Science.gov

Sample records for advanced two-phase flow

  1. Two-phase flow measurements with advanced instrumented spool pieces

    SciTech Connect

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  2. Recent advances in two-phase flow numerics

    SciTech Connect

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  3. Two phase potential flow

    SciTech Connect

    Wallis, G.B.

    1991-06-01

    New results for the flow of a dispersion of particles in an inviscid irrotational flow are reported. Equations of motion for an isotropic assembly have been derived and applied to several example problems. Theorems have been derived relating the macroscopic (averaged) properties of flows composed of unit cells. The effective conductivity of a suspension has been obtained in new ways, using the method of images, and related to forces exerted by a fluid on particles when there is relative motion. 11 refs.

  4. Advanced numerical methods for three dimensional two-phase flow calculations

    SciTech Connect

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  5. Two-phase flow characterization based on advanced instrumentation, neural networks, and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Mi, Ye

    1998-12-01

    The major objective of this thesis is focused on theoretical and experimental investigations of identifying and characterizing vertical and horizontal flow regimes in two-phase flows. A methodology of flow regime identification with impedance-based neural network systems and a comprehensive model of vertical slug flow have been developed. Vertical slug flow has been extensively investigated and characterized with geometric, kinematic and hydrodynamic parameters. A multi-sensor impedance void-meter and a multi-sensor magnetic flowmeter were developed. The impedance void-meter was cross-calibrated with other reliable techniques for void fraction measurements. The performance of the impedance void-meter to measure the void propagation velocity was evaluated by the drift flux model. It was proved that the magnetic flowmeter was applicable to vertical slug flow measurements. Separable signals from these instruments allow us to unearth most characteristics of vertical slug flow. A methodology of vertical flow regime identification was developed. Supervised neural network and self-organizing neural network systems were employed. First, they were trained with results from an idealized simulation of impedance in a two-phase mixture. The simulation was mainly based on Mishima and Ishii's flow regime map, the drift flux model, and the newly developed model of slug flow. Then, these trained systems were tested with impedance signals. The results showed that the neural network systems were appropriate classifiers of vertical flow regimes. The theoretical models and experimental databases used in the simulation were reliable. Furthermore, this approach was applied successfully to horizontal flow identification. A comprehensive model was developed to predict important characteristics of vertical slug flow. It was realized that the void fraction of the liquid slug is determined by the relative liquid motion between the Taylor bubble tail and the Taylor bubble wake. Relying on this

  6. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  7. One- and Two-Phase Nozzle Flows

    SciTech Connect

    Chang, I-Shih

    1980-12-01

    A time-dependent technique, in conjunction with the boundary-fitted coordinates system, is applied to solve a gas-only one-phase flow and a fully-coupled, gas-particle two-phase flow inside nozzles with small throat radii of curvature, steep wall gradients, and submerged configurations. The emphasis of the study has been placed on one- and two-phase flow in the transonic region. Various particle sizes and particle mass fractions have been investigated in the two-phase flow. The salient features associated with the two-phase nozzle flow compared with those of the one-phase flow are illustrated through the calculations of the JPL nozzle, the Titan III solid rocket motor, and the submerged nozzle configuration found in the Inertial Upper Stage (IUS) solid rocket motor.

  8. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results

  9. Two-Phase Flow Separator Investigation

    NASA Video Gallery

    The goal of the Two-Phase Flow Separator investigation is to help increase understanding of how to separate gases and liquids in microgravity. Many systems on the space station contain both liquids...

  10. Electrostatic Charged Two-Phase Flow Equations

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Wen, Jianlong; Wang, Junfeng; Tang, Zhihua; Luo, Tiqian

    2007-06-01

    Electrostatic charged two-phase flows exit in electrostatic spray crop-dusting and fuel spray and so on. Electrostatic charged spray applying to FGD scrubber can improve desulfurization efficiency, decrease water usage. For the complexity of two-phase flow's structure in FGD scrubber, and there exit coupled action between non-uniform electric and flow field, also exit phase interaction between charged particles and continuous phase, which makes the flow more complex. So the complete theory has not formed at present. This paper adopts Lagrange and Euler method of combining together and takes the dispersed particle as fluid, and applies the Reynolds transport principle to set up a Reynolds transport equation, which suit electrostatic charged particle and liquid phase. Then based on Reynolds transport equation, equations for the volume average and instantaneous state of the electrostatic charged two-phase flow are obtained. Similar to equations for single phase turbulent flow, this paper applies Reynolds-average method, and develops equations for Reynolds-average equations for electrostatic charged two-phase flow. Finally, according to the model of single phase turbulent flow, equations for electrostatic charged two-phase flows has been closed. So the k - ɛ - kp model is obtained. Contrast of result by PIV and simulation has been finished.

  11. Apparatus for monitoring two-phase flow

    DOEpatents

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  12. Two-phase flow in fractured rock

    SciTech Connect

    Davies, P.; Long, J.; Zuidema, P.

    1993-11-01

    This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here.

  13. Two-phase flow in horizontal pipes

    SciTech Connect

    Maeder, P.F.; Michaelides, E.E.; DiPippo, R.

    1981-09-01

    A method is developed in this paper which calculates the two-phase flow friction factor at any state of the fluid in the pipe. The mixing-length theory was employed for the calculation of the Reynolds stresses in turbulent two-phase flow. The friction factors obtained this way are in good agreement with experimental data. It is clear that the choice of the parameter m, or the density distribution, is rather arbitrary. Careful experimentation is required to refine the analysis given in this study, and in particular to provide guidance in the proper selection of the parameter m.

  14. Microgravity Two-Phase Flow Transition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  15. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  16. Stability of oscillatory two phase Couette flow

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.

    1993-01-01

    We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.

  17. r.avaflow: An advanced open source computational framework for the GIS-based simulation of two-phase mass flows and process chains

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Fischer, Jan-Thomas; Fellin, Wolfgang; Ostermann, Alexander; Pudasaini, Shiva P.

    2015-04-01

    Geophysical mass flows stand for a broad range of processes and process chains such as flows and avalanches of snow, soil, debris or rock, and their interactions with water bodies resulting in flood waves. Despite considerable efforts put in model development, the simulation, and therefore the appropriate prediction of these types of events still remains a major challenge in terms of the complex material behaviour, strong phase interactions, process transformations and the complex mountain topography. Sophisticated theories exist, but they have hardly been brought to practice yet. We fill this gap by developing a novel and unified high-resolution computational tool, r.avaflow, representing a comprehensive and advanced open source GIS simulation environment for geophysical mass flows. Based on the latest and most advanced two-phase physical-mathematical models, r.avaflow includes the following features: (i) it is suitable for a broad spectrum of mass flows such as rock, rock-ice and snow avalanches, glacial lake outburst floods, debris and hyperconcentrated flows, and even landslide-induced tsunamis and submarine landslides, as well as process chains involving more than one of these phenomena; (ii) it accounts for the real two-phase nature of many flow types: viscous fluids and solid particles are considered separately with advanced mechanics and strong phase interactions; (iii) it is freely available and adoptable along with the GRASS GIS software. In the future, it will include the intrinsic topographic influences on the flow dynamics and morphology as well as an advanced approach to simulate the entrainment and deposition of solid and fluid material. As input r.avaflow needs information on (a) the mountain topography, (b) the material properties and (c) the spatial distribution of the solid and fluid release masses or one or more hydrographs of fluid and solid material. We demonstrate the functionalities and performance of r.avaflow by using some generic and real

  18. Two-Phase Quality/Flow Meter

    NASA Technical Reports Server (NTRS)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  19. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  20. Tracer Partitioning in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2012-12-01

    The concentration distributions of geochemical tracers in a subsurface reservoir can be used as an indication of the reservoir flow paths and constituent fluid origin. In this case, we are motivated by the origin of marked geochemical gradients in the Bravo Dome natural CO2 reservoir in northeastern New Mexico. This reservoir contains 99% CO2 with various trace noble gas components and overlies the formation brine in a sloping aquifer. It is thought that magmatic CO2 entered the reservoir, and displaced the brine. This displacement created gradients in the concentrations of the noble gases. Two models to explain noble gas partitioning in two-phase flow are presented here. The first model assumes that the noble gases act as tracers and uses a first order non-linear partial differential equation to compute the volume fraction of each phase along the displament path. A one-way coupled partial differential equation determines the tracer concentration, which has no effect on the overall flow or phase saturations. The second model treats each noble gas as a regular component resulting in a three-component, two-phase system. As the noble gas injection concentration goes to zero, we see the three-component system behave like the one-way coupled system of the first model. Both the analytical and numerical solutions are presented for these models. For the process of a gas displacing a liquid, we see that a noble gas tracer with greater preference for the gas phase, such as Helium, will move more quickly along the flowpath than a heavier tracer that will more easily enter the liquid phase, such as Argon. When we include partial miscibility of both the major and trace components, these differences in speed are shown in a bank of the tracer at the saturation front. In the three component model, the noble gas bank has finite width and concentration. In the limit where the noble gas is treated as a tracer, the width of the bank is zero and the concentration increases linearly

  1. Reynolds transport theorem for a two-phase flow

    NASA Astrophysics Data System (ADS)

    Collado, Francisco J.

    2007-01-01

    Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.

  2. Nonisothermal Two-Phase Porous Flow

    SciTech Connect

    1992-02-21

    NORIA is a finite element program that simultaneously solves four nonlinear parabolic, partial differential equations that describe the transport of water, water vapor, air, and energy through partially saturated porous media. NORIA is designed for the analysis of two-dimensional, non-isothermal, unsaturated porous flow problems. Nearly all material properties, such as permeability, can either be set to constant values or defined as functions of the dependent and independent variables by user-supplied subroutines. The gas phase is taken to be ideal. NORIA is intended to solve nonisothermal problems in which large gradients are expected in the gas pressure.

  3. Nonisothermal Two-Phase Porous Flow

    1992-02-21

    NORIA is a finite element program that simultaneously solves four nonlinear parabolic, partial differential equations that describe the transport of water, water vapor, air, and energy through partially saturated porous media. NORIA is designed for the analysis of two-dimensional, non-isothermal, unsaturated porous flow problems. Nearly all material properties, such as permeability, can either be set to constant values or defined as functions of the dependent and independent variables by user-supplied subroutines. The gas phase ismore » taken to be ideal. NORIA is intended to solve nonisothermal problems in which large gradients are expected in the gas pressure.« less

  4. Interfacial characteristic measurements in horizontal bubbly two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

    1990-10-01

    Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

  5. Review of present approaches to two-phase flow problems

    NASA Astrophysics Data System (ADS)

    Wolf, L.

    Experimental data and computational results of interest in the context of major technological hazards are reviewed. The discussed areas of two-phase flow include pipe break flow, vessel depressurization, flow through safety relief valves, and two-phase flow jet formation and impingement. Although most data stems from nuclear reactor safety research, important conclusions may be drawn for other technical areas. Data and simulations from models of different sophistication are shown. The applicability of the individual two-phase models and associated codes are discussed.

  6. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  7. Magnetohydrodynamic generators using two-phase liquid-metal flows

    NASA Technical Reports Server (NTRS)

    Petrick, M.

    1969-01-01

    Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.

  8. Two-phase flow characteristics in multiple orifice valves

    SciTech Connect

    Alimonti, Claudio; Falcone, Gioia; Bello, Oladele

    2010-11-15

    This work presents an experimental investigation on the characteristics of two-phase flow through multiple orifice valve (MOV), including frictional pressure drop and void fraction. Experiments were carried out using an MOV with three different sets of discs with throat thickness-diameter ratios (s/d) of 1.41, 1.66 and 2.21. Tests were run with air and water flow rates ranging between 1.0 and 3.0 m{sup 3}/h, respectively. The two-phase flow patterns established for the experiment were bubbly and slug. Two-phase frictional multipliers, frictional pressure drop and void fraction were analyzed. The determined two-phase multipliers were compared against existing correlations for gas-liquid flows. None of the correlations tested proved capable of predicting the experimental results. The large discrepancy between predicted and measured values points at the role played by valve throat geometry and thickness-diameter ratio in the hydrodynamics of two-phase flow through MOVs. A modification to the constants in the two-phase multiplier equation used for pipe flow fitted the experimental data. A comparison between computed frictional pressure drop, calculated with the modified two-phase multiplier equation and measured pressure drop yielded better agreement, with less than 20% error. (author)

  9. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  10. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.

  11. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies

  12. Holdup of the liquid slug in two phase intermittent flow

    SciTech Connect

    Barnea, D.; Brauner, N.

    1985-01-01

    A physical model for the prediction of gas holdup in liquid slugs in horizontal and vertical two phase pipe slug flow is presented. This model can also be used to yield the transitio between elongated bubbles and slug flow within the intermittent flow pattern. In addition a previously published model for predicting the stable slug length in vertical upward slug flow is extended here for the case of horizontal slug flow.

  13. Two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Bush, Mia L.; Omrani, Adel; Yan, An

    1995-01-01

    Coiled tube heat exchangers involving two-phase flows are used in a variety of application areas, extending from the aerospace industry to petrochemical, refrigeration land power generation industries. The optimal design in each situation requires a fundamental understanding of the heat, mass and momentum transfer characteristic of the flowing two-phase mixture. However, two-phase flows in lengths of horizontal or vertical straight channels with heat transfer are often quite difficult in themselves to understand sufficiently well to permit accurate system designs. The present study has the following general objectives: (1) Observe two-phase flow patterns of air-water and R-113 working fluids over a range of flow conditions, for helical and spiral coil geometries, of circular and rectangular cross-section; (2) Compare observed flow patterns with predictions of existing flow maps; (3) Study criteria for flow regime transitions for possible modifications of existing flow pattern maps; and (4) Measure associated pressure drops across the coiled test sections over the rage of flow conditions specified.

  14. Effective property models for homogeneous two-phase flows

    SciTech Connect

    Awad, M.M.; Muzychka, Y.S.

    2008-10-15

    Using an analogy between thermal conductivity of porous media and viscosity in two-phase flow, new definitions for two-phase viscosity are proposed. These new definitions satisfy the following two conditions: namely (i) the two-phase viscosity is equal to the liquid viscosity at the mass quality = 0% and (ii) the two-phase viscosity is equal to the gas viscosity at the mass quality = 100%. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. These new models are assessed using published experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels in the form of Fanning friction factor (f{sub m}) versus Reynolds number (Re{sub m}). The published data include different working fluids such as R-12, R-22, argon (R740), R717, R134a, R410A and propane (R290) at different diameters and different saturation temperatures. Models are assessed on the basis minimizing the root mean square error (e{sub RMS}). It is shown that these new definitions of two-phase viscosity can be used to analyze the experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels using simple friction models. (author)

  15. Method and apparatus for monitoring two-phase flow. [PWR

    DOEpatents

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  16. Designing piping systems for two-phase flow

    SciTech Connect

    Cindric, D.T.; Gandhi, S.L.; Williams, R.A.

    1987-03-01

    A wide range of industrial systems, such as thermosiphon reboilers and chemical reactors, involve two-phase gas-liquid flow in conduits. Design of these systems requires information about the flow regime, pressure drop, slug velocity and length, and heat transfer coefficient. An understanding of two-phase flow is critical for the reliable and cost-effective design of such systems. The successful design of a pipeline in two-phase flow, for example, is a two-step process. The first step is the determination of the flow regime. If an undesirable flow regime, such as slug flow, is not anticipated and adequately designed for, the resulting flow pattern can upset a tower control system or cause mechanical failures of piping components. The second step is the calculation of flow parameters such as pressure drop and density to size lines and equipment. Since the mechanism of fluid flow (and heat transfer) depends on the flow pattern, separate flow models are required for different flow patterns.

  17. Two Phase Flow and Space-Based Applications

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  18. Microgravity two-phase fluid flow pattern modeling

    NASA Technical Reports Server (NTRS)

    Lee, Doojeong; Best, Frederick R.

    1988-01-01

    When gas and liquid mixtures flow in a pipe, the distribution of the two phases may take many forms. A flow pattern, or flow regime, is the characteristic spatial distribution of the phases of flow in a pipe. Because heat transfer and pressure drop are dependent on the characteristic distribution of phases, it is necessary to describe flow patterns in an appropriate manner so that a hydrodynamic or heat transfer theory applicable to that can be chosen. A theoretical two phase flow regime transition map under a microgravity environment was developed on physical concepts. These transitions use four basic flow patterns: dispersed flow, slug flow, stratified flow, and annular flow. The forces considered are body force, surface tension force, inertial force, friction, and the force from eddy turbulent fluctuation. Three dimensionless parameters were developed. Because these transition boundaries were developed based on physical concepts, they should be applicable to flow regimes occurring in various design conditions. Because the flow pattern data from KC-135 experiments are insufficient to verify these theoretical transition lines completely, an adiabatic experiment for flow regime analysis is recommended.

  19. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. A boiling and condensing experiment was built in which R-12 was used as the working fluid. A two-phase pump was used to circulate a freon mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown five times aboard the NASA KC-135 aircraft which simulates zero-g conditions by its parabolic flight trajectory. Test conditions included stratified and annual flow regimes in 1-g which became bubbly, slug, or annular flow regimes on 0-g. A portion of this work is the analysis of adiabatic flow regimes. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes.

  20. Low gravity two-phase flow with heat transfer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1991-01-01

    A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.

  1. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  2. On a simplified two-phase slug flow model

    SciTech Connect

    Yuwen Wang ); Baushei Pei; Weikeng Lin . Dept. of Nuclear Engineering)

    1994-02-01

    A simplified model of two-phase slug flow is constructed. Model equations containing 11 parameters can describe the characteristics of slug flow completely. These equations can generally be solved by an iterative method within 15 iterations, if the relative error tolerance is chosen to be 0.1%. The model is applicable to two-phase systems with various diameters with a correction in the liquid slug void fraction. The procedures for correcting the liquid slug void fraction and for solving the model equations are also presented. Some experimental time-varying signals of slug flow are selected to be analyzed. Model calculations are compared with both previously published and new experimental data. The comparisons show that the errors in the calculated results are generally within [+-]10%

  3. Neutron Imaging of a Two-Phase Refrigerant Flow

    SciTech Connect

    Geoghegan, Patrick J

    2015-01-01

    Void fraction remains a crucial parameter in understanding and characterizing two-phase flow. It appears as a key variable in both heat transfer and pressure drop correlations of two-phase flows, from the macro to micro- channel scale. Void fraction estimation dictates the sizing of both evaporating and condensing phase change heat exchangers, for example. In order to measure void fraction some invasive approach is necessary. Typically, visualization is achieved either downstream of the test section or on top by machining to expose the channel. Both approaches can lead to inaccuracies. The former assumes the flow will not be affected moving from the heat exchanger surface to the transparent section. The latter distorts the heat flow path. Neutron Imaging can provide a non-invasive measurement because metals such as Aluminum are essentially transparent to neutrons. Hence, if a refrigerant is selected that provides suitable neutron attenuation; steady-state void fraction measurements in two-phase flow are attainable in-situ without disturbing the fluid flow or heat flow path. Neutron Imaging has been used in the past to qualitatively describe the flow in heat exchangers in terms of maldistributions without providing void fraction data. This work is distinguished from previous efforts because the heat exchanger has been designed and the refrigerant selected to avail of neutron imaging. This work describes the experimental flow loop that enables a boiling two-phase flow; the heat exchanger test section and downstream transparent section are described. The flow loop controls the degree of subcooling and the refrigerant flowrate. Heating cartridges embedded in the test section are employed to control the heat input. Neutron-imaged steady-state void fraction measurements are captured and compared to representative high-speed videography captured at the visualization section. This allows a qualitative comparison between neutron imaged and traditional techniques. The

  4. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  5. Liquid jet pumps for two-phase flows

    SciTech Connect

    Cunningham, R.G.

    1995-06-01

    Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.

  6. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  7. Local Interfacial Structure in Downward Two-Phase Bubbly Flow

    SciTech Connect

    Hiroshi Goda; Seungjin Kim; Paranjape, Sidharth S.; Finch, Joshua P.; Mamoru Ishii; Uhle, Jennifer

    2002-07-01

    The local interfacial structure for vertical air-water co-current downward two-phase flow was investigated under adiabatic conditions. A multi-sensor conductivity probe was utilized in order to acquire the local two-phase flow parameters. The present experimental loop consisted of 25.4 mm and 50.8 mm ID round tubes as test sections. The measurement was performed at three axial locations: L/D = 13, 68 and 133 for the 25.4 mm ID loop and L/D 7, 34, 67 for the 50.8 mm ID loop, in order to study the axial development of the flow. A total of 7 and 10 local measurement points along the tube radius were chosen for the 25.4 mm ID loop and the 50.8 mm ID loop, respectively. The experimental flow conditions were determined within bubbly flow regime. The acquired local parameters included the void fraction, interfacial area concentration, bubble interface frequency, bubble Sauter mean diameter, and interfacial velocity. (authors)

  8. A real two-phase submarine debris flow and tsunami

    SciTech Connect

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  9. SOLA-LOOP. Two-Phase Flow Network Analysis

    SciTech Connect

    Hirt, C.W.; Oliphant, T.A.; Rivard, W.C.; Romero, N.C.; Torrey, M.D.

    1992-01-13

    SOLA-LOOP is designed for the solution of transient two-phase flow in networks composed of one-dimensional components. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. Although developed for nuclear reactor safety analysis, SOLA-LOOP may be used as the basis for other types of special-purpose network codes. The program can accommodate almost any set of constitutive relations, property tables, or other special features required for different applications.

  10. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  11. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    PubMed Central

    Gu, Hao; Duits, Michel H. G.; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  12. Droplets formation and merging in two-phase flow microfluidics.

    PubMed

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  13. Turbulent transition modification in dispersed two-phase pipe flow

    NASA Astrophysics Data System (ADS)

    Winters, Kyle; Longmire, Ellen

    2014-11-01

    In a pipe flow, transition to turbulence occurs at some critical Reynolds number, Rec , and transition is associated with intermittent swirling structures extending over the pipe cross section. Depending on the magnitude of Rec , these structures are known either as puffs or slugs. When a dispersed second liquid phase is added to a liquid pipe flow, Rec can be modified. To explore the mechanism for this modification, an experiment was designed to track and measure these transitional structures. The facility is a pump-driven circuit with a 9m development and test section of diameter 44mm. Static mixers are placed upstream to generate an even dispersion of silicone oil in a water-glycerine flow. Pressure signals were used to identify transitional structures and trigger a high repetition rate stereo-PIV system downstream. Stereo-PIV measurements were obtained in planes normal to the flow, and Taylor's Hypothesis was employed to infer details of the volumetric flow structure. The presentation will describe the sensing and imaging methods along with preliminary results for the single and two-phase flows. Supported by Nanodispersions Technology.

  14. Flooding in counter-current two-phase flow

    SciTech Connect

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  15. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  16. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  17. Two-phase flow cell for chemiluminescence and bioluminescence measurements

    SciTech Connect

    Mullin, J.L.; Seitz, W.R.

    1984-01-01

    A new approach to two-phase CL (chemiluminescence) measurements is reported. A magnetically stirred reagent phase is separated from the analyte phase by a dialysis membrane so that only smaller molecules can go from one phase to the other. The system is designed so that the analyte phase flows through a spiral groove on an aluminum block that is flush against the dialysis membrane. As solution flows through the spiral grove, analyte diffuses into the reagent phase where it reacts to produce light. A simple model is developed to predict how this system will behave. Experimentally, the system is evaluated by using the luminol reaction catalyzed by peroxidase, the firefly reaction, and the bacterial bioluminescence reaction. 10 references, 4 tables, 6 figures.

  18. Conceptual design for spacelab two-phase flow experiments

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; King, C. D.

    1977-01-01

    KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.

  19. Solutal Marangoni instability in layered two-phase flow

    NASA Astrophysics Data System (ADS)

    Picardo, Jason; Radhakrishna, T. G.; Pushpavanam, S.

    2015-11-01

    In this work, the instability of layered two-phase flow caused by the presence of a surface-active solute is studied. The fluids are density matched to focus on surfactant effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of soluble surfactant from one fluid to the other, in the base state. A linear stability analysis is carried out, supported by energy budget calculations. The flow is first analyzed in the creeping flow regime. Long wave as well as short wave Marangoni instabilities are identified, each with a distinct energy signature. The short wave instability manifests as two distinct modes, characterized by the importance of interfacial deformations or lack thereof. The primary instability switches between these different modes as parameters are varied. The effect of small but finite inertia on these solutal Marangoni modes is then examined. The effect of soluble surfactant on a finte inertia flow is also studied, with focus on the transition from the viscosity-induced instability to solutal Marangoni instability. This analysis is relevant to microfluidic applications, such as solvent extraction, in which mass transfer is carried out between stratified immiscible fluids.

  20. Stability of stratified two-phase flows in horizontal channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.

    2016-04-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  1. Particle Rotation Effects in Rarefied Two-Phase Plume Flows

    NASA Astrophysics Data System (ADS)

    Burt, Jonathan M.; Boyd, Iain D.

    2005-05-01

    We evaluate the effects of solid particle rotation in high-altitude solid rocket exhaust plume flows, through the development and application of methods for the simulation of two phase flows involving small rotating particles and a nonequilibrium gas. Green's functions are derived for the force, moment, and heat transfer rate to a rotating solid sphere within a locally free-molecular gas, and integration over a Maxwellian gas velocity distribution is used to determine the influence of particle rotation on the heat transfer rate at the equilibrium limit. The use of these Green's functions for the determination of particle phase properties through the Direct Simulation Monte Carlo method is discussed, and a procedure is outlined for the stochastic modeling of interphase collisions. As a test case, we consider the nearfield plume flow for a Star-27 solid rocket motor exhausting into a vacuum, and vary particle angular velocities at the nozzle exit plane in order to evaluate the influence of particle rotation on various flow properties. Simulation results show that rotation may lead to slightly higher particle temperatures near the central axis, but for the case considered the effects of particle rotation are generally found to be negligible.

  2. Measurement of two-phase flow momentum with force transducers

    SciTech Connect

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs.

  3. Combining hydraulic and granular flow extremes for density currents by depth averaging two phase flow equations.

    NASA Astrophysics Data System (ADS)

    Cordoba, G. A.; Sheridan, M.; Pitman, B.

    2009-05-01

    Ground-hugging particle-laden flows constitute some of the most dangerous natural phenomena on Earth. Such currents, in the form of snow avalanches, pyroclastic flows, debris flows, lahars, and landslides, are among the most destructive processes in nature. Humans tend to settle in areas near rich soils, volcanoes, or watercourses, all of which could be strongly affected by these dangerous flows. In order to improve risk preparedness and site management in the affected zones, an appropriate knowledge of these natural hazardous phenomena is required. Their evolution in time, flow dynamics and run out distance are key aspects that help in the planning for hazardous events, development of hazardous regions and design of management policy to prepare in advance of potential natural disasters. This paper describes a depth-averaged model for two phase flows that is currently in develop at the University at Buffalo. It is presently implemented within the TITAN2D framework to improve the version that currently simulates dry geophysical mass flows over natural-scale terrains. The initial TITAN2D code was developed to simulate granular flow. But because the introduction of an interstitial fluid strongly modifies the dynamics of the flow, a new, more general, two-phase model was developed to account for a broad range in volume fraction of solids. The proposed mathematical model depth-integrates the Navier-Stokes equations for each phase, solid and fluid. The solid phase is modeled assuming a Coulomb constitutive behavior (at the theoretical limit of pure solids), whereas the fluid phase conforms to a typical hydraulic approach (at the limit of pure fluid). The linkage for compositions between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating particle volumetric fractions as dilute as 0.001 and as concentrated as 0.55.

  4. Unsteady flow analysis of a two-phase hydraulic coupling

    NASA Astrophysics Data System (ADS)

    Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.

    2016-06-01

    Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.

  5. Momentum rate probe for use with two-phase flows

    NASA Astrophysics Data System (ADS)

    Bush, S. G.; Bennett, J. B.; Sojka, P. E.; Panchagnula, M. V.; Plesniak, M. W.

    1996-05-01

    An instrument for measuring the momentum rate of two-phase flows is described, and design and construction details are provided. The device utilizes a conelike body to turn the flow from the axial to the radial direction. The force resulting from the change in momentum rate of the turning flow is measured using a strain-gage-instrumented cantilevered beam. The instrument is applicable to a wide range of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air-conditioning equipment, impingement cooling of small scale electronic hardware (computer chips are one example), supercritical fuel injection (in Diesel engines, for instance), and consumer product sprays (such as hair-care product sprays produced using effervescent atomizers). The latter application is discussed here. Features of the instrument include sensitivity to a wide range of forces and the ability to damp oscillations of the deflection cone. Instrument sensitivity allows measurement of momentum rates considerably lower (below 0.01 N) than those that could be obtained using previous devices. This feature is a direct result of our use of precision strain gages, capable of sensing strains below 20 μm/m, and the damping of oscillations which can overwhelm the force measurements. Oscillation damping results from a viscous fluid damper whose resistance is easily varied by changing fluids. Data used to calibrate the instrument are presented to demonstrate the effectiveness of the technique. As an example of the instrument's utility, momentum rate data obtained using it will be valuable in efforts to explain entrainment of surrounding air into effervescent atomizer-produced sprays and also to model the effervescent atomization process.

  6. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  7. Tracking Interfaces in Vertical Two-Phase Flows

    SciTech Connect

    Aktas, Birol

    2002-07-01

    The presence of stratified liquid-gas interfaces in vertical flows poses difficulties to most classes of solution methods for two-phase flows of practical interest in the field of reactor safety and thermal-hydraulics. These difficulties can plague the reactor simulations unless handled with proper care. To illustrate these difficulties, the US NRC Consolidated Thermal-hydraulics Code (TRAC-M) was exercised with selected numerical bench-mark problems. These numerical benchmarks demonstrate that the use of an average void fraction for computational volumes simulating vertical flows is inadequate when these volumes consist of stratified liquid-gas interfaces. In these computational volumes, there are really two regions separated by the liquid-gas interface and each region has a distinct flow topology. An accurate description of these divided computational volumes require that separate void fractions be assigned to each region. This strategy requires that the liquid-gas interfaces be tracked in order to determine their location, the volumes of regions separated by the interface, and the void fractions in these regions. The idea of tracking stratified liquid-gas interfaces is not new. There are examples of tracking methods that were developed for reactor safety codes and applied to reactor simulations in the past with some limited success. The users of these safety codes were warned against potential flow oscillations, conflicting water levels, and pressure disturbances which could be caused by the tracking methods themselves. An example of these methods is the level tracking method of TRAC-M. A review of this method is given here to explore the reasons behind its failures. The review shows that modifications to the field equations are mostly responsible for these failures. Following the review, a systematic approach to incorporate interface tracking methods is outlined. This approach is applicable to most classes of solution methods. For demonstration, the approach to

  8. Cytoplasm dynamics and cell motion: two-phase flow models.

    PubMed

    Alt, W; Dembo, M

    1999-03-01

    The motion of amoeboid cells is characterized by cytoplasmic streaming and by membrane protrusions and retractions which occur even in the absence of interactions with a substratum. Cell translocation requires, in addition, a transmission mechanism wherein the power produced by the cytoplasmic engine is applied to the substratum in a highly controlled fashion through specific adhesion proteins. Here we present a simple mechano-chemical model that tries to capture the physical essence of these complex biomolecular processes. Our model is based on the continuum equations for a viscous and reactive two-phase fluid model with moving boundaries, and on force balance equations that average the stochastic interactions between actin polymers and membrane proteins. In this paper we present a new derivation and analysis of these equations based on minimization of a power functional. This derivation also leads to a clear formulation and classification of the kinds of boundary conditions that should be specified at free surfaces and at the sites of interaction of the cell and the substratum. Numerical simulations of a one-dimensional lamella reveal that even this extremely simplified model is capable of producing several typical features of cell motility. These include periodic 'ruffle' formation, protrusion-retraction cycles, centripetal flow and cell-substratum traction forces. PMID:10204394

  9. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    SciTech Connect

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-09

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  10. Targeted delivery by smart capsules for controlling two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Abbaspourrad, Alireza; Weitz, David; Harvard Weitzgroup Team

    2015-11-01

    Two-phase flow in porous media is significantly influenced by the physical properties of the fluids and the geometry of the medium. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for targeted surfactant delivery to the vicinity of oil-water interface and targeted microgel delivery for improving the homogeneity of the porous medium, respectively. We further prove the concept by monitoring the capsule location and the fluid structure in the porous media by micro-CT and confocal microscopy. This technique not only is of particular importance to the relevant industry applications especially in the oil industry but also opens a new window to study the mechanism of two-phase flow in porous media. Advanced Energy Consortium BEG08-027.

  11. Design of an advanced two-phase capillary cold plate

    NASA Technical Reports Server (NTRS)

    Chalmers, D. R.; Kroliczek, E. J.; Ku, J.

    1986-01-01

    The functional principles and implementation of capillary pumped loop (CPL) two phase heat transport system for various elements of the Space Station program are described. Circulation of the working fluid by the surface-tension forces in a fine-pore capillary wick is the core principle of CPL systems. The liquid, usually NH3 at the moment, is changed into a vapor by heat absorption at one end of the loop, and the vapor is carrried back along the wick by the surface tension within the wick. NASA specifications and the results of mechanical and thermal tests for prototype cold plate and the capillary pump designs are outlined. The CPL is targeted for installation on free-flying platforms, attached payloads, and power subsystem thermal control systems.

