrothermal vents of Main Endeavour Field (MEF), Juan de Fuca ridge exhibited quasi-steady North-South trending spatial gradients of both temperature and salinity for more than a decade before a magmatic event changed the vent characteristics. In order to explain these observations, we construct two-dimensional numerical models of two-phase hydrothermal flow of the MEF. We consider both along-axis and across-axis simulations, taking into account the vent field geometry and incorporating various parameters, such as different basal temperature distributions and permeability structures that might affect the vent fluid temperature and chemistry. Preliminary results from across-axis models, in which the basal temperature decreases linearly away from the ridge axis and results in a single high-temperature plume, indicate that basal temperature alone does not affect steady-state vent temperature and salinity of the vents. Simulations that include the presence of a high-permeability extrusive layer 2A atop the spreading ridge results in a zone of narrower and lower temperature venting. The effect of a low permeability zone of anhydrite would tend to mitigate the decrease in temperature, however. Along-axis simulations performed to date, with an extended uniform high temperature basal boundary, produce multiple plumes; but the plumes do not exhibit a strong along-axis gradient in vent salinity or temperature as observed at the MEF. These preliminary results suggest that the observed N-S gradient in temperature and salinity at MEF reflects interplay between heat source and either near the surface or deep-seated heterogeneous permeability structures. Three-dimensional simulations might ultimately be required to understand hydrothermal circulation at the MEF.
Stability of finite difference approximations of two fluid, two phase flow equations
Holmes, Mark Alan
1995-01-01
It is well known that the basic single pressure, two fluid model for two phase flow has complex characteristics and is dynamically unstable. Nevertheless, common nuclear reactor thermal-hydraulics codes use variants of this model for reactor safety calculations. In these codes, the non-physical instabilities of the model may be damped by the numerical method and/or additional momentum interchange terms. Both of these effects are investigated using the linearized Von Neumann stability analysis. The stability of the semi-implicit method is of primary concern, because of its computational efficiency and popularity. It is shown that there is likely no completely stable numerical method, including fully implicit methods, for the basic single pressure model. Additionally, the momentum interchange terms commonly added to the basic single pressure model do not result in stable numerical methods for all the physically interesting reference conditions. Although practical stable approximations may be realized on a coarse computational grid, it is concluded that the assumption of instantaneously equilibrated phasic pressures must be relaxed in order to develop a generally stable numerical solution of a two fluid model. The numerical stability of the semi-implicit discretization of the true two pressure models of Ransom and Hicks, and Holm and Kupershmidt is analyzed. The semi-implicit discretization of these models, which possess real characteristics, are found to be numerically stable as long as certain convective limits are satisfied. Based on the form of these models, the general form of a numerically stable, basic two pressure model is proposed. The evolution equation required for closure is a volume fraction transport equation, which may possibly be determined based on void wave propagation considerations.
Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H
2009-01-01
One potential method of geologically sequestering carbon dioxide (CO2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO2 transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT® and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO2 will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
NASA Astrophysics Data System (ADS)
Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong
2013-12-01
Liquid-phase turbulence measurements were performed in an air-water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method--planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas-liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high
NASA Astrophysics Data System (ADS)
de Kerret, F.; Benito, I.; Béguin, C.; Pelletier, D.; Etienne, S.
2016-11-01
In a hydroelectric turbine, the air injected during operation has an impact on the yield of the machine leading to important losses of energy. To understand those losses and be able to reduce them, a first step is to understand the pattern of the two-phase flows and describe their characteristics in the turbine. Those two-phase flows can be bubbly, intermittent, or annular, with different types of intermittent flow possible. Two-phase flow patterns are well defined in classical geometries such as cylinders with reliable descriptions available [5]. But, there is a critical lack of knowledge for flow patterns in other geometries. In our present work we take interest into a geometry that is a pipe with periodical changes of the section and realize a flow pattern map. To realize this map, we measure the pressure variations and void fraction fluctuations while changing the flow rates of water and air in our test section. We then use our physical understanding of the phenomena to analyze data and identify different flow patterns, characterize them, and build a new flow pattern map.
Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.
Evans, Gregory Herbert; Winters, William S.
2007-01-01
This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.
NASA Astrophysics Data System (ADS)
Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao
An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the absorption and the compression cycle, the performance of the refrigerator can be greatly improved. Until now, many studies have been conducted with regard to the single-phase flow ejector. But, single or two component two-phase flow ejector which needs for the compression and absorption cycle has not been examined sufficiently. This paper constructs the simulation model of single and two component two-phase flow ejector and investigates the characteristics of that ejector by the simulation. Working fluids are ammonia, CO2 and ammonia-water mixture. As a result, the optimum mixing section inlet pressure exists to maximize the performance of the ejector. And the ejector performance is analyzed in detail.
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.
2015-12-01
The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-01-01
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results. PMID:27563907
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-08-24
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
Deshpande, S.D.
1985-01-01
Non-Newtonian liquid-gas stratified flow data in 0.026- and 0.052-m-diameter pipes were obtained. Interfacial level gradients between the two phases were observed. The Heywood-Charles model is found to be valid for pseudoplastic liquid-gas uniform stratified flow. Two-phase drag reduction in non-Newtonian systems was not achieved as the transition to semi-slug flow occurred before the model criteria were reached. Interfacial liquid and gas shear stresses were compared. A new parameter ..sigma../sup 2/ is introduced which is a numerical indication of the interfacial level gradient. Two-phase drag reduction was experimentally observed in polymer solution-air plug-slug flow in 0.026- and 0.052-m-diameter pipes. The Hubbard-Dukler pressure drop model was extended to non-Newtonian systems. Reasonable agreement between the experiment and the model predictions is obtained. However, more work needs to be done in order to better understand the two-phase drag reduction phenomena. Liquid holdup correlations were developed for both Newtonian and non-Newtonian systems which successfully correlate the holdup over a wide range of parameters. The Petukhov correlation is found to be better than the Dittus-Boelter correlation in predicting the single-phase water heat-transfer coefficients.