  12. Advanced investigation of two-phase charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    The performance of experimental two phase, charge-coupled shift registers constructed using polysilicon gates overlapped by aluminum gates was studied. Shift registers with 64, 128, and 500 stages were built and operated. Devices were operated at the maximum clock frequency of 20 MHz. Loss per transfer of less than .0001 was demonstrated for fat zero operation. The effect upon transfer efficiency of various structural and materials parameters was investigated including substrate orientation, resistivity, and conductivity type; channel width and channel length; and method of channel confinement. Operation of the devices with and without fat zero was studied as well as operation in the complete charge transfer mode and the bias charge, or bucket brigade mode.

  13. Modeling of two-phase porous flow with damage

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D.

    2009-12-01

    Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.

  14. Lattice Boltzmann methods for viscous fluid flows and for two-phase fluid flows

    NASA Astrophysics Data System (ADS)

    Inamuro, Takaji

    2006-09-01

    Lattice Boltzmann methods (LBMs) for viscous fluid flows and for two-phase fluid flows are presented. First, the LBMs for incompressible viscous fluid flows and for temperature fields are described. Then, we derive a lattice kinetic scheme (LKS) which is an improved scheme of the LBM. The LKS does not require any velocity distribution functions and is more stable than the LBMs. In addition, the LBM for two-phase fluid flows is presented. The method can simulate flows with the density ratio up to 1000. Numerical examples of unsteady flows in a three-dimensional porous structure, binary droplet collision and rising bubbles in a square duct are illustrated. It is expected that the LBMs (and LKS) will become promising numerical schemes for simulating complex fluid flows.

  15. The analysis of two-dimensional two-phase flow in horizontal heated tube bundles using drift flux model

    NASA Astrophysics Data System (ADS)

    Yang, Ruichang; Zheng, Rongchuan; Wang, Yanwu

    This paper presents the experimental study and numerical simulation of two-dimensional two-phase flow in horizontal heated tube bundles. In the experiments, two advanced measuring systems with a single-fibre optical probe and a tri-fibre-optical-probe were developed to measure respectively the local void fraction and vapor bubble velocities among the heated tube bundles. In accordance with the internal circulation characteristics of two-phase flow in the tube bundles, a mathematical model of two-dimensional two-phase low Reynolds number turbulent flow based on the modified drift flux model and the numerical simulation method to analyze the two-phase flow structures have been developed. The modified drift flux model in which both the acceleration by gravity and the acceleration of the average volumetric flow are taken into account for the calculation of the drift velocities enables its application to the analysis of multi-dimensional two-phase flow. In the analysis the distributions of the vapor-phase velocity, liquid-phase velocity and void fraction were numerically obtained by using the modified drift flux model and conventional drift flux model respectively and compared with the experimental results. The numerical analysis results by using the modified drift flux model agree reasonably well with the experimental investigation. It is confirmed that the modified drift flux model has the capability of correctly simulating the two-dimensional two-phase flow.

  16. Stability of stratified two-phase flows in inclined channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.

    2016-08-01

    Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.

  17. Capacitive Sensing Of Gaseous Fraction In Two-Phase Flow

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Sahm, Michael K.

    1995-01-01

    Instrument makes nonintrusive, real-time capacitive measurements to determine volume fraction of vapor or other gas in flowing, electrically nonconductive liquid/gas mixture. Works even with liquids having relatively low permittivities. Useful for measuring proportions of vapor in boiling, condensing, and flowing heat-transfer fluids and in cryogenic fluids.

  18. Regimes of two-phase flow in micro- and minichannels ( review)

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-05-01

    The review deals with the analysis of the factors affecting the boundaries of two-phase regimes in the channels of different cross sections, whose minimal size is less than the capillary constant. The channels are classified by size. Data for two-phase flow regimes are systematized and summarized in tables for the round and rectangular tubes. It is indicated that the most studies identify the following two-phase flow regimes: bubble, slug and annular. The regimes found in some papers are described. The terminology used to describe the regimes is kept. Here we analyze the main factors affecting the structure of the two-phase flow, such as gas and liquid flow rates, parameters of the channel and input section, wettability of the inner surface of channels, liquid properties, and gravitational forces. It is shown that development of instability of the two-phase flow has a significant impact on formation, evolution, and change of the flow regimes.

  19. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  20. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  1. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  2. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  3. The flow of slugs in horizontal, two-phase pipelines

    SciTech Connect

    Kouba, G.E. ); Jepson, W.P. . Dept. of Chemical Engineering)

    1990-03-01

    The flow characteristics in horizontal slug flow are studied experimentally in a 150-mm-dia pipeline. If a frame of reference is taken as moving with the translational velocity of the slug, measurements of the Froude number in the liquid film ahead of the slug were always greater than unity while the Froude number within the slug was in general less than unity. This illustrates a change in flow from super to subcritical flow and the presence of a hydraulic jump. Different types of flow are noticed using high-speed video equipment and these types closely resemble those reported by open-channel hydraulics tests. The distribution of gas in the slug body is only homogeneous at high-mixture velocities and the effect of buoyancy on the gas is more noticeable at low gas velocities. The liquid fraction in the slug is shown to be directly dependent on the Froude number in the liquid film. The ratio of the translational velocity of the slug to the mixture velocity decreases continuously from 2.0 at low-mixture velocities to 1.25 and a mixture velocity of approximately 3 m/s. After this point, it remains constant at 1.25.

  4. Two-phase flow research using the learjet apparatus

    NASA Technical Reports Server (NTRS)

    Mcquillen, John B.; Neumann, Eric S.

    1995-01-01

    Low-gravity, gas-liquid flow research can be conducted aboard the NASA Lewis Learjet, the Lewis DC-9, or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with an inner diameter of 1.27 cm and lengths up to 1.5 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall-shear stress, and acceleration data are measured and recorded throughout the 20 sec duration of the experiment. Flow is visualized by photographing at 400 frames with a high-speed, 16-mm camera.

  5. Irreversible entropy production in two-phase flows with evaporating drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N. A.

    2002-01-01

    A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.

  6. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  7. Venturi flow meter and Electrical Capacitance Probe in a horizontal two-phase flow

    NASA Astrophysics Data System (ADS)

    Monni, G.; Caramello, M.; De Salve, M.; Panella, B.

    2015-11-01

    The paper presents the results obtained with a spool piece (SP) made of a Venturi flow meter (VMF) and an Electrical Capacitance Probe (ECP) in stratified two-phase flow. The objective is to determine the relationship between the test measurements and the physical characteristics of the flow such as superficial velocities, density and void fraction. The outputs of the ECP are electrical signals proportional to the void fraction between the electrodes; the parameters measured by the VFM are the total and the irreversible pressure losses of the two- phase mixture. The fluids are air and demineralized water at ambient conditions. The flow rates are in the range of 0,065-0,099 kg/s for air and 0- 0,039 kg/s (0-140 l/h) for water. The flow patterns recognized during the experiments are stratified, dispersed and annular flow. The presence of the VFM plays an important role on the alteration of the flow pattern due to wall flow detachment phenomena. The signals of differential pressure of the VFM in horizontal configuration are strongly dependent on the superficial velocities and on the flow pattern because of a lower symmetry of the flow with respect to the vertical configuration.

  8. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.

    2015-11-01

    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  9. Analysis of Developing Gas/liquid Two-Phase Flows

    SciTech Connect

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal; Donna Post Guillen; Matthias Beyer; Dirk Lucas

    2010-06-01

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made in simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.

  10. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    SciTech Connect

    Altobelli, Stephen A; Fukushima, Eiichi

    2006-08-14

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models of suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003) uses two

  11. [Interfacial area and interfacial transfer in two-phase flow

    SciTech Connect

    Ishii, M.

    1993-09-01

    A joint research program funded by the DOE/BES at Purdue University and the University of Wisconsin-Milwaukee has been underway. The main efforts of the Purdue program were concentrated on the following tasks. Development of Four Sensor Measurement Method; Experimental Study of Axial Changes of Transverse Void and Interfacial Area Profiles in Bubbly Flow; Modeling of the Probe-Particle Interaction Using Monte Carlo Numerical Simulation; and Experimental Study of the Stability of Interface of Very Large Bubbles. Highlights of these research results are reported.

  12. Experimental investigation of two-phase flow in rock salt

    SciTech Connect

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  13. Enhanced two phase flow in heat transfer systems

    DOEpatents

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  14. Two-phase flow in a chemically active porous medium

    SciTech Connect

    Darmon, Alexandre Dauchot, Olivier; Benzaquen, Michael; Salez, Thomas

    2014-12-28

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species, in a one-dimensional macroscopic description, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy’s law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor.

  15. Exact Integral Solutions for Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    McWhorter, David B.; Sunada, Daniel K.

    1990-03-01

    Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one-dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary-hydraulic properties. One-dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore-size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary-hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.

  16. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  17. Cross-correlation video recording of gas-vapor-droplet two-phase flows

    NASA Astrophysics Data System (ADS)

    Volkov, Roman S.; Vysokomornaya, Olga V.; Zhdanova, Alyona O.; Strizhak, Pavel A.

    2015-01-01

    The experimental investigations of gas-vapor-droplet two-phase flow formation during single water droplets and their aggregate motion through high-temperature (more than 1000 K) combustion products have been conducted with usage of cross-correlation measuring facility and optical methods of "tracer" visualization ("Particle Image Velocimetry" and "Interferometric Particle Imaging"). Modes of droplet motion in high-temperature gases area have been established. It has been determined the influence of the main droplet (sizes, composition, temperature, dispersability, form, velocity) and gas (temperature and velocity) characteristics on parameters of forming gas-vapor-droplet mixtures. The main elements of advanced firefighting technologies with the usage of time and space apportioned polydisperse composition water droplet flows have been formulated. Physical and predictive mathematical models have been developed to determine the basic parameters of equipment which is necessary for operation with these technology usage.

  18. Upscaling immiscible two-phase flows in an adaptive frame

    NASA Astrophysics Data System (ADS)

    Strinopoulos, Theofilos

    We derive the two-scale limit of a linear or nonlinear saturation equation with a flow-based coordinate transformation. This transformation consists of the pressure and the streamfunction. In this framework the saturation equation is decoupled to a family of one-dimensional nonconservative transport equations along streamlines. This simplifies the derivation of the two-scale limit. Moreover it allows us to obtain the convergence independent of the assumptions of periodicity and scale separation. We provide a rigorous estimate on the convergence rate. We combine the two-scale limit with Tartar's method to complete the homogenization. To design an efficient numerical method, we use in averaging approach across the streamlines on the two-scale limit equations. The resulting numerical method for the saturation has all the advantages in terms of adaptivity that methods have. We couple it with a moving mesh along the streamlines to resolve the shock more efficiently. We use the multiscale finite element method to upscale the pressure equation because it gives access to the fine scale velocity, which enters in the saturation equation; through the basis functions. We propose to solve the pressure equation in the coordinate frame of the initial pressure and saturation, which is similar to the modified multiscale finite element method. We test our numerical method in realistic permeability fields, such is the Tenth SPE Comparative Solution Project permeabilities, for accuracy and computational cost.

  19. Analytical solution for two-phase flow in a wellbore using the drift-flux model

    SciTech Connect

    Pan, L.; Webb, S.W.; Oldenburg, C.M.

    2011-11-01

    This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.

  20. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  1. Single and two-phase flow fluid dynamics in parallel helical coils

    NASA Astrophysics Data System (ADS)

    De Salve, M.; Orio, M.; Panella, B.

    2014-04-01

    The design of helical coiled steam generators requires the knowledge of the single and two-phase fluid dynamics. The present work reports the results of an experimental campaign on single-phase and two phase pressure drops and void fraction in three parallel helicoidal pipes, in which the total water flow rate is splitted by means of a branch. With this test configuration the distribution of the water flow rate in the helicoidal pipes and the phenomena of the instability of the two-phase flow have been experimentally investigated.

  2. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    SciTech Connect

    Staedtke, H.; Franchello, G.; Worth, B.

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  3. Predicting single-phase and two-phase non-Newtonian flow behavior in pipes

    SciTech Connect

    Kaminsky, R.D.

    1998-12-31

    Improved and novel prediction methods are described for single-phase and two-phase flow of non-Newtonian fluids in pipes. Good predictions are achieved for pressure drop, liquid holdup fraction, and two-phase flow regime. The methods are applicable to any visco-inelastic non-Newtonian fluid and include the effect of surface roughness. The methods utilize a reference fluid for which validated models exist. For single-phase flow the use of Newtonian and power-law reference fluids are illustrated. For two-phase flow a Newtonian reference fluid is used. Focus is given to shear-thinning fluids. The approach is theoretically based and is better suited than correlation methods for two-phase flow in high pressure pipelines, for which no experimental data is available in the literature.

  4. Numerical analysis of critical two-phase flow in a convergent-divergent nozzle

    SciTech Connect

    Romstedt, P.; Werner, W.

    1986-01-01

    The numerical calculation of critical two-phase flow in a convergent-divergent nozzle is complicated by a singularity of the fluid flow equations at the unknown critical point. A method of calculating critical state and its location without any additional assumptions is described. The critical state is identified by its mathematical properties: characteristics and solvability of linear systems with a singular matrix. Because the numerically estimable mathematical properties are the only necessary conditions for the existence of critical flow, some physical ''compatibility criteria'' (flow velocity equals model-consistent two-phase sonic velocity; critical flow is independent of downstream flow state variations) are used as substitutes for mathematically sufficient conditions. Numerical results are shown for the critical flow through LOBI nozzles and for the Super Moby Dick experiment. The two-phase flow is described by a model with equal phase velocities and thermodynamic nonequilibrium.

  5. Adaptive Multi-Scale Pore Network Method for Two-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Meyer, D. W.; Khayrat, K.; Jenny, P.

    2015-12-01

    Dynamic pore network simulators are important tools in studying macroscopic quantities in two-phase flow through porous media. However, these simulators have a time complexity of order N2 for N pore bodies, which limits their usage to small domains. Quasi-static pore network simulators, which assume capillary dominated flow, are more efficient with a time complexity of order N log(N), but are unable to capture phenomena caused by viscous effects such as viscous fingering and stable displacement. It has been experimentally observed that, in several flow scenarios, capillary forces are dominant at the pore scale and viscous forces at larger scales. In order to take advantage of this behaviour and to reduce the time complexity of existing dynamic pore network simulators, we propose a multi-scale pore-network method for two phase flow. In our solution algorithm, the pore network is first divided into smaller subnetworks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. Here, a multi-point flux scheme is used. 2) Depending on the local capillary number computed in the subnetwork, either an invasion percolation algorithm or a dynamic network algorithm is used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. 3) The transmissibilities for the meso-scale equation are updated based on the updated fluid configurations in each subnetwork. For this purpose the methodoloy of the existing multi-scale finite volume (MSFV) method is employed. An important feature of the multi-scale pore-network method is that it maintains consistency of both fluid occupancy and fluxes at subnetwork interfaces. Viscous effects such as viscous fingering (see figure) can be captured at a decreased computational cost compared to dynamic pore network

  6. Scalewise investigation of two-phase flow turbulence in upward turbulent bubbly pipe flows

    NASA Astrophysics Data System (ADS)

    Lee, Jun Ho; Kim, Hyunseok; Park, Hyungmin

    2015-11-01

    In the present study, the two-phase flow turbulence in upward turbulent bubbly pipe flows (at the Reynolds number of 5300) is invesgitated, especially focusing on the changes in flow structures with bubbles depending on the length scales. For the scalewise investigation, we perform the wavelet multi-resolution analysis on the velocity fields at three streamwise locations, measured with high-speed two-phase particle image velocimetry technology. While we intentaionlly introduce asymmetrically distributed bubbles at the pipe inlet, the mean volume void fraction is varied from from 0.3% to 1.86% and the considered mean bubble diameter is roughly maintained at 3.8 mm. With the present condition, turbulence enhancement is achieived for most cases but the turbulent suppression is also captured near the wall for the smallest void fraction case. Comparing the scalewise energy contribution, it is understood that the flow structures with length scales between bubble radius and bubble wake size are enhanced due to bubbles, resulting in the turbulence enhancement. On the other hand, flow structure with smaller length scales (mostly existing near the wall) may decrease depending on the bubble condition, which may be one of the explanations in turbulence suppression with bubbles. Supported by the NRF grant funded by the Korea government (NRF-2012M2A8A4055647) via SNU-IAMD.

  7. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Technical Reports Server (NTRS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-01-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  8. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-11-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  9. Future directions in two-phase flow and heat transfer in space

    NASA Technical Reports Server (NTRS)

    Bankoff, S. George

    1994-01-01

    Some areas of opportunity for future research in microgravity two-phase flow and heat transfer are pointed out. These satisfy the dual requirements of relevance to current and future needs, and scientific/engineering interest.

  10. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  11. Macro-to-microchannel transition in two-phase flow: Part 1 - Two-phase flow patterns and film thickness measurements

    SciTech Connect

    Ong, C.L.; Thome, J.R.

    2011-01-15

    The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co {approx} 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co {approx} 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co {approx} 1 with a transition (or mesoscale) region in-between. (author)

  12. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Kamotani, Yasuhiro

    1996-01-01

    An experimental and theoretical research program is described herein to study bubble generation in a liquid flow in a pipe under reduced gravity conditions. The objective of the work is to study the bubble size and frequency of the generation and the resulting two-phase flow but it also concerns the fluid mechanical aspects of boiling in forced flow in microgravity. By injecting a gas into a liquid flow in a pipe through a small hole in the pipe wall we will investigate how the bubble expands and detaches from the wall, without involving the complexities of boiling. The experiments will be conducted both under isothermal conditions and with heat transfer from the wall. In the experiments with heat transfer the effect of thermocapillarity on the bubble formation and detachment will be the main subject.

  13. In-step Two-phase Flow (TPF) Thermal Control Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.

  14. GENERAL: Complex network analysis in inclined oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Jin, Ning-De

    2009-12-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil-water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil-water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil-water flow patterns. To investigate the dynamic characteristics of the inclined oil-water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil-water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil-water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.

  15. DSMC simulation of two-phase plume flow with UV radiation

    SciTech Connect

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  16. DSMC simulation of two-phase plume flow with UV radiation

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-01

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  17. Two-phase liquid-liquid flows generated by impinging liquid jets

    NASA Astrophysics Data System (ADS)

    Tsaoulidis, Dimitrios; Li, Qi; Angeli, Panagiota

    2015-11-01

    Two-phase flows in intensified small-scale systems find increasing applications in (bio)chemical analysis and synthesis, fuel cells, polymerisation, and separation processes (solvent extraction). Current nuclear spent fuel reprocessing separation technologies have been developed many decades ago and have not taken account recent advances on process intensification which can drive down plant size and economics. In this work, intensified impinging jets will be developed to create dispersions by bringing the two liquid phases into contact through opposing small channels. A systematic set of experiments has been undertaken, to investigate the hydrodynamic characteristics, to develop predictive models, and enable comparisons with other contactors. Drop size distribution and mixing intensity will be investigated for liquid-liquid mixtures as a function of various parameters using high speed imaging and conductivity probes.

  18. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  19. Vibration of a tube bundle in two-phase Freon cross-flow

    SciTech Connect

    Pettigrew, M.J.; Taylor, C.E.; Jong, J.H.; Currie, I.G.

    1995-11-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.

  20. Fluctuating Phenomena and Flow Control of Bubbly Two-Phase Flow Through Sudden Expansion Pipe

    NASA Astrophysics Data System (ADS)

    Voutsinas, Alexandros; Shakouchi, Toshihiko; Tsujimoto, Koichi; Ando, Toshitake

    The fluctuating flow phenomena on a two-phase flow through a vertical sudden expansion pipe system are investigated experimentally and visually. The effect of the volumetric gas flow rate ratio within the range of bubbly flow is investigated. Simple flow control methods are proposed and tested in comparison with the normal expansion case. The first method applies control by mounting a ring shaped obstacle downstream the expansion, and the second by mounting a step-ring just downstream. These two methods are based on a different control concept. The first is based on splitting the vortex region, thus decreasing its intensity, and the second on decreasing the overall generated vortex region length. In single-phase flow, only one dominant frequency is observed. However, when gas is induced, two dominant peaks appear and a tendency of the second peak to shift to lower frequency values when increasing the volumetric gas fraction is observed. When the flow control methods are applied, the fluctuation frequency is not affected, but the fluctuation amplitude decreases. From pressure distribution measurements under several flow conditions, it was confirmed that when the flow control methods are applied, drag reduction is achieved as well.

  1. Multiscale Pore Network Model for Two-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Khayrat, K.; Ragg, F.; Jenny, P.

    2014-12-01

    Viscous effects are important for many applications in two-phase flow through porous media. These effects, such as viscous fingering and stable displacement, can be predicted by current dynamic pore network models. However, these models have severe time-step restrictions which limit their usage to small domains. In order to overcome this limitation, we propose a multiscale pore network model for primary drainage. The proposed model is applicable to typical flow scenarios where capillary forces are dominant at the pore scale and viscous forces at larger scales. In our model, the pore network is divided into subnetworks smaller than a characteristic length below which capillary forces dominate (see Figure 1). The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. In this step, both the viscous and capillary forces are taken into account. 2) An invasion percolation algorithm is then used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. Here, the viscous forces are neglected. 3) The parameters for the meso-scale mass balance equation are updated based on the updated fluid configurations in each subnetwork. An important feature of our pore network model is that it maintains consistency of both fluid occupancy (see Figure 2) and fluxes at subnetwork interfaces. In addition, it is straightforward to parallelize the solution algorithm. Exemplary results are presented and compared to results obtained with an existing dynamic pore network model.

  2. The bubbly-slug transition in a boiling two-phase flow under microgravity

    NASA Technical Reports Server (NTRS)

    Kiper, Ali M.; Swanson, T. D.

    1993-01-01

    A theory is presented to describe, in reduced gravity flow boiling, the transition from bubbly two-phase flow to slug flow. It is shown that characteristics of the bubbly flow and the transition were controlled by the mechanism of vapor bubble growth dynamics. By considering in nucleate boiling, behavior of vapor bubbles at departure from a heated surface a condition required for transition was determined. Although required, this condition alone could not ensure coalescence of bubbles to cause the transition to slug two-phase flow. The condition leading to coalescence, therefore, was obtained by examining oscillations of vapor bubbles following their departure from the heated surface. The predicted transition conditions were compared with the prediction and test data reported for adiabatic reduced gravity two-phase flow, and good qualitative agreement was found.

  3. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    SciTech Connect

    Brauner, N.; Rovinsky, J.; Maron, D.M.

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  4. An experimental study of two-phase slug flow in hilly terrain pipelines

    SciTech Connect

    Zheng, G.H.; Brill, J.P.; Shoham, O.

    1995-11-01

    Experiments were conducted in a 76.2-mm diameter, 420-m long two-phase flow loop to study slug flow behavior in hilly terrain pipelines. Complex physical phenomena were observed, including generation of pseudoslugs at the horizontal/uphill elbow, variation of slug length along the pipeline, and persistent existence of slug flow in the downhill section.

  5. Gas-liquid two-phase flow across a bank of micropillars

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  6. A unified pore-network algorithm for dynamic two-phase flow

    NASA Astrophysics Data System (ADS)

    Sheng, Qiang; Thompson, Karsten

    2016-09-01

    This paper describes recent work on image-based network modeling of multiphase flow. The algorithm expands the range of flow scenarios and boundary conditions that can be implemented using dynamic network modeling, the most significant advance being the ability to model simultaneous injection of immiscible fluids under either transient or steady-state conditions using non-periodic domains. Pore-scale saturation distributions are solved rigorously from two-phase mass conservation equations simultaneously within each pore. Results show that simulations using a periodic network fail to track saturation history because periodic domains limit how the bulk saturation can evolve over time. In contrast, simulations using a non-periodic network with fractional flow as the boundary condition can account for behavior associated with both hysteresis and saturation history, and can capture phenomena such as the long pressure and saturation tails that are observed during dynamic drainage processes. Results include a sensitivity analysis of relative permeability to different model variables, which may provide insight into mechanisms for a variety of transient, viscous dominated flow processes.

  7. A multilevel multiscale mimetic (M 3) method for two-phase flows in porous media

    NASA Astrophysics Data System (ADS)

    Lipnikov, K.; Moulton, J. D.; Svyatskiy, D.

    2008-07-01

    We describe a multilevel multiscale mimetic (M 3) method for solving two-phase flow (water and oil) in a heterogeneous reservoir. The governing equations are the elliptic equation for the reservoir pressure and the hyperbolic equation for the water saturation. On each time step, we first solve the pressure equation and then use the computed flux in an explicit upwind finite volume method to update the saturation. To reduce the computational cost, the pressure equation is solved on a much coarser grid than the saturation equation. The coarse-grid pressure discretization captures the influence of multiple scales via the subgrid modeling technique for single-phase flow recently proposed in [Yu. A. Kuznetsov. Mixed finite element method for diffusion equations on polygonal meshes with mixed cells. J. Numer. Math., 14 (4) (2006) 305-315; V. Gvozdev. discretization of the diffusion and Maxwell equations on polyhedral meshes. Technical Report Ph.D. Thesis, University of Houston, 2007; Yu. Kuznetsov. Mixed finite element methods on polyhedral meshes for diffusion equations, in: Computational Modeling with PDEs in Science and Engineering, Springer-Verlag, Berlin, in press]. We extend significantly the applicability of this technique by developing a new robust and efficient method for estimating the flux coarsening parameters. Specifically, with this advance the M 3 method can handle full permeability tensors and general coarsening strategies, which may generate polygonal meshes on the coarse grid. These problem dependent coarsening parameters also play a critical role in the interpolation of the flux, and hence, in the advection of saturation for two-phase flow. Numerical experiments for two-phase flow in highly heterogeneous permeability fields, including layer 68 of the SPE Tenth Comparative Solution Project, demonstrate that the M 3 method retains good accuracy for high coarsening factors in both directions, up to 64 for the considered models. Moreover, we demonstrate

  8. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  9. Experimental study on exciting force by two-phase cross flow

    SciTech Connect

    Nakamura, T.; Fujita, K.; Shiraki, K.; Kanazawa, H.; Sakata, K.

    1982-01-01

    Buffeting forces acting on tube arrays and induced by air-water two-phase cross flow, in the range of bubble flow and slug flow (or froth flow), are experimentally examined. Experimental results are treated by statistical modal analysis for use in design calculation. Based on these results, a hypothesis, especially applicable in the region of slug flow, is proposed to explain the experimental results. 9 refs.

  10. Two Phase Flow in Porous Media and the Concept of Relative Permeabilities

    SciTech Connect

    Eliasson, Jonas; Kjaran, Snorri Pall; Gunnarsson, Gestur

    1980-12-16

    New equations for the two phase flow of water and steam are presented. The new equations coincide with those already in use for the case of horizontal flow but are different from those for vertical flow. It is shown that the usual equations can only be valid when the two phases are flowing in separate channels, where the channel dimensions are large compared with the grain size of the porous media, and in such a case the relative permeabilities should vary only slightly with the saturation ratio. It is shown that the actual variation of relative permeabilities with saturation ratio suggests a flow model where the flow channel dimensions are of the same order of magnitude as the grain size. On this basis a new set of equations is proposed, which with the associated flow model explain relative permeabilities qualitatively. In addition they show that water can flow upwards in two phase flow where the pressure gradient is less than hydrostatic. In a simple two phase flow test it is demonstrated that this happens as predicted by the new equation set.

  11. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  12. A new two-phase erosion-deposition model for mass flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  13. Multi-needle capacitance probe for non-conductive two-phase flows

    NASA Astrophysics Data System (ADS)

    Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.

    2016-07-01

    Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.

  14. Development of Numerical Simulation Method for Compressible Gas-Liquid Two-Phase Flows

    NASA Astrophysics Data System (ADS)

    Tamura, Y.

    2015-12-01

    A numerical simulation method of compressible gas-liquid two-phase flow is developed for analyses of a cavitation bubble. Thermodynamic state of both phases is described with stiffened gas equation of state. Interface of two phases is captured by Level-Set method. As internal energy jump between two phases is critical for the stability of computation, total energy equation is modified so that inviscid flux of energy is smoothly connected across the interface. Detail of governing equations as well as their discretization is described followed by the result of one-dimensional simple example computation.

  15. Two-Phase Flow within Geological Flow Analogies--A Computational Study

    SciTech Connect

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Ferer, M.V.; Richards, M.; Bromhal, G.S.

    2006-10-01

    Displacement of a viscous fluid in heterogeneous geological media by a less viscous one does not evacuate 100% of the defending fluid due to capillary and viscous fingering. This is of importance in geological flows that are encountered in secondary oil recovery and carbon dioxide sequestration in saturated brine fields. Hele-Shaw and pore/throat cells are commonly used to study this in the labratory. Numerical simulations of this flow phenomenon with pore-throat models have been prevalent for over two decades. This current work solves the full Navier-Stokes equations of conservation within random pore-throat geometries with varying properties to study the resulting flow properties. Verification of the solution method is performed by comparison of the model predictions with the available experimental data in the literature. Experimental flows in a pore-throat cell with a known geometrical structure are shown to be in good agreement with the model. Dynamic comparisons to a computational pore-throat model have been shown to be in good agreement as well. There are also additional two-phase immiscible flow patterns that can be identified from the current solutions for which the corresponding laboratory counter part or the pore-throat model predictions are not available. The identification of these flow patterns may allow more accurate modeling of fluid displacement on the reservoir scale.

  16. Hydrodynamic dryout in two-phase flows: Observations of low bond number systems

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark M.; McQuillen, John B.

    1998-01-01

    Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Reg~O(103), Rel~O(104), and Ca~O(10-1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. From such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with ``hot spots.'' A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.

  17. Hydrodynamic Dryout in Two-Phase Flows: Observations of Low Bond Number Systems

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; McQuillen, John B.

    1998-01-01

    Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Re(sub g) approximately 0(10(exp 3)), Re(sub l) approximately 0(10(exp 4)), and Ca approximately 0(10(exp -1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. Rom such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with "hot spots." A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.

  18. Direct pore-level observation of permeability increase in two-phase flow by shaking

    NASA Astrophysics Data System (ADS)

    Beresnev, Igor; Gaul, William; Vigil, R. Dennis

    2011-10-01

    Increases in permeability of natural reservoirs and aquifers by passing seismic waves have been well documented. If the physical causes of this phenomenon can be understood, technological applications would be possible for controlling the flow in hydrologic systems or enhancing production from oil reservoirs. The explanation of the dynamically increased mobility of underground fluids must lie at the pore level. The natural fluids can be viewed as two-phase systems, composed of water as the wetting phase and of dispersed non-wetting globules of gas or organic fluids, flowing through tortuous constricted channels. Capillary forces prevent free motion of the suspended non-wetting droplets, which tend to become immobilized in capillary constrictions. The capillary entrapment significantly reduces macroscopic permeability. In a controlled experiment with a constricted capillary channel, we immobilize the suspended ganglia and test the model of capillary entrapment: it agrees precisely with the experiment. We then demonstrate by direct optical pore-level observation that the vibrations applied to the wall of the channel liberate the trapped ganglia if a predictable critical acceleration is reached. When the droplet begins to progressively advance, the permeability is restored. The mobilizing acceleration in the elastic wave, needed to “unplug” an immobile flow, is theoretically calculated within a factor of 1-5 of the experimental value. Overcoming the capillary entrapment in porous channels is hypothesized to be one of the principal pore-scale mechanisms by which natural permeabilities are enhanced by the passage of elastic waves.

  19. Hierarchy of two-phase flow models for autonomous control of cryogenic loading operation

    NASA Astrophysics Data System (ADS)

    Luchinskiy, Dmitry G.; Ponizovskaya-Devine, Ekaterina; Hafiychuk, Vasyl; Kashani, Ali; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara

    2015-12-01

    We report on the development of a hierarchy of models of cryogenic two-phase flow motivated by NASA plans to develop and maturate technology of cryogenic propellant loading on the ground and in space. The solution of this problem requires models that are fast and accurate enough to identify flow conditions, detect faults, and to propose optimal recovery strategy. The hierarchy of models described in this presentation is ranging from homogeneous moving- front approximation to separated non-equilibrium two-phase cryogenic flow. We compare model predictions with experimental data and discuss possible application of these models to on-line integrated health management and control of cryogenic loading operation.

  20. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  1. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan; Zhang, Lifeng; Ding, Yulong; Blanco, Mauricio; Bi, Xiaotao; Wilkinson, David P.

    Water management in PEM fuel cells has received extensive attention due to its key role in fuel cell performance. The unavoidable water, from humidified gas streams and electrochemical reaction, leads to gas-liquid two-phase flow in the flow channels of fuel cells. The presence of two-phase flow increases the complexity in water management in PEM fuel cells, which remains a challenging hurdle in the commercialization of this technology. Unique water emergence from the gas diffusion layer, which is different from conventional gas-liquid two-phase flow where water is introduced from the inlet together with the gas, leads to different gas-liquid flow behaviors, including pressure drop, flow pattern, and liquid holdup along flow field channels. These parameters are critical in flow field design and fuel cell operation and therefore two-phase flow has received increasing attention in recent years. This review emphasizes gas-liquid two-phase flow in minichannels or microchannels related to PEM fuel cell applications. In situ and ex situ experimental setups have been utilized to visualize and quantify two-phase flow phenomena in terms of flow regime maps, flow maldistribution, and pressure drop measurements. Work should continue to make the results more relevant for operating PEM fuel cells. Numerical simulations have progressed greatly, but conditions relevant to the length scales and time scales experienced by an operating fuel cell have not been realized. Several mitigation strategies exist to deal with two-phase flow, but often at the expense of overall cell performance due to parasitic power losses. Thus, experimentation and simulation must continue to progress in order to develop a full understanding of two-phase flow phenomena so that meaningful mitigation strategies can be implemented.

  2. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  3. Toward the use of similarity theory in two-phase choked flows

    NASA Technical Reports Server (NTRS)

    Hendericks, R. C.; Sengers, J. V.; Simoneau, R. J.

    1980-01-01

    Comparison of two phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component loci are significant.

  4. Toward the use of similarity theory in two-phase choked flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Sengers, J. V.

    1980-01-01

    Comparison of two-phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component locii are significant.

  5. Probabilistic assessment of contamination using the two-phase flow model.

    PubMed

    Chen, Guan-Zhi; Hsu, Kuo-Chin; Lee, Cheng-Haw

    2003-08-01

    A physically motivated model is indispensable for a successful analysis of the impact of leaching from nuclear waste storage sites on the environment and public health. While most analyses use the single-phase flow model for modelling unsaturated flow and solute transport, the two-phase flow model considering the resistance of gas to water flow is a more realistic one. The effect of the two-phase flow model on the water content is theoretically investigated first in this study. Then, by combining a geostatistical generator using the turning bands method and a multi-phase transport code TOUGH2, an automatic process is used for Monte Carlo simulation of the solute transport. This stochastic approach is applied to a potentially polluted site by low-level nuclear waste in Taiwan. In the simulation, the saturated hydraulic conductivity is treated as the random variable. The stochastic approach provides a probabilistic assessment of contamination. The results show that even though water content from the two-phase flow model is only 1.5% less than the one from the single-phase flow model, the two-phase flow causes a slower movement but a wider lateral spreading of the plume in the unsaturated zone. The stochastic approach provides useful probability information which is not available from the deterministic approach. The probability assessment of groundwater contamination provides the basis for more informed waste management, better environmental assessment and improved evaluation of impact on public health.

  6. Phase distribution of nitrogen-water two-phase flow in parallel micro channels

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Wang, Shuangfeng; Zhou, You

    2016-08-01

    The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.

  7. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  8. Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo

    Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.

  9. Pore network modeling of two-phase flow in a liquid-(disconnected) gas system

    NASA Astrophysics Data System (ADS)

    Bravo, Maria C.; Araujo, Mariela; Lago, Marcelo E.

    2007-02-01

    The appropriate description of two-phase flow in some systems requires a detailed analysis of the fundamental equations of flow and transport including momentum transfer between fluid phases. In the particular case of two-phase flow of oil and gas through porous media, when the gas phase is present as disconnected bubbles, there are inconsistencies in calculated flow properties derived by using the conventional Darcean description. In a two-phase system, the motion of one fluid phase may induce significant changes in the mobility of the second phase, as known from the generalized transport equations derived by Whitaker and Kalaydjian. The relevance of such coupling coefficients with respect to the conventional relative permeability term in two-phase Darcean flow is evaluated in this work for an oil-(disconnected) gas system. The study was performed using a new Pore Network Simulator specially designed for this case. Results considering both, Darcy's equation and generalized flow equations suggest that the four transport coefficients (effective permeabilities and coupling coefficients) are needed for a proper description of the macroscopic flow in a liquid-disconnected gas system.

  10. Cryogenic two-phase flow and phase-change heat transfer in microgravity

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng

    The applications of cryogenic flow and heat transfer are found in many different types of industries, whether it be the liquid fuel for propulsion or the cryogenic cooling in medical applications. It is very common to find the transportation of cryogenic flow under microgravity in space missions. For example, the liquid oxygen and hydrogen are used to power launch vehicles and helium is used for pressurizing the fuel tank. During the transportation process in pipes, because of high temperature and heat flux from the pipe wall, the cryogenic flow is always in a two-phase condition. As a result, the physics of cryogenic two-phase flow and heat transfer is an important topic for research. In this research, numerical simulation is employed to study fluid flow and heat transfer. The Sharp Interface Method (SIM) with a Cut-cell approach (SIMCC) is adopted to handle the two-phase flow and heat transfer computation. In SIMCC, the background grid is Cartesian and explicit true interfaces are immersed into the computational domain to divide the entire domain into different sub-domains/phases. In SIMCC, each phase comes with its own governing equations and the interfacial conditions act as the bridge to connect the information between the two phases. The Cut-cell approach is applied to handle nonrectangular cells cut by the interfaces and boundaries in SIMCC. With the Cut-cell approach, the conservative properties can be maintained better near the interface. This research will focus on developing the numerical techniques to simulate the two-phase flow and phase change phenomena for one of the major flow patterns in film boiling, the inverted annular flow.

  11. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.

    2005-01-01

    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  12. Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code

    SciTech Connect

    Ortiz-Ramirez, Jaime

    1983-06-01

    A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.

  13. Two-phase flow stability structure in a natural circulation system

    SciTech Connect

    Zhou, Zhiwei

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  14. Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Rezkallah, Kamiel S.

    1996-01-01

    Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.

  15. Film boiling on spheres in single- and two-phase flows. Final report

    SciTech Connect

    Liu, C.; Theofanous, T.G.

    1994-12-01

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40{degrees}C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900{degrees}C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-{alpha}){sup 1/4} (with {alpha} being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.

  16. Film boiling on spheres in single- and two-phase flows.

    SciTech Connect

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  17. An experimental study of single-phase and two-phase flows in microchannels

    NASA Astrophysics Data System (ADS)

    Chung, Peter Mang-Yu

    Recent literature on pressure drop and flow rate measurements in microchannels indicate that both the liquid and gas flow may deviate significantly from convention. Thus, an evaluation was made of the friction factor constant for laminar flow and critical Reynolds number for the laminar-to-turbulent flow transition. Experiments were performed to study the single-phase flow behaviour of water or nitrogen gas through a 100 mum circular microchannel. The liquid flow data were well predicted by the conventional friction factor equations for larger channels, and the critical Reynolds number was close to tradition. For single-phase gas flow, the measured friction factor agreed with theory if the effect of compressibility was considered. Rarefaction did not contribute to the experimental results. The effect of scaling on two-phase flow was investigated to identify micro-scale phenomena. Experiments were conducted with a mixture of nitrogen gas and water in circular channels of 530--50 mum diameter. The two-phase flow was characterized by the flow patterns, void fraction, and frictional pressure drop. In the 530 and 250 mum channels, the flow characteristics were typical of those obtained in minichannels. In the 100 and 50 mum channels, the flow behaviour was unconventional---the occurrence of slug flow dominated, the void fraction-volumetric quality relationship departed from tradition, and mass flux no longer influenced the two-phase frictional multiplier. Unique to these channels, the slug flow exhibited a ring-shaped liquid film or serpentine-like gas core. The sizing effect indicates that the critical diameter for a microchannel lies between 250 and 100 mum. A new model is proposed to expose physical insight into the observed flow patterns. To investigate the effect of channel geometry on two-phase microchannel flow, the same experiment was conducted in a 96 mum square microchannel and the data were compared with those obtained in the 100 mum circular microchannel

  18. Instrumentation development for multi-dimensional two-phase flow modeling

    SciTech Connect

    Kirouac, G.J.; Trabold, T.A.; Vassallo, P.F.; Moore, W.E.; Kumar, R.

    1999-06-01

    A multi-faceted instrumentation approach is described which has played a significant role in obtaining fundamental data for two-phase flow model development. This experimental work supports the development of a three-dimensional, two-fluid, four field computational analysis capability. The goal of this development is to utilize mechanistic models and fundamental understanding rather than rely on empirical correlations to describe the interactions in two-phase flows. The four fields (two dispersed and two continuous) provide a means for predicting the flow topology and the local variables over the full range of flow regimes. The fidelity of the model development can be verified by comparisons of the three-dimensional predictions with local measurements of the flow variables. Both invasive and non-invasive instrumentation techniques and their strengths and limitations are discussed. A critical aspect of this instrumentation development has been the use of a low pressure/temperature modeling fluid (R-134a) in a vertical duct which permits full optical access to visualize the flow fields in all two-phase flow regimes. The modeling fluid accurately simulates boiling steam-water systems. Particular attention is focused on the use of a gamma densitometer to obtain line-averaged and cross-sectional averaged void fractions. Hot-film anemometer probes provide data on local void fraction, interfacial frequency, bubble and droplet size, as well as information on the behavior of the liquid-vapor interface in annular flows. A laser Doppler velocimeter is used to measure the velocity of liquid-vapor interfaces in bubbly, slug and annular flows. Flow visualization techniques are also used to obtain a qualitative understanding of the two-phase flow structure, and to obtain supporting quantitative data on bubble size. Examples of data obtained with these various measurement methods are shown.

  19. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    NASA Technical Reports Server (NTRS)

    Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.

    1992-01-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.

  20. Time integration for diffuse interface models for two-phase flow

    SciTech Connect

    Aland, Sebastian

    2014-04-01

    We propose a variant of the θ-scheme for diffuse interface models for two-phase flow, together with three new linearization techniques for the surface tension. These involve either additional stabilizing force terms, or a fully implicit coupling of the Navier–Stokes and Cahn–Hilliard equation. In the common case that the equations for interface and flow are coupled explicitly, we find a time step restriction which is very different to other two-phase flow models and in particular is independent of the grid size. We also show that the proposed stabilization techniques can lift this time step restriction. Even more pronounced is the performance of the proposed fully implicit scheme which is stable for arbitrarily large time steps. We demonstrate in a Taylor-flow application that this superior coupling between flow and interface equation can decrease the computation time by several orders of magnitude.

  1. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1988-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.

  2. Entropy analysis on non-equilibrium two-phase flow models

    SciTech Connect

    Karwat, H.; Ruan, Y.Q.

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  3. Incompressible two-phase flows with an inextensible Newtonian fluid interface

    NASA Astrophysics Data System (ADS)

    Reuther, Sebastian; Voigt, Axel

    2016-10-01

    We introduce a diffuse interface approximation for an incompressible two-phase flow problem with an inextensible Newtonian fluid interface. This approach allows to model lipid membranes as viscous fluids. In the present setting the membranes are assumed to be stationary. We validate the model and the numerical approach, which is based on a stream function formulation for the surface flow problem, an operator splitting approach and a semi-implicit adaptive finite element discretization, against observed flow patterns in vesicles, which are adhered to a solid surface and are subjected to shear flow. The influence of the Gaussian curvature on the surface flow pattern is discussed.

  4. Rankine-Hugoniot analysis of two-phase flow with inter-phase slip

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Lear, W. E.; Sherif, S. A.

    This paper is one in a series of papers considering different characteristics of two-phase flow. The previous analyses were conducted to determine the momentum flux and the nozzle design for a two-phase supersonic cleanser, where the focus of this paper is on the general gas dynamic relationships of the two-phase mixture across a normal shock wave. Historically, normal shock analyses have provided closed form solutions for the downstream state in terms of the upstream state for perfect gases, i.e. the Rankine-Hugoniot analysis. This analysis examines the effect of the mass injection ratio and the inter-phase slip for a homogeneous, two-phase mixture by applying a control volume approach from the state immediately preceding the shock wave to the state immediately after the shock wave where the liquid phase has not had time to react, and from the state immediately after the shock wave to a state where the gas and liquid phases have had sufficient time to become re-equilibrated. The results show that the downstream Mach number decreases while the ratios of pressure, density, and temperature increase for increases in the mass injection ratio. The same trend is also shown for increases in the slip parameter. Whereas the previous analyses applied mainly to the characteristics of the industrial cleanser mentioned before, this analysis has far reaching implications ranging from two-phase particulate flow in solid rocket motors to sand blasting applications.

  5. A depth-averaged, two-phase flow code for hazard mapping that satisfies both hydraulic and granular flow extremes

    NASA Astrophysics Data System (ADS)

    Cordoba, G. A.; Sheridan, M. F.; Pitman, B.

    2009-12-01

    Ground-hugging particle-laden flows constitute some of the most dangerous natural phenomena on Earth. Such currents, in the form of snow avalanches, pyroclastic flows, debris flows, lahars, and landslides, are among the most destructive processes in nature. Humans tend to settle in areas near rich soils, volcanoes, or watercourses, all of which could be strongly affected by these dangerous flows. In order to improve risk preparedness and site management in potentially affected zones, an appropriate knowledge of these natural hazardous phenomena is required. Their evolution in time, flow dynamics and run out distance are key aspects that help in the planning for hazardous events, development of hazardous regions and design of management policy to prepare in advance of potential natural disasters. This paper describes a depth-averaged model for two-phase flow that is currently under development at the University at Buffalo. It is being implemented within the TITAN2D framework that presently simulates dry geophysical mass flows over natural-scale terrains. The initial TITAN2D code was created to simulate granular flow. But because the presence of an interstitial fluid strongly modifies the dynamics of the flow, a new, more general, two-phase model is needed to account for the broad range in volume fraction of solids that occurs in nature. The mathematical model depth-integrates the Navier-Stokes equations for each phase, solid and fluid. The solid phase is modeled assuming a Coulomb constitutive behavior at the theoretical limit of pure solids. In contrast, the fluid phase conforms to a typical hydraulic approach at the limit of pure fluid and uses the Darcy-Weisbach approach to account for bed friction. The linkage for compositions between the pure end-member single phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating the whole range of particle volumetric fractions, from pure fluid flows to pure

  6. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  7. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  8. MONA: An accurate two-phase well flow model based on phase slippage

    SciTech Connect

    Asheim, H.

    1984-10-01

    In two phase flow, holdup and pressure loss are related to interfacial slippage. A model based on the slippage concept has been developed and tested using production well data from Forties, the Ekofisk area, and flowline data from Prudhoe Bay. The model developed turned out considerably more accurate than the standard models used for comparison.

  9. Simultaneous Velocity Discrimination Method of Two-Phase Flows Using Time Resolved Stereo PIV and PTV

    NASA Astrophysics Data System (ADS)

    Vanderwerker, P. B.; Chen, Y.; Torregrosa, M. M.; Diez, F. J.; Photos, S.; Troolin, D.

    2007-03-01

    Multiphase jets laden with particles appear in many engineering and environmental processes. Typical examples are sprays containing liquid fuel drops in combustion processes, air jets laden with coal particles in a power plant, and the dispersion of harmful substances like soot and pollutants from steady exhaust flows, among others. Studies of particle-laden turbulent flows suggest that particle distribution is not uniform but preferential. In order to understand the mechanism of particle dispersion, time resolved simultaneous 3D velocity measurements of the disperse phase and of the fluid flow were made. Two-phase discrimination algorithms were developed based upon the filtering methodology proposed by Khalitov & Longmire (2002), allowing for complete separation of the two-phases in stereo PIV images. The different filtering methods studied include separation of the two-phases using: (1) particle size discrimination, (2) particle intensity discrimination, (3) particle size and intensity discrimination, and (4) fluorescent particles for one of the two-phases. This methodology also enables time-resolved instantaneous 3D velocity fields using PTV and PIV on the disperse phase and fluid flow phase respectively. These allow visualization of 3D turbulent coherent structure evolution in the fluid as well as the evolution of the dispersed phase.

  10. Simulation experiments on two-phase natural circulation in a freon-113 flow visualization loop

    SciTech Connect

    Lee, Sang Yong; Ishii, Mamoru

    1988-01-01

    In order to study the two-phase natural circulaton and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed using a Freon-113 flow visualization loop. The main focus of the present experiment was placed on the two-phase flow behavior in the hot-leg U-bend typical of B and W LWR systems. The loop was built based on the two-phase flow scaling criteria developed under this program to find out the effect of fluid properties, phase changes and coupling between hydrodynamic and heat transfer phenomena. Significantly different flow behaviors have been observed due to the non-equilibrium phase change phenomena such as the flashing and condensation on the Freon loop in comparison with the previous adiabatic experiment. The phenomena created much more unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors. Also, the void distribution and primary loop flow rate were measured in detail in addition to the important key paramaters, such as the power input, loop friction and the liquid level inside the simulated steam generator.

  11. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.

  12. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.

  13. Application of the principle of corresponding states to two phase choked flow

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1973-01-01

    It is pointed out that several fluids including methane, oxygen, and nitrogen appear to form an average parametric plot which indicates that the isenthalpic Joule-Thomson coefficient must nearly obey the principle of corresponding states. With this as a basis, it was assumed that there could be several thermodynamic flow processes which nearly obey the principle. An examination was made to determine whether two-phase choked flow could be one of them. The analysis is described and the results are given.

  14. Two-Phase Flow Patterns in a Four by Four Rod Bundle

    SciTech Connect

    Yoshitaka Mizutani; Shigeo Hosokawa; Akio Tomiyama

    2006-07-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiber-scope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, and , in the present experiments were 0.1 < < 2.0 m/s and 0.04 < < 8.85 m/s, which covered typical two-phase flow patterns appearing in a fuel bundle of a boiling water nuclear reactor. As a result, the following conclusions were obtained: (1) the region of slug flow in the - flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima and Ishii's model. (authors)

  15. Stochastic Discrete Equation Method (sDEM) for two-phase flows

    SciTech Connect

    Abgrall, R.; Congedo, P.M.; Geraci, G.; Rodio, M.G.

    2015-10-15

    A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.

  16. Pore-scale investigation of two-phase flow using micro particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Heshmati, M.; Piri, M.; Stegmeir, M.

    2015-12-01

    Utilizing a two phase, two fields of view (FOV) Micro Particle Image Velocimetry (uPIV) system, simultaneous flow of oil and water in PDMS and glass porous systems are studied. We use glass and PDMS micromodels that are water- and oil-wet, respectively. They allow the study the effect of wettability on the flow. The velocity field of each phase is resolved in real-time and space using two high speed 4 MP cameras and a high repetition dual-head laser for small FOV and two 29 MP cameras and a low repetition dual-head powerful laser for the large FOV. Small FOV part of the system is used to investigate details of the flow at the pore scale and the interactions between the fluids and the medium. The large FOV is used to resolve the velocity over the entire micromodel. High-resolution micro-CT images of Bentheimer sandstone are used to construct two-dimensional. Single- and two-phase flow experiments are performed in these models. In the two-phase flow tests, imbibition and drainage experiments are carried out to obtain capillary pressure-saturation curves for different flow combinations. The velocity fields are resolved during each imbibition and drainage test and the effect of saturation of each phase on the velocity field is shown.

  17. Approaches to myosin modelling in a two-phase flow model for cell motility

    NASA Astrophysics Data System (ADS)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  18. Numerical Simulation of Two-Phase Flow in Severely Damaged Core Geometries

    SciTech Connect

    Meekunnasombat, Phongsan; Fichot, Florian; Quintard, Michel

    2006-07-01

    In the event of a severe accident in a nuclear reactor, the oxidation, dissolution and collapse of fuel rods is likely to change dramatically the geometry of the core. A large part of the core would be damaged and would look like porous medium made of randomly distributed pellet fragments, broken claddings and relocated melts. Such a complex medium must be cooled in order to stop the accident progression. IRSN investigates the effectiveness of the water re-flooding mechanism in cooling this medium where complex two-phase flows are likely to exist. A macroscopic model for the prediction of the cooling sequence was developed for the ICARE/CATHARE code (IRSN mechanistic code for severe accidents). It still needs to be improved and assessed. It appears that a better understanding of the flow at the pore scale is necessary. As a result, a direct numerical simulation (DNS) code was developed to investigate the local features of a two-phase flow in complex geometries. In this paper, the Cahn-Hilliard model is used to simulate flows of two immiscible fluids in geometries representing a damaged core. These geometries are synthesized from experimental tomography images (PHEBUS-FP project) in order to study the effects of each degradation feature, such as displacement and fragmentation of the fuel rods and claddings, on the two-phase flow. For example, the presence of fragmented fuel claddings is likely to enhance the trapping of the residual phase (either steam or water) within the medium which leads to less flow fluctuations in the other phase. Such features are clearly shown by DNS calculations. From a series of calculations where the geometry of the porous medium is changed, conclusions are drawn for the impact of rods damage level on the characteristics of two-phase flow in the core. (authors)

  19. The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution

    NASA Astrophysics Data System (ADS)

    Malaikah, K. R.

    2013-03-01

    We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem

  20. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  1. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    PubMed Central

    Baroncini, Virgínia H.V.; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E.M.

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  2. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  3. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  4. Two-phase power-law modeling of pipe flows displaying shear-thinning phenomena

    SciTech Connect

    Ding, Jianmin; Lyczkowski, R.W.; Sha, W.T.

    1993-12-31

    This paper describes work in modeling concentrated liquid-solids flows in pipes. COMMIX-M, a three-dimensional transient and steady-state computer program developed at Argonne National Laboratory, was used to compute velocities and concentrations. Based on the authors` previous analyses, some concentrated liquid-solids suspension flows display shear-thinning rather than Newtonian phenomena. Therefore, they developed a two-phase non-Newtonian power-law model that includes the effect of solids concentration on solids viscosity. With this new two-phase power-law solids-viscosity model, and with constitutive relationships for interfacial drag, virtual mass effect, shear lift force, and solids partial-slip boundary condition at the pipe walls, COMMIX-M is capable of analyzing concentrated three-dimensional liquid-solids flows.

  5. Use of two-phase flow heat transfer method in spacecraft thermal system

    NASA Technical Reports Server (NTRS)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  6. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  7. A GPU-accelerated flow solver for incompressible two-phase fluid flows

    NASA Astrophysics Data System (ADS)

    Codyer, Stephen; Raessi, Mehdi; Khanna, Gaurav

    2011-11-01

    We present a numerical solver for incompressible, immiscible, two-phase fluid flows that is accelerated by using Graphics Processing Units (GPUs). The Navier-Stokes equations are solved by the projection method, which involves solving a pressure Poisson problem at each time step. A second-order discretization of the Poisson problem leads to a sparse matrix with five and seven diagonals for two- and three-dimensional simulations, respectively. Running a serial linear algebra solver on a single CPU can take 50-99.9% of the total simulation time to solve the above system for pressure. To remove this bottleneck, we utilized the large parallelization capabilities of GPUs; we developed a linear algebra solver based on the conjugate gradient iterative method (CGIM) by using CUDA 4.0 libraries and compared its performance with CUSP, an open-source, GPU library for linear algebra. Compared to running the CGIM solver on a single CPU core, for a 2D case, our GPU solver yields speedups of up to 88x in solver time and 81x overall time on a single GPU card. In 3D cases, the speedups are up to 81x (solver) and 15x (overall). Speedup is faster at higher grid resolutions and our GPU solver outperforms CUSP. Current work examines the acceleration versus a parallel CGIM CPU solver.

  8. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    NASA Astrophysics Data System (ADS)

    Fsadni, A.-M.; Ge, Y. T.

    2013-04-01

    The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  9. Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the

  10. A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows

    NASA Technical Reports Server (NTRS)

    Apte, S. V.; Mahesh, K.; Lundgren, T.

    2003-01-01

    Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.

  11. Design and construction of an experiment for two-phase flow in fractured porous media

    SciTech Connect

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  12. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    SciTech Connect

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.

  13. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass

  14. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    PubMed

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  15. Prediction of slug frequency in horizontal two-phase slug flow

    SciTech Connect

    Tronconi, E. )

    1990-05-01

    In this paper available data on slug frequency in horizontal two-phase intermittent flow are predicted with adequate accuracy by assuming that the slug frequency is one half of the frequency of the unstable waves precursors slugs, as determined according to published analyses of finite amplitude waves in conduits. The experimental effects of gas and liquid flow rates, pipe diameter, gas density and liquid viscosity on slug frequency are explained by modifications of the wave properties due to changes in the liquid level of the stratified flow existing in the pipe inlet region prior to slug formation. Simple generalized equations are proposed to estimate the slug frequency for engineering calculations.

  16. Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen

    1990-01-01

    A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.

  17. A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model

    SciTech Connect

    Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh

    2011-10-01

    We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.

  18. A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows

    SciTech Connect

    Ray A. Berry; Richard Saurel; Fabien Petitpas

    2009-05-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.

  19. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  20. Characterizing dynamic hysteresis and fractal statistics of chaotic two-phase flow and application to fuel cells

    NASA Astrophysics Data System (ADS)

    Burkholder, Michael B.; Litster, Shawn

    2016-05-01

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.

  1. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  2. Performance of WPA Conductivity Sensor during Two-Phase Fluid Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Layne; O'Connor, Edward W.; Snowdon, Doug

    2003-01-01

    The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.

  3. Modeling of reflux condensation and countercurrent annular flow in a two-phase closed thermosyphon

    SciTech Connect

    Reed, J.G.; Tien, C.L.

    1985-12-01

    Reflux condensation in the steam generator tubes of a PWR is a potentially important heat removal mechanism during the cool-down phase following a small-break LOCA. This work studies reflux condensation using the two-phase closed thermosyphon as a model system. An analytical model based on control-volume formulations of mass, momentum, and energy balances for the liquid and vapor flows in each section of the device is developed. Numerical solutions to the system of governing equations are presented for both steady-state and transient operation of the device. While no data with which to compare the results of the transient analysis are currently available, the steady-state solutions compare well with available experimental data on flooding and film thickness. Thus, the analytical approach presented in this work is demonstrated to be a powerful technique for analyzing countercurrent, annular, two-phase flows. 17 refs., 17 figs.

  4. Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Fan, J.; Weitz, D.

    2015-12-01

    Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.

  5. Two-phase dusty fluid flow along a cone with variable properties

    NASA Astrophysics Data System (ADS)

    Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy

    2016-09-01

    In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).

  6. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    SciTech Connect

    Not Available

    1991-07-01

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  7. Two phase flow and heat transfer characteristics of a separate-type heat pipe

    NASA Astrophysics Data System (ADS)

    Tang, Zhiwei; Liu, Aijie; Jiang, Zhangyan

    2011-07-01

    Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80-125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.

  8. Fluid structure interaction solver coupled with volume of fluid method for two-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.

    2016-06-01

    In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.

  9. Decay of the 3D inviscid liquid-gas two-phase flow model

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghui

    2016-06-01

    We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.

  10. A numerical method for a model of two-phase flow in a coupled free flow and porous media system

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Sun, Shuyu; Wang, Xiao-Ping

    2014-07-01

    In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method.

  11. Axial Development of Gas-Liquid Two-Phase Flow in Mini-Channels

    SciTech Connect

    Junichi Uematsu; Yoshinori Hirose; Tatsuya Hazuku; Tomoji Takamasa; Takashi Hibiki

    2006-07-01

    Accurate prediction of the interfacial area concentration is essential to successful development of the interfacial transfer terms in the two-fluid model. Mechanistic modeling of the interfacial area concentration entirely relies on accurate local flow measurements over extensive flow conditions and channel geometries. From this point of view, accurate measurements of flow parameters such as void fraction, interfacial area concentration, gas velocity, bubble Sauter mean diameter, and bubble number density were performed by the image processing method at five axial locations in vertical upward bubbly flows using 1.02 and 0.55 mm-diameter pipes. The frictional pressure loss was also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 0.475 m/s to 4.89 m/s and from 0.980% to 28.6%, respectively. The obtained data give near complete information on the time-averaged local hydrodynamic parameters of two-phase flow. These data can be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. As the first step to understand the flow characteristics in mini-channels, the applicability of the existing drift-flux model, interfacial area correlation, and frictional pressure correlation was examined by the data obtained in the mini-channels. (authors)

  12. Vertical two-phase flow regimes and pressure gradients: Effect of viscosity

    SciTech Connect

    Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2007-05-15

    The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)

  13. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    PubMed

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows. PMID:19059796

  14. Modeling of dilute two-phase multispecies solid/gas flows

    SciTech Connect

    Doss, E.D.; Srinivasan, M.G.; Raptis, A.C.

    1986-06-01

    The report gives a detailed description of the analytical modeling that underlies the numerical code for predicting the flow of dilute solid/gas flows in pipes. The model is two-phase multispecies. Particles of one size are treated as one species and the equations of particle dynamics include terms to account for momentum transfer between species and the wall friction on each species of particles. New expressions for particle/particle interaction and wall friction for multispecies flow are derived. Results of parametric studies based on the new expressions are described. The predictions of this model for gas/powder flow through a venturi are compared with experimental measurements. The model's capability for predicting the flow in Argonne's Solid/Gas Flow Test Facility will be the subject of a companion report. 26 refs., 16 figs.

  15. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    SciTech Connect

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)

  16. Two-phase flow interfacial structures in a rod bundle geometry

    NASA Astrophysics Data System (ADS)

    Paranjape, Sidharth S.

    Interfacial structure of air-water two-phase flow in a scaled nuclear reactor rod bundle geometry was studied in this research. Global and local flow regimes were obtained for the rod bundle geometry. Local two-phase flow parameters were measured at various axial locations in order to understand the transport of interfacial structures. A one-dimensional two-group interfacial area transport model was evaluated using the local parameter database. Air-water two-phase flow experiments were performed in an 8 X 8 rod bundle test section to obtain flow regime maps at various axial locations. Area averaged void fraction was measured using parallel plate type impedance void meters. The cumulative probability distribution functions of the signals from the impedance void meters were used along with a self organizing neural network to identify flow regimes. Local flow regime maps revealed the cross-sectional distribution of flow regimes in the bundle. Local parameters that characterize interfacial structure, that is, void fraction alpha, interfacial area concentration, ai, bubble Sauter mean diameter, DSm and bubble velocity, vg were measured using four sensor conductivity probe technique. The local data revealed the distribution of the interfacial structure in the radial direction, as well as its development in the axial direction. In addition to this, the effect of spacer grid on the flow structure at different gas and liquid velocities was revealed by local parameter measurements across the spacer grids. A two-group interfacial area transport equation (IATE) specific to rod bundle geometry was derived. The derivation of two-group IATE required certain assumption on the bubble shapes in the subchannels and the bubbles spanning more than a subchannel. It was found that the geometrical relationship between the volume and the area of a cap bubble distorted by rods was similar to the one derived for a confined channel under a specific geometrical transformation. The one

  17. Two-phase flow and heat transfer in porous beds under variable body forces, part 7

    NASA Technical Reports Server (NTRS)

    Henry, H. R.

    1970-01-01

    The design of an experiment to determine the behavior of two-phase vapor-liquid and gas-liquid flow through porous beds in low gravity environments is discussed. The selection of porous materials, liquids, and gases is described. The parameters necessary for the design and development of a flight experimental system are examined. The general specifications for system elements requiring additional development are identified.

  18. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1989-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the

  19. Two-phase flow in geothermal energy sources. Final technical report

    SciTech Connect

    Not Available

    1981-07-01

    A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.

  20. Particle velocimetry analysis of immiscible two-phase flow in micromodels

    NASA Astrophysics Data System (ADS)

    Roman, Sophie; Soulaine, Cyprien; AlSaud, Moataz Abu; Kovscek, Anthony; Tchelepi, Hamdi

    2016-09-01

    We perform micro-PIV measurements in micromodels using very simple optical equipment combined with efficient image acquisition and processing. The pore-scale velocity distributions are obtained for single-phase flow in porous media with a typical pore size of 5-40 μm at a resolution of 1.8 μm × 1.8 μm vector grid. Because the application of micro-PIV in micromodels is not standard, extensive effort is invested into validation of the experimental technique. The micro-PIV measurements are in very good agreement with numerical simulations of single-phase flows, for which the modeling is well established once the detailed pore geometry is specified and therefore serves as a reference. The experimental setup is then used with confidence to investigate the dynamics of immiscible two-phase flow in micromodels that represent natural complex porous media (e.g., sandstone). For unstable immiscible two-phase flow experiments, micro-PIV measurements indicate that the flow is highly oscillatory long before the arrival of the invading interface. The dynamics are accompanied with abrupt changes of velocity magnitude and flow direction, and interfacial jumps. Following the passage of the front, dissipative events, such as eddies within the aqueous phase, are observed in the micro-PIV results. These observations of complex interface dynamics at the pore scale motivate further measurement of multiphase fluid movement at the sub-pore scale and requisite modeling.

  1. Simulation of two-phase flow through porous media using the finite-element method

    SciTech Connect

    Felton, G.K.

    1987-01-01

    A finite-element model of two-phase flow of air and water movement through porous media was developed. The formulation for radial flow used axisymmetric linear triangular elements. Due to the radial nature of the problem, a two-dimensional formulation was used to represent three-dimensional space. Governing equations were based on Darcy's equation and continuity. Air was treated as a compressible fluid by using the Ideal Gas Law. A gravity-driven saturated-flow problem was modeled and the predicted flow rate exactly matched the analytical solution. Comparisons of analytical and experimental results of one-phase radial and vertical flow were made in which capillary pressure distributions were almost exactly matched by the two-phase model (TPM). The effect of air compression on infiltration was simulated. It was concluded that the TPM modeled air compression and its inhibiting effect on infiltration even though air counter flow through the surface boundary was not permitted. The difficulty in describing the boundary conditions for air at a boundary where infiltration occurred was examined. The effect of erroneous input data for the soil moisture characteristic curve and the relative permeability curve was examined.

  2. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  3. Flux-dependent percolation transition in immiscible two-phase flows in porous media.