Water-Rock Differentiation of Icy Bodies by Darcy law, Stokes law, and Two-Phase Flow
NASA Astrophysics Data System (ADS)
Neumann, Wladimir; Breuer, Doris; Spohn, Tilman
2016-10-01
The early Solar system produced a variety of bodies with different properties. Among the small bodies, objects that contain notable amounts of water ice are of particular interest. Water-rock separation on such worlds is probable and has been confirmed in some cases. We couple accretion and water-rock separation in a numerical model. The model is applicable to Ceres, icy satellites, and Kuiper belt objects, and is suited to assess the thermal metamorphism of the interior and the present-day internal structures. The relative amount of ice determines the differentiation regime according to porous flow or Stokes flow. Porous flow considers differentiation in a rock matrix with a small degree of ice melting and is typically modelled either with the Darcy law or two-phase flow. We find that for small icy bodies two-phase flow differs from the Darcy law. Velocities derived from two-phase flow are at least one order of magnitude smaller than Darcy velocities. The latter do not account for the matrix resistance against the deformation and overestimate the separation velocity. In the Stokes regime that should be used for large ice fractions, differentiation is at least four orders of magnitude faster than porous flow with the parameters used here.
An Analytical-Numerical Model for Two-Phase Slug Flow through a Sudden Area Change in Microchannels
Momen, A. Mehdizadeh; Sherif, S. A.; Lear, W. E.
2016-01-01
In this article, two new analytical models have been developed to calculate two-phase slug flow pressure drop in microchannels through a sudden contraction. Even though many studies have been reported on two-phase flow in microchannels, considerable discrepancies still exist, mainly due to the difficulties in experimental setup and measurements. Numerical simulations were performed to support the new analytical models and to explore in more detail the physics of the flow in microchannels with a sudden contraction. Both analytical and numerical results were compared to the available experimental data and other empirical correlations. Results show that models, which were developed basedmore » on the slug and semi-slug assumptions, agree well with experiments in microchannels. Moreover, in contrast to the previous empirical correlations which were tuned for a specific geometry, the new analytical models are capable of taking geometrical parameters as well as flow conditions into account.« less
An Analytical-Numerical Model for Two-Phase Slug Flow through a Sudden Area Change in Microchannels
Momen, A. Mehdizadeh; Sherif, S. A.; Lear, W. E.
2016-01-01
In this article, two new analytical models have been developed to calculate two-phase slug flow pressure drop in microchannels through a sudden contraction. Even though many studies have been reported on two-phase flow in microchannels, considerable discrepancies still exist, mainly due to the difficulties in experimental setup and measurements. Numerical simulations were performed to support the new analytical models and to explore in more detail the physics of the flow in microchannels with a sudden contraction. Both analytical and numerical results were compared to the available experimental data and other empirical correlations. Results show that models, which were developed based on the slug and semi-slug assumptions, agree well with experiments in microchannels. Moreover, in contrast to the previous empirical correlations which were tuned for a specific geometry, the new analytical models are capable of taking geometrical parameters as well as flow conditions into account.
Turbulence-resolving, two-phase flow simulations of wave-supported gravity flows: A conceptual study
NASA Astrophysics Data System (ADS)
Ozdemir, Celalettin Emre
2016-12-01
Discoveries over the last three decades have shown that wave-supported gravity flows (WSGFs) are among the participating physical processes that carry substantial amount of fine sediments across low-gradient shelves. Therefore, understanding the full range of mechanisms responsible for such gravity flows is likely to shed light on the dynamics of subaqueous delta and clinoform development. As wave-induced boundary layer turbulence is the major agent to suspend sediments in WSGFs, the scale of WSGFs in the water column is also bounded by the wave-induced boundary layer thickness which is on the order of decimeters. Therefore, in order to explore the details of participating physical mechanisms, especially that due to turbulence-sediment interaction, highly resolved and accurate numerical models or measurements in the laboratory and the field are required. In this study, the dynamics of WSGFs is investigated by using turbulence-resolving, two-phase flow simulations that utilize Direct Numerical Simulations (DNS). The effect of variable sediment loading, slope, and wave orbital velocity is investigated via 21 simulations.
NASA Astrophysics Data System (ADS)
Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao
2017-03-01
Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction.
Saisorn, Sira; Wongwises, Somchai
2008-01-15
Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)
NASA Astrophysics Data System (ADS)
Bertani, C.; Malandrone, M.; Panella, B.
2014-04-01
The present paper analyzes the experimental results concerning the flow patterns and pressure drops in two-phase flow through a horizontal impacting T-junction, whose outlet pipes are aligned and perpendicular to the inlet pipe. The test section consists of plexiglass pipes with inner diameter of 10 mm. A mixture of water and air at ambient temperature and pressures up to 2.4 bar flows through the T-junction, with different splitting of flow rates in the two outlet branches; superficial velocities of air and water in the inlet pipe have been varied up to a maximum of 35 m/s and 3.5 m/s respectively. The flow patterns occurring in the inlet and branch pipes are compared with the predictions of the Baker and Taitel - Dukler maps. The pressure drops along the branches have been measured relatively to different splitting of the flow rate through the two branches and the pressure loss coefficients in the junction have been evaluated. Friction pressure drops have allowed us to evaluate two-phase friction multipliers, which have then been compared to the predictions of Lockhart-Martinelli, and Friedel correlations. Local pressure drops have been extrapolated at the junction centre and analyzed; the two-phase multiplier has been evaluated and compared with the predictions of Chisholm correlation; the value of the empirical coefficient that minimizes the discrepancy has also been evaluated.
NASA Astrophysics Data System (ADS)
Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin
2016-08-01
In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.
NASA Astrophysics Data System (ADS)
Tsakiroglou, C. D.; Avraam, D. G.; Payatakes, A. C.
2007-09-01
The water krw and oil kro relative permeability curves of a glass-etched planar pore network are estimated with history matching from transient displacement experiments performed at varying values of the capillary number, Ca, for two fluid systems: one of intermediate and one of strong wettability. The transient k,k are compared to corresponding ones measured with the steady-state method on the same porous medium [Avraam DG, Payatakes AC. Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J Fluid Mech 1995;293:207-36; Avraam DG, Payatakes AC. Generalized relative permeability coefficients during steady-state two-phase flow in porous media and correlation with the flow mechanisms. Transport Porous Med 1995;20:135-68; Avraam DG, Payatakes AC. Flow mechanisms, relative permeabilities, and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability. Ind Eng Chem Res 1999;38:778-86.], and potential differences from them are interpreted in the light of the differences between the transient growth pattern, and the steady-state two-phase flow regime. For intermediate wettability, the transient kro and krw exceed the corresponding steady-state functions at low Ca values and have the tendency to become smaller than the steady-state ones at high Ca values. For strong wettability, the transient kro and krw are increasing functions of Ca, the transient kro is higher than the steady-state one, whereas the transient krw decreases substantially and becomes lower than the steady-state one at low Ca values. The dynamic capillary pressure estimated from transient experiments is a decreasing function of Ca in agreement with previous theoretical and experimental studies.