    PubMed

    Ramstad, Thomas; Hansen, Alex; Oren, Pål-Eric

    2009-03-01

    Using numerical simulations, we study immiscible two-phase flow in a pore network reconstructed from Berea sandstone under flow conditions that are statistically invariant under translation. Under such conditions, the flow is a state function which is not dependent on initial conditions. We find a second-order phase transition resembling the phase inversion transition found in emulsions. The flow regimes under consideration are those of low surface tension-hence high capillary numbers Ca-where viscous forces dominate. Nevertheless, capillary forces are imminent, we observe a critical stage in saturation where the transition takes place. We determine polydispersity critical exponent tau=2.27+/-0.08 and find that the critical saturation depends on how fast the fluids flow.

  4. Two phase flow and heat transfer in porous beds under variable body forces, part 2

    NASA Technical Reports Server (NTRS)

    Evers, J. L.; Henry, H. R.

    1969-01-01

    Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.

  5. Prediction of gas-liquid two-phase flow regime in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho; Platt, Jonathan A.

    1993-01-01

    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.

  6. Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation

    NASA Technical Reports Server (NTRS)

    Lin, J. T.; Ovacik, L.; Jones, O. C.

    1991-01-01

    The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.

  7. μPIV measurements of two-phase flows of an operated direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens

    2013-05-01

    In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The

  8. Central Upwind Scheme for a Compressible Two-Phase Flow Model

    PubMed Central

    Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242

  9. One Component Two Phase Flow in Horizontal and Vertical Ducts: Some Basic Considerations

    SciTech Connect

    Maeder, Paul F.; Dickinson, David A.; Nikitopoulos, Dimitris E.

    1983-12-15

    For a description and analysis of the flow they consider the conservation equations of the two phases separately, but in thermal and mechanical equilibrium, coupled by the itnerface shear forces (two fluid model, drift flux model). Coupling may be weak or strong, depending on Froude and Mach numbers of the flow. The fluid is highly compressible, not because the individual phases move at such speeds that their individual density changes are significant but because evapiration (phase change) results in large density changes of the system at moderate pressure or temperature changes once flashing occurs. The slip between the phases is caused by unequal wall shear stress, acceleration of the fluid or gravitational forces and is hindered by the interface interaction. if they denote by {gamma} the ratio of the liquid density to the vapor density and by {sigma} the ratio of the vapor speed to the liquid speed they find that in horizontal flows {sigma} = {gamma}{sup 1/2} yields the maximum slip (neglecting acceleration effects) that can be reached with no interface force acting (assuming equal friction coefficients for both phases at the wall). If one investigates the conditions of thermodynamic flow similarity between different substances in two phase flow, one finds that the latent heat of vaporization is the principal controlling parameter. Thus, a 5 cm diameter test section in two phase R-114, at room temperature, corresponds to a 30 cm diameter duct in water-steam at boiling conditions at high temperatures such as encountered in geothermal and other power production systems.

  10. Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow

    SciTech Connect

    Chang, H.T.; Hourng, L.W.; Chien, L.C.

    1997-05-01

    A time-splitting method for the numerical simulation of stiff nonequilibrium combustion problem was developed. The algorithm has been applied to simulate the shock-induced combustion and to investigate a supersonic one-and two-phase flowfield. The results are physically reasonable and demonstrate that the presence of particles has a dramatic effect on the nozzle flowfield and the thrust. Supersonic combustion usually happens in high speed flying aerodynamic problems, such as supersonic combustion ramjet (scramjet) engine for hypersonic airbreathing vehicles. Particularly for the scramjet engine, due to short residence time in the combustion chamber, it still contains incomplete combustion fuel as it enters the nozzle. For solid propellant rocket motors, the exhaust stream contains particles of aluminum oxide. In these two-phase nozzle flows, transfer of momentum and heat between gas particles often result in a decrease of nozzle efficiency.

  11. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  12. Effects of dynamic load on flow and heat transfer of two-phase boiling water in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Yao, Qiu-Ping; Song, Bao-Yin; Zhao, Mei; Cao, Xi

    2009-07-01

    An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.

  13. Two-phase flow characteristic of inverted bubbly, slug and annular flow in post-critical heat flux region

    SciTech Connect

    Ishii, M.; Denten, J.P.

    1988-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs.

  14. Cryogenic Boiling and Two-Phase Flow during Pipe Chilldown in Earth and Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Yuan, Kun; Ji, Yan; Chung, J. N.; Shyy, Wei

    2008-01-01

    For many industrial, medical and space technologies, cryogenic fluids play indispensable roles. An integral part of the cryogenic transport processes is the chilldown of the system components during initial applications. In this paper, we report experimental results for a chilldown process that is involved with the unsteady two-phase vapor-liquid flow and boiling heat transfer of the cryogen coupled with the transient heat conduction inside pipe walls. We have provided fundamental understanding on the physics of the two-phase flow and boiling heat transfer during cryogenic quenching through experimental observation, measurement and analysis. Based on the temperature measurement of the tube wall, the terrestrial cryogenic chilldown process is divided into three stages of film boiling, nucleate boiling and single-phase convection that bears a close similarity to the conventional pool boiling process. In earth gravity, cooling rate is non-uniform circumferentially due to a stratified flow pattern that gives rise to more cooling on the bottom wall by liquid filaments. In microgravity, there is no stratified flow and the absence of the gravitational force sends liquid filaments to the central core and replaces them by low thermal conductivity vapor that significantly reduces the heat transfer from the wall. Thus, the chilldown process is axisymmetric, but longer in microgravity.

  15. Pressure drop in single-phase and two-phase couette-poiseuille flow

    SciTech Connect

    Salhi, A. ); Rey, C.; Rosant, J.M. )

    1992-03-01

    This paper is concerned with axial pressure gradient in single-phase and two-phase flow at low void fraction in a narrow annular space between two concentric cylinders, the inner one rotating. From experimental results, the coupling function (inertial forces/centrifugal forces) is parameterized by Taylor or Rossby numbers for two values of the intercylindrical width (clearance). The results are discussed with regard to different flow regimes and it is shown in particular that transition from the turbulent vorticed regime to the turbulent regime occurs at Ro {approx equal} 1. The proposed correlation agrees in a satisfactory manner to all the regimes studied in our experiments and in those given in the bibliography. In addition, original tests with a two-phase liquid/gas flow at 5 percent G.O.R. (gas oil ratio), for a finely dispersed gas phase are also reported. These results indicate a similar behavior to single-phase flows, justifying the transposition of the same correlation in the framework of the homogeneous model.

  16. Code System to Calculate Three-Dimensional Extension Two-Phase Flow Dynamics.

    1999-04-28

    Version 00 This package consists of two programs K-FIX(3D) and K-FIX(3D, FLX) which extend the transient, two-dimensional, two-fluid program K-FIX to perform three-dimensional calculations. The transient dynamics of three-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds. Each phase is described in terms of its own density, velocity, and temperature. The application is to flow in the annulus between two cylinders where the inner cylinder moves periodically perpendicular to its axis. K-FIX(3D)more » is easily adaptable to a variety of two phase flow problems while K-FIX (3D,FLX) combines KFIX(3D), the three-dimensional version of the KFIX code, with the three-dimensional, elastic shell code FLX for application to a very specific class of problems. KFIX(3D,FLX) was developed specifically to calculate the coupled fluid-structure dynamics of a light water reactor core support barrel under accident conditions. Motion may be induced by blowdown, prescribed displacement, or seismic action. This package was released by NESC in 1982 then transferred to ESTSC and then to RSICC in January 1999. Files were not retrievable from the media, but the NEA Data Bank in France graciously submitted their package which was obtained from NESC. Hence, the files in this package are from the NEADB NESC-0877/01 package.« less

  17. Laboratory experiment on poroelastic behavior of Berea sandstone under two-phase fluid flow condition

    NASA Astrophysics Data System (ADS)

    Goto, H.; Aichi, M.; Tokunaga, T.; Yamamoto, H.; Ogawa, T.; Aoki, T.

    2013-12-01

    Coupled two-phase fluid flow and deformation of Berea sandstone was discussed through laboratory experiments and numerical simulation. In the experiment, a triaxial compression apparatus with flow pipes to pass fluids through a rock sample was used. The experimental procedures were as follows. Firstly, external stresses close to hydrostatic condition were applied to a water saturated cylindrical Berea sandstone sample. Then, compressed air was infiltrated from the bottom of the sample. During the experiment, both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were measured. Both strains showed sudden extensions after a few seconds, and monotonically extended thereafter. The volumetric discharge of water showed that air breakthrough occurred in around 100 seconds after the commencement of the air injection. Numerical simulations based on thermodynamically consistent constitutive equations were conducted in order to quantitatively analyze the experimental results. In a simulation in which the material was assumed to be homogeneous isotropic, the axial strain at half the height of the sample and the volumetric discharge of water at the outlet were reproduced well by using reasonable parameters, while that was not the case with the circumferential strain at half the height of the sample. On the other hand, in a simulation in which anisotropy of the material was introduced, all experimental data were reproduced well by using reasonable parameters. This result is reasonable because Berea sandstone is well known to be anisotropic under such Terzaghi effective stress condition as used in our experiment, i.e., 3.0 MPa (Hart and Wang, 1999; Hart, 2000). Our results indicate that the theory of poroelasticity for two-phase fluid system can explain the strain behavior of porous media for two-phase fluid flow observed in laboratory experiments.

  18. Vertically stratified two-phase flow in a curved channel: Insights from a domain perturbation analysis

    SciTech Connect

    Garg, P.; Picardo, J. R.; Pushpavanam, S.

    2014-07-15

    In this work, we investigate the fully developed flow field of two vertically stratified fluids (one phase flowing above the other) in a curved channel of rectangular cross section. The domain perturbation technique is applied to obtain an analytical solution in the asymptotic limit of low Reynolds numbers and small curvature ratios (the ratio of the width of the channel to its radius of curvature). The accuracy of this solution is verified by comparison with numerical simulations of the nonlinear equations. The flow is characterized by helical vortices within each fluid, which are driven by centrifugal forces. The number of vortices and their direction of circulation varies with the parameters of the system (the volume fraction, viscosity ratio, and Reynolds numbers). We identify nine distinct flow patterns and organize the parameter space into corresponding flow regimes. We show that the fully developed interface between the fluids is not horizontal, in general, but is deformed by normal stresses associated with the circulatory flow. The results are especially significant for flows in microchannels, where the Reynolds numbers are small. The mathematical results in this paper include an analytical solution to two coupled biharmonic partial differential equations; these equations arise in two-phase, two-dimensional Stokes flows.

  19. Two-phase slug flow splitting phenomenon at a regular horizontal side-arm tee

    SciTech Connect

    Arirachakaran, S.

    1990-01-01

    An experimental and theoretical investigation of two-phase slug flow splitting at a regular horizontal side-arm tee was performed. A new test facility was designed and constructed, suitable for acquiring pertinent slug flow splitting data. Elaborate measurement techniques and sophisticated instrumentation and computerized data acquisition system were implemented to assure high-quality data for this complex flow pattern. Splitting data were acquired for a wide range of slug flow conditions. Data analysis showed a steep-slope trend, exhibited by the splitting curves. Under these conditions, liquid preferentially flows into the run arm due to its high inertia forces associated with slug flow. A model which describes preferential liquid movement under slug flow conditions in a regular horizontal pipe tee has been developed from physical principles. The model consists of two splitting mechanisms. These include the Breaking-of-a-Dam mechanism for the slug body, and the Equilibrium Stratified Film concept for the gas pocket-liquid film region. The proposed slug flow splitting model along with other published splitting prediction methods are tested against new data acquired in the present study, and additional data available in the literature. Good agreement was found between the proposed model and the data. The present model also outperforms other available methods.

  20. Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Wei, Yikun; Qian, Yuehong

    2011-11-01

    A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.

  1. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  2. A modified Rusanov scheme for shallow water equations with topography and two phase flows

    NASA Astrophysics Data System (ADS)

    Mohamed, Kamel; Benkhaldoun, F.

    2016-06-01

    In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.

  3. Flow and Heat Transfer Characteristics in a Closed-Type Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji; Fujimoto, Hiromitsu

    A closed-loop two-phase thermosyphon can transport a large amount of thermal energy with small temperature differences without any external power supply. A fundamental investigation of flow and heat transfer characteristics was performed experimentally and theoretically using water, ethanol and R113 as the working liquids. Heat transfer coefficients in an evaporator and a condenser, and circulation flow rates were measured experimentally. The effects of liquid fill charge, rotation angle, pressure in the loop and heat flux on the heat transfer coefficients were examined. The heat transfer coefficients in the evaporator and the condenser were correlated by the expressions for pool boiling and film condensation respectively. As a result, the heat transfer coefficients in the evaporator were correlated by the Stephan-Abdelsalam equations within a±40% error. Theoretically, the circulation flow rate was predicted by calculating pressure, temperature, quality and void fraction along the loop. And, the comparison between the calculated and experimental results was made.

  4. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  5. Two-Phase Flow Research on the ISS for Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.

    2013-01-01

    With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.

  6. Viscous singular shock profiles for a system of conservation laws modeling two-phase flow

    NASA Astrophysics Data System (ADS)

    Hsu, Ting-Hao

    2016-08-01

    This paper is concerned with singular shocks for a system of conservation laws via the Dafermos regularization ut + f(u)x = ɛtuxx. For a system modeling incompressible two-phase fluid flow, the existence of viscous profiles is proved using Geometric Singular Perturbation Theory. The weak convergence and the growth rate of the viscous solution are also derived; the weak limit is the sum of a piecewise constant function and a δ-measure supported on a shock line, and the maximum value of the viscous solution is of order exp ⁡ (1 / ɛ).

  7. Nonequilibrium, Drift-Flux Code System for Two-Phase Flow Network Analysis

    2000-08-01

    Version: 00 SOLA-LOOP is designed for the solution of transient two-phase flow in networks composed of one-dimensional components. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. Although developed for nuclear reactor safety analysis, SOLA-LOOP may be used as the basis for other types of special-purpose network codes. The program can accommodate almost any set of constitutive relations, property tables, or other special features required for different applications.

  8. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  9. Decay of the 3D viscous liquid-gas two-phase flow model with damping

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghui

    2016-08-01

    We establish the optimal Lp - L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp - L2 estimates for the linearized equations, and delicate energy estimates.

  10. Experimental study of liquid-solid two phase flow over a step using PIV

    NASA Astrophysics Data System (ADS)

    Cando, E. H.; Luo, X. W.; Hidalgo, V. H.; Zhu, L.; Aguinaga, A. G.

    2016-05-01

    The present investigation focuses on the water-sand flow through a rectangular tunnel with a step using the Particle Image Velocimetry (PIV). Two cameras with appropriate optical filters have been used to capture each phase image separately. The optical filters were selected according to the optical properties of the sand and fluorescent tracers. Through data processing the experimental flow field such as the velocity profiles of sand and water had been obtained. In order to compare with the experiment, the steady state two phase flow fields were simulated using RANS method with k-ω SST turbulence model. It is noted that the numerical results matches the experimental results fairly good. Furthermore, the flow rates obtained from experimental and numerical velocity profiles also have a good match with the measurement by flow meter. The flow analysis shows that the water velocity variation induced by the presence of the step in the water-sand flow is equivalent to those cases with low sand concentration. However, the sand velocity in downstream region is 5% greater than the water velocity when the cross section is reduced in 25%.

  11. NMR studies of granular media and two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  12. The effect of surface-active block copolymers on two-phase flow

    NASA Astrophysics Data System (ADS)

    Martin, Jeffrey D.

    Blending two thermodynamically immiscible polymers to create a material with desirable properties is an attractive alternative to synthesizing polymers from new monomers. The microstructure of the blend often determines its physical properties and thus its uses. It is therefore beneficial to control the microstructure during blending, and it is well known that compatibilizers (macromolecular surfactants) can alter the morphological evolution of polymer blends. This work aims to examine the effect of compatibilizers on flow phenomena in which interfacial tension plays an important role, i.e. two-phase flow during the morphological development of immiscible polymer blends. We study compatibilizer effects on the two-phase flow of polymers at two length scales: single drops and macroscopic blends. A key concern is the effects of compatibilizer on rheological properties. Experiments on the effect of surfactant on single drop dynamics in a PEO/PPO/Pluronic system showed complex and previously unknown and unusual behavior. We hypothesize that this unusual behavior was caused by the sample preparation protocol. For multi-drop systems, or blends, of a PIB/PDMS model system near phase inversion, we identify the key role of the compatibilizer as immobilizing the interface, and we also identify the effect of such immobilization on two-phase rheology and coalescence suppression. Also, the compatibilizer affected the morphological development by decreasing the drop size through a combination of a decreased interfacial tension and coalescence suppression. We attempted to exploit this coalescence suppression phenomenon as a mechanism of kinetically trapping the morphology in desired states. By varying the sequence of mixing, a double emulsion morphology was created. These double emulsion blends show complex relaxation behavior and an increase in viscosity due to the increased effective droplet volume fraction. We also attempted to exploit coalescence suppression to create a blend

  13. Exact Jacobians in an implicit Newton method for two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Büsing, H.; Clauser, C.

    2012-04-01

    Geological storage of CO2 is one option for mitigating the effects of CO2 emissions on global warming. Since extensive on-site monitoring of the CO2 plume propagation is expensive, numerical simulations are an attractive alternative for gaining deeper insight in the dynamics of this system. We consider a model for two-phase flow in porous media for representing the injection stage of a CO2 sequestration scenario, when the plume propagation is dominated by advection. The porous medium filled by the two phases CO2 and brine is modelled as an initial-boundary-value problem consisting of two nonlinear, coupled partial differential equations, which are complemented by appropriate boundary and initial conditions. We present a new numerical approach to solve this fully coupled system using exact Jacobians. The method is based on the finite element, finite volume, box method [Huber & Helmig(2000)] for the space discretization and, since stability of the method is one of the main concerns, the fully implicit Euler method for the time discretization. A simple first order upwind method takes into account advective contributions. The resulting system of nonlinear algebraic equations is linearized by Newton's method. The required Jacobians can be obtained elegantly by automatic differentiation (AD) [Griewank & Walther(2008), Rall(1981)], a source code transformation giving exact derivatives of the discretized equations with respect to primary variables. The resulting system of linear equations is then solved by an iterative method (BiCGStab) with ILU0 preconditioning in every Newton step. We compare the forward AD differentiation mode to the standard finite difference method in terms of precision and performance. It turns out that AD performs favourable in both aspects. We also illustrate the advantages of exact Jacobians for two-phase flow in a sequestration scenario investigating the evolution of pressure and saturation.

  14. Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.

  15. Theoretical and pragmatic modeling of governing equations for two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M.; Ajuha, S.; Sengpiel, W.

    1994-12-31

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy derived for a two-phase flow by volume-averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration; bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities makes the rigorously formulated terms useless for computational purposes, modeling of these terms is discussed.

  16. Theoretical and pragmatic modelling of governing equations for a two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M.; Sengpiel, W.

    1992-12-01

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.

  17. Theoretical and pragmatic modelling of governing equations for a two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M. . Materials and Components Technology Div.); Sengpiel, W. . Inst. fuer Reaktorsicherheit)

    1992-01-01

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.

  18. Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.

    1996-01-01

    The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same

  19. Two phase flow of liquids in a narrow gap: Phase interference and hysteresis

    NASA Astrophysics Data System (ADS)

    Raza, Salim; Hejazi, S. Hossein; Gates, Ian D.

    2016-07-01

    Co-current flow of two immiscible liquids, such as oil and water in a planar fracture, exhibits nonlinear structures which become important in many natural and engineering systems such as subsurface flows, multiphase flows in lubrication joints, and coating flows. In this context, co-current flow of oil and water with variable rates is experimentally studied in a Hele-Shaw cell, various flow regimes are classified, and relative permeabilities for the phases are analysed thoroughly. Similar to multiphase pipe flows, multiphase flow in planar gaps shows various flow regimes, each having different flow rate/pressure gradient behaviour. As well as recovering the known results in the immiscible displacements in Hele-Shaw cell where the fluid-fluid interface remains stable/unstable for favorable/adverse viscosity ratios, it is found that the co-current flow of two fluids with different viscosities results in three distinct flow regimes. Before breakthrough of non-wetting phase, i.e, water, a "linear displacement" flow regime initially establishes at very low water injection rates. This stable movement turns into a "fingering advancement" flow regime at high water flow rates and Saffman-Taylor instability develops normal to the direction of the flow. After the breakthrough, a "droplet formation" flow regime is identified where the droplets of wetting phase, oil, are trapped in the water phase. For subsurface flow applications, we quantify these regimes through relative permeability curves. It is reported that as the water flow rate increases, the relative permeabilities and flow channels become smooth and regular. This behaviour of relative permeability and saturations shows dominance of capillary forces at low flow rates and viscous forces at higher flow rates. Variable injection rates provide the interface structures for both drainage and imbibition process, where the wetting phase saturation decreases and increases respectively. It is shown that relative permeability

  20. Flow and Heat Transfer Characteristics in a Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Takeshita, Kazuhiro; Horie, Yoshiatsu; Noda, Ken-Ichi

    A two-phase loop thermosyphon transports thermal energy from a heat source to a heat sink by natural convective circulation under a body force field without any external power supply such as a pump. It is, therefore, thought that this could be applied to an energy-saving heat transportation system, and so forth. In practical use, an evaporator has several heated tubes and also the heat supplied to each of the heated tubes is not always equal. Therefore, the present study was performed both experimentally and theoretically on the flow and heat transfer characteristics in the two-phase loop thermosyphon installed with the evaporator with three heated tubes as a comparatively simple multi-tube evaporator in the lower part of the loop. The circulation mass flow rate, pressure and temperature distributions along the loop, as well as the heat transfer coefficients in the heated tubes were measured using water, ethanol and benzene, on which the effects of subcooling at the evaporator inlet and a heat input ratio of the three heated tubes were examined, and the experimental data were compared with the theoretically calculated results.

  1. Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1996-01-01

    A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.

  2. One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2012-01-01

    Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.

  3. Two-phase flow of solid hydrogen particles and liquid helium

    NASA Astrophysics Data System (ADS)

    Xu, J.; Rouelle, A.; Smith, K. M.; Celik, D.; Hussaini, M. Y.; Van Sciver, S. W.

    2004-06-01

    Atomic hydrogen propellant feed systems may require transporting solid hydrogen particles containing atomic species from storage tanks to the engines using liquid helium as the carrier fluid. In this paper, a three-dimensional two-phase mixture model, along with the standard k- ɛ mixture turbulence model is employed to study the turbulent mixing of the fluid-particle slurry system. Numerical results show that turbulent flow is required to keep the hydrogen particles in suspension, which otherwise form a sliding layer of particles on top of the helium layer. Hydrogen particle concentration profiles in the slurry system are functions of particle size, flow velocity, and influx volume fraction of hydrogen particles. Particle dispersion at different Stokes numbers, different Kolmogorov length scales, and different time scales are discussed.

  4. Effects of two-phase flow on the deflagration of porous energetic materials

    SciTech Connect

    Margolis, S.B.; Williams, F.A.

    1994-07-01

    Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids, such as degraded nitramine propellants, that experience significant gas flow in the solid preheat region and are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces. Relative motion between the gas and condensed phases is taken into account in both regions, and expressions for the mass burning rate and other quantities of interest, such as temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure effects through the gas-phase equation of state. As a consequence, it is demonstrated how most aspects of the deflagration wave, including its structure, propagation speed and final temperature, depend on the local pressure in the two-phase regions.

  5. Visualization and quantification of two-phase flow in transparent miniature packed beds.

    PubMed

    Zhu, Peixi; Papadopoulos, Kyriakos D

    2012-10-01

    Optical microscopy was used to visualize the flow of two phases [British Petroleum (BP) oil and an aqueous surfactant phase] in confined space, three-dimensional, transparent, natural porous media. The porous media consisted of water-wet cryolite grains packed inside cylindrical, glass microchannels, thus producing microscopic packed beds. Primary drainage of BP oil displacing an aqueous surfactant phase was studied at capillary numbers that varied between 10(-6) and 10(-2). The confinement space had a significant effect on the flow behavior. Phenomena of burst motion and capillary fingering were observed for low capillary numbers due to the domination of capillary forces. It was discovered that breakthrough time and capillary number bear a log-log scale linear relationship, based on which a generalized correlation between oil travel distance x and time t was found empirically.

  6. An Interactive Tool for Discrete Phase Analysis in Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Thoren, Stephen J.

    1993-01-01

    Under a NASA MSFC SBIR Phase 1 effort an interactive software package has been developed for the analysis of discrete (particulate) phase dynamics in two-phase flows in which the discrete phase does not significantly affect the continuous phase. This package contains a Graphical User Interface (based on the X Window system and the Motif tool kit) coupled to a particle tracing program, which allows the user to interactively set up and run a case for which a continuous phase grid and flow field are available. The software has been applied to a solid rocket motor problem, to demonstrate its ease of use and its suitability for problems of engineering interest, and has been delivered to NASA Marshall Space Flight Center.

  7. Wall model effects on two phase flows and pressure distribution in nanochannels

    NASA Astrophysics Data System (ADS)

    Sellami, Nadia

    Molecular simulations of single phase bounded nanoflows, especially at high density, showed discrepancies from the classical Navier Stokes solutions: the failure of predicting the slip value at the wall, stratification of the density close to the wall and excessive heating which affects the natural thermal fluctuations of the atomistic system (NVE ensemble). These discrepancies are a direct consequence of the importance of the surface effects for such scales as the surface to volume ratio increases dramatically at the nanoscale. To alleviate some of these observed phenomena, the modeling of the solid boundaries progressed from implicit mathematical wall models to explicit multi-layered atomistic structure including temperature/pressure control mechanisms and heat transfer exchanges. However, the wall models used in molecular simulations vary greatly in physical characteristics such as the wetting property (under static conditions) or momentum and heat exchange (under flow conditions) and consequently, the equilibrium and steady state conditions reached depend on the complexity of the model and the application it is developed for. This work investigates the characteristics of different wall models found in the literature and compares their effects for the specific applications of single phase flows and nanojets (two-phase flows). It is found that the system thermodynamic pressure varies considerably depending on the parameters and complexity of the surface models and consequently alters both the flow and the jet behaviors. Assessments of these differences in terms of the system pressure, slip value at the surface and the injection velocity for different wall categories (atomistic, stochastic/diffuse and functional wall models) and parameters are provided. Another important consequence is the dependency of nanojet stability on the dense flow-surface interactions and liquid-gas-solid surface interactions. A new integrated and sinusoidal wall model was developed to

  8. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  9. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.

    2014-12-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  10. Effects of flow history on residual saturation during two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Khosravian, Homa; Joekar-Niasar, Vahid; Shokri, Nima

    2014-05-01

    During the process of immiscible displacement of a receding fluid by an invading fluid in porous media one or more pores may be bypassed by the invading fluid as it advances through the medium. This process creates disconnected fluid clusters which are left behind, trapped in the porous structure. Enhanced knowledge of the parameters affecting the morphology and distribution of the trapped fluid in porous media is required for exploitation in various applications such as soil remediation or the enhanced oil recovery. In the present study, we investigated the effects of flooding history on the amount of the trapped fluid at different capillary numbers (defined as the ratio of viscous to capillary forces) ranging from 10-6 to 10-3. In total 43 rounds of imbibition experiments through spherical and crushed glass beads with particle sizes ranging from 0.5 to 1 mm packed in a quasi-two-dimensional transparent Hele-Shaw cell (100mm x 100mm x 4mm) were conducted. The dynamics and patterns of fluid phase distributions were visualized using a high resolution CCD camera connected to a computer. Dyed water as wetting and displacing fluid was injected into the glass cell initially saturated with the nonwetting phase which was either Soltrol 220 or PCE with the dynamics viscosity of 4.12 and 0.89 cP respectively. The injection of the displacing fluid was continued until steady state was reached and no change in the phase distribution was observed. At that point, the flow rate of the invading fluid was increased and flooding was continued until reaching a new steady-state condition. This procedure was repeated till reaching the maximum designed capillary number. Our findings have two major contributions: (a) in a fairly homogenous quasi-two dimensional model, not only the size and shape of the trapped oil clusters depend on the history of flooding but also the residual oil saturation strongly depends on the history of flooding rather than the ultimate flow rate. For example

  11. Interfacial area and two-phase flow structure development measured by a double-sensor probe

    SciTech Connect

    Leung, Waihung; Revankar, S.T.; Ishii, Yoshihiko; Ishii, Mamoru.

    1992-06-01

    In this report, we studied the local phasic characters of dispersed flow regime both at the entrance and at the fully developed regions. Since the dispersed phase is distributed randomly in the medium and enclosed in relatively small interfaces, the phasic measurement becomes difficult to obtain. Local probe must be made with a miniaturized sensor in order to reduce the interface distortion. The double-sensor resistivity probe has been widely used in local void fraction and interface velocity measurements because the are small in comparison with the interfaces. It has been tested and proved to be an accurate local phasic measurement tool. In these experiments, a double-sensor probe was employed to measure the local void fraction and interface velocity in an air-water system. The test section was flow regime can be determined by visualization. Furthermore, local phasic measurements can be verified by photographic studies. We concentrated our study on the bubbly flow regime only. The local measurements were conducted at two axial locations, L/D = 8 and 60, in which the first measurement represents the entrance region where the flow develops, and the second measurement represents the fully developed flow region where the radial profile does not change as the flow moves along the axial direction. Four liquid flow rates were chosen in combination with four different gas injection rates. The superficial liquid velocities were j{sub t} = 1.0, 0.6,0.4, and 0.1 m/s and superficial gas velocities were j{sub g} = 0.0965, 0.0696, 0.0384, and 0.0192 m/s. These combinations put the two-phase flow well in the bubbly flow regime. In this sequence of phenomenological studies, the local void fraction, interface area concentration, sauter mean diameter, bubble velocity and bubble frequency were measured.

  12. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    SciTech Connect

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Bianchi, Marco; Zhou, Quanlin; Illangasekare, Tissa

    2014-12-31

    During CO2 injection and storage in deep reservoirs, the injected CO2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm

  13. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Bianchi, Marco; Zhou, Quanlin; Illangasekare, Tissa

    2014-12-31

    During CO2 injection and storage in deep reservoirs, the injected CO2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role formore » the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and

  14. Flow and Heat Transfer Characteristics in a Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji; Katsumata, Yoshikazu

    A two-phase loop thermosyphon transports thermal energy by natural convective circulation without any external power supply. Therefore, it has been paid attention as a heat transfer equipment for saving energy. A basic investigation of flow and heat transfer characteristics in the thermosyphon was performed both experimentally and theoretically. The circulation flow rate, pressure and temperature distributions along the loop, and heat transfer coefficients in the heated section were measured using water, ethanol and Freon 113 as the working liquids. And, the effects of the heat input and liquid physical properties on the flow and heat transfer characteristics were examined. In the theoretical study, the circulation flow rate was calculated from the force balance between the driving force arising from density differences and the pressure drop in the loop. The comparison of the calculated with experimental results was made concerning the circulation flow rate and pressure and temperature distributions. For water and ethanol, the comparison presented the considerably close agreement. But, for Freon 113, the agreement was insufficient and further detailed investigation is needed.

  15. Two-phase flow in complex geometries: A diffuse domain approach

    PubMed Central

    Aland, S.; Voigt, A.

    2011-01-01

    We present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. We combine the diffuse domain method for solving PDEs in complex geometries with the diffuse-interface (phase-field) method for simulating multiphase flows. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. The method is straightforward to implement using standard software packages; we use adaptive finite elements here. We present numerical examples demonstrating the effectiveness of the algorithm. We simulate multiphase flow in a driven cavity on an extended domain and find very good agreement with results obtained by solving the equations and boundary conditions in the original domain. We then consider successively more complex geometries and simulate a droplet sliding down a rippled ramp in 2D and 3D, a droplet flowing through a Y-junction in a microfluidic network and finally chaotic mixing in a droplet flowing through a winding, serpentine channel. The latter example actually incorporates two different diffuse domains: one describes the evolving droplet where mixing occurs while the other describes the channel. PMID:21918638

  16. Gas-liquid two phase flow through a vertical 90 elbow bend

    SciTech Connect

    Spedding, P.L.; Benard, E.

    2007-07-15

    Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90 elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s{sup -1}. The elbow bend pressure drop was best correlated in terms of l{sub e}/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data. (author)

  17. Two-Phase Flow Frictional Characteristics in Porous Wall Bounded Microchannels

    NASA Astrophysics Data System (ADS)

    Lee, Eon Soo; Steinbrenner, Julie; Hidrovo, Carlos; Goodson, Kenneth; Eaton, John

    2013-11-01

    This presents experimental results from small rectangular channels for fuel cells in which three of the channel walls are smooth, impermeable solid and the fourth wall is a porous gas-diffusion layer. Experiments were performed on a straight 200 by 500 micron by 150 mm long rectangular channel. Three walls of the channel were machined into a solid piece of acrylic. One of the 500 micron wide walls was a commercial Toray carbon paper Gas-Diffusion Layer (GDL) material held in place by a flat sheet of acrylic. Water was forced through the GDL layer from four evenly spaced holes in the flat acrylic piece. A one-dimensional, two-phase flow model was developed which included the effect of air and water flows in both the channel and GDL. The analysis from experimental measurements showed that the product of the friction factor and the gas flow Reynolds number was very nearly a constant, indicating that the model captures the critical physical features of the flow and is useful for the prediction of gas flow rate or pressure drop in a fuel cell microchannel. Assistant Professor at New Jersey Institute of Technology.