NASA Astrophysics Data System (ADS)
Fang, Lide; Liang, Yujiao; Zhang, Yao; Zhang, Chen; Gao, Jingzhe
2014-04-01
With the importance of the two-phase flow, many scholars pay attention on it; and for the so many parameters in the gas-liquid two-phase flow, flow characteristic is the basis. For the four flow patterns in the vertical direction, slug flow, bubbly flow, annular flow, and milk foam-like flow, the paper used the laser diode of 980nm and the silicon photodiode to detect the flow status. The absorption coefficients of the infrared in the gas and the liquid are very different; at the meantime, the infrared is affected by the interface obviously. As a result, it can reflect the fluctuation of the gas-liquid two-phase flow with the detection by the infrared. By analyzing the experiment data, four characteristic parameters are extracted, such as the average value, the variance, the kurtosis, and the frequency center of gravity. They can not only reflect the change of the different flow patterns, but also can reflect the fluctuation in the same flow pattern. The feature vector constituted of the four characteristic parameters can identify the flow pattern correctly in this system. What's more, it can achieve an accurate measurement of the real-time online, providing a basis for the other parameters' analysis in the gas-liquid two-phase flow.
NASA Astrophysics Data System (ADS)
Imura, Hideaki; Takeshita, Kazuhiro; Doi, Kyoji; Noda, Ken-Ichi
A two-phase loop thermosyphon is used as a heat transfer device in an energy-saving heat transportation system and so forth, because it transports thermal energy without any external power supply such as a pump under a body force field. We previously performed a fundamental study on the flow and heat transfer characteristics in a two-phase loop thermosyphon installed with a single heated tube evaporator both experimentally and theoretically which was made under the condition of near saturation temperature of liquid in a reservoir. In the present study, the effects of liquid subcooling and the heat input on the circulation mass flow rates, pressure and temperature distributions, and heat transfer coefficients in the evaporator were examined experimentally using water, ethanol, benzene and Freon 113 as the working fluids. On the other hand, the circulation mass flow rates, pressure and temperature distributions were theoretically calculated and compared with the experimental results.
NASA Astrophysics Data System (ADS)
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
The growth of vapor bubble and relaxation between two-phase bubble flow
NASA Astrophysics Data System (ADS)
Mohammadein, S. A.; Subba Reddy Gorla, Rama
2002-10-01
This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.
Study on the two-phase critical flow through a small bottom break in a pressurized horizontal pipe
NASA Astrophysics Data System (ADS)
Chung, Moon-Sun
2008-06-01
Two-phase critical flow rates through a small bottom break of a pressurized horizontal pipe are calculated by using an improved critical flow model with a well-known quality prediction model. This phenomenon has many difficulties in predicting the two-phase critical flow rate at the break points mainly due to the inaccuracies of the critical flow model as well as the quality prediction model. In this study, the critical flow model is improved as a first step that is based on a new sound speed criterion derived from the hyperbolic two-fluid model for non-equilibrium flow and this model is applied to a system analysis code. Following to a conceptual problem of the vertically upward flow with quality variation, the small bottom break of a pressurized horizontal pipe is simulated and discussed in some detail. From the test results without any adjustment like empirical discharge coefficient, the assessment results on the critical flow test through a small bottom break in a horizontal pipe show that just improving the critical flow model can remarkably reduce the relative error.
NASA Astrophysics Data System (ADS)
Mosthaf, K.; Baber, K.; Flemisch, B.; Helmig, R.; Leijnse, A.; Rybak, I.; Wohlmuth, B.
2011-10-01
Domains composed of a porous part and an adjacent free-flow region are of special interest in many fields of application. So far, the coupling of free flow with porous-media flow has been considered only for single-phase systems. Here we extend this classical concept to two-component nonisothermal flow with two phases inside the porous medium and one phase in the free-flow region. The mathematical modeling of flow and transport phenomena in porous media is often based on Darcy's law, whereas in free-flow regions the (Navier-) -Stokes equations are used. In this paper, we give a detailed description of the employed subdomain models. The main contribution is the developed coupling concept, which is able to deal with compositional (miscible) flow and a two-phase system in the porous medium. It is based on the continuity of fluxes and the assumption of thermodynamic equilibrium, and uses the Beavers-Joseph-Saffman condition. The phenomenological explanations leading to a simple, solvable model, which accounts for the physics at the interface, are laid out in detail. Our model can account for evaporation and condensation processes at the interface and is used to model evaporation from soil influenced by a wind field in a first numerical example.
Heat transfer, pressure drop and void fraction in two- phase, two-component flow in a vertical tube
NASA Astrophysics Data System (ADS)
Sujumnong, Manit
1998-09-01
There are very few data existing in two-phase, two- component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick- closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were: tested against the present data for mean heat-transfer coefficients. It was found that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid
Numerical Simulation of One- and Two-Phase Flows in Propulsion Systems
NASA Technical Reports Server (NTRS)
Gilinsky, Mikhail; Patel, Kaushal; Alexander, Casey; Thompson, Tyesha; Blankson, Isaiah M.; Shvets, Alexander I.; Gromov, Valery G.; Sakharov, Vladimir I.
2001-01-01
In this report, we present some results of problems investigated during joint research between the Hampton University Fluid Mechanics and Acoustics Laboratory (HU/FM&AL), NASA GRC, and the LaRC Hyper-X Program. This work is supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The main areas of current scientific interest of the HU/FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. These methods are based on nontraditional 3D corrugated and composite nozzle, inlet, propeller and screw designs such as a Bluebell and Telescope nozzle, Mobius-shaped screw, etc. This is the main subject of our other projects, of which one is presented at the current conference. Here we analyze additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves formed in propulsion systems. This mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) Use of porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of the hot jet exhaust and pressure compensation for off-design conditions (so-called continuous ejector with small mass flow rate); and (3) to propose and analyze new effective methods of fuel injection into the flow stream in air-breathing engines. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations, and
Numerical Simulation of One- and Two-Phase Flows in Propulsion Systems
NASA Technical Reports Server (NTRS)
Gilinsky, Mikhail; Patel, Kaushal; Alexander, Casey; Thompson, Tyesha; Blankson, Isaiah M.; Shvets, Alexander I.; Gromov, Valery G.; Sakharov, Vladimir I.