  18. Two-phase flow instability and dryout in parallel channels in natural circulation

    SciTech Connect

    Duffey, R.B.; Rohatgi, U.S.; Hughes, E.D.

    1993-06-01

    The unique feature of parallel channel flows is that the pressure drop or driving head for the flow is maintained constant across any given channel by the flow in all the others, or by having a large downcomer or bypass in a natural circulation loop. This boundary condition is common in all heat exchangers, reactor cores and boilers, it is well known that the two-phase flow in parallel channels can exhibit both so-called static and dynamic instability. This leads to the question of the separability of the flow and pressure drop boundary conditions in the study of stability and dryout. For the areas of practical interest, the flow can be considered as incompressible. The dynamic instability is characterized by density (kinematic) or continuity waves, and the static instability by inertial (pressure drop) or manometric escalations. The static has been considered to be the zero-frequency or lowest mode of the dynamic case. We briefly review the status of the existing literature on both parallel channel static and dynamic instability, and the latest developments in theory and experiment. The difference between the two derivations lies in the retention of the time-dependent terms in the conservation equations. The effects and impact of design options are also discussed. Since dryout in parallel systems follows instability, it has been traditional to determine the dryout power for a parallel channel by testing a single channel with a given (inlet) flow boundary condition without particular regard for the pressure drop. Thus all modern dryout correlations are based on constant or fixed flow tests, a so-called hard inlet, and subchannel and multiple bundle effects are corrected for separately. We review the thinking that lead to this approach, and suggest that for all multiple channel and natural circulation systems close attention should be paid to the actual (untested) pressure drop conditions. A conceptual formulation is suggested as a basis for discussion.

  19. A monotonicity preserving conservative sharp interface flow solver for high density ratio two-phase flows

    SciTech Connect

    Le Chenadec, Vincent; Pitsch, Heinz

    2013-09-15

    This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier–Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensional tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization.

  20. Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model.

    PubMed

    Zhang, Qiulan; Karadimitriou, N K; Hassanizadeh, S M; Kleingeld, P J; Imhof, A

    2013-07-01

    As a representation of a porous medium, a closed micro-fluidic device made of polydimethylsiloxane (PDMS), with uniform wettability and stable hydrophobic properties, was designed and fabricated. A flow network, with a mean pore size of 30 μm, was formed in a PDMS slab, covering an area of 1 mm × 10 mm. The PDMS slab was covered and bonded with a 120-μm-thick glass plate to seal the model. The glass plate was first spin-coated with a thin layer, roughly 10 μm, of PDMS. The micro-model was treated with silane in order to make it uniformly and stably hydrophobic. Fluorescent particles of 300 μm in diameter were used as colloids. It is known that more removal of colloids occurs under unsaturated conditions, compared to saturated flow in soil. At the same time, the change of saturation has been observed to cause remobilization of attached colloids. The mechanisms for these phenomena are not well understood. This is the first time that a closed micro-model, made of PDMS with uniform and stable wettability, has been used in combination with confocal microscopy to study colloid transport under transient two-phase flow conditions. With confocal microscopy, the movement of fluorescent particles and flow of two liquids within the pores can be studied. One can focus at different depths within the pores and thus determine where the particles exactly are. Thus, remobilization of attached colloids by moving fluid-fluid interfaces was visualized. In order to allow for the deposition and subsequent remobilization of colloids during two-phase flow, three micro-channels for the injection of liquids with and without colloids were constructed. An outlet channel was designed where effluent concentration breakthrough curves can be quantified by measuring the fluorescence intensity. A peak concentration also indicated in the breakthrough curve with the drainage event. The acquired images and breakthrough curve successfully confirmed the utility of the combination of such a PDMS

  1. Optical Measurement of Mass Flow of a Two-Phase Fluid

    NASA Technical Reports Server (NTRS)

    Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don

    2008-01-01

    An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical

  2. Thermal effects in two-phase flow through face seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Basu, Prithwish

    1988-01-01

    When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.

  3. Measuring two phase flow parameters using impedance cross-correlation flow meter

    NASA Astrophysics Data System (ADS)

    Muhamedsalih, Y.; Lucas, G.

    2012-03-01

    This paper describes the design and implementation of an impedance cross correlation flow meter which can be used in solids-water pipe flows to measure the local solids volume fraction distribution and the local solids velocity distribution. The system is composed of two arrays of electrodes, separated by an axial distance of 50 mm and each array contains eights electrodes mounted over the internal circumference of the pipe carrying the flow. Furthermore every electrode in each array can be selected to be either"excitation", "measurement" or "earth". Changing the electrode configuration leads to a change in the electric field, and hence in the region of the flow cross section which is interrogated. The local flow velocity in the interrogated region is obtained by cross correlation between the two electrode arrays. Additionally, the local solids volume fraction can be obtained from the mean mixture conductivity in the region under interrogation. The system is being integrated with a microcontroller to measure the velocity distribution of the solids and the volume fraction distribution of the solids in order to create a portable flow meter capable of measuring the multi-phase flow parameters without the need of a PC to control it. Integration of the product of the local solids volume fraction and the local solids velocity in the flow cross section enables the solids volumetric flow rate to be determined.

  4. A simplified approach for the computation of steady two-phase flow in inverted siphons.

    PubMed

    Diogo, A Freire; Oliveira, Maria C

    2016-01-15

    Hydraulic, sanitary, and sulfide control conditions of inverted siphons, particularly in large wastewater systems, can be substantially improved by continuous air injection in the base of the inclined rising branch. This paper presents a simplified approach that was developed for the two-phase flow of the rising branch using the energy equation for a steady pipe flow, based on the average fluid fraction, observed slippage between phases, and isothermal assumption. As in a conventional siphon design, open channel steady uniform flow is assumed in inlet and outlet chambers, corresponding to the wastewater hydraulic characteristics in the upstream and downstream sewers, and the descending branch operates in steady uniform single-phase pipe flow. The proposed approach is tested and compared with data obtained in an experimental siphon setup with two plastic barrels of different diameters operating separately as in a single-barrel siphon. Although the formulations developed are very simple, the results show a good adjustment for the set of the parameters used and conditions tested and are promising mainly for sanitary siphons with relatively moderate heights of the ascending branch.

  5. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    SciTech Connect

    Pruess, K.

    1998-08-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories.

  6. Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

    NASA Technical Reports Server (NTRS)

    Begg, E.; Faghri, A.; Krustalev, D.

    1999-01-01

    A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.

  7. Two-phase unsaturated flow at Yucca Mountain, Nevada: A report on current understanding

    NASA Astrophysics Data System (ADS)

    Pruess, Karsten

    Thick unsaturated zones in semi-arid regions have some unique attributes that are favorable for long-term isolation of hazardous wastes. The disposal concept at Yucca Mountain takes advantage of low ambient water fluxes. Evaluation of site suitability must be based on an understanding of two-phase (liquid-gas) fluid flow and heat transfer processes in a heterogeneous, fractured rock mass. A large body of relevant knowledge has been accumulated in various fields, including petroleum and geothermal reservoir engineering, chemical engineering, civil engineering, and soil science. Complications at Yucca Mountain arise from the partly episodic and localized nature of water seepage in fracture networks. This limits the applicability of spatial and temporal averaging, and poses great challenges for numerical modeling. Significant flow and heat transfer effects may occur in the gas phase. Observations of natural and man-made chemical tracers as well as controlled field experiments have provided much useful information on mass transport at Yucca Mountain, including the occurrence of fast preferential flow. It is now clear that fracture-matrix interactions are considerably weaker than would be expected from a concept of water flowing in fractures as areally extensive sheets. The Yucca Mountain system is expected to be quite robust in coping with larger seepage rates, as may occur under future more pluvial climatic conditions.

  8. A combined experimental and theoretical study of supercooling by two-phase mist flows

    SciTech Connect

    Yang Zhihua.

    1991-01-01

    A combined experimental and theoretical study of cooling enhancement by mist flow was performed for a square channel with a smooth wall. A new method is proposed for the turbulent deposition of droplets from two-phase mist flow into the wall of the channel. The proposed analytical model shows satisfactory agreement with observations from an experimental measurement using a particle-sizing two-dimensional reference-model laser-Doppler anemometry technique. Supercooling is defined as the simultaneous attainment of high heat flux and a low temperature of a surface to be cooled. Surface cooling is by evaporation from the exposed side of the film. The film is maintained by the continuous deposition of a stream of turbulent mist. An analytical model is provided for the heat-transfer enhancement coefficient due to mist supercooling. Also, experiments were carried out to investigate cooling enhancement. A substantial supercooling by mist flow is reported. The effects on supercooling of flow rate, droplet concentration and size, and wall heat flux are also reported.

  9. The stability of two-phase flow over a swept-wing

    NASA Technical Reports Server (NTRS)

    Coward, Adrian; Hall, Philip

    1994-01-01

    We use numerical and asymptotic techniques to study the stability of a two-phase air/water flow above a flat porous plate. This flow is a model of the boundary layer which forms on a yawed cylinder and can be used as a useful approximation to the air flow over swept wings during heavy rainfall. We show that the interface between the water and air layers can significantly destabilize the flow, leading to traveling wave disturbances which move along the attachment line. This instability occurs for lower Reynolds numbers than in the case of the absence of a water layer. We also investigate the instability of inviscid stationary modes. We calculate the effective wavenumber and orientation of the stationary disturbance when the fluids have identical physical properties. Using perturbation methods we obtain corrections due to a small stratification in viscosity, thus quantifying the interfacial effects. Our analytical results are in agreement with the numerical solution which we obtain for arbitrary fluid properties.

  10. A simplified approach for the computation of steady two-phase flow in inverted siphons.

    PubMed

    Diogo, A Freire; Oliveira, Maria C

    2016-01-15

    Hydraulic, sanitary, and sulfide control conditions of inverted siphons, particularly in large wastewater systems, can be substantially improved by continuous air injection in the base of the inclined rising branch. This paper presents a simplified approach that was developed for the two-phase flow of the rising branch using the energy equation for a steady pipe flow, based on the average fluid fraction, observed slippage between phases, and isothermal assumption. As in a conventional siphon design, open channel steady uniform flow is assumed in inlet and outlet chambers, corresponding to the wastewater hydraulic characteristics in the upstream and downstream sewers, and the descending branch operates in steady uniform single-phase pipe flow. The proposed approach is tested and compared with data obtained in an experimental siphon setup with two plastic barrels of different diameters operating separately as in a single-barrel siphon. Although the formulations developed are very simple, the results show a good adjustment for the set of the parameters used and conditions tested and are promising mainly for sanitary siphons with relatively moderate heights of the ascending branch. PMID:26517278

  11. Two-phase flow research using the DC-9/KC-135 apparatus

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Neumann, Eric S.; Shoemaker, J. Michael

    1996-01-01

    Low-gravity gas-liquid flow research can be conducted aboard the NASA Lewis Research Center DC-9 or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with constant or variable inner diameters of approximately 2.54 cm and lengths of up to 3.0 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall shear stress, and acceleration data are measured and recorded at data rates of up to 1000 Hz throughout the 20-sec duration of the experiment. Flow is visualized with a high-speed video system. In addition, the apparatus has a heat-transfer capability whereby sensible heat is transferred between the test-section wall and a subcooled liquid phase so that the heat-transfer characteristics of gas-liquid two-phase flows can be determined.

  12. Two-phase flow measurement by chemical tracer technique for Uenotai geothermal field in Japan

    SciTech Connect

    Sato, Tatsuya; Osato, Kazumi; Hirtz, P.

    1996-12-31

    A tracer flow-test (TFT) survey of three production wells was performed in February, 1996, for Akita Geothermal Energy Co., Ltd. (AGECO) at the Uenotai geothermal field in the Akita prefecture of northern Honshu, Japan. The survey was conducted as a demonstration test of the chemical tracer method for two-phase flow measurement. Although the tracer method has been in commercial use for about 4 years this was the first time the technique had been applied on wells with mixing runs of less than 12 meters. The tracers were injected through the wing valve on the side of the wellheads to maximize the tracer dispersion through the 9 meters of pipeline available before sample collection. The three wells tested had steam fractions at the wellhead of 38 to 99.4 % by weight and total flow rates of 31.5 to 51.5 tons/hr. Based on the test results the chemical tracer method is considered accurate under the conditions experienced at the Uenotai geothermal field and has been adopted for routine flow rate and enthalpy monitoring.

  13. Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids

    SciTech Connect

    Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.; Cimbala, J.M.

    2002-07-01

    Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained from operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces

  14. On two-phase flow solvers in irregular domains with contact line

    NASA Astrophysics Data System (ADS)

    Lepilliez, Mathieu; Popescu, Elena Roxana; Gibou, Frederic; Tanguy, Sébastien

    2016-09-01

    We present numerical methods that enable the direct numerical simulation of two-phase flows in irregular domains. A method is presented to account for surface tension effects in a mesh cell containing a triple line between the liquid, gas and solid phases. Our numerical method is based on the level-set method to capture the liquid-gas interface and on the single-phase Navier-Stokes solver in irregular domain proposed in [35] to impose the solid boundary in an Eulerian framework. We also present a strategy for the implicit treatment of the viscous term and how to impose both a Neumann boundary condition and a jump condition when solving for the pressure field. Special care is given on how to take into account the contact angle, the no-slip boundary condition for the velocity field and the volume forces. Finally, we present numerical results in two and three spatial dimensions evaluating our simulations with several benchmarks.

  15. Effects of porosity and mixed convection on MHD two phase fluid flow in an inclined channel.

    PubMed

    Hasnain, Jafar; Abbas, Zaheer; Sajid, Muhammad

    2015-01-01

    The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy's and modified Darcy's laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail. PMID:25803360

  16. Effect of virtual mass on the characteristics and the numerical stability in two-phase flows

    SciTech Connect

    No, H.C.; Kazimi, M.S.

    1981-04-01

    It is known that the typical six equation two-fluid model of the two-phase flow possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit and constitutes an ill-posed initial value problem. Among the suggestions to overcome these difficulties, one model for the virtual mass force terms were studied here, because the virtual mass represents real physical effects to accomplish the dissipation for numerical stability. It was found that the virtual mass has a profound effect upon the mathematical characteristic and numerical stability. Here a quantitative bound on the coefficient of the virtual mass terms was suggested for mathematical hyperbolicity and numerical stability. It was concluded that the finite difference scheme with the virtual mass model is restricted only by the convective stability conditions with the above suggested value.

  17. Prediction of Parameters Distribution of Upward Boiling Two-Phase Flow With Two-Fluid Models

    SciTech Connect

    Yao, Wei; Morel, Christophe

    2002-07-01

    In this paper, a multidimensional two-fluid model with additional turbulence k - {epsilon} equations is used to predict the two-phase parameters distribution in freon R12 boiling flow. The 3D module of the CATHARE code is used for numerical calculation. The DEBORA experiment has been chosen to evaluate our models. The radial profiles of the outlet parameters were measured by means of an optical probe. The comparison of the radial profiles of void fraction, liquid temperature, gas velocity and volumetric interfacial area at the end of the heated section shows that the multidimensional two-fluid model with proper constitutive relations can yield reasonably predicted results in boiling conditions. Sensitivity tests show that the turbulent dispersion force, which involves the void fraction gradient, plays an important role in determining the void fraction distribution; and the turbulence eddy viscosity is a significant factor to influence the liquid temperature distribution. (authors)

  18. A diffuse-interface method for two-phase flows with soluble surfactants

    PubMed Central

    Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel

    2010-01-01

    A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125

  19. Effects of porosity and mixed convection on MHD two phase fluid flow in an inclined channel.

    PubMed

    Hasnain, Jafar; Abbas, Zaheer; Sajid, Muhammad

    2015-01-01

    The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy's and modified Darcy's laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail.

  20. A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow

    NASA Astrophysics Data System (ADS)

    Tokareva, S. A.; Toro, E. F.

    2016-10-01

    Here we extend the Toro-Vázquez flux vector splitting approach (TV), originally proposed for the ideal 1D Euler equations in [1], to the Baer-Nunziato equations of compressible two-phase flow. Following the TV approach we identify corresponding advection and pressure operators. We perform a rigorous analysis of the associated non-conservative pressure system and derive its complete characteristic structure. The choice of the advection numerical flux is obvious. For the pressure system, several schemes are presented. The complete schemes are then implemented in the setting of finite volume and path-conservative methods and are systematically assessed in terms of accuracy and efficiency, through a carefully selected suite of test problems. The presented schemes constitute a building block for the construction of high-order numerical methods for solving the Baer-Nunziato equations. Here, as an illustrative example of such possibility, we present the construction of a second-order scheme.

  1. Effects of Porosity and Mixed Convection on MHD Two Phase Fluid Flow in an Inclined Channel

    PubMed Central

    Hasnain, Jafar; Abbas, Zaheer; Sajid, Muhammad

    2015-01-01

    The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy's and modified Darcy's laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail. PMID:25803360

  2. Numerical analysis of two-phase flow in networks. Final report

    SciTech Connect

    Porsching, T.A.

    1984-09-01

    Many computer programs that simulate the thermal and hydraulic behavoir of LWR systems employ network models of homogeneous or two-fluid two-phase flow. Part I of this report documents a new numerical for such homogeneous models. The technique is based on the Dual Variable Method developed under a previous EPRI Reseach Project. The analysis shows that the new method is both robust and efficient. A set of three numerical simulations involving a fast transient, a slow transient and a phase boundary crossing support the analysis. Part II presents a systematic derivation of a two-fluid network model that exactly conserves the mass and total energy of the moisture in the network. Two numerical examples are presented to illustrate its use.

  3. GPU-centric resolved-particle disperse two-phase flow simulation using the Physalis method

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.

    2016-10-01

    We present work on a new implementation of the Physalis method for resolved-particle disperse two-phase flow simulations. We discuss specifically our GPU-centric programming model that avoids all device-host data communication during the simulation. Summarizing the details underlying the implementation of the Physalis method, we illustrate the application of two GPU-centric parallelization paradigms and record insights on how to best leverage the GPU's prioritization of bandwidth over latency. We perform a comparison of the computational efficiency between the current GPU-centric implementation and a legacy serial-CPU-optimized code and conclude that the GPU hardware accounts for run time improvements up to a factor of 60 by carefully normalizing the run times of both codes.

  4. Investigation of two phase flow and phase trapping by secondary imbibition within Fontainebleau sandstone.

    PubMed

    Holmes, William M; Packer, Ken J

    2003-01-01

    Pulsed magnetic field gradient stimulated echo NMR is used to investigate the simultaneous flow of two phases (an aqueous phase and an hydrocarbon phase) within a strongly water-wet sample of Fontainebleau sandstone. The Fontainebleau sandstone is prepared in increasing steady-state water saturations by a secondary imbibition process. The increase in the water saturation causes an increasing fraction of the oil phase (non-wetting phase) to become trapped within the sample. The stimulated echo dependence on the gradient pulse area, q, is used to derive the displacement probability, PX, for a fixed observation time. These displacement probabilities clearly show the progressive trapping of the hydrocarbon phase with increasing steady-state water saturations. Quantitative measurements of the fraction of the oil phase trapped were made from the echo attenuation function Edelta(q), both as a function of water saturation and observation time.

  5. Development of an electrical impedance computed tomographic two-phase flows analyzer. Annual technical report for program renewal

    SciTech Connect

    Jones, O.C.

    1993-05-01

    This progress report details the theoretical development, numerical results, experimental design (mechanical), experimental design (electronic), and experimental results for the research program for the development of an electrical impedance computed tomographic two-phase flow analyzer.

  6. A dual-porosity model for two-phase flow in deforming porous media

    NASA Astrophysics Data System (ADS)

    Shu, Zhengying

    Only recently has one realized the importance of the coupling of fluid flow with rock matrix deformations for accurately modeling many problems in petroleum, civil, environmental, geological and mining engineering. In the oil industry, problems such as reservoir compaction, ground subsidence, borehole stability and sanding need to be simulated using a coupled approach to make more precise predictions than when each process is considered to be independent of the other. Due to complications associated with multiple physical processes and mathematical representation of a multiphase now system in deformable fractured reservoirs, very few references, if any, are available in the literature. In this dissertation, an approach, which is based on the dual-porosity concept and takes into account rock deformations, is presented to derive rigorously a set of coupled differential equations governing the behavior of fractured porous media and two-phase fluid flow. The finite difference numerical method, as an alternative method for finite element, is applied to discretize the governing equations both in time and space domains. Throughout the derived set of equations, the fluid pressures and saturations as well as the solid displacements are considered as the primary unknowns. The model is tested against the case of single-phase flow in a 1-D consolidation problem for which analytical solutions are available. An example of coupled two-phase fluid flow and rock deformations for a scenario of a one-dimensional, fractured porous medium is also discussed. The numerical model and simulator, RFIA (Rock Fluid InterAction), developed in this dissertation can be a powerful tool to solve difficult problems not only in petroleum engineering such as ground subsidence, borehole stability and sand control, but also in civil engineering such as groundwater flow through fractured bedrock and in environmental engineering such as waste deposit concerns in fractured and unconsolidated formations

  7. Challenges in modeling unstable two-phase flow experiments in porous micromodels

    NASA Astrophysics Data System (ADS)

    Meheust, Y.; Ferrari, A.; Jimenez-Martinez, J.; Le Borgne, T.; Lunati, I.

    2014-12-01

    The simulation of unstable invasion patterns in porous media flow is challenging since small perturbations tend to grow in time, so that slight differences in geometry or initial conditions potentially give rise to significantly different solutions. Here we present a detailed comparison of pore scale simulations and experiments of unstable primary drainage in porous micromodels. The porous medium consists of a Hele-Shaw cell containing cylindrical obstacles. Two experimental flow cells have been constructed by soft lithography, with different degrees of heterogeneity in the grain size distribution. To model two-phase flow at the pore scale, we solve Navier-Stokes equations for mass and momentum conservation in the discretized pore space and employ the Volume of Fluid (VOF) method to track the evolution of the interface. During drainage, if the defending fluid is the most viscous, viscous forces destabilize the interface, giving rise to the formation of preferential flow paths, in the form of a branched fingering structure. We test different numerical models (a 2D vertical integrated model and a full 3D model) and different initial conditions, studying their impact on the simulated spatial distributions of the fluid phases. Although due to the unstable nature of the invasion, small discrepancies between the experimental setup and the numerical model can result in different fluids patterns (see figure), simulations show a satisfactory agreement with the structures observed experimentally. To estimate the ability of the numerical approach to reproduce unstable displacement, we compare several quantities in both the statistical and deterministic sense. We demonstrate the impact of three main sources of uncertainty : i) the uncertainty on the pore space geometry, ii) the interface initialization and ii) three dimensional effects [1]. Simulations in weakly heterogeneous geometries are found to be more challenging because uncertainties on pore neck widths are on the same

  8. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  9. Two-Phase Flow in Porous Media: Predicting Its Dependence on Capillary Number and Viscosity Ratio

    SciTech Connect

    Ferer, M.; Anna, Shelley L.; Tortora, Paul; Kadambi, J. R.; Oliver, M.; Bromhal, Grant S.; Smith, Duane H.

    2011-01-01

    Motivated by the need to determine the dependencies of two-phase flow in a wide range of applications from carbon dioxide sequestration to enhanced oil recovery, we have developed a standard two-dimensional, pore-level model of immiscible drainage, incorporating viscous and capillary effects. This model has been validated through comparison with several experiments. For a range of stable viscosity ratios (M=μinjected,nwfdefending,wf ≥ 1), we had increased the capillary number, Nc and studied the way in which the flows deviate from fractal capillary fingering at a characteristic time and become compact for realistic capillary numbers. This crossover has enabled predictions for the dependence of the flow behavior upon capillary number and viscosity ratio. Our results for the crossover agreed with earlier theoretical predictions, including the universality of the leading power-law indicating its independence of details of the porous medium structure. In this article, we have observed a similar crossover from initial fractal viscous fingering (FVF) to compact flow, for large capillary numbers and unstable viscosity ratios M < 1. In this case, we increased the viscosity ratio from infinitesimal values, and studied the way in which the flows deviate from FVF at a characteristic time and become compact for non-zero viscosity ratios. This crossover has been studied using both our pore-level model and micro-fluidic flow-cell experiments. The same characteristic time, τ = 1/M0.7, satisfactorily describes both the pore-level results.

  10. Measurement of Two-Phase Flow and Heat Transfer Parameters using Infrared Thermometry

    NASA Technical Reports Server (NTRS)

    Kim, Tae-Hoon; Kommer, Eric; Dessiatoun, Serguei; Kim, Jungho

    2012-01-01

    A novel technique to measure heat transfer and liquid film thickness distributions over relatively large areas for two-phase flow and heat transfer phenomena using infrared (IR)thermometry is described. IR thermometry is an established technology that can be used to measure temperatures when optical access to the surface is available in the wavelengths of interest. In this work, a midwave IR camera (3.6-5.1 microns) is used to determine the temperature distribution within a multilayer consisting of a silicon substrate coated with a thin insulator. Since silicon is largely transparent to IR radiation, the temperature of the inner and outer walls of the multilayer can be measured by coating selected areas with a thin, IR opaque film. If the fluid used is also partially transparent to IR, the flow can be visualized and the liquid film thickness can be measured. The theoretical basis for the technique is given along with a description of the test apparatus and data reduction procedure. The technique is demonstrated by determining the heat transfer coefficient distributions produced by droplet evaporation and flow boiling heat transfer.

  11. Non-equilibrium model of two-phase porous media flow with phase change

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Fu, X.; Juanes, R.

    2014-12-01

    The efficient simulation of multi-phase multi-component flow through geologic porous media is challenging and computationally intensive, yet quantitative modeling of these processes is essential in engineering and the geosciences. Multiphase flow with phase change and complex phase behavior arises in numerous applications, including enhanced oil recovery, steam injection in groundwater remediation, geologic CO2 storage and enhanced geothermal energy systems. A challenge of multiphase compositional simulation is that the number of existing phases varies with position and time, and thus the number of state variables in the saturation-based conservation laws is a function of space and time. The tasks of phase-state identification and determination of the composition of the different phases are performed assuming local thermodynamic equilibrium. Here we investigate a thermodynamically consistent formulation for non-isothermal two-phase flow, in systems where the hypothesis of instantaneous local equilibrium does not hold. Non-equilibrium effects are important in coarse-scale simulations where the assumption of complete mixing in each gridblock is not realistic. We apply our model to steam injection in water-saturated porous media.

  12. Correlation for liquid entrainment in annular two-phase flow of viscous fluid

    SciTech Connect

    Ishii, Mamoru; Mishima, Kaichiro

    1981-03-01

    The droplet entrainment from a liquid film by gas flow is important to mass, momentum, and energy transfer in annular two-phase flow. The amount of entrainment can significantly affect occurrences of the dryout and post-dryout heat flux as well as the rewetting phenomena of a hot dry surface. In view of these, a correlation for the amount of entrained liquid in annular flow has been developed from a simple model and experimental data. There are basically two different regions of entrainment, namely, the entrance and quasiequilibrium regions. The correlation for the equilibrium region is expressed in terms of the dimensionless gas flux, diameter, and total liquid Reynolds number. The entrance effect is taken into account by an exponential relaxation function. It has been shown that this new model can satisfactorily correlate wide ranges of experimental data for water. Furthermore, the necessary distance for the development of entrainment is identified. These correlations, therefore, can supply accurate information on entrainment which have not been available previously. (author)

  13. An extended pressure finite element space for two-phase incompressible flows with surface tension

    NASA Astrophysics Data System (ADS)

    Groß, Sven; Reusken, Arnold

    2007-05-01

    We consider a standard model for incompressible two-phase flows in which a localized force at the interface describes the effect of surface tension. If a level set (or VOF) method is applied then the interface, which is implicitly given by the zero level of the level set function, is in general not aligned with the triangulation that is used in the discretization of the flow problem. This non-alignment causes severe difficulties w.r.t. the discretization of the localized surface tension force and the discretization of the flow variables. In cases with large surface tension forces the pressure has a large jump across the interface. In standard finite element spaces, due to the non-alignment, the functions are continuous across the interface and thus not appropriate for the approximation of the discontinuous pressure. In many simulations these effects cause large oscillations of the velocity close to the interface, so-called spurious velocities. In this paper, for a simplified model problem, we give an analysis that explains why known (standard) methods for discretization of the localized force term and for discretization of the pressure variable often yield large spurious velocities. In the paper [S. Groß, A. Reusken, Finite element discretization error analysis of a surface tension force in two-phase incompressible flows, Preprint 262, IGPM, RWTH Aachen, SIAM J. Numer. Anal. (accepted for publication)], we introduce a new and accurate method for approximation of the surface tension force. In the present paper, we use the extended finite element space (XFEM), presented in [N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng. 46 (1999) 131-150; T. Belytschko, N. Moes, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements, Int. J. Numer. Meth. Eng. 50 (2001) 993-1013], for the discretization of the pressure. We show that the size of spurious velocities is reduced substantially, provided we

  14. The Effect of Numerical Diffusion on Oscillatory Flow in Two-Phase Boiling Channel

    SciTech Connect

    Chaiwat Muncharoen; Tatchai Sumitra; Takatoshi Takemoto; Masanori Aritomi

    2002-07-01

    The purpose of this paper is to study the effect of numerical diffusion on the ill-posedness and the accuracy of the model simulated the thermal-hydraulic instabilities in boiling water reactor channels. The model of the upward flow system in two-phase boiling channel simulating BWR core was developed to investigate the oscillatory flow, which was caused by flow instabilities, by using the drift-flux model. The time step was fixed at 1 millisecond at all time and the mesh size was varied as follows: 400, 200, 100, 50 and 20 mm. Then the numerical diffusion in the conservation equations was analyzed in reference to spatial mesh size. The maximums of the absolute ratios of the first order and the second order approximations of the time derivative terms (A/B) and the convective terms (C/D), including the summations of the second power of the ratios of the second order and the first order approximations of the time derivative terms ({sigma}(B/A){sup 2}) and the convective terms ({sigma}(D/C){sup 2}) were calculated to investigate the ill-posedness and the accuracy of numerical calculation of this model. The results from the model showed that the numerical diffusion in the time derivative term and the convective term play the important role in the drift-flux model for the small mesh size and may cause the ill-posedness and degrade the accuracy of the model. It was found that the A/B, the C/D, the {sigma}(B/A){sup 2} and the {sigma}(D/C){sup 2} in the drift-flux model highly fluctuated at the small mesh size of 50 and 20 mm. More importantly, the numerical diffusion due to the oscillation flow and the mesh size variation may have an effect on the amplitude of the pressure drop of the oscillatory flow at the small mesh size. (authors)

  15. Effect of Pressure with Wall Heating in Annular Two-Phase Flow

    SciTech Connect

    R. Kumar; T.A. Trabold

    2000-10-31

    The local distributions of void fraction, interfacial frequency and velocity have been measured in annular flow of R-134a through a wall-heated, high aspect ratio duct. High aspect ratio ducts provide superior optical access to tubes or irregular geometries. This work expands upon earlier experiments conducted with adiabatic flows in the same test section. Use of thin, transparent heater films on quartz windows provided sufficient electrical power capacity to produce the full range of two-phase conditions of interest. With wall vapor generation, the system pressure was varied from 0.9 to 2.4 MPa, thus allowing the investigation of flows with liquid-to-vapor density ratios covering the range of about 7 to 27, far less than studied in air-water and similar systems. There is evidence that for a given cross-sectional average void fraction, the local phase distributions can be different depending on whether the vapor phase is generated at the wall, or upstream of the test section inlet. In wall-heated flows, local void fraction profiles measured across both the wide and narrow test section dimensions illustrate the profound effect that pressure has on the local flow structure; notably, increasing pressure appears to thin the wall-bounded liquid films and redistribute liquid toward the edges of the test section. This general trend is also manifested in the distributions of mean droplet diameter and interfacial area density, which are inferred from local measurements of void fraction, droplet frequency and velocity. At high pressure, the interfacial area density is increased due to the significant enhancement in droplet concentration.

  16. Scaling of two-phase flow regimes in a rod bundle with freon

    SciTech Connect

    Symolon, P.D.

    1990-07-01

    Fluid to fluid modeling of the thermal-hydraulics of steam/water systems using Freon has been the subject of research for the past 25 years. However, there is as yet no universally accepted set of scaling laws to define the geometry and velocity scaling requirements of an equivalent Freon test of the full scale steam/water system being simulated. This paper describes a scaling concept where the Weber and Froud numbers of the Freon model are matched to that of the prototype being simulated, thus creating a comparable balance among inertia, surface tension and buoyancy forces. In this test it was demonstrated that similar flow regime transitions are observed in a half scale Freon simulation of a full scale steam/water test run at Dynatech. It is also shown using a two fluid analytical model and existing correlations for friction and interfacial momentum exchange from the open literature, that a half scale simulation leads to nearly the same slip ratio as for full scale steam/water, while the slip ratio for a full scale Freon simulation is too high. A comparison of the predicted flow distribution in the 4-rod bundle is made using the COBRA-IV code for a full scale simulation using Freon, a half scale simulation using Freon and full scale test with water. The COBRA results demonstrated that a half scale test section model using Freon yields a subchannel flow distribution similar to the steam/water case, while a full scale Freon simulation results in a distorted subchannel flow distribution. It is concluded that the appropriate geometric scale factor for Freon simulation of two-phase steam/water flow in tube bundles is one-half for a broad range of thermal-hydraulic conditions. 24 refs., 12 figs., 4 tabs.

  17. Cryogenic two-phase flow during chilldown: Flow transition and nucleate boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Jackson, Jelliffe Kevin

    The recent interest in space exploration has placed a renewed focus on rocket propulsion technology. Cryogenic propellants are the preferred fuel for rocket propulsion since they are more energetic and environmentally friendly compared with other storable fuels. Voracious evaporation occurs while transferring these fluids through a pipeline that is initially in thermal equilibrium with the environment. This phenomenon is referred to as line chilldown. Large temperature differences, rapid transients, pressure fluctuations and the transition from the film boiling to the nucleate boiling regime characterize the chilldown process. Although the existence of the chilldown phenomenon has been known for decades, the process is not well understood. Attempts have been made to model the chilldown process; however the results have been fair at best. A major shortcoming of these models is the use of correlations that were developed for steady, non-cryogenic flows. The development of reliable correlations for cryogenic chilldown has been hindered by the lack of experimental data. An experimental facility was constructed that allows the flow structure, the temperature history and the pressure history to be recorded during the line chilldown process. The temperature history is then utilized in conjunction with an inverse heat conduction procedure that was developed, which allows the unsteady heat transfer coefficient on the interior of the pipe wall to be extracted. This database is used to evaluate present predictive models and correlations for flow regime transition and nucleate boiling heat transfer. It is found that by calibrating the transition between the stratified-wavy and the intermittent/annular regimes of the Taitel and Dukler flow regime map, satisfactory predictions are obtained. It is also found that by utilizing a simple model that includes the effect of flow structure and incorporating the enhancement provided by the local heat flux, significant improvement in the

  18. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  19. Non-isothermal flow in low permeable porous media: A comparison of Richards' and two-phase flow approaches

    SciTech Connect

    Wang, W.; Rutqvist, J.; Gorke, U.-J.; Birkholzer, J.T.; Kolditz, O.

    2010-03-15

    The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published data from a laboratory experiment is studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability for both the liquid and the gas phase, only the two-phase flow approach provides reasonable results.

  20. Ice melting and downward transport of meltwater by two-phase flow in Europa's ice shell

    NASA Astrophysics Data System (ADS)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2014-03-01

    With its young surface, very few impact craters, and the abundance of tectonic and cryovolcanic features, Europa has likely been subjected to relatively recent endogenic activity. Morphological analyses of chaos terrains and double ridges suggest the presence of liquid water within the ice shell a few kilometers below the surface, which may result from enhanced tidal heating. A major issue concerns the thermal/gravitational stability of these water reservoirs. Here we investigate the conditions under which water can be generated and transported through Europa's ice shell. We address particularly the downward two-phase flow by solving the equations for a two-phase mixture of water ice and liquid water in one-dimensional geometry. In the case of purely temperate ice, we show that water is transported downward very efficiently in the form of successive porosity waves. The time needed to transport the water from the subsurface region to the underlying ocean varies between ˜1 and 100 kyr, depending mostly on the ice permeability. We further show that water produced in the head of tidally heated hot plumes never accumulates at shallow depths and is rapidly extracted from the ice shell (within less than a few hundred kiloyears). Our calculations indicate that liquid water will be largely absent in the near subsurface, with the possible exception of cold conductive regions subjected to strong tidal friction. Recently active double ridges subjected to large tidally driven strike-slip motions are perhaps the most likely candidates for the detection of transient water lenses at shallow depths on Europa.

  1. Conditional moment closure for two-phase flows - A review of recent developments and application to various spray combustion configurations

    NASA Astrophysics Data System (ADS)

    Wright, Y. M.; Bolla, M.; Boulouchos, K.; Borghesi, G.; Mastorakos, E.

    2015-01-01

    Energy conversion devices of practical interest such as engines or combustors operate in highly turbulent flow regimes. Due to the nature of the hydrocarbon fuels employed, the oxidation chemistry involves a broad range of time-scales some of which cannot be decoupled from the flow. Among the approaches utilised to tackle the modelling of turbulent combustion, Conditional Moment Closure (CMC), belonging to the computationally efficient class of presumed PDF methods, has shown great potential. For single-phase flows it has been demonstrated on non-premixed turbulent lifted and opposed jets, lifted flames and auto-igniting jets. Here we seek to review recent advances in both modelling and application of CMC for auto-ignition of fuel sprays. The experiments chosen for code validation and model improvement include generic spray test rigs with dimensions of passenger car as well as large two-stroke marine engines. Data for a broad range of operating conditions of a heavy-duty truck engine is additionally employed to assess the predictive capability of the model with respect to NOx emissions. An outlook on future enhancements including e.g. LES-CMC formulation also for two-phase flows as well as developments in the field of soot emissions are summarised briefly.

  2. Effect of hydrophobicity on colloid transport during two-phase flow in a micromodel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiulan; Hassanizadeh, S. M.; Liu, B.; Schijven, J. F.; Karadimitriou, N. K.

    2014-10-01

    The goal of this research was to investigate the difference in behavior of hydrophilic and hydrophobic colloids during transport in two-phase flow, in general, and their attachment and remobilization characters, in particular. Experiments were performed in a hydrophobic polydimethylsiloxane (PDMS) micromodel. Water and fluorinert-FC43 were used as the two immiscible liquids. Given the fact that PDMS is a hydrophobic material, fluorinert was the wetting phase and water was the nonwetting phase in this micromodel. As model colloids, we used hydrophilic polystyrene carboxylate-modified microspheres (dispersible in water) and hydrophobic fluorous-modified silica microspheres (dispersible in fluorinert) in separate experiments. Using a confocal laser scanning microscope, we directly observed fluid distribution and colloid movement within pores of the micromodel. We also obtained concentration breakthrough curves by measuring the fluorescent intensities in the outlet of the micromodel. The breakthrough curves during steady-state flow showed that the colloid attachment rate is inversely related to the background saturation of the fluid in which the colloids were dispersed. Our visualization results showed that the enhanced attachment of hydrophilic colloids at lower water saturations was due to the retention at the fluorinert-water interface and fluorinert-water-solid contact lines. This effect was observed to be much less in the case of hydrophobic colloids (dispersed in fluorinert). In order to explain the colloids behavior, we calculated interaction potential energies of colloids with PDMS surfaces, fluid-fluid interfaces, and fluid-fluid-solid contact lines. Also, balance of forces that control colloid, including DLVO, hydrodynamic, and surface tension forces, were determined. Our calculations showed that there is a stronger repulsive energy barrier between hydrophobic colloids and fluorinert-water interface and solid-fluid interface, compared with the hydrophilic

  3. Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method

    NASA Astrophysics Data System (ADS)

    Qiao, W.

    2015-12-01

    The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the

  4. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-03-09

    This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less

  5. Gradient-augmented hybrid interface capturing method for incompressible two-phase flow

    NASA Astrophysics Data System (ADS)

    Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu

    2016-06-01

    Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).

  6. Non-isothermal two-phase flow in low-permeable porous media

    NASA Astrophysics Data System (ADS)

    Kolditz, O.; De Jonge, J.

    In this paper, we consider non-isothermal two-phase flow of two components (air and water) in gaseous and liquid phases in extremely low-permeable porous media through the use of the finite element method (FEM). Interphase mass transfer of the components between any of the phases is evaluated by assuming local thermodynamic equilibrium between the phases. Heat transfer occurs by conduction and multiphase advection. General equations of state for phase changes (Clausius-Clapeyron and Henry law) as well as multiphase properties for the low-permeable bentonites are implemented in the code. Additionally we consider the impact of swelling/shrinking processes on porosity and permeability changes. The numerical model is implemented in the context of the simulator RockFlow/RockMech (RF/RM), which is based on object-oriented programming techniques. The finite element formulations are written in terms of dimensionless quantities. This has proved to be advantageous for preconditioning composite system matrices of coupled multi-field problems. Three application examples are presented. The first one examines differences between the Richards' approximation and the multicomponent/multiphase approach, and between two numerical coupling schemes. The second example serves as partial verification against experimental results and to demonstrate coherence between different element types. The last example shows simultaneous desaturation and resaturation in one system.

  7. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  8. Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus

    NASA Astrophysics Data System (ADS)

    Jha, Basant K.; Apere, Clement A.

    2011-12-01

    The problem of two-phase unsteady MHD flow between two concentric cylinders of infinite length has been analysed when the outer cylinder is impulsively started. The system of partial differential equations describing the flow problem is formulated taking the viscosity of the particle phase into consideration. Unified closed form expressions are obtained for the velocities and the skin frictions for both cases of the applied magnetic field being fixed to either the fluid or the moving outer cylinder. The problem is solved using a combination of the Laplace transform technique, D'Alemberts and the Riemann-sum approximation methods. The solution obtained is validated by comparisons with the closed form solutions obtained for the steady states which has been derived separately. The governing equations are also solved using the implicit finite difference method to verify the present proposed method. The variation of the velocity and the skin friction with the dimensionless parameters occuring in the problem are illustrated graphically and discussed for both phases.

  9. Theoretical and experimental studies of rate dependent two-phase immiscible flow

    SciTech Connect

    Allen, F.R.; Maddison, G.P.; Puckett, D.A.

    1982-09-01

    Theoretical predictions are obtained using both Eulerian and Lagrangian methods for calculating saturation profiles in two phase immiscible displacements in the presence of capillary effects. The one-dimensional simulator WFLOOD is described with Lagrangian and Eulerian options for refined calculations of saturation distributions throughout all stages of a linear core flood. WFLOOD calculations are presented to demonstrate typical waterflood performance in a one metre core using two different capillary pressure functions at high and low flow rates. Steady state and dynamic brine/tetradecane displacement experiments are described using Clashach sandstone cores with radioactive ferrocene in the oil phase for the measurement of saturation by a nucleonic method. The PORES reservoir simulation model provides a theoretical analysis of the experiments in which the non-uniform initial saturation distributions must be represented. It is shown that PORES, used in conjunction with measured steady state relative permeabilities and static capillary data, reproduces the time-dependent saturation profiles to within the accuracy of the measurements at high and low flow rates. The Lagrangian option in WFLOOD provides a theoretical benchmark which defines the levels of numerical dispersion present in the PORES Eulerian finite difference calculations.

  10. Measurement of velocities in gas-liquid two-phase flow using Laser Doppler Velocimetry

    SciTech Connect

    Vassallo, P.F.; Trabold, T.A.; Moore, W.E.; Kirouac, G.J.

    1992-09-01

    Measurements of bubble and liquid velocities in two-phase flow have been made using a new forward/backward scattering Laser Doppler Velocimetry (LDV) technique. This work was performed in a 6.4 by 11.1 mm vertical duct using known air/water mixtures. A standard LDV fiber optic probe was used to measure the bubble velocity, using direct backscattered light. A novel retro-reflector and lens assembly permitted the same probe to measure the liquid velocity with direct forward-scattered light. The bubble velocity was confirmed by independent measurements with a high-speed video system. The liquid velocity was confirmed by demonstrating the dominance of the liquid seed data rate in the forward-scatter measurement. Experimental data are presented to demonstrate the accuracy of the technique for a wide range of flow conditions, from bubbles as small as 0.75-mm-diam to slugs as large as 10-mm wide by 30-mm long. In the slug regime, the LDV technique performed velocity measurements for both phases, for void fractions up to 50%, which was the upper limit of our experimental investigation.

  11. An adaptive level set approach for incompressible two-phase flows

    SciTech Connect

    Sussman, M.; Almgren, A.S.; Bell, J.B.

    1997-04-01

    In Sussman, Smereka and Osher, a numerical method using the level set approach was formulated for solving incompressible two-phase flow with surface tension. In the level set approach, the interface is represented as the zero level set of a smooth function; this has the effect of replacing the advection of density, which has steep gradients at the interface, with the advection of the level set function, which is smooth. In addition, the interface can merge or break up with no special treatment. The authors maintain the level set function as the signed distance from the interface in order to robustly compute flows with high density ratios and stiff surface tension effects. In this work, they couple the level set scheme to an adaptive projection method for the incompressible Navier-Stokes equations, in order to achieve higher resolution of the interface with a minimum of additional expense. They present two-dimensional axisymmetric and fully three-dimensional results of air bubble and water drop computations.

  12. Gas–liquid two-phase flow patterns in rectangular polymeric microchannels: effect of surface wetting properties

    PubMed Central

    Huh, D; Kuo, C-H; Grotberg, J B

    2010-01-01

    Here we map gas–liquid two-phase flow regimes observed in polymeric microchannels with different wetting properties. We utilized video and confocal microscopy to examine two-phase flow patterns produced by parallel injection of air and water through a Y-shaped junction into a rectangular microchannel made of poly(dimethylsiloxane) (PDMS). We observed seven flow regimes in microchannels with hydrophobic walls, whereas only two flow patterns were identified in hydrophilic microchannels. Our study demonstrates that surface wettability has a profound influence on the spatial distribution of air and water moving in microchannels. PMID:20126421

  13. Flow regime mapping of vertical two-phase downflow in a ribbed annulus

    SciTech Connect

    Kielpinski, A.L.

    1992-12-01

    Two-phase flow regimes have been mapped for vertical, cocurrent downflow in a narrow annulus which is partially segmented by the presence of longitudinal ribs. This geometry and flow condition has application to the analysis of a Large-Break Loss of Coolant Accident (LB-LOCA) in the production K-Reactor at the Savannah River Site (SRS). The ribbed annular geometry, particularly the presence of non-sealing ribs, gives rise to some unique phenomenological features. The flow behavior is influenced by the partial segmentation of the annulus into four quadrants or subchannels. A random element is induced by the natural bowing of the slender tubes; the width of the azimuthal flow path between two subchannels at a given axial location is indeterminate, and can take on any value between zero and the maximum clearance of 7.6 {times} l0{sup {minus}4} m. When the rib gap is zero at a given location, it is at a maximum 180P away at the same axial location. The range of rib gaps is spanned in a single test section, as it would be also in a reactor assembly. As a result of these effects, flow regime maps obtained by other researchers for downflow in annuli are not accurate for defining flow regimes in a ribbed annulus. Flow regime transitions similar to those noted by, e.g., Bamea, were observed; the locations of these transitions were displaced with respect to the transition equations derived by Bamea. Experimental bubble rise velocity measurements were also obtained in the same test section. The bubble rise velocities were much higher than expected from the theory developed for slug bubbles in tubes, unribbed annuli, and rectangular channels. An elliptical-cap bubble rises faster than a slug bubble of the same area. Large, slug-shaped bubbles injected into the test section were observed to reduce in size as they rose, due to interaction with a longitudinal rib. They thereby adopted a shape more like an elliptical-cap bubble, hence rising faster than the original slug bubble.

  14. Flow regime mapping of vertical two-phase downflow in a ribbed annulus

    SciTech Connect

    Kielpinski, A.L.

    1992-01-01

    Two-phase flow regimes have been mapped for vertical, cocurrent downflow in a narrow annulus which is partially segmented by the presence of longitudinal ribs. This geometry and flow condition has application to the analysis of a Large-Break Loss of Coolant Accident (LB-LOCA) in the production K-Reactor at the Savannah River Site (SRS). The ribbed annular geometry, particularly the presence of non-sealing ribs, gives rise to some unique phenomenological features. The flow behavior is influenced by the partial segmentation of the annulus into four quadrants or subchannels. A random element is induced by the natural bowing of the slender tubes; the width of the azimuthal flow path between two subchannels at a given axial location is indeterminate, and can take on any value between zero and the maximum clearance of 7.6 [times] l0[sup [minus]4] m. When the rib gap is zero at a given location, it is at a maximum 180P away at the same axial location. The range of rib gaps is spanned in a single test section, as it would be also in a reactor assembly. As a result of these effects, flow regime maps obtained by other researchers for downflow in annuli are not accurate for defining flow regimes in a ribbed annulus. Flow regime transitions similar to those noted by, e.g., Bamea, were observed; the locations of these transitions were displaced with respect to the transition equations derived by Bamea. Experimental bubble rise velocity measurements were also obtained in the same test section. The bubble rise velocities were much higher than expected from the theory developed for slug bubbles in tubes, unribbed annuli, and rectangular channels. An elliptical-cap bubble rises faster than a slug bubble of the same area. Large, slug-shaped bubbles injected into the test section were observed to reduce in size as they rose, due to interaction with a longitudinal rib. They thereby adopted a shape more like an elliptical-cap bubble, hence rising faster than the original slug bubble.

  15. An experimental study on the static and dynamic characteristics of pump annular seals with two phase flow

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Nishino, T.

    1994-01-01

    A new test apparatus is reconstructed and is applied to investigate static and dynamic characteristics of annular seals leaked by two phase flow (gas and liquid) for turbopumps. The fluid forces acting on the seals are measured for various parameters such as void ratio, the preswirl velocity, the pressure difference between the inlet and outlet of the seal, the whirling amplitude, and the ratio of whirling speed to spinning speed of the rotor. Influence of these parameters on the static and dynamic characteristics is investigated from the experimental results. As a result, with regard to the two phase flow, as the void ratio increases, the flow induced force decreases. Another dynamic characteristic of two phase flow is as almost similar as that of the monophase flow.

  16. Tutorial on Quantification of Differences between Single- and Two-Component Two-Phase Flow and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2003-01-01

    Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control

  17. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation

    SciTech Connect

    Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca; Retterer, Scott T; Yin, Xiaolong; Neeves, Keith B

    2012-01-01

    The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.

  18. Dividing phases in two-phase flow and modeling of interfacial drag

    SciTech Connect

    Narumo, T.; Rajamaeki, M.

    1997-07-01

    Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.

  19. Streamline Simulation of a Two-Phase Flow in Heterogeneous and Anisotropic Porous Media

    NASA Astrophysics Data System (ADS)

    Cervantes, D.; Salazar, A.; de la Cruz, L.

    2013-05-01

    The Streamline Simulation (SLS) have been in the literature since 1934, see [1], and is now accepted as an effective and complementary technology to more traditional flow modeling approaches. SLS is particularly effective in the numerical solution of geologically complex and heterogeneous systems, where the flow is defined mainly by permeability, porosity, and fault distributions of the rock, and fluid mobility. In order to apply the SLS technique to multiphase flow, we need to rewrite the governing equations of N-phases flow in terms of one pressure equation and N-1 saturation equations. Once we have this formulation, the steps on the SLS technique are: (1) Solve the pressure equation on a mesh of the whole domain and calculate the velocity field; (2) Using the velocity field, construct the three-dimensional streamlines; (3) Recast the mass conservation equations along the streamlines in terms of a new variable called time-of- flight (TOF); (4) Solve the 1D transport equations along the streamlines. When gravity and capillary are present, we account for these effects using operator-splitting technique. In the step (4), we commonly need an interpolation of the pressure field from the mesh to the streamlines. Also, some times a periodic updating of streamlines is required, and in this case the field variables calculated on the streamlines, need to be interpolated to the mesh. In this work we present an implementation of the SLS technique for solving an incompressible and immiscible two-phase flow, where capillary pressure and gravity are neglected. We solve the pressure equation using the finite volume method (FVM). The transport equations on the 1D streamlines are in this case hyperbolic, and we apply FVM in combination with upwinding techniques, in order to obtain stable numerical solutions. The interpolation of the variables from the mesh to the streamlines, and vice versa, is done using Radial Basis Functions. We study several interpolation kernels to reduce the

  20. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    PubMed

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  1. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    PubMed

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185959

  2. An implicit numerical model for multicomponent compressible two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Firoozabadi, Abbas

    2015-11-01

    We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.

  3. On the convergence of the weakly compressible sharp-interface method for two-phase flows

    NASA Astrophysics Data System (ADS)

    Schranner, Felix S.; Hu, Xiangyu; Adams, Nikolaus A.

    2016-11-01

    A weakly compressible sharp-interface framework for two-phase flows is presented. Special emphasis is on investigating its convergence properties. For this purpose a well-defined set of benchmark configurations is introduced. These may serve as future references for the verification of sharp-interface methods. Global mass and momentum conservation is ensured by the conservative sharp-interface method. Viscous and capillary stresses are considered directly at the interface. A low-dissipation weakly compressible Roe Riemann solver, in combination with a 5th-order WENO scheme, leads to high spatial accuracy. A wavelet-based adaptive multi-resolution approach permits to combine computational efficiency with physical consistency. The first test configuration is a Rayleigh-Taylor instability at moderate Reynolds number and infinite Eötvös number. A second group of benchmark cases are isolated air bubbles rising in water at high Eötvös numbers, and low to high Reynolds numbers. With these test cases, three distinct types of complex interface evolution, which are typical for a wide range of industrial applications, are realized.

  4. Determination of volume fractions in two-phase flows from sound speed measurement

    SciTech Connect

    Chaudhuri, Anirban; Sinha, Dipen N.; Osterhoudt, Curtis F.

    2012-08-15

    Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.

  5. Theoretical and experimental studies of rate-dependent two-phase immiscible flow

    SciTech Connect

    Allen, F.R.; Puckett, D.A.

    1986-01-01

    Theoretical predictions are obtained with both Eulerian and Lagrangian methods for calculating saturation profiles in two-phase immiscible displacements in the presence of capillary pressure effects. The one-dimensional (1D) simulator WFLOOD is described with Lagrangian and Eulerian options for refined calculations of saturation distributions throughout all stages of a linear coreflood. WFLOOD calculations are presented to demonstrate typical waterflood performance in a 1-m (3.3-ft) core with two different capillary-pressure functions at high and low flow rates. Steady-state and dynamic brine-tetradecane displacement experiments are described with Clashach sandstone cores that have radioactive ferrocene in the oil phase to measure saturation by a new nucleonic method. Some of the nonuniform character of these cores has been revealed by measurements. The PORES reservoir simulation model is used for a theoretical analysis of the experiments in which the nonuniform initial saturation distributions must be represented. It is shown that PORES, used in conjunction with measured steady-state relative permeabilities and measured static capillary pressure data, reproduces the time-dependent saturation profiles to within the accuracy of the measurements at high and low flood rates. The Lagrangian treatment in WFLOOD provides a theoretical benchmark that defines the levels of numerical dispersion present in the PORES Eulerian finite-difference calculations.

  6. The use of wavelet transforms in the solution of two-phase flow problems

    SciTech Connect

    Moridis, G.J.; Nikolaou, M.; You, Yong

    1994-10-01

    In this paper we present the use of wavelets to solve the nonlinear Partial Differential.Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt chance, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigational any spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. We determine that the Chui-Wang, wavelets and a collocation method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. Our results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts.

  7. Coupled thermodynamic and two-phase flow modelling of partially melting crust

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Bouilhol, Pierre; Magni, Valentina; van Hunen, Jeroen; Velic, Mirko

    2016-04-01

    How magmas are formed, transferred and interact in the lower crust to form mid-crust plutonic belts remain a fundamental question to understand the chemical and mechanical evolution of continents. To assess this question we developed a 2-D two-phase flow code using finite volume method. Our formulation takes into account: (i) an extended Darcy's law for fluid flow with first order temperature- and fluid-content dependency for the host-rock viscosity and silica-dependent viscosity for the fluid, (ii) the heat equation assuming thermal equilibrium for both solid and liquid and temperature-dependent diffusivity, (iii) thermodynamic modelling of stable phases via a dynamic coupling with Perple_X, and (iv) chemical advection of both the solid and liquid composition. To model chemical interactions with the host rock during magma transport, the melt is assumed to be either in thermodynamic equilibrium or in thermodynamic disequilibrium, or as function of these two endmembers. We applied our modelling approach to investigate the behaviour and composition of magma during lower crust melting. Our goal is to better understand the formation of felsic crust through melting, segregation and assimilation of lower crustal lithologies, applied to Archaean systems. Our preliminary results show the ascend of silica-rich magmas is slow, occurring on the timescale of millions of years, and is highly controlled by (i) the melting curve of the protolith and (ii) by its chemical degree of interaction with the host rock. The resulting transferred magmas are in good accordance with observed composition forming the grey gneisses of Archean terranes (i.e SiO2-rich > 62%, Mg# = 40-50, Na2O ~6%, MgO = 0.5-1%).

  8. Numerical and Experimental study of secondary flows in a rotating two-phase flow: the tea leaf paradox

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis

    2015-11-01

    Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.

  9. Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.

    2002-01-01

    In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were

  10. 3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank

    NASA Astrophysics Data System (ADS)

    Xue, R.; Tian, R.; Yan, S. Y.; Li, S.

    In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.

  11. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-02-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

  12. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-02-02

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

  13. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    PubMed Central

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  14. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  15. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges.

    PubMed

    Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R

    2008-07-01

    Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.

  16. Research on one-dimensional two-phase flow. Theory on hydrodynamic balance in two fluid model and its application

    NASA Astrophysics Data System (ADS)

    Adachi, H.

    1986-08-01

    In the Part I, the author describes the fundamental form of the hydraulic basic equations for a one-dimensional two-phase flow (two fluid model). Most of the discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion, and the author's equations of motion have a strong uniqueness on the following three points in comparison with conventional equations of motion: (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid; (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid; and (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of stational inertia force term. In these three, the item: (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the elementary part of fluid, which is independent of force; (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term; and (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In the Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by using the basic equations derived in the Part I.

  17. Invasion Patterns During Two-phase Flow In Deformable Porous Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2016-04-01

    , when normalized by obtained power laws with time N(t) ∝ tα and r(t) ∝ tβ. [1] Eriksen F.K., Toussaint R., Måløy K.J. and Flekkøy E.G. (2015) Invasion patterns during two-phase flow in deformable porous media. Front. Phys. 3:81. doi: 10.3389/fphy.2015.00081

  18. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    PubMed Central

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  19. Two-phase flow bubbly mixing for liquid metal magnetohydrodynamic energy conversion

    NASA Technical Reports Server (NTRS)

    Fabris, G.; Kwack, E.; Harstad, K.; Back, L. H.

    1990-01-01

    Experiments aimed at improving mixer design and investigating the effects of surfactants on the two-phase mixture in two-phase liquid metal MHD (LMMHD) energy conversion systems are described. In addition to conventional photography, flash X-ray imaging was used as a diagnostic tool. It was demonstrated that a high void fraction (0.8) and low velocity slip ratio (1.2) two-phase homogeneous bubbly mixture can be created. It is expected that such a two-phase mixture can be further expanded in a LMMHD generator while maintaining low velocity slip. In such a way, high generator and overall system efficiency would be achieved, making LMMHD systems competitive for a number of commercial applications.

  20. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.

    PubMed

    Dong, S; Wang, X

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  1. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  2. Preliminary Modeling of Two-Phase Flow at the Main Endeavour Vent Field

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.

    2011-12-01

    The high temperature hydrothermal vents of Main Endeavour Field (MEF), Juan de Fuca ridge exhibited quasi-steady North-South trending spatial gradients of both temperature and salinity for more than a decade before a magmatic event changed the vent characteristics. In order to explain these observations, we construct two-dimensional numerical models of two-phase hydrothermal flow of the MEF. We consider both along-axis and across-axis simulations, taking into account the vent field geometry and incorporating various parameters, such as different basal temperature distributions and permeability structures that might affect the vent fluid temperature and chemistry. Preliminary results from across-axis models, in which the basal temperature decreases linearly away from the ridge axis and results in a single high-temperature plume, indicate that basal temperature alone does not affect steady-state vent temperature and salinity of the vents. Simulations that include the presence of a high-permeability extrusive layer 2A atop the spreading ridge results in a zone of narrower and lower temperature venting. The effect of a low permeability zone of anhydrite would tend to mitigate the decrease in temperature, however. Along-axis simulations performed to date, with an extended uniform high temperature basal boundary, produce multiple plumes; but the plumes do not exhibit a strong along-axis gradient in vent salinity or temperature as observed at the MEF. These preliminary results suggest that the observed N-S gradient in temperature and salinity at MEF reflects interplay between heat source and either near the surface or deep-seated heterogeneous permeability structures. Three-dimensional simulations might ultimately be required to understand hydrothermal circulation at the MEF.

  3. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.

    PubMed

    Ramakrishnan, T S; Goode, P A

    2015-07-01

    The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. PMID:25748636

  4. Stability of finite difference approximations of two fluid, two phase flow equations

    SciTech Connect

    Holmes, M.A.

    1995-12-31

    It is well known that the basic single pressure, two fluid model for two phase flow has complex characteristics and is dynamically unstable. Nevertheless, common nuclear reactor thermal-hydraulics codes use variants of this model for reactor safety calculations. In these codes, the non-physical instabilities of the model may be damped by the numerical method and/or additional momentum interchange terms. Both of these effects are investigated using the linearized Von Neumann stability analysis. The stability of the semi-implicit method is of primary concern, because of its computational efficiency and popularity. It is shown that there is likely no completely stable numerical method, including fully implicit methods, for the basic single pressure model. Additionally, the momentum interchange terms commonly added to the basic single pressure model do not result in stable numerical methods for all the physically interesting reference conditions. Although practical stable approximations may be realized on a coarse computational grid, it is concluded that the assumption of instantaneously equilibrated phasic pressures must be relaxed in order to develop a generally stable numerical solution of a two fluid model. The numerical stability of the semi-implicit discretization of the true two pressure models of Ransom and Hicks, and Holm and Kupershmidt is analyzed. The semi-implicit discretization of these models, which possess real characteristics, are found to be numerically stable as long as certain convective limits are satisfied. Based on the form of these models, the general form of a numerically stable, basic two pressure model is proposed. The evolution equation required for closure is a volume fraction transport equation, which may possibly be determined based on void wave propagation considerations. 43 refs., 22 figs., 3 tabs.

  5. Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2009-01-01

    One potential method of geologically sequestering carbon dioxide (CO2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO2 transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT® and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO2 will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.

  6. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  7. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  8. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  9. Applicability of a multirate mass transfer model for immiscible displacement of two fluids to model two phase flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Jan; Neuweiler, Insa

    2014-05-01

    Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. Based on such approaches, we derived a multirate mass transfer (mrmt) model for immiscible displacement of two fluids in highly heterogeneous media including capillary forces by Homogenization theory (see Tecklenburg et. al. (2013)). For the mrmt model the fractured media is represented by a mobile zone, where "fast" flow takes place, and an immobile zone. The immobile zone would be the rock matrix and the mobile zone would be the connected fracture network, where the fractures are represented by an equivalent porous media. The flow in the mobile zone is modelled by the Buckley-Leverett equation. This equation is expanded by a sink-source-term which is nonlocal in time to model the mass transfer between the mobile and the immobile zone. For immiscible displacement of two fluids the mass transfer can be driven by capillary diffusion. For particular imbibition cases this diffusive mass transfer process can be linearized. In this contribution we test the applicability of the mrmt model for the two phase flow in two dimensional fracture networks. This is done with numerical simulations of immiscible displacement in fracture networks. We compare the results of the mrmt model and the results of a full two dimensional two phase flow model where the code dumux by Flemisch et. al. (2011) is used. The flow parameters for the mrmt model are calculated by analyzing fracture and matrix geometry and using the integral solution for two phase flow by McWorther and Sunnada (1990). Tecklenburg, J., Neuweiler, I., Dentz, M., Carrera, J., Geiger, S., Abramowski, C. and O. Silva: A non-local two-phase flow model for immiscible displacement in highly heterogeneous porous media and its parametrization, Advances in

  10. Two-phase flow in porous media: Crossover from capillary fingering to compact invasion for drainage

    SciTech Connect

    Ferer, M.V.; Bromhal, G.S.; Smith, D.H.

    2005-02-01

    It had been predicted that the capillary fingering observed at small capillary numbers should change or cross over to compact invasion at larger capillary numbers or longer times [D. Wilkinson, Phys. Rev. A 34, 1380 (1986)]. We present results from pore-level modeling in two dimensions for the average position (related to the position of the interface) of the injected fluid as well as the width of the interface between the injected, nonwetting fluid and the defending, wetting fluid. These results are entirely consistent with the predicted crossover from the fractal flow characterized by invasion percolation with trapping (IPWT) to compact/linear/stable flow, where the position of the injected fluid advances linearly with time and where the width of the interface is constant. Furthermore, our results for the characteristic time, at which the crossover occurs, agree with the predictions of Wilkinson. To focus on the effect of capillary number, we are considering only viscosity-matched flows where both fluids have the same viscosities. To our knowledge, these are the first pore-level modeling results that quantitatively test the general predictions of Wilkinson for this capillary crossover in the case of drainage. Our modeling results are used to provide closed form expressions predicting the dependence of average position and interfacial width upon capillary number and time, regardless of the size of the system. The size scaling inherent in the crossover combined with our results locating the upper and lower bounds of the crossover regime enable us to predict the location of the crossover for two-dimensional systems of different size. These predictions are compared with flow patterns from experiments in the literature. The agreement between our predictions and the experimental flow patterns indicates that the experiments exhibit the same IPWT to compact crossover observed in our modeling.