2001-01-01
In this report, we present some results of problems investigated during joint research between the Hampton University Fluid Mechanics and Acoustics Laboratory (HU/FM&AL), NASA GRC, and the LaRC Hyper-X Program. This work is supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The main areas of current scientific interest of the HU/FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. These methods are based on nontraditional 3D corrugated and composite nozzle, inlet, propeller and screw designs such as a Bluebell and Telescope nozzle, Mobius-shaped screw, etc. This is the main subject of our other projects, of which one is presented at the current conference. Here we analyze additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves formed in propulsion systems. This mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) Use of porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of the hot jet exhaust and pressure compensation for off-design conditions (so-called continuous ejector with small mass flow rate); and (3) to propose and analyze new effective methods of fuel injection into the flow stream in air-breathing engines. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations, and
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical
Faccini, J.L.H.; Sampaio, P.A.B. de
2006-07-01
This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. The Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)
Doughty, C.; Pruess, K.
1991-06-01
Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.
NASA Astrophysics Data System (ADS)
Su, Qian; Tan, Chao; Dong, Feng
2017-03-01
When measuring the phase fraction of oil–water two-phase flow with the ultrasound attenuation, the phase distribution and fraction have direct influence on the attenuation coefficient. Therefore, the ultrasound propagation at various phase fractions and distributions were investigated. Mechanism models describing phase fraction with the ultrasound attenuation coefficient were established by analyzing the interaction between ultrasound and two-phase flow by considering the scattering, absorption and diffusion effect. Experiments were performed to verify the theoretical analysis, and the test results gave good agreement with the theoretical analysis. When the dispersed phase fraction is low, the relationship between ultrasound attenuation coefficient and phase fraction is of monotonic linearity; at higher dispersed phase fraction, ultrasound attenuation coefficient presents an irregular response to the dispersed phase fraction. The presented mechanism models give reasonable explanations about the trend of ultrasound attenuation.
Large time behavior for the system of a viscous liquid-gas two-phase flow model in R3
NASA Astrophysics Data System (ADS)
Wang, Wenjun; Wang, Weike
2016-11-01
The Cauchy problem of a three-dimensional compressible viscous liquid-gas two-phase flow model is considered in the present paper. The global existence and uniqueness of solutions are established when the initial data is close to its equilibrium in the framework of Sobolev space H3 (R3). Moreover, the optimal L2-L2 convergence rates are also obtained for the solution.
The 2005 Vazcun Valley Lahar: Evaluation of the TITAN2D Two-Phase Flow Model Using an Actual Event.
NASA Astrophysics Data System (ADS)
Williams, R.; Stinton, A. J.; Sheridan, M. F.
2005-12-01
TITAN2D is a depth-averaged, thin-layer computational fluid dynamics (CFD) code, suitable for simulating a variety of geophysical mass flows. TITAN2D output data include pile thickness and flow momentum at each time step for all cells traversed by the flow during the simulation. From this the flow limit, run-out path, pile velocity, deposit thickness, and travel time can be calculated. Results can be visualized in the open source GRASS GIS software or with the built-in TITAN2D viewer. A new two-phase TITAN2D version allows simulation of flows containing various mixtures of water and solids. The purpose of this study is to compare simulations by the two-phase flow version of TITAN2D with an actual event. The chosen natural flow is a small ash-rich lahar (volume approximately 60,000 m3) that occurred on 12 February 2005 in the Vazcún Valley, located on the north-east flank of Volcán Tungurahua, Ecuador. Lahars and pyroclastic flows along this valley could potentially threaten the 20,000 inhabitants living in and near the city of Baños. A variety of data sources exist for this lahar, including: pre- and post-event meter-scale topography, and photographic, video, seismic and acoustic flow monitoring (AFM) records from during the event. These data permit detailed comparisons between the dynamics of the actual lahar and those of the TITAN2D simulated flow. In particular, detailed comparisons are made between run-up heights, flow velocity, inundation area, and deposit area and thickness. Simulations utilize a variety of data derived from field observations such as lahar volume, solid to pore-fluid ratio and pre-event topography. TITAN2D is important in modeling lahars because it allows assessment of the impact of the flows on buildings and infrastructure lifelines located near drainages that descend from volcanoes.
Heat transfer and fluid dynamics of air-water two-phase flow in micro-channels
Kaji, Masuo; Sawai, Toru; Kagi, Yosuke; Ueda, Tadanobu
2010-05-15
Heat transfer, pressure drop, and void fraction were simultaneously measured for upward heated air-water non-boiling two-phase flow in 0.51 mm ID tube to investigate thermo-hydro dynamic characteristics of two-phase flow in micro-channels. At low liquid superficial velocity j{sub l} frictional pressure drop agreed with Mishima-Hibiki's correlation, whereas agreed with Chisholm-Laird's correlation at relatively high j{sub l}. Void fraction was lower than the homogeneous model and conventional empirical correlations. To interpret the decrease of void fraction with decrease of tube diameter, a relation among the void fraction, pressure gradient and tube diameter was derived. Heat transfer coefficient fairly agreed with the data for 1.03 and 2.01 mm ID tubes when j{sub l} was relatively high. But it became lower than that for larger diameter tubes when j{sub l} was low. Analogy between heat transfer and frictional pressure drop was proved to hold roughly for the two-phase flow in micro-channel. But satisfactory relation was not obtained under the condition of low liquid superficial velocity. (author)
NASA Astrophysics Data System (ADS)
Ye, Zuyang; Liu, Hui-Hai; Jiang, Qinghui; Liu, Yanzhang; Cheng, Aiping
2017-02-01
A systematic method has been proposed to estimate the two-phase flow properties of horizontal fractures under normal deformation condition. Based on Gaussian aperture distributions and the assumption of local parallel plate model, a simple model was obtained in closed form to predict the capillary pressure-saturation relationships for both wetting and non-wetting phases. Three conceptual models were also developed to characterize the relative permeability behaviors. In order to investigate the effect of normal deformation on two-phase flow properties, the normal deformation could be represented with the maximum void space closure on the basis of penetration model. A rigorous successive random addition (SRA) method was used to generate the aperture-based fractures and a numerical approach based on invasion percolation (IP) model was employed to model capillary-dominated displacements between wetting and non-wetting phases. The proposed models were partially verified by a laboratory dataset and numerical calculations without consideration of deformation. Under large normal deformations, it was found that the macroscopic model is in better agreement with simulated observations. The simulation results demonstrated that the two-phase flow properties including the relationships between capillary pressure, relative permeability and saturation, phase interference, phase structures, residual-saturation-rated parameters and tortuosity factor, were highly sensitive to the spatial correlation of aperture distribution and normal deformation.