  11. Two-phase flow in porous media: Crossover from capillary fingering to compact invasion for drainage.

    PubMed

    Ferer, M; Bromhal, Grant S; Smith, Duane H

    2005-02-01

    It had been predicted that the capillary fingering observed at small capillary numbers should change or cross over to compact invasion at larger capillary numbers or longer times [D. Wilkinson, Phys. Rev. A 34, 1380 (1986)]. We present results from pore-level modeling in two dimensions for the average position (related to the position of the interface) of the injected fluid as well as the width of the interface between the injected, nonwetting fluid and the defending, wetting fluid. These results are entirely consistent with the predicted crossover from the fractal flow characterized by invasion percolation with trapping (IPWT) to compact/linear/stable flow, where the position of the injected fluid advances linearly with time and where the width of the interface is constant. Furthermore, our results for the characteristic time, at which the crossover occurs, agree with the predictions of Wilkinson. To focus on the effect of capillary number, we are considering only viscosity-matched flows where both fluids have the same viscosities. To our knowledge, these are the first pore-level modeling results that quantitatively test the general predictions of Wilkinson for this capillary crossover in the case of drainage. Our modeling results are used to provide closed form expressions predicting the dependence of average position and interfacial width upon capillary number and time, regardless of the size of the system. The size scaling inherent in the crossover combined with our results locating the upper and lower bounds of the crossover regime enable us to predict the location of the crossover for two-dimensional systems of different size. These predictions are compared with flow patterns from experiments in the literature. The agreement between our predictions and the experimental flow patterns indicates that the experiments exhibit the same IPWT to compact crossover observed in our modeling. PMID:15783415

  12. Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.

    SciTech Connect

    Evans, Gregory Herbert; Winters, William S.

    2007-01-01

    This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

  13. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  14. Thermodynamically Constrained Averaging Theory (TCAT) Two-Phase Flow Model: Derivation, Closure, and Simulation Results

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.

    2015-12-01

    The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.

  15. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow

    PubMed Central

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-01-01

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results. PMID:27563907

  16. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    PubMed

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-01-01

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  17. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    PubMed

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-01-01

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results. PMID:27563907

  18. Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code

    SciTech Connect

    Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.

    2009-01-01

    Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.

  19. An experimental study of fluidelastic instability and draf force on a tube in two-phase cross flow

    SciTech Connect

    Joo, Youngcheol

    1994-12-31

    Two-phase cross flow over heat exchanger tubes creates vibrations which contribute greatly to the wear on the tubes. Fluidelastic instability is a major mechanism by which tubes can fail. In this work, the fluidelastic instability of a tube placed in an array subjected to two-phase cross flow has been studied. For the determination of fluidelastic instability, a triangular tube array was used. The tubes were made of acrylic and were 2.2 cm or 2.37 cm in diameter and 20 cm in length. Eighteen tubes and 4 half tubes formed 5 rows with a pitch to diameter ratio of 1.4. All of the tubes except the test tube were rigidly supported at the text section wall. The test tube was flexibly supported with two cantilever beams. By installing cantilever beams horizontally and vertically, drag and lift direction tube vibration were studied. Parameters of tube mass, structural stiffness, natural frequency, and pitch to diameter ratio were varied. The drag coefficients on a rigidly held tube in an array subjected to two-phase cross flow were measured. The tube in an array was located at displaced positions as well as at the normal position in order to study the variation of fluid force as the tube vibrates. In the experiments, gap Reynolds numbers up to 1 x 10{sup 5} were obtained, while void fraction was varied from zero to 0.5. The drag coefficients in two-phase flow are much higher than those in single phase flow. The ratio of two-phase to single phase drag coefficient decreases as Reynolds number increases. The drag coefficient on a tube in an array increases as the tube is displaced in the direction of flow. The drag coefficient increases rapidly when the tube is displaced more than a certain critical distance.

  20. Measurements of interfacial area concentration in two-phase bubbly flow

    SciTech Connect

    Wu, Q.; Kim, S.; McCreary, D.; Ishii, M.; Beus, S.G.

    1997-12-31

    Interfacial area concentration is an important parameter in the two-fluid model for two-phase flow analysis, which is defined as the total interface area per unit mixture volume and has the following local time-averaged expression: {bar a}{sup t} = 1/{Delta}T {Sigma}{sub j}(1/{vert_bar}V{sub i} {center_dot} n{sub i}{vert_bar}){sub j}, where j denotes the j-th interface that passes the point of interest in a time interval {Delta}T. V{sub i} and n{sub i} refer to the bubble interface velocity and surface normal vector, respectively. To measure this parameter, the double-sensor probe technique is commonly used. Due to the influences of the bubble lateral motions, however, the measurement results should be interpreted via a certain statistic approach. Recently, to take into account the effects of the probe spacing, Wu and Ishii provided the following new formula to correlate the measurable values to the interfacial area concentration: {bar a}{sub i}{sup t} = 2N{sub b}/{Delta}T ({Delta}{bar t}/{Delta}s) [2 + (1.2{sigma}{sub {Delta}t}/{Delta}{bar t}){sup 2.25}], for D = 1.2 {approximately} 2.8 {Delta}s, where N{sub b} refers to the number of the bubbles that hit the probe front tip during time interval {Delta}T, {Delta}s denotes the distance between the two probe tips, D is the bubble diameter, {Delta}{bar t} represents the measured average time interval for an interface to travel through the two probe tips, and {sigma}{sub {Delta}t} is the standard deviation of {Delta}t. The theoretical accuracy of this formula is within {+-} 5% if the sample size is sufficiently large. The purpose of this study is to evaluate this method experimentally using an image processing method.

  1. Scale dependent dynamic capillary pressure effect for two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Abidoye, Luqman K.; Das, Diganta B.

    2014-12-01

    Causes and effects of non-uniqueness in capillary pressure and saturation (Pc-S) relationship in porous media are of considerable concern to researchers of two-phase flow. In particular, a significant amounts of discussion have been generated regarding a parameter termed as dynamic coefficient (τ) which has been proposed for inclusion in the functional dependence of Pc-S relationship to quantify dynamic Pc and its relation with time derivative of saturation. While the dependence of the coefficient on fluid and porous media properties is less controversial, its relation to domain scale appears to be dependent on artefacts of experiments, mathematical models and the intra-domain averaging techniques. In an attempt to establish the reality of the scale dependency of the τ-S relationships, we carry out a series of well-defined laboratory experiments to determine τ-S relationships using three different sizes of cylindrical porous domains of silica sand. In this paper, we present our findings on the scale dependence of τ and its relation to high viscosity ratio (μr) silicone oil-water system, where μr is defined as the viscosity of non-wetting phase over that of the wetting phase. An order of magnitude increase in the value of τ was observed across various μr and domain scales. Also, an order of magnitude increase in τ is observed when τ at the top and the bottom sections in a domain are compared. Viscosity ratio and domain scales are found to have similar effects on the trend in τ-S relationship. We carry out a dimensional analysis of τ which shows how different variables, e.g., dimensionless τ and dimensionless domain volume (scale), may be correlated and provides a means to determine the influences of relevant variables on τ. A scaling relationship for τ was derived from the dimensionless analysis which was then validated against independent literature data. This showed that the τ-S relationships obtained from the literature and the scaling

  2. A low Mach number preconditioned scheme for a two-phase liquid-gas compressible flow model

    NASA Astrophysics Data System (ADS)

    Pelanti, Marica

    2015-11-01

    The simulation of liquid-gas flows such as cavitating flows demands numerical methods efficient for a wide range of Mach number regimes, due to the large and rapid variation of the speed of sound in these two-phase flows. When classical upwind finite volume discretizations for compressible flow models are employed, suitable strategies are needed to overcome the well known difficulty of loss of accuracy encountered at low Mach number by these methods. In this work we present a novel finite volume wave propagation scheme with low Mach number preconditioning for the numerical approximation of a six-equation two-phase liquid-gas compressible flow model with stiff mechanical relaxation. A Turkel-type preconditioner is designed to correct the acoustic fields at low Mach number, by altering the numerical dissipation tensor of the scheme. We present numerical results for two-dimensional liquid-gas nozzle flow tests both for low Mach number regimes and for transonic regimes with shock formation, which show the effectiveness and accuracy of the proposed preconditioned method. In particular, in the low Mach number limit the order of pressure perturbations at the discrete level agrees with the theoretical results for the continuous two-phase flow model.

  3. Separation of gas from liquid in a two-phase flow system

    NASA Technical Reports Server (NTRS)

    Hayes, L. G.; Elliott, D. G.

    1973-01-01

    Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.

  4. Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin

    2016-08-01

    In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

  5. Experimental study on the flow patterns and the two-phase pressure drops in a horizontal impacting T-Junction

    NASA Astrophysics Data System (ADS)

    Bertani, C.; Malandrone, M.; Panella, B.

    2014-04-01

    The present paper analyzes the experimental results concerning the flow patterns and pressure drops in two-phase flow through a horizontal impacting T-junction, whose outlet pipes are aligned and perpendicular to the inlet pipe. The test section consists of plexiglass pipes with inner diameter of 10 mm. A mixture of water and air at ambient temperature and pressures up to 2.4 bar flows through the T-junction, with different splitting of flow rates in the two outlet branches; superficial velocities of air and water in the inlet pipe have been varied up to a maximum of 35 m/s and 3.5 m/s respectively. The flow patterns occurring in the inlet and branch pipes are compared with the predictions of the Baker and Taitel - Dukler maps. The pressure drops along the branches have been measured relatively to different splitting of the flow rate through the two branches and the pressure loss coefficients in the junction have been evaluated. Friction pressure drops have allowed us to evaluate two-phase friction multipliers, which have then been compared to the predictions of Lockhart-Martinelli, and Friedel correlations. Local pressure drops have been extrapolated at the junction centre and analyzed; the two-phase multiplier has been evaluated and compared with the predictions of Chisholm correlation; the value of the empirical coefficient that minimizes the discrepancy has also been evaluated.

  6. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  7. The Effect of Subcooling on the Flow and Heat Transfer Characteristics in a Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Takeshita, Kazuhiro; Doi, Kyoji; Noda, Ken-Ichi

    A two-phase loop thermosyphon is used as a heat transfer device in an energy-saving heat transportation system and so forth, because it transports thermal energy without any external power supply such as a pump under a body force field. We previously performed a fundamental study on the flow and heat transfer characteristics in a two-phase loop thermosyphon installed with a single heated tube evaporator both experimentally and theoretically which was made under the condition of near saturation temperature of liquid in a reservoir. In the present study, the effects of liquid subcooling and the heat input on the circulation mass flow rates, pressure and temperature distributions, and heat transfer coefficients in the evaporator were examined experimentally using water, ethanol, benzene and Freon 113 as the working fluids. On the other hand, the circulation mass flow rates, pressure and temperature distributions were theoretically calculated and compared with the experimental results.

  8. Experimental Study on Performance of Turbine Flowmeter and Venturi Meter in Oil-Water Two-Phase Flow Measurement

    NASA Astrophysics Data System (ADS)

    Huang, Zhiyao; Li, Xia; Liu, Yian; Wang, Baoliang; Li, Haiqing

    2007-06-01

    The performance of turbine flowmeter and Venturi meter in oil-water two-phase flow measurement was investigated. Experiments were carried out on horizontal pipelines of 0.5-inch, 1.0-inch and 1.5-inch diameters, with the total flowrate range of 0.9˜4.5m3/h and the oil volume fraction range of 15% ˜ 85%. Experimental results show that the measurement errors of the turbine flowmeter and the Venturi meter obviously increase, whether the static mixer is installed on the experimental loop or not. Also, the non-homogeneity of the oil-water two-phase flow and the swirl flow produced by the static mixer have negative influence on the performance of turbine flowmeter and Venturi meter. Research work further indicates that the oil fraction has significant influence on the measurement results of Venturi meter.

  9. Some aspects of two-phase flow, heat transfer and dynamic instabilities in medium and high pressure steam generators

    NASA Astrophysics Data System (ADS)

    Unal, H. C.

    1981-03-01

    Experimental data for void fraction, incipient point of boiling, initial point of net vapor generation, bubble dynamics, dryout, two-phase flow pressure drop and density-wave oscillations were obtained in long, sodium heated steam generator tubes of different geometries for a wide range of operating conditions and at medium and high pressures. These data and data from literature taken in sodium and electrically heated steam generator tubes were correlated. Aspects of two-phase flow, heat transfer and density-wave oscillations in these steam generators disclosed include the distribution factor in small- and medium-size diameter steam generator tubes, the characteristic of the transitions at the incipient point of boiling and initial point of net vapor generation, bubble growth during subcooled nucleate flow boiling, the importance of the equivalent length for dryout in non-uniformly heated steam generator tubes and the mechanisms of density-wave oscillations in once-through steam generator tubes.

  10. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-03-01

    The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  11. Interfacial area transport of steam-water two-phase flow in a vertical annulus at elevated pressures

    NASA Astrophysics Data System (ADS)

    Ozar, Basar

    Analysis of accident scenarios in nuclear reactors are done by using codes such as TRACE and RELAP5. Large oscillations in the core void fraction are observed in calculations of advanced passive light water reactors (ALWRs), especially during the low pressure long-term cooling phase. These oscillations are attributed to be numerical in nature and served to limit the accuracy as well as the credibility of the calculations. One of the root causes of these unphysical oscillations is determined to be flow regime transitions caused by the usage of static flow regime maps. The interfacial area transport equation was proposed earlier in order to address these issues. Previous research successfully developed the foundation of the interfacial area transport equation and the experimental techniques needed for the measurement of interfacial area, bubble diameters and velocities. In the past, an extensive database has been then generated for adiabatic air-water conditions in vertical upward and downward bubbly-churn turbulent flows in pipes. Using this database, mechanistic models for the creation (bubble breakup) and destruction (bubble coalescence) of interfacial area have been developed for the bubblyslug flow regime transition. However, none of these studies investigated the effect of phase change. To address this need, a heated annular test section was designed and constructed. The design relied on a three level scaling approach: geometric scaling; hydrodynamic scaling; thermal scaling. The test section consisted of a heated and unheated section in order to study the sub-cooled boiling and bulk condensation/flashing and evaporation phenomena, respectively. Steam-water two-phase flow tests were conducted under sub-cooled boiling conditions in the heated section and with sub-cooled/super-heated bulk liquid in the unheated section. The modeling of interfacial area transport equation with phase change effects was introduced and discussed. Constitutive relations, which took

  12. Numerical Simulation of One- and Two-Phase Flows in Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Patel, Kaushal; Alexander, Casey; Thompson, Tyesha; Blankson, Isaiah M.; Shvets, Alexander I.; Gromov, Valery G.; Sakharov, Vladimir I.

    2001-01-01

    In this report, we present some results of problems investigated during joint research between the Hampton University Fluid Mechanics and Acoustics Laboratory (HU/FM&AL), NASA GRC, and the LaRC Hyper-X Program. This work is supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The main areas of current scientific interest of the HU/FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. These methods are based on nontraditional 3D corrugated and composite nozzle, inlet, propeller and screw designs such as a Bluebell and Telescope nozzle, Mobius-shaped screw, etc. This is the main subject of our other projects, of which one is presented at the current conference. Here we analyze additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves formed in propulsion systems. This mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) Use of porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of the hot jet exhaust and pressure compensation for off-design conditions (so-called continuous ejector with small mass flow rate); and (3) to propose and analyze new effective methods of fuel injection into the flow stream in air-breathing engines. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations, and

  13. Numerical Simulation of One- and Two-Phase Flows in Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Patel, Kaushal; Alexander, Casey; Thompson, Tyesha; Blankson, Isaiah M.; Shvets, Alexander I.; Gromov, Valery G.; Sakharov, Vladimir I.

    2001-01-01

    In this report, we present some results of problems investigated during joint research between the Hampton University Fluid Mechanics and Acoustics Laboratory (HU/FM&AL), NASA GRC, and the LaRC Hyper-X Program. This work is supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The main areas of current scientific interest of the HU/FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. These methods are based on nontraditional 3D corrugated and composite nozzle, inlet, propeller and screw designs such as a Bluebell and Telescope nozzle, Mobius-shaped screw, etc. This is the main subject of our other projects, of which one is presented at the current conference. Here we analyze additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves formed in propulsion systems. This mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) Use of porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of the hot jet exhaust and pressure compensation for off-design conditions (so-called continuous ejector with small mass flow rate); and (3) to propose and analyze new effective methods of fuel injection into the flow stream in air-breathing engines. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations, and

  14. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  15. A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow

    NASA Astrophysics Data System (ADS)

    Mosthaf, K.; Baber, K.; Flemisch, B.; Helmig, R.; Leijnse, A.; Rybak, I.; Wohlmuth, B.

    2011-10-01

    Domains composed of a porous part and an adjacent free-flow region are of special interest in many fields of application. So far, the coupling of free flow with porous-media flow has been considered only for single-phase systems. Here we extend this classical concept to two-component nonisothermal flow with two phases inside the porous medium and one phase in the free-flow region. The mathematical modeling of flow and transport phenomena in porous media is often based on Darcy's law, whereas in free-flow regions the (Navier-) -Stokes equations are used. In this paper, we give a detailed description of the employed subdomain models. The main contribution is the developed coupling concept, which is able to deal with compositional (miscible) flow and a two-phase system in the porous medium. It is based on the continuity of fluxes and the assumption of thermodynamic equilibrium, and uses the Beavers-Joseph-Saffman condition. The phenomenological explanations leading to a simple, solvable model, which accounts for the physics at the interface, are laid out in detail. Our model can account for evaporation and condensation processes at the interface and is used to model evaporation from soil influenced by a wind field in a first numerical example.

  16. Self potential generated by two-phase flow in a porous medium: Experimental study and volcanological applications

    SciTech Connect

    Antraygues, P.; Aubert, M.

    1993-12-01

    In order to characterize the relationships between self-potential generation and hydrothermal convection, laboratory measurements of electric potential and temperature are made along a vertical cylindrical column of porous material where a two-phase flow (wet steam) occurs. For steady state convection, the vertical distributions of vapor and water flow rates are calculated from thermal balance. At the initiation of convection, a positive electrical charge flux is related to the convective front. For isothermal and steady state columns, a positive electric potential gradient is observed along the vapor flow direction. These electric potentials are mainly a function of the vapor flow rates and of the medium permeability. A sudden and large increase in the vapor flow rate and in the volume fraction of vapor can induce a large and long-lived increase in the potential differences along the vapor flow direction. An electrokinetic effect related to the saturated vapor flow is the best candidate for this electric potential generation. The experimental resutls obtained in the present study are applied to self-potential generation in rising two-phase convective cells on active volcanoes. The observed positive self-potential anomalies close to active fissures depend on the electrical charge flux related to the upward saturated vapor flow. These results also demonstrate the value of self-potential monitoring in the early stages preceding a volcanic eruption.

  17. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  18. A Direct Numerical Simulation of Annular Two-Phase Laminar Flow and Heat Transfer in a Circular Pipe

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-feng; Chung, J. N.

    2010-06-01

    An accurate finite-volume based numerical method is developed for the direct numerical simulation of two-phase flow dynamics and heat transfer in a circular pipe consisting of a liquid slug translating in a non-reacting gas. This method is built on a sharp interface concept and developed on an Eulerian-Cartesian fixed-grid system with a cut-cell scheme and marker points to track the moving interface. The unsteady, axisymmetric Navier-Stokes equations in both liquid and gas phases are solved separately. The mass continuity and momentum flux conditions are explicitly matched at the true surface phase boundary to determine the interface shape and movement. A quadratic curve fitting algorithm with marker points is used to yield smooth and accurate information of the interface curvatures. Two-phase flow and heat transfer characteristics are predicted for air-water flows under low and high Weber numbers to evaluate the heat transfer enhancement levels due to the moving liquid slug and the effects of surface tension force. The method reported in this paper offers, for the first time, a new capability of simulating two-phase gas-liquid flow dynamics and heat transfer directly without any modeling. This numerical simulation involves liquid phase deformation, moving interface boundary, curvature variations due to surface tension, property jumps, and heat transfer at the interface.

  19. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  20. Measurements of viscosity and permeability of two phase miscible fluid flow in rock cores.

    PubMed

    Williams, J L; Taylor, D G

    1994-01-01

    This paper describes the application of 1H magnetic resonance imaging (MRI) to the measurement of fluid viscosity and rock core plug permeability during two phase miscible displacements in certain rock types. The core plug permeability was determined by monitoring glycerol solutions displacing D2O. Simple physical principles were used to calculate the core permeability from the measured displacement angle for a set of Lochaline sandstone core plugs. In a further experiment the viscosity of polyacrylamide solution 1500 ppm was determined in the core plug. The permeability and viscosity results compared well to conventional core analysis methods.

  1. The BLOW-3A: A theoretical model to describe transient two phase flow conditions in Liquid Metal Fast Breeder Reactor (LMFBR) coolant channels

    NASA Astrophysics Data System (ADS)

    Bottoni, M.; Struwe, D.

    The theoretical background of the BLOW-3A program is reported, including the basic equations used to determine temperature fields in the fuel, clad, coolant and structure material as well as the coolant dynamics in single and two-phase flow conditions. The two-phase flow model assumes an annular flow regime. Special aspects to calculate two-phase pressure drops for these conditions are discussed. Examples of the experimental validation of the program are given.

  2. Gas-liquid two-phase flow structure in the multi-scale weighted complexity entropy causality plane

    NASA Astrophysics Data System (ADS)

    Tang, Yi; Zhao, An; Ren, Ying-yu; Dou, Fu-Xiang; Jin, Ning-De

    2016-05-01

    The multi-scale weighted complexity entropy causality plane (MS-WCECP) is proposed for characterizing the physical structure of complex system. Firstly we use the method to investigate typical nonlinear time series. Compared with the multi-scale complexity entropy causality plane (MS-CECP), the MS-WCECP can not only uncover the dynamic information loss of complex system with the increase of scale, but also can characterize the complexity of nonlinear dynamic system. In particular, the algorithm of MS-WCECP performs strong anti-noise ability. Then we calculate the MS-WCECP for the conductance fluctuating signals measured from vertical upward gas-liquid two-phase flow experiments in a small diameter pipe, the results demonstrate that the MS-WCECP is a useful approach for exploring the stability and complexity in gas-liquid two-phase flows.

  3. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    SciTech Connect

    Doughty, C.; Pruess, K.

    1991-06-01

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  4. Prediction of performance of two-phase flow nozzle and liquid metal magnetohydrodynamic (LMMHD) generator for no slip condition

    NASA Technical Reports Server (NTRS)

    Fabris, G.; Back, L.

    1992-01-01

    Two-phase LMMHD energy conversion systems have potentially significant advantages over conventional systems such as higher thermal efficiency and substantial simplicity with lower capital and maintenance costs. Maintenance of low velocity slip is of importance for achieving high generator efficiency. A bubbly flow pattern ensures very low velocity slip. The full governing equations have been written out, and a computer prediction code has been developed to analyze performance of a two-phase flow LMMHD generator and nozzle under conditions of no slip. Three different shapes of a LMMHD generator have been investigated. Electrical power outputs are in the 20 kW range. Generator efficiency exceeds 71 percent at an average void fraction of about 70 percent. This is an appreciable performance for a short generator without insulating vanes for minimizing electrical losses in the end regions.

  5. Gas-liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe

    NASA Astrophysics Data System (ADS)

    Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan

    2016-03-01

    A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.

  6. Flow measurement of a two-phase fluid around a cylinder in a channel using particle image velocimetry

    SciTech Connect

    Hassan, Y.A.; Martinez, R.S.; Philip, O.G.; Schmidl, W.D.

    1994-12-31

    The particle image velocimetry (PIV) flow measurement technique was used to study two-phase flow over cylindrical rods inserted in a channel. For the two-phase flow study, a mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the airflow rate was {approximately}30 cm{sup 3}/s. The water was seeded with fluorescent particle tracers in order to record the position of the particles and the air bubbles independently. Then the data were analyzed to obtain the velocity fields for both experiments. One of the major concerns with steam generator operation is the tube vibration caused by turbulent flow buffeting. The vibration can cause wear on the tube joints that may eventually lead to ruptures and leaks. This repair procedure can be very costly. To help avoid this problem, experimental data are needed to test the empirical correlations that predict the behavior of the turbulent flow around the cylinders. The PIV flow measurement technique can be used to acquire that experimental data.

  7. Separated two-phase flow regime parameter measurement by a high speed ultrasonic pulse-echo system.

    PubMed

    Masala, Tatiana; Harvel, Glenn; Chang, Jen-Shih

    2007-11-01

    In this work, a high speed ultrasonic multitransducer pulse-echo system using a four transducer method was used for the dynamic characterization of gas-liquid two-phase separated flow regimes. The ultrasonic system consists of an ultrasonic pulse signal generator, multiplexer, 10 MHz (0.64 cm) ultrasonic transducers, and a data acquisition system. Four transducers are mounted on a horizontal 2.1 cm inner diameter circular pipe. The system uses a pulse-echo method sampled every 0.5 ms for a 1 s duration. A peak detection algorithm (the C-scan mode) is developed to extract the location of the gas-liquid interface after signal processing. Using the measured instantaneous location of the gas/liquid interface, two-phase flow interfacial parameters in separated flow regimes are determined such as liquid level and void fraction for stratified wavy and annular flow. The shape of the gas-liquid interface and, hence, the instantaneous and cross-sectional averaged void fraction is also determined. The results show that the high speed ultrasonic pulse-echo system provides accurate results for the determination of the liquid level within +/-1.5%, and the time averaged liquid level measurements performed in the present work agree within +/-10% with the theoretical models. The results also show that the time averaged void fraction measurements for a stratified smooth flow, stratified wavy flow, and annular flow qualitatively agree with the theoretical predictions.

  8. Determination of local values of gas and liquid mass flux in highly loaded two-phase flow

    NASA Technical Reports Server (NTRS)

    Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.

    1974-01-01

    A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.

  9. Large time behavior for the system of a viscous liquid-gas two-phase flow model in R3

    NASA Astrophysics Data System (ADS)

    Wang, Wenjun; Wang, Weike

    2016-11-01

    The Cauchy problem of a three-dimensional compressible viscous liquid-gas two-phase flow model is considered in the present paper. The global existence and uniqueness of solutions are established when the initial data is close to its equilibrium in the framework of Sobolev space H3 (R3). Moreover, the optimal L2-L2 convergence rates are also obtained for the solution.

  10. Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

    SciTech Connect

    Persoff, P.; Pruess, K.; Myer, L.

    1991-01-01

    Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler ''sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light. A set of two-phase flow experiments has been performed which has proven the viability of the basic experimental design, while also suggesting further improvements in the apparatus. Preliminary measurements are presented for single-phase permeability to liquid, and for relative permeabilities in simultaneous flow of liquid and gas.

  11. Implementation of the LAX-Wendroff Method in Cobra-TF for Solving Two-Phase Flow Transport Equations

    SciTech Connect

    Salko, Robert K; Wang, Dean; Ren, Kangyu

    2016-01-01

    COBRA-TF (Coolant Boiling in Rod Arrays Two Fluid), or CTF, is a subchannel code used to conduct the reactor core thermal hydraulic (T/H) solution in both standalone and coupled multi-physics applications. CTF applies the first-order upwind spatial discretization scheme for solving two-phase flow conservation equations. In this work, the second-order Lax-Wendroff (L-W) scheme has been implemented in CTF to solve the two-phase flow transport equations to improve numerical accuracy in both temporal and spatial discretization. To avoid the oscillation issue, a non-linear flux limiter VA (Van Albada) is employed for the convective terms in the transport equations. Assessments have been carried out to evaluate the performance and stability of the implemented second-order L-W scheme. It has been found that the L-W scheme performs better than the upwind scheme for the single-phase and two-phase flow problems in terms of numerical accuracy and computational efficiency.

  12. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    PubMed Central

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  13. Complex network analysis of phase dynamics underlying oil-water two-phase flows.

    PubMed

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  14. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-06-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows.

  15. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  16. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  17. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    SciTech Connect

    Hendricks, R.C.; Braun, M.J.; Mullen, R.L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  18. Stabilization of two-phase octanol/water flows inside poly(dimethylsiloxane) microchannels using polymer coatings.

    PubMed

    van der Linden, H J; Jellema, L C; Holwerda, M; Verpoorte, E

    2006-08-01

    In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus stabilize the laminar flow profile. The polymers poly(2-hydroxyethyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene glycol), and poly(vinyl alcohol) were assessed for their quality as stabilization coatings after deposition from flowing and stationary solutions. Additionally, the influence of coating the microchannels homogeneously with a single kind of polymer or heterogeneously with two different polymers was investigated. From the experimental observations, it can be concluded that homogeneous polymer coatings with poly(2-hydroxyethyl methacrylate) and poly(vinyl pyrrolidone) led to the effective stabilization of laminar water/octanol flows. Furthermore, heterogeneous coatings led to two-phase flows which had a better-defined and more stable interface over long distances (i.e., 40-mm-long microchannels). Finally, the partitioning of fuchsin dye in the coated microchannels was demonstrated, establishing the feasibility of the use of the polymer-coated PDMS microchannels for determination of logP values in laminar octanol/water flows. PMID:16773299

  19. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  20. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008), 10.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of

  1. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

    PubMed

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the

  2. The wire-mesh sensor as a two-phase flow meter

    NASA Astrophysics Data System (ADS)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  3. Analysis and Modeling of a Two-Phase Jet Pump of a Flow Boiling Test Facility for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.; Steadham, Justin M.

    1996-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no

  4. Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.

    1996-01-01

    For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.

  5. Study of two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Yan, AN; Omrani, Adel

    1990-01-01

    The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.

  6. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling

    NASA Astrophysics Data System (ADS)

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  7. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

    PubMed

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  8. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling.

    PubMed

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David

    2016-05-01

    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses. PMID:27300984

  9. Experimental investigation on the interfacial characteristics of stratified air-water two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Hudaya, Akhmad Zidni; Kuntoro, Hadiyan Yusuf; Dinaryanto, Okto; Deendarlianto, Indarto

    2016-06-01

    The interfacial wave characteristics of stratified air-water two-phase flow in a horizontal pipe were experimentally investigated by using the flush-mounted constant electric current method (CECM) sensors. The experiments were conducted in a horizontal two-phase flow loop 9.5 m long (L) consisting of transparent acrylic pipe of 26 mm i.d. (D). To obtain the stratified flow pattern, the superficial gas and liquid velocities were set to 1.02 - 3.77 m/s and 0.016 - 0.92 m/s, respectively. Several interfacial wave patterns as described by several investigators were identified. The common parameters such as liquid hold-up, probability distribution function, wave velocity and wave frequency were investigated as the function of the liquid and gas flow rates. The interfacial curvature was calculated on the basis of the liquid hold-up data from the CECM sensors and the liquid film thickness data from the image processing technique in the previous work. As a result, it was found that the mean liquid hold-up decreases with the increase of the superficial gas velocity. In the same sub flow pattern, the wave velocity increases as the superficial gas velocity increases. On the other hand, in the two-dimensional wave region, the dominant frequency decreases with the increase of the superficial liquid velocity.

  10. Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

    SciTech Connect

    Persoff, P.; Pruess, K.; Myer, L.

    1991-01-01

    Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light.

  11. Level-set reconstruction algorithm for ultrafast limited-angle X-ray computed tomography of two-phase flows

    PubMed Central

    Bieberle, M.; Hampel, U.

    2015-01-01

    Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. PMID:25939623

  12. Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1981-01-01

    Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.

  13. Selection of two-phase flow patterns at a simple junction in microfluidic devices.

    PubMed

    Engl, W; Ohata, K; Guillot, P; Colin, A; Panizza, P

    2006-04-01

    We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.

  14. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  15. Length scales of magma transport in reactive two-phase flow

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.; Takei, Y.

    2007-12-01

    During magma migration, both interfacial tension and mass exchange between the matrix and the melt play an important role in controlling the efficiency and rate of melt extraction and the chemical signature of the magma. In this work, we develop a new formulation governing the dynamics of a two-phase aggregate coupling effects of interfacial tension and mass exchange between the melt and the matrix by dissolution-precipitation. Dissolution-precipitation, which is limited by the rate and length scales of diffusive mass transport of ions, typically redistributes melt over small length scales. A process likely to dominate in the length scale of laboratory experiments. Rapid diffusive mass redistribution can also significantly reduce the rate of segregation of buoyant small-wavelength melt pockets. Growth or decay of large wavelength melt structures such as melt-rich layers in the Earth's lower mantle, blobs of core-forming material in the proto-Earth, and magma bodies beneath volcanic arcs and midoceanic ridges is dominated by a balance between interfacial tension, buoyancy, and viscous deformation of the matrix. Efficiency of buoyancy-driven extraction of large wavelength melt structures are strongly modulated by interfacial tension depending on the average grain size of the matrix and the state of disaggregation of the matrix.

  16. Discontinuous approximation of viscous two-phase flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Bürger, Raimund; Kumar, Sarvesh; Sudarshan Kumar, Kenettinkara; Ruiz-Baier, Ricardo

    2016-09-01

    Runge-Kutta Discontinuous Galerkin (RKDG) and Discontinuous Finite Volume Element (DFVE) methods are applied to a coupled flow-transport problem describing the immiscible displacement of a viscous incompressible fluid in a non-homogeneous porous medium. The model problem consists of nonlinear pressure-velocity equations (assuming Brinkman flow) coupled to a nonlinear hyperbolic equation governing the mass balance (saturation equation). The mass conservation properties inherent to finite volume-based methods motivate a DFVE scheme for the approximation of the Brinkman flow in combination with a RKDG method for the spatio-temporal discretization of the saturation equation. The stability of the uncoupled schemes for the flow and for the saturation equations is analyzed, and several numerical experiments illustrate the robustness of the numerical method.

  17. TWO-PHASE FLOW OF TWO HFC REFRIGERANT MIXTURES THROUGH SHORT-TUBE ORIFICES

    EPA Science Inventory

    The report gives results of an experimental investigation to develop an acceptable flow model for short tube orifice expansion devices used in heat pumps. The refrigerants investigated were two hydrofluorocarbon (HFC) mixtures considered hydrochlorofluorocarbon (HCFC)-22 replacem...