Implementation of the LAX-Wendroff Method in Cobra-TF for Solving Two-Phase Flow Transport Equations
Salko, Robert K; Wang, Dean; Ren, Kangyu
2016-01-01
COBRA-TF (Coolant Boiling in Rod Arrays Two Fluid), or CTF, is a subchannel code used to conduct the reactor core thermal hydraulic (T/H) solution in both standalone and coupled multi-physics applications. CTF applies the first-order upwind spatial discretization scheme for solving two-phase flow conservation equations. In this work, the second-order Lax-Wendroff (L-W) scheme has been implemented in CTF to solve the two-phase flow transport equations to improve numerical accuracy in both temporal and spatial discretization. To avoid the oscillation issue, a non-linear flux limiter VA (Van Albada) is employed for the convective terms in the transport equations. Assessments have been carried out to evaluate the performance and stability of the implemented second-order L-W scheme. It has been found that the L-W scheme performs better than the upwind scheme for the single-phase and two-phase flow problems in terms of numerical accuracy and computational efficiency.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
1986-01-01
In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
1986-01-01
In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
Complex network analysis of phase dynamics underlying oil-water two-phase flows
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De
2016-06-01
Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows.
NASA Astrophysics Data System (ADS)
Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao
2015-09-01
Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008), 10.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of
Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao
2015-09-01
Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the
van der Linden, H J; Jellema, L C; Holwerda, M; Verpoorte, E
2006-08-01
In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus stabilize the laminar flow profile. The polymers poly(2-hydroxyethyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene glycol), and poly(vinyl alcohol) were assessed for their quality as stabilization coatings after deposition from flowing and stationary solutions. Additionally, the influence of coating the microchannels homogeneously with a single kind of polymer or heterogeneously with two different polymers was investigated. From the experimental observations, it can be concluded that homogeneous polymer coatings with poly(2-hydroxyethyl methacrylate) and poly(vinyl pyrrolidone) led to the effective stabilization of laminar water/octanol flows. Furthermore, heterogeneous coatings led to two-phase flows which had a better-defined and more stable interface over long distances (i.e., 40-mm-long microchannels). Finally, the partitioning of fuchsin dye in the coated microchannels was demonstrated, establishing the feasibility of the use of the polymer-coated PDMS microchannels for determination of logP values in laminar octanol/water flows.
Number of microstates and configurational entropy for steady-state two-phase flows in pore networks
NASA Astrophysics Data System (ADS)
Daras, T.; Valavanides, M. S.
2015-01-01
Steady-state two-phase flow in porous media is a process whereby a wetting phase displaces a non-wetting phase within a pore network. It is a stationary, off equilibrium process -in the sense that it is maintained in dynamic equilibrium on the expense of energy supplied to the system. The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy production. The latter has been proposed to comprise two components: the rate of mechanical energy dissipation at constant temperature (a thermal entropy component, Q/T, in the continuum mechanics scale) and a configurational entropy production component (a Boltzmann-type statistical-entropy component, klnW), due to the existence of a canonical ensemble of flow configurations, physically admissible to the externally imposed macrostate stationary conditions. Here, the number of microstates, lnW, in steady-state two-phase flows in pore networks is estimated in three stages: Combinatorics are implemented to evaluate the number of identified microstates per physically admissible internal flow arrangement compatible with the imposed stationary flow conditions. Then, "Stirling's approximation limiting procedure" is applied to downscale the computational effort associated with the operations between large factorial numbers. Finally, the number of microstates is estimated by contriving a limiting procedure over the canonical ensemble of the physically admissible flow configurations. Counting the microstates is a prerequisite for estimating the process configurational entropy in order to implement the Maximum Entropy Production principle and justify the existence of optimum operating conditions.
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.
1996-01-01
For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.
Distribution and occurrence of localized-bursts in two-phase flow through porous media
Crandall, D.M.; Ahmadi, Goddarz; Ferer, M.V.; Smith, D.H.
2009-03-01
This study examines the dynamics of two-phase drainage with experiments of air invasion into a translucent water-saturated porous medium, at low injection speeds. Air displaces the water by irregular bursts of motion, suddenly invading small portions of the medium. These periods of activity, followed by dormancy, are similar to descriptions of systems at a self-organized critical point, where a slight disturbance may induce an avalanche of activity. The fractal characteristics of the invading air structure at breakthrough are examined through static (box-counting) calculations of the air mass and through an evaluation of the time-dependent motion of the invading mass; results are compared with prior low-velocity two-phase studies in porous media. Dynamic, power-law scaling for invasion percolation is shown to be well suited to describing the structure of the invading fluid. To examine the applicability of self-organized criticality predictions to the invading fluid movement, a new image analysis procedure was developed to identify the location of individual bursting events during the drainage experiments. The predictions of self-organized criticality, namely the scaling of the occurrence of bursts to the mass of the bursts and a spatio-temporal randomness of different sized bursts, are also examined. Bursts of a wide range of sizes are shown to occur throughout the porous medium, over both time and space. The mass distribution of burst sizes is shown to be well described by self-organized criticality predictions, with an experimentally determined scaling exponent of 1.53.
NASA Technical Reports Server (NTRS)
Sherif, S. A.; Steadham, Justin M.
1996-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no
A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis
Kadioglu, Samet Y.; Berry, Ray; Martineau, Richard
2016-08-01
A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.
Experiments on the dynamics of sub-aerial two-phase debris flows
NASA Astrophysics Data System (ADS)
Paleo Cageao, Paloma; Turnbull, Barbara; Bartelt, Perry
2013-04-01
Debris flows are a threatening natural phenomena to human life, infrastructure and the environment in mountain areas. They exhibit changing flow regimes from initiation to deposition. While regions are liquefied due to high fluid pressure during the motion, other regions contain coarser material with high internal friction exhibiting granular flow features. Existing models have significant limitations and many assumptions are required to fit these extremely complex fluid-particle interaction flows. In this work, a laboratory experiment has been designed to model debris flow motion, to measure crucial features such as bulk velocities, particle distribution and deposition patterns. The experiments were conducted in a flume of 1.5 m long, 0.15 m wide, 0.23 m deep. The chute angle was constant at 27°. Flows were generated by releasing glass bead-glycerol and glass bead-water mixtures from behind a lock- gate at the top of the chute. The evolution of the flow was captured with high speed video, and PIV analysis provided velocity profiles over the entire flow depth and along the slope. Shear and normal stresses were measured at the basal surface in addition to the fluid pore pressure. Data from a wide parameter space, testing the influence of different terrain roughness, fluid viscosity and particle size and dispersion, have been analysed to find the dependence of mean flow velocity and velocity profile on the multiphase mixture properties. These are a significant step in providing rigorous validation to depth-averaged models.
Study of two-phase flow in helical and spiral coils
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Yan, AN; Omrani, Adel
1990-01-01
The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.
Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David
2016-05-01
The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.
NASA Astrophysics Data System (ADS)
Hu, Hong; Wijeratne, Thilan K.; Chung, J. N.
2014-03-01
For many industrial, medical and space technologies, cryogenic fluids play irreplaceable roles. When any cryogenic system is initially started, it must go through a transient chill down period prior to normal operation. Chilldown is the process of introducing the cryogenic liquid into the system, and allowing the system components to cool down to several hundred degrees below the ambient temperature. The chilldown process is an important initial stage before a system begins functioning. The objective of this paper is to investigate the chilldown process associated with a flexible hose that was simulated by a channel with saw-teeth inner wall surface structure in the current study. We have investigated the fundamental physics of the two-phase flow and quenching heat transfer during cryogenic chilldown inside the simulated flexible hose through flow visualization, data measurement and analysis. The flow pattern developed inside the channel was recorded by a high speed camera for flow pattern investigation. The experimental results indicate that the chilldown process that is composed of unsteady vapor-liquid two-phase flow and phase-change heat transfer is modified by the inner wall surface wavy structure. Based on the measurement of the channel wall temperature, the teeth structure and the associated cavities generally reduce the heat transfer efficiency compared to the straight hose. Furthermore, based on the measured data, a complete series of correlations on the heat transfer coefficient for each heat transfer regime was developed and reported.
Fundamental Study of Three Dimensional Two Phase Flow in Combustion Systems
1983-06-01
computational modelling. Flow of this class may be devided in three groups (I) Homogeneous isotropic turbulence. This is the simplest type of turbulence. In...shows the computed and measured behaviour of the flow studied by Townsend. Not a great difference is obseved in the predictions of the three models
Laoulache, R.N.; Maeder, P.F.; DiPippo, R.
1987-05-01
A scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. The core is turbulent, whereas the liquid film may be laminar or turbulent. The working fluid is Dichlorotetrafluoroethane CClF/sub 2/-CClF/sub 2/ known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Results indicate that for the range of Reynolds and Froude numbers considered, the liquid film is likely to be turbulent rather than laminar. The study also shows that two-dimensional effects are important, and the flow is never fully developed either in the film or the core. In addition, the new approach for the turbulent film is capable of predicting a local net flow rate that may be upward, downward, stationary, or stalled. An actual steam-water geothermal well is simulated. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114. Results indicate that the theory can be used to predict the pressure gradient in the two-phase region based on laboratory measurements.
Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1981-01-01
Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.
Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube
Nigmatulin, R.I.
1995-09-01
The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.
NASA Astrophysics Data System (ADS)
Naphon, P.; Arisariyawong, T.; Nualboonrueng, T.
2017-02-01
A computation fluid dynamics study has been performed to analyze the nanofluids heat transfer and flow characteristics in the spirally coiled tubes. Eulerian two-phase turbulent model is applied to simulate the heat transfer and flow characteristics in the vertical spirally coiled tube. The spirally coiled tubes are fabricated by bending a 8.50 mm inner diameter straight copper tube into a spiral-coil with two different curvature ratios of 0.035, 0.060. The predicted results are verified with the present measured data. Reasonable agreement is obtained from the comparison between the measured data and the predicted results. In addition, due to the centrifugal force, the induced secondary flow has significant effect on the heat transfer enhancement as flowing through the spirally coiled tube. Effects of curvature, nanofluids concentration and hot water temperature on the nanofluids heat transfer characteristics and pressure drop are considered.
NASA Astrophysics Data System (ADS)
Abbas, Zaheer; Hasnain, Jafar
A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.
Solution of the equations for one-dimensional, two-phase, immiscible flow by geometric methods
NASA Astrophysics Data System (ADS)
Ivan, Boronin; Andrey, Shevlyakov
2016-12-01
Buckley-Leverett equations describe non viscous, immiscible, two-phase filtration, which is often of interest in modelling of oil production. For many parameters and initial conditions, the solutions of these equations exhibit non-smooth behaviour, namely discontinuities in form of shock waves. In this paper we obtain a novel method for the solution of Buckley-Leverett equations, which is based on geometry of differential equations. This method is fast, accurate, stable, and describes non-smooth phenomena. The main idea of the method is that classic discontinuous solutions correspond to the continuous surfaces in the space of jets - the so-called multi-valued solutions (Bocharov et al., Symmetries and conservation laws for differential equations of mathematical physics. American Mathematical Society, Providence, 1998). A mapping of multi-valued solutions from the jet space onto the plane of the independent variables is constructed. This mapping is not one-to-one, and its singular points form a curve on the plane of the independent variables, which is called the caustic. The real shock occurs at the points close to the caustic and is determined by the Rankine-Hugoniot conditions.
Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle.
Benzi, R; Biferale, L; Sbragaglia, M; Succi, S; Toschi, F
2006-08-01
We present a mesoscopic model, based on the Boltzmann equation, for the interaction between a solid wall and a nonideal fluid. We present an analytic derivation of the contact angle in terms of the surface tension between the liquid-gas, the liquid-solid, and the gas-solid phases. We study the dependency of the contact angle on the two free parameters of the model, which determine the interaction between the fluid and the boundaries, i.e. the equivalent of the wall density and of the wall-fluid potential in molecular dynamics studies. We compare the analytical results obtained in the hydrodynamical limit for the density profile and for the surface tension expression with the numerical simulations. We compare also our two-phase approach with some exact results obtained by E. Lauga and H. Stone [J. Fluid. Mech. 489, 55 (2003)] and J. Philip [Z. Angew. Math. Phys. 23, 960 (1972)] for a pure hydrodynamical incompressible fluid based on Navier-Stokes equations with boundary conditions made up of alternating slip and no-slip strips. Finally, we show how to overcome some theoretical limitations connected with the discretized Boltzmann scheme proposed by X. Shan and H. Chen [Phys. Rev. E 49, 2941 (1994)] and we discuss the equivalence between the surface tension defined in terms of the mechanical equilibrium and in terms of the Maxwell construction.
Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores
NASA Technical Reports Server (NTRS)
Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.
1994-01-01
Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.