  18. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2015-09-01

    We study capillary trapping in porous media using direct pore-scale simulation of two-phase flow on micro-CT images of a Berea sandstone and a sandpack. The trapped non-wetting phase saturations are predicted by solving the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework to simulate primary drainage followed by water injection. Using these simulations, we analyse the effects of initial non-wetting-phase saturation, capillary number and flow direction on the residual saturation. The predictions from our numerical method are in agreement with published experimental measurements of capillary trapping curves. This shows that our direct simulation method can be used to elucidate the effect of pore structure and flow pattern of capillary trapping and provides a platform to study the physics of multiphase flow at the pore scale.

  19. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    SciTech Connect

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  20. Vertically integrated models for coupled two-phase flow and geomechanics in porous media

    NASA Astrophysics Data System (ADS)

    Bjørnarâ, Tore I.; Nordbotten, Jan M.; Park, Joonsang

    2016-02-01

    Models of reduced dimensionality have been found to be particularly attractive in simulating the fate of injected CO2 in supercritical state in the context of carbon capture and storage. This is motivated by the confluence of three aspects: the strong buoyant segregation of the lighter CO2 phase above water, the relatively long time scales associated with storage, and finally the large aspect ratios that characterize the geometry of typical storage aquifers. However, to date, these models have been confined to considering only the flow problem, as the coupling between reduced dimensionality models for flow and models for geomechanical response has previously not been developed. Herein, we develop a fully coupled, reduced dimension, model for multiphase flow and geomechanics. It is characterized by the aquifer(s) being of lower dimension(s), while the surrounding overburden and underburden being of full dimension. The model allows for general constitutive functions for fluid flow (relative permeability and capillary pressure) and uses the standard Biot coupling between the flow and mechanical equations. The coupled model retains all the simplicities of reduced-dimensional models for flow, including less stiff nonlinear systems of equations (since the upscaled constitutive functions are closer to linear), longer time steps (since the high grid resolution in the vertical direction can be avoided), and less degrees of freedom. We illustrate the applicability of the new coupled model through both a validation study and a practical computational example.

  1. Simulation of Two Phase Fluid Flow With Various Kinds of Barriers Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Wijaya, Imam; Purqon, Acep

    2016-08-01

    Multiphase fluid flow in a pore medium is a problem that is very interesting to be learned. In its flow, the fluid can experience a few of barriers / obstacles like the exsisting of things in the flow medium. The existence of the barriers can detain the rate speed of the fluid flow. The barries that its form is different will provide influence to the speed of of fluid flow that is different as well. To know the influence of barriers form twards the profile of fluid speed rate, is conducted by the simulation by using Lattice Boltzmann Methode (LBM). In this simulation, the barriers is varied in the form of circle, square, and ellips. From simulation that is conducted, to known the influence of barriers variations twards the fluid speed, ploted by the graph of the fluid speed relations along simulation time and plotted by the fluid speed vector in each posisition. From the simulation, it is obtained that the barriers with square formed produced the higest speed rate of the fluid flow, with the speed rate 0.26 lu/ts, then circle formed with the speed rate 0.24 lu/ts, and the last square formed with speed rate 0.24 lu/ts.

  2. Numerical Modeling on Two phase Fluid flow in a Coupled Fracture-Skin-Matrix System

    NASA Astrophysics Data System (ADS)

    Valsala Kumari, R.; G, S. K.

    2015-12-01

    Multiphase flow modeling studies below the ground surface is very essential for designing suitable remediation strategies for contaminated aquifers and for the development of petroleum and geothermal reservoirs. Presence of fractured bedrock beneath the ground surface will make multiphase flow process more complex due to its highly heterogeneous nature. A major challenge in modeling flow within a fractured rock is to capture the interaction between the high permeability fracture and the low permeability rock-matrix. In some instances, weathering and mineral depositions will lead to formation of an additional layer named fracture-skin at the fracture-matrix interface. Porosity and permeability of fracture-skin may significantly vary from the adjacent rock matrix and this variation will result in different flow and transport behavior within the fracture-skin. In the present study, an attempt has been made to model simultaneous flow of two immiscible phases (water and LNAPL) in a saturated coupled fracture-skin-matrix system. A fully-implicit finite difference model has been developed to simulate the variation of pressure and saturation of fluid phases along the fracture and within the rock-matrix. Sensitivity studies have been done to analyze the effect of change of various fracture-skin parameters such as porosity, diffusion coefficient and thickness on pressure and saturation distribution of both wetting and non-wetting fluid phases. It can be concluded from the study that the presence of fracture-skin is significantly affecting the fluid flow at the fracture-matrix interface and it can also be seen from the study that the flow behavior of both fluid phases is sensitive to fracture-skin parameters.

  3. Multi-rate mass transfer modeling of two-phase flow in highly heterogeneous fractured and porous media

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco

    2016-05-01

    We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.

  4. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium.

  5. Energy law preserving C{sup 0} finite element schemes for phase field models in two-phase flow computations

    SciTech Connect

    Hua Jinsong; Lin Ping; Liu Chun; Wang Qi

    2011-08-10

    Highlights: {yields} We study phase-field models for multi-phase flow computation. {yields} We develop an energy-law preserving C0 FEM. {yields} We show that the energy-law preserving method work better. {yields} We overcome unphysical oscillation associated with the Cahn-Hilliard model. - Abstract: We use the idea in to develop the energy law preserving method and compute the diffusive interface (phase-field) models of Allen-Cahn and Cahn-Hilliard type, respectively, governing the motion of two-phase incompressible flows. We discretize these two models using a C{sup 0} finite element in space and a modified midpoint scheme in time. To increase the stability in the pressure variable we treat the divergence free condition by a penalty formulation, under which the discrete energy law can still be derived for these diffusive interface models. Through an example we demonstrate that the energy law preserving method is beneficial for computing these multi-phase flow models. We also demonstrate that when applying the energy law preserving method to the model of Cahn-Hilliard type, un-physical interfacial oscillations may occur. We examine the source of such oscillations and a remedy is presented to eliminate the oscillations. A few two-phase incompressible flow examples are computed to show the good performance of our method.

  6. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. PMID:25940392

  7. Studies of Interfacial Perturbations in Two Phase Oil-Water Pipe Flows Induced by a Transverse Cylinder

    NASA Astrophysics Data System (ADS)

    Chinaud, Maxime; Park, Kyeong; Percival, James; Matar, Omar; Pain, Christopher; Angeli, Panagiota

    2014-11-01

    Droplet detachment from interfacial waves has been the subject of many studies. To observe this phenomenon experimentally it is necessary to spatially localize the drop formation and enable quantitative measurements. In this study, a novel approach is followed where a transverse cylinder is introduced close to the mixing point of the two phases in oil-water flows which induces waves. The introduction of the cylinder induces interfacial waves that lead to drop detachment. High speed visualization has been used to generate flow pattern maps with this new system. The dispersed patterns induced by the cylinder will be linked to pressure drop measurements. The interface downstream the cylinder is affected by three different contributions: the vortices shed by the cylinder, the wall effects due to the pipe itself and the interface fluctuations due to the mixing of the two phases. These contributions will be quantified through a numerical study. A mesh adaptive multiphase finite element Navier Stokes solver, Fluidity, will be used to obtain flow pattern maps for 2D channel flow. The numerical findings will be compared against the experimental results. This work is undertaken as part of the UK Engineering and Physical Sciences Research Council Programme Grant MEMPHIS.

  8. Velocity and void distribution in a counter-current two-phase flow

    SciTech Connect

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities from flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)

  9. Numerical Simulation of One- and Two-Phase Flows in Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Verma, Arun; Hardin, Jay C.; Banerjee, Debrup; Blankson, Isaiah M.; Hendricks, Robert C.; Shvets, Alexander I.

    2003-01-01

    Four subprojects were conducted using analytical methods, numerical simulation and experimental tests: (A) Shock wave mitigation by spike-shaped blunt bodies with application for the purpose of drag, lift and longitudinal momentum optimization. The main result in this subproject is: application of a single needle against a supersonic flow provides higher benefits for blunt body drag reduction and heat transfer to the body than the application of multiple needles. (B) Solid particles, liquid and air jet injection through the front of a blunt body against a supersonic flow. In this case, the research conducted and analysis of multiple previous investigations in this area have shown essential benefits and preferable application of solid particle injection. (C) Comparison of different methods of fuel injection into supersonic duct flows. Preliminary numerical simulations and theoretical analysis show promising results for Telescope-shaped inlet applications in SCRAMJET; and (D) Development of an acoustic source location method for different applications including propulsion systems.

  10. Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Data are presented of an experiment in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressures from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; and orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.

  11. Simulation of two phase flow of liquid - solid in the annular space in drilling operation

    NASA Astrophysics Data System (ADS)

    Kootiani, Reza Cheraghi; Samsuri, Ariffin Bin

    2014-10-01

    Drilling cutting transfer is an important factor in oil and gas wells drilling. So that success drilling operation is directly dependent on the quality of clean the wellbore drilling operation. In this paper, modeled upward flow of liquid - solid in the annular concentric and non-concentric in the well drilling by Euler two - fluid model and then analysis using numerical method. Numerical simulation of liquid - solid flow evaluated initially with a Newtonian fluid (water) and then a non-Newtonian fluid (CMC solution 0.4%). After that, investigated the effect of parameters such as flow rate, rotating drill pipe and out of centered on drilling operations. The results show that drilling cutting transfer is improve due to the rotation of drill pipe particularly in drilling operations.

  12. Similarity and calculations of two-phase flows in turbine equipment

    NASA Astrophysics Data System (ADS)

    Kachuriner, Yu. Ya.

    2015-12-01

    Similarity criteria are formulated for moisture formation and drop growth in a high-velocity flow and on the surface, and for motion processes of dispersed liquid or solid particles in the carrier flow in conditions of turbine plant equipment. The failure to comply with simulation conditions results in qualitative and quantitative changes. Since it is impossible to meet all similarity criteria in model tests, their results can only be applied to the full-scale test conditions using mathematical models tested and proven in the model tests.

  13. Scaling of two-phase flow regimes in a rod bundle with Freon

    SciTech Connect

    Symolon, P.D.

    1990-01-01

    A fundamental requirement of Freon modeling is that the same void fraction and spatial phase distribution will exist in the Freon model as in the steam/water system being simulated. It is shown that this requirement is satisfied by comparing flow regime transitions observed in high-pressure steam/water with transitions observed in the half-scale Freon four-rod test. It is also demonstrated through predictions of a two-fluid model for a one-half geometric scale factor that within each flow regime, a similar slip ratio (vapor-to-liquid-velocity ratio) exists for the Freon and water systems.

  14. Modeling two-phase flow with stochastic coalescence/breakage model

    NASA Astrophysics Data System (ADS)

    Park, Ki Sun

    Gas-particle flows were modeled to account for coalescence and breakup of liquid metal oxide droplets dispersed within the gas phase. The one-way coupled population balance equation (PBE) describing the evolution of number concentration due to particle-particle interactions and aerodynamic forces was solved using the direct quadrature method of moments (DQMOM) along with Reynolds averaged Navier-Stokes equation (RANS). The turbulent feature was assessed by Wilcox's k-ω equations. The fast Eulerian method was used to assess the slip velocity of the dispersed phase which holds a significant inertia. Orthokinetic collision was considered under laminar and turbulent flow where the radial component of relative velocity between two colliding particles is a source of collision. Hydrodynamic and aerodynamic collision frequency functions for turbulent flow were obtained from prior studies and modified to take into account inertia of particles. For a general laminar movement of flow, hydrodynamic and aerodynamic collision frequency functions were derived for spherical particles. The laminar hydrodynamic collision frequency kernel was derived for application to high speed (high Reynolds number) flows. The inclusion of influence of multidimensional and mean flow behavior permits application to flows in which shear layers are present and high Reynolds number flow which necessitates inclusion of compressibility effects. The new model agrees well with prior incompressible formulations. Results indicate that the compressible part of new shearing collision frequency has a significant effect on the collision kernel due to the contraction and dilatation effects of a fluid element. The model was validated using historical data from particle collection experiments (and a correlation based on these data) in solid rocket motors. Considering the error bounds of correlation, the predicted mass mean diameter was in agreement with the measurements/correlation. Further validations performed

  15. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    PubMed

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.

  16. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    PubMed

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically. PMID:22468545

  17. A pore-scale model of two-phase flow in water-wet rock

    SciTech Connect

    Silin, Dmitriy; Patzek, Tad

    2009-02-01

    A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.

  18. GAS-SOLID TWO-PHASE FLOW IN A TRIPLE BIFURCATION LUNG AIRWAY MODEL

    EPA Science Inventory

    Laminar oscillatory flow as well as micron-particle transport and wall deposition in a triple bifurcation airway model have been simulated using a validated finite-volume code with user-enhanced programs. Three realistic breathing patterns, i.e., resting, light, acitvity and mod...

  19. Physical and Mathematical Modeling of Two-Phase Flows in a HOLLOW JET NOZZLE

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debasish; Mazumdar, Dipak; Patil, Sujay Pandit

    2007-10-01

    The HOLLOW JET NOZZLE (HJN) is a heat exchanger used for the removal of superheat from molten steel between tundish and mold. It is a relatively new technology, developed by CRM, Belgium, through engineering the design of the conventional submerged entry nozzle (SEN) in continuous casting. In the present study, fluid-flow phenomena in a HJN system were investigated experimentally via a 0.23-scale water model, designed and operated on the basis of a Froude scaling criterion. Parallel to such, numerical simulation was carried out via FLUENT 6.1 embodying a turbulent, VOF-based, multiphase flow calculation procedure. These, in general, indicated that the incoming liquid, following its impingement on the solid baffle, spreads radially and flows down as a thin liquid film along the wall of the HJN. A large number of experiments were carried out to determine the radial spread of the impinging water jet and its point of attachment on the wall of the HJN as a function of volumetric flow rate, baffle geometry and dimensions, diameter of HJN, etc. These indicated that baffle geometry and dimensions together with the diameter of the HJN influence the point of attachment (or the corresponding “attachment distance”) most. It was demonstrated that attachment distance and the associated contact area between the flowing liquid and HJN wall can be considerably improved by appropriately modifying the currently employed baffle design. Such experimental findings were corroborated well by the FLUENT-based numerical procedure, which was in general able to capture the intricacies of film flow in the HJN system reasonably accurately. In addition to these, simplified models for attachment distance and film thickness have been developed and proposed for axisymmetrical HJN operation. Based on such, a relatively simple differential heat flow model has been developed for prediction of melt temperature in an industrial HJN system. It is demonstrated that in the absence of any elaborate

  20. CT measurements of two-phase flow in fractured porous media

    SciTech Connect

    Hughes, R.G.; Brigham, W.E.; Castanier, L.M.

    1997-06-01

    The simulation of flow in naturally fractured reservoirs commonly divides the reservoir into two continua - the matrix system and the fracture system. Flow equations are written presuming that the primary flow between grid blocks occurs through the fracture system and that the primary fluid storage is in the matrix system. The dual porosity formulation of the equations assumes that there is no flow between matrix blocks while the dual permeability formulation allows fluid movement between matrix blocks. Since most of the fluid storage is contained in the matrix, recovery is dominated by the transfer of fluid from the matrix to the high conductivity fractures. The physical mechanisms influencing this transfer have been evaluated primarily through numerical studies. Relatively few experimental studies have investigated the transfer mechanisms. Early studies focused on the prediction of reservoir recoveries from the results of scaled experiments on single reservoir blocks. Recent experiments have investigated some of the mechanisms that are dominant in gravity drainage situations and in small block imbibition displacements. The mechanisms active in multiphase flow in fractured media need to be further illuminated, since some of the experimental results appear to be contradictory. This report describes the design, construction, and preliminary results of an experiment that studies imbibition displacement in two fracture blocks. Multiphase (oil/water) displacements will be conducted at the same rate on three core configurations. The configurations are a compact core, a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. The blocks are sealed in epoxy so that saturation measurements can be made throughout the displacement experiments using a Computed Tomography (CT) scanner.

  1. Numerical modeling of two-phase flow in the sodium chloride-water system with applications to seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Lewis, Kayla C.

    In order to explain the observed time-dependent salinity variations in seafloor hydrothermal vent fluids, quasi-numerical and fully numerical fluid flow models of the NaCl-H2O system are constructed. For the quasi-numerical model, a simplified treatment of phase separation of seawater near an igneous dike is employed to obtain rough estimates of the thickness and duration of the two-phase zone, the amount of brine formed, and its distribution in the subsurface. Under the assumption that heat transfer occurs mainly by thermal conduction it is shown that, for a two-meter wide dike, the maximum width of the two phase zone is approximately 20 cm and that a zone of halite is deposited near the dike wall. The two-phase zone is mainly filled with vapor. After 13 days, the two-phase zone begins to disappear at the base of the system, and disappears completely by 16 days. The results of this simplified model agree reasonably well with transient numerical solutions for the analogous two-phase flow in a pure water system. The seafloor values of vapor salinity given by the model are compared with vapor salinity data from the "A" vent at 9-10°N on the East Pacific Rise and it is argued that either non-equilibrium thermodynamic behavior or near-surface mixing of brine with vapor in the two-phase region may explain the discrepancies between model predictions and data. For the fully numerical model, the equations governing fluid flow, the thermodynamic relations between various quantities employed, and the coupling of these elements together in a time marching scheme is discussed. The thermodynamic relations are expressed in terms of equations of state, and the latter are shown to vary both smoothly and physically in P-T-X space. In particular, vapor salinity values near the vapor-liquid-halite coexistence surface are shown to be in strong agreement with recently measured values. The fully numerical model is benchmarked against previously published heat pipe and Elder problem

  2. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space

    NASA Technical Reports Server (NTRS)

    Scovazzo, P.; Illangasekare, T. H.; Hoehn, A.; Todd, P.

    2001-01-01

    In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.

  3. Simultaneous two-phase flow measurement of spray mixing process by means of high-speed two-color PIV

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xu, Min; Hung, David L. S.

    2014-09-01

    In this article, a novel high-speed two-color PIV optical diagnostic technique has been developed and applied to simultaneously measure the velocity flow-fields of a multi-hole spark-ignition direct injection (SIDI) fuel injector spray and its ambient gas in a high-pressure constant volume chamber. To allow for the phase discrimination between the fuel droplets and ambient gas, a special tracer-filter system was designed. Fluorescent seeding particles with Sauter mean diameter (SMD) of 4.8 µm were used to trace the gas inside the chamber. With a single high-speed Nd:YLF laser sheet (527 nm) as the incident light source, the Mie-scattering signal marked the phase of the fuel spray, while the fluorescent signal generated from the seeding particles tracked the phase of ambient gas. A high-speed camera, with an image-doubler (mounted in front of the camera lens) that divided the camera pixels into two parts focusing on the same field of view, was used to collect the Mie-scattering signal and LIF (laser induced fluorescence) signal simultaneously with two carefully selected optical filters. To accommodate the large dynamic range of velocities in the two phases (1-2 orders of magnitude difference), two separation times (dt) were introduced. This technique was successfully applied to the liquid spray and ambient gas two-phase flow measurement. The measurement accuracy was compared with those from LDV (laser Doppler velocimetry) measurement and good agreement was obtained. Ambient gas motion surrounding the fuel spray was investigated and characterized into three zones. The momentum transfer process between the fuel spray and ambient gas in each zone was analyzed. The two-phase flow interaction under various superheated conditions was investigated. A strengthened momentum transfer from the liquid spray to the ambient was observed with increased superheat degree.

  4. Carbon and Noble Gas Isotope Banks in Two-Phase Flow: Changes in Gas Composition During Migration

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Larson, T.; Hesse, M. A.

    2015-12-01

    In conjunction with the rise of unconventional oil and gas production, there has been a recent rise in interest in noble gas and carbon isotope changes that can occur during the migration of natural gas. Natural gas geochemistry studies use bulk hydrocarbon composition, carbon isotopes, and noble gas isotopes to determine the migration history of gases from source to reservoir, and to trace fugitive gas leaks from reservoirs to shallow groundwater. We present theoretical and experimental work, which helps to explain trends observed in gas composition in various migration scenarios. Noble gases are used as tracers for subsurface fluid flow due to distinct initial compositions in air-saturated water and natural gases. Numerous field studies have observed enrichments and depletions of noble gases after gas-water interaction. A theoretical two-phase gas displacement model shows that differences in noble gas solubility will cause volatile gas components will become enriched at the front of gas plumes, leaving the surrounding residual water stripped of dissolved gases. Changes in hydrocarbon gas composition are controlled by gas solubility in both formation water and residual oil. In addition to model results, we present results from a series of two-phase flow experiments. These results demonstrate the formation of a noble gas isotope banks ahead of a main CO2 gas plume. Additionally, we show that migrating hydrocarbon gas plumes can sweep biogenic methane from groundwater, significantly altering the isotope ratio of the gas itself. Results from multicomponent, two-phase flow experiments qualitatively agree with the theoretical model, and previous field studies. These experimentally verified models for gas composition changes can be used to aid source identification of subsurface gases.

  5. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer

    PubMed Central

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Traisathit, Patrinee; Van Gestel, Dirk

    2015-01-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan was generated by applying the optimization parameters of the original treatment plan to the anatomy of the second CT scan. The dose–volume histograms (DVHs) and dose statistics of the hybrid plan and the adapted plan were compared. The mean volume of the ipsilateral and contralateral parotid gland decreased by 6.1 cm3 (30.5%) and 5.4 cm3 (24.3%), respectively. Compared with the hybrid plan, the adapted plan provided a higher dose to the target volumes with better homogeneity, and a lower dose to the organs at risk (OARs). The Dmin of all planning target volumes (PTVs) increased. The Dmax of the spinal cord and brainstem were lower in 94% of the patients (1.6–5.9 Gy, P < 0.001 and 2.1–9.9 Gy, P < 0.001, respectively). The Dmean of the contralateral parotid decreased in 70% of the patients (range, 0.2–4.4 Gy). We could not find a relationship between dose variability and weight loss. Our two-phase adaptive IMRT protocol improves dosimetric results in terms of target volumes and OARs in patients with locally advanced NPC. PMID:25666189

  6. Evaluating the performance of the two-phase flow solver interFoam

    NASA Astrophysics Data System (ADS)

    Deshpande, Suraj S.; Anumolu, Lakshman; Trujillo, Mario F.

    2012-01-01

    The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios {\\sim }\\mathscr {O}(10^3) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure-surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141-73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious

  7. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the D3-D tokamak

    NASA Astrophysics Data System (ADS)

    Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.; Menon, M. M.

    1994-06-01

    A liquid helium-cooled cryocondensation pump has been installed in the D3-D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the heat transfer and constant temperature characteristics of boiling liquid . helium. The pump is designed for a pumping speed of 32,000 1/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  8. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Menon, M. M.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.

    A liquid helium-cooled cryocondensation pump has been installed in the DIII=D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the beat transfer and constant temperature characteristics of boiling liquid helium. The pump is designed for a pumping speed of 32,0001/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  9. Simulations of two-phase flow through the pharynx with moving boundaries using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Pal, Anupam; Brasseur, James G.; Shaker, Reza

    2000-11-01

    Transport of food through the human pharynx involves rapidly moving boundaries and liquid-vapor flow within highly complex geometries. Conventional continuum models are limited in their ability to handle two-phase flows with complex moving boundaries. We used the lattice Boltzmann (LB) method to simulate liquid flow in the air-filled pharynx with boundary motions which approximate those of anatomical structures from the mouth to the esophagus. The two phases in the LB simulation were separated using an interparticle interaction force based on a non-ideal gas equation of state. A moving boundary condition was applied by augmenting the `bounce-back' rule with added/subtracted mass and momentum for the displaced fluid due to boundary movement. Simulations predicted liquid movement in the pharynx which resembled closely actual movement of food boluses observed radiographically. Pressures along a simulated manometric catheter show similar transient and quasi-steady periods as measured pressures. Pressure gradient within the liquid is sensitive to the geometric constriction suggesting its potential application as a clinical parameter in diagnosing restrictive pharyngo-esophageal disorders.

  10. Distribution characteristics of pollutant transport in a turbulent two-phase flow.

    PubMed

    Khaldi, Nawel; Marzouk, Salwa; Mhiri, Hatem; Bournot, Philippe

    2015-04-01

    The distribution characteristics of pollutants released at varied rates and different vertical inlet positions of an open channel are investigated via a three-dimensional numerical model. Pollutants are injected from time-dependent sources in a turbulent free-surface flow. Numerical computations were carried out using Fluent 6.3, which is based on the finite volume approach. The air/water interface was modeled with the volume of fluid method (VOF). By focusing on investigating the influences of the flow on pollutants, it is found that with an increase of the injection rate, the pollutant concentration increases along the channel and the longitudinal dispersion is higher. On the other hand, it is noted that the point of injection modifies significantly the dispersion pattern of pollutant. These findings may be of great help in cost-effective scientific countermeasures to be taken into account for accident or planned pollutants discharged into a river.

  11. Two-phase flow in porous media: Crossover from capillary fingering to compact invasion

    SciTech Connect

    Ferer, M.V.; Bromhal, G.S.; Smith, D.H.

    2004-01-01

    Motivated by a wide ranage of applications, from enhanced oil recovery to carbon cioxide sequestions, we have developed a pore-level model of immiscible drainage, incorporating viscous, capillary, and gravitational effects. We have validated this model quantitatively, in the very different limits of zero viscosity ratio and zero capillary number. For a range of stable viscosity ratios (u injected/ u displaced >=1), we have increased the capillary number, Nc, and studied the way in which the flows deviate from capillary fingering (the fractal flow of invasion percolation) and become compact for realistic capillary numbers. Results exhibiting this crossover from capillary fingering to compact invasion are presented for the saturation profile and the average position of the injected fluid. The modeling reuslts agree with earlier predictions.

  12. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.

    PubMed

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-01-01

    The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter. PMID:25365118

  13. Handling of liquid holdup in Duyong two-phase flow pipeline system

    SciTech Connect

    Saad, M.R.; Singh, B. )

    1988-01-01

    This paper deals with the handling of liquids in the multi-phase flow pipeline system within Carigali's Duyong Offshore Gas Complex and the Onshore Gas Terminal, in Kerteh, Terongganu. The data and operations experience gathered necessitate changes to the operating procedures originally identified during the design phase. This is to ensure more efficient handling of liquid hold-up in the pipeline during low gas flowrates.

  14. ANALYSIS OF TWO-PHASE FLOW MODELS WITH TWO MOMENTUM EQUATIONS.

    SciTech Connect

    KROSHILIN,A.E.KROSHILIN,V.E.KOHUT,P.

    2004-03-15

    An analysis of the standard system of differential equations describing multi-speed flows of multi-phase media is performed. It is proved that the Cauchy problem, as posed in most best-estimate thermal-hydraulic codes, results in unstable solutions and potentially unreliable description of many physical phenomena. A system of equations, free from instability effects, is developed allowing more rigorous numerical modeling.

  15. A Quadratic Spline based Interface (QUASI) reconstruction algorithm for accurate tracking of two-phase flows

    NASA Astrophysics Data System (ADS)

    Diwakar, S. V.; Das, Sarit K.; Sundararajan, T.

    2009-12-01

    A new Quadratic Spline based Interface (QUASI) reconstruction algorithm is presented which provides an accurate and continuous representation of the interface in a multiphase domain and facilitates the direct estimation of local interfacial curvature. The fluid interface in each of the mixed cells is represented by piecewise parabolic curves and an initial discontinuous PLIC approximation of the interface is progressively converted into a smooth quadratic spline made of these parabolic curves. The conversion is achieved by a sequence of predictor-corrector operations enforcing function ( C0) and derivative ( C1) continuity at the cell boundaries using simple analytical expressions for the continuity requirements. The efficacy and accuracy of the current algorithm has been demonstrated using standard test cases involving reconstruction of known static interface shapes and dynamically evolving interfaces in prescribed flow situations. These benchmark studies illustrate that the present algorithm performs excellently as compared to the other interface reconstruction methods available in literature. Quadratic rate of error reduction with respect to grid size has been observed in all the cases with curved interface shapes; only in situations where the interface geometry is primarily flat, the rate of convergence becomes linear with the mesh size. The flow algorithm implemented in the current work is designed to accurately balance the pressure gradients with the surface tension force at any location. As a consequence, it is able to minimize spurious flow currents arising from imperfect normal stress balance at the interface. This has been demonstrated through the standard test problem of an inviscid droplet placed in a quiescent medium. Finally, the direct curvature estimation ability of the current algorithm is illustrated through the coupled multiphase flow problem of a deformable air bubble rising through a column of water.

  16. Nonlinear Algebraic Reynolds Stress Model for Two-Phase Turbulent Flows Laden with Small Heavy Particles in Circular Tube

    NASA Astrophysics Data System (ADS)

    Mukin, R. V.; Alipchenkov, V. M.; Zaichik, L. I.; Mukina, L. S.; Strizhov, V. F.

    2011-12-01

    The purpose of the study is to present an explicit algebraic Reynolds stress (nonlinear turbulent viscosity) model combined with modified k - ɛ turbulence model taking into account particles effect on turbulence for calculating the main turbulent characteristics of two-phase flows. For calculating particles distribution in space we used diffusion-inertia model (DIM). The turbulence attenuating in the presence of particles is clearly observed, investigated and compared with the experimental data. The developed model adequately described turbulence anisotropy and the influence of particles inertia and concentration on the turbulence intensity.

  17. Film thickness measurement techniques applied to micro-scale two-phase flow systems

    SciTech Connect

    Tibirica, Cristiano Bigonha; do Nascimento, Francisco Julio; Ribatski, Gherhardt

    2010-05-15

    Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (author)

  18. The effect of changes in surface wettability on two-phase saturated flow in horizontal replicas of single natural fractures.

    PubMed

    Bergslien, Elisa; Fountain, John

    2006-12-15

    By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.

  19. Hybrid upwind discretization of nonlinear two-phase flow with gravity

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.

    2015-08-01

    Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit

  20. The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    NASA Technical Reports Server (NTRS)

    Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.

    2015-01-01

    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.

  1. Effect of particle velocity fluctuations on the inertia coupling in two-phase flow

    NASA Technical Reports Server (NTRS)

    Drew, Donald A.

    1989-01-01

    Consistent forms for the interfacial force, the interfacial pressure, the Reynolds stresses and the particle stress have been derived for the inviscid, irrotational incompressible flow of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity distribution, giving rise to an effective pressure and stress in the particle phase. The velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress field inside the spheres. The relation of these constitutive equations to the force on an individual sphere is discussed.

  2. Two-phase flow experiments in natural rock fractures from Yucca Mountain

    SciTech Connect

    Persoff, P.; Pruess, K.

    1995-09-01

    The welded tuffs in the vadose zone of Yucca Mountain, Nevada, are being investigated as the potential site of a geologic repository for high-level nuclear wastes. The suitability of this site depends upon minimizing the possibility of aqueous transport of radionuclides from the wastes to the environment. The repository location has been chosen for its isolation by low-permeability rock from both the surface and the water table, in a desert area of low precipitation. The welded tuffs have very low permeability, offering protection from flowing groundwater. The repository horizon, although of low permeability, is known to be fractured, suggesting the possibility of fast paths for contaminant transport. As part of the repository evaluation, this study has been undertaken to characterize fractures from Yucca Mountain tuffs. Another purpose of this study is to gain insight into pore-level phenomena occurring during multiphase flow in fractures generally. For this reason measurements were made not only in the actual fractures, but also in transparent replicas that reproduce the fracture void geometry. Use of transparent replicas allows observation of displacement phenomena and estimation of fracture saturation.

  3. The dynamics of capillary-driven two-phase flow: the role of nanofluid structural forces.

    PubMed

    Nikolov, Alex; Zhang, Hua

    2015-07-01

    Capillary-driven flows are fundamental phenomena and are involved in many key technological processes, such as oil recovery through porous rocks, ink-jet printing, the bubble dynamics in a capillary, microfluidic devices and labs on chips. Here, we discuss and propose a model for the oil displacement dynamics from the capillary by the nanofluid (which is composed of a liquid suspension of nanoparticles); we elucidate the physics of the novelty of the phenomenon and its application. The oil displacement by the nanofluid flow is a multi-stage phenomenon, first leading to the oil film formation on the capillary wall, its break-up, and retraction over the capillary wall; this lead to the formation of the oil double concave meniscus. With time, the process repeats itself, leading to the formation of a regular "necklace" of oil droplets inside the capillary. Finally, the oil droplets are separated by the nanofluid film from the capillary wall. The light reflected differential interferometry technique is applied to investigate the nanofluid interactions with the glass wall. We find nanoparticles tend to self-structure into multiple layers close to the solid wall, which cause the structural forces to arise that lead to the oil displacement from the capillary. This research is expected to benefit the understanding of nanofluid phenomena in a capillary and promote their use in technological applications. PMID:25465201

  4. Interfacial area, velocity and void fraction in two-phase slug flow

    SciTech Connect

    Kojasoy, G.; Riznic, J.R.

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  5. Numerical Simulation of One-and Two-Phase Flows in Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M. (Technical Monitor); Gilinsky, Mikhail

    2002-01-01

    In this report, we present some results of problems investigated during joint research between the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL), NASA