Nonlinear evolution of an isolated disturbance at two-phase flow interface
NASA Astrophysics Data System (ADS)
Coppola, Gennaro; Capuano, Francesco; de Luca, Luigi
2015-11-01
The nonlinear evolution of an isolated, finite-amplitude disturbance at the interface between two immiscible fluids of different density is simulated by means of a discrete vortex method. In contrast to the more standard periodic disturbance, that evolves into the familiar train of Kelvin-Helmholtz (KH) linear waves, the single-wave scenario possess unique features that are not yet well known. The aim of the present contribution is to provide a physical modeling of the nonlinear wave evolution, and to highlight the features that distinguish the nonlinear case from the classical KH model. Numerical simulations are carried out as well. The two-phase interface is represented by a discrete vortex sheet, whose dynamics is simulated by a point vortex method that accounts for density stratification, surface tension and gravity. It is found that the nonlinear wave speed is different from the one predicted by the classical KH theory, as a consequence of the different topology of streamlines. The instability onset threshold, as well as other flowfield properties also change accordingly.
Fluid flow and damage in two-phase media: theory and application to carbon sequestration
NASA Astrophysics Data System (ADS)
Cai, Z.; Bercovici, D.
2010-12-01
Carbon sequestration is a leading mitigation approach to reduce CO2 levels caused by fossil fuel consumption. The most stable sequestration strategy is geological sequestration, which injects CO2 into reservoir of mafic and ultramafic rocks underground to form stable carbonates. One challenge for this strategy would be the saturated mineral-fluid contact surfaces during reactions. Hydrofracturing might be the best mechanism or opening up new surfaces and increasing permeability to enhance fluid phase uptake and reactions. We investigate the basic physics of compaction with damage theory proposed by Bercovici et. al.[2001a, JGR] and present preliminary results of both steady-state and time-dependent transport when fluid migrates through porous medium. This work provides a framework for understanding the percolating fluid migration with a pore-generating damage front. The propagation velocity of porosity waves in two-phase media is strongly dependent on damage, which can theoretically transform dispersive waves into rapidly propagating shock waves and effectively creates new contact surfaces. Further development and expansion with necessary physical conditions, forcings and chemical reactions would help examine the viability of CO2 injection into subterranean formations.
TWO-PHASE FLOW OF TWO HFC REFRIGERANT MIXTURES THROUGH SHORT-TUBE ORIFICES
The report gives results of an experimental investigation to develop an acceptable flow model for short tube orifice expansion devices used in heat pumps. The refrigerants investigated were two hydrofluorocarbon (HFC) mixtures considered hydrochlorofluorocarbon (HCFC)-22 replacem...
NASA Astrophysics Data System (ADS)
Pioli, L.; Cashman, K. V.
2006-12-01
Gas segregation and two-phase flow processes play a fundamental role in the explosive dynamics of basaltic magma. For example, Strombolian activity, consisting of intermittent explosions occurring at a few seconds to several minutes time intervals, has segregation and formation of large, conduit-size bubbles rising through the magma column and bursting at the surface (Blackburn et al., 1976). The ability of gas bubbles to rise separately from the magma is attributed to coalescence phenomena within the conduit at low magma rise speed, or partial to total collapse of a magma foam layer at the top of the magma chamber (Parfitt, 2004). However, basaltic explosive activity includes a wider spectrum of phenomena ranging from rather continuous lava fountaining with fallout of molten lava clots around the vent (Hawaiian activity), to higher explosivity events, forming plumes up to several km high (Violent Strombolian to Subplinian and Plinian activities) and characterized by more efficient magma fragmentation. Transitional activity, characterized by intermittent to contemporaneous effusive and explosive activity, several seconds to hours-scale fluctuations of the explosion intensity, with formation of both lava fountains and weak, ash-laden plumes, is also common in hydrous basalts. We suggest that not only Hawaiian and Strombolian end members, but also the whole spectrum of basaltic explosive activity could be explained by distinct two phase flow patterns within the conduit; but several unsolved questions point out our limited comprehension of the explosive dynamics affecting low viscosity basaltic magma: What is the role of conduit processes in eruptive dynamics? How are the vertical and lateral variations of flow properties within the conduit recorded in pyroclast textures? What is the role of degassing induced crystallization on the explosive dynamics? We address these topics using both field and textural evidence, and explore the different explosive categories and
Simulation of Two Phase Fluid Flow With Various Kinds of Barriers Using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Wijaya, Imam; Purqon, Acep
2016-08-01
Multiphase fluid flow in a pore medium is a problem that is very interesting to be learned. In its flow, the fluid can experience a few of barriers / obstacles like the exsisting of things in the flow medium. The existence of the barriers can detain the rate speed of the fluid flow. The barries that its form is different will provide influence to the speed of of fluid flow that is different as well. To know the influence of barriers form twards the profile of fluid speed rate, is conducted by the simulation by using Lattice Boltzmann Methode (LBM). In this simulation, the barriers is varied in the form of circle, square, and ellips. From simulation that is conducted, to known the influence of barriers variations twards the fluid speed, ploted by the graph of the fluid speed relations along simulation time and plotted by the fluid speed vector in each posisition. From the simulation, it is obtained that the barriers with square formed produced the higest speed rate of the fluid flow, with the speed rate 0.26 lu/ts, then circle formed with the speed rate 0.24 lu/ts, and the last square formed with speed rate 0.24 lu/ts.
Numerical study and validation on a two-phase ejector flow using R134a refrigerant
NASA Astrophysics Data System (ADS)
Baek, Sunghoon; Song, Simon
2016-11-01
An ejector is a pumping device that uses a low pressure jet flow to entrain a low-momentum secondary flow, and the two flows are mixed and pressurized in a mixing tube and a diffuser. When the ejector replaces an expansion valve in a standard refrigeration cycle, a compression work can be saved by the pumping effect and the efficiency of the cycle is known to be improved. However, the details of flow characteristics in the ejector are still unknown due to difficulties in experiments and complex flow phenomena. We numerically studied a supersonic ejector flow of R134a refrigerant, and validated the results against experimental data. As a results, we found that combinations of mixture, realizable k-epsilon, evaporation-condensation models, and energy equation are suitable to predict the ejector performance in a design point of view. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).
NASA Astrophysics Data System (ADS)
Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco
2016-05-01
We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.
Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
NASA Astrophysics Data System (ADS)
Hai-Qiong, Xie; Zhong, Zeng; Liang-Qi, Zhang
2016-01-01
We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. Project supported by the National Natural Science Foundation of China (Grant No. 11572062), the Fundamental Research Funds for the Central Universities, China (Grant No. CDJZR13248801), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13043), and Key Laboratory of Functional Crystals and Laser Technology, TIPC, Chinese Academy of Sciences.
Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen
2015-09-01
The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium.
Numerical Modeling on Two phase Fluid flow in a Coupled Fracture-Skin-Matrix System
NASA Astrophysics Data System (ADS)
Valsala Kumari, R.; G, S. K.
2015-12-01
Multiphase flow modeling studies below the ground surface is very essential for designing suitable remediation strategies for contaminated aquifers and for the development of petroleum and geothermal reservoirs. Presence of fractured bedrock beneath the ground surface will make multiphase flow process more complex due to its highly heterogeneous nature. A major challenge in modeling flow within a fractured rock is to capture the interaction between the high permeability fracture and the low permeability rock-matrix. In some instances, weathering and mineral depositions will lead to formation of an additional layer named fracture-skin at the fracture-matrix interface. Porosity and permeability of fracture-skin may significantly vary from the adjacent rock matrix and this variation will result in different flow and transport behavior within the fracture-skin. In the present study, an attempt has been made to model simultaneous flow of two immiscible phases (water and LNAPL) in a saturated coupled fracture-skin-matrix system. A fully-implicit finite difference model has been developed to simulate the variation of pressure and saturation of fluid phases along the fracture and within the rock-matrix. Sensitivity studies have been done to analyze the effect of change of various fracture-skin parameters such as porosity, diffusion coefficient and thickness on pressure and saturation distribution of both wetting and non-wetting fluid phases. It can be concluded from the study that the presence of fracture-skin is significantly affecting the fluid flow at the fracture-matrix interface and it can also be seen from the study that the flow behavior of both fluid phases is sensitive to fracture-skin parameters.
Simulation of incompressible two-phase flow in porous media with large timesteps
NASA Astrophysics Data System (ADS)
Cogswell, Daniel; Szulczewski, Michael
2016-11-01
Simulations of flow in porous media suffer from severe timestep restrictions as the permeability and viscosity contrast become increasingly heterogeneous, even when solved with a fully implicit discretization. Previous efforts to alleviate these restrictions have focused on numerical methods, but the problem persists because it originates from the shape of the fractional flow function. Here we focus on regularizing the equations themselves with the addition of an energy constraint. The equations for the flow of two immiscible, incompressible fluid phases in porous media are recast as a gradient flow using the phase-field method, a macroscopic surface tension is introduced, and a convex energy splitting scheme is applied to enable unconditionally large timesteps. Using the phase-field formulation as a homotopy map, the unmodified flow equations can be solved with large timesteps, even with high degrees of heterogeneity in permeability and viscosity. For a 2D test problem, the homotopy method allows the timestep to be increased by more than four orders of magnitude relative to the unmodified equations.
Unsteady Hartmann Two-Phase Flow: The Riemann-Sum Approximation Approach
NASA Astrophysics Data System (ADS)
Jha, B. K.; Babila, C. T.; Isa, S.
2016-12-01
We consider the time dependent Hartmann flow of a conducting fluid in a channel formed by two horizontal parallel plates of infinite extent, there being a layer of a non-conducting fluid between the conducting fluid and the upper channel wall. The flow formation of conducting and non-conducting fluids is coupled by equating the velocity and shear stress at the interface. The unsteady flow formation inside the channel is caused by a sudden change in the pressure gradient. The relevant partial differential equations capturing the present physical situation are transformed into ordinary differential equations using the Laplace transform technique. The ordinary differential equations are then solved analytically and the Riemann-sum approximation method is used to invert the Laplace domain into time domain. The solution obtained is validated by comparisons with the closed form solutions obtained for steady states which have been derived separately and also by the implicit finite difference method. The variation of velocity, mass flow rate and skin-friction on both plates for various physical parameters involved in the problem are reported and discussed with the help of line graphs. It was found that the effect of changes of the electric load parameter is to aid or oppose the flow as compared to the short-circuited case.
NASA Astrophysics Data System (ADS)
Sin, Irina; Lagneau, Vincent; Corvisier, Jérôme
2017-02-01
This work aims to incorporate compressible multiphase flow into the conventional reactive transport framework using an operator splitting approach. This new approach would allow us to retain the general paradigm of the flow module independent of the geochemical processes and to model complex multiphase chemical systems, conserving the versatile structure of conventional reactive transport. The phase flow formulation is employed to minimize the number of mass conservation nonlinear equations arising from the flow module. Applying appropriate equations of state facilitated precise descriptions of the compressible multicomponent phases, their thermodynamic properties and relevant fluxes. The proposed flow coupling method was implemented in the reactive transport software HYTEC. The entire framework preserves its flexibility for further numerical developments. The verification of the coupling was achieved by modeling a problem with a self-similar solution. The simulation of a 2D CO2-injection problem demonstrates the pertinent physical results and computational efficiency of this method. The coupling method was employed for modeling injection of acid gas mixture in carbonated reservoir.
Numerical Simulation of One- and Two-Phase Flows in Propulsion Systems
NASA Technical Reports Server (NTRS)
Gilinsky, Mikhail; Verma, Arun; Hardin, Jay C.; Banerjee, Debrup; Blankson, Isaiah M.; Hendricks, Robert C.; Shvets, Alexander I.
2003-01-01
Four subprojects were conducted using analytical methods, numerical simulation and experimental tests: (A) Shock wave mitigation by spike-shaped blunt bodies with application for the purpose of drag, lift and longitudinal momentum optimization. The main result in this subproject is: application of a single needle against a supersonic flow provides higher benefits for blunt body drag reduction and heat transfer to the body than the application of multiple needles. (B) Solid particles, liquid and air jet injection through the front of a blunt body against a supersonic flow. In this case, the research conducted and analysis of multiple previous investigations in this area have shown essential benefits and preferable application of solid particle injection. (C) Comparison of different methods of fuel injection into supersonic duct flows. Preliminary numerical simulations and theoretical analysis show promising results for Telescope-shaped inlet applications in SCRAMJET; and (D) Development of an acoustic source location method for different applications including propulsion systems.
Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1975-01-01
Data are presented of an experiment in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressures from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; and orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.
Image reconstruction algorithm for two-phase flow electrical capacitance tomography system
NASA Astrophysics Data System (ADS)
Zheng, Guibin; Chen, Deyun; Yu, Xiaoyang
2002-10-01
A new image reconstruction algorithm based on the genetic algorithms is proposed for two-component flow electrical capacitance system in this paper. Two times reconstructions are performed in once tomography, the first step is reconstructing the image of fewer pixel blocks and the second step is reconstructing image using genetic algorithm with the result of the first step is used in population initialization in order to improve the speed and accuracy of genetic tomography. With this method, cross-section image of two-component flow can be reconstructed with better quality and better accuracy in component concentration than SIRT algorithm.
Similarity and calculations of two-phase flows in turbine equipment
NASA Astrophysics Data System (ADS)
Kachuriner, Yu. Ya.
2015-12-01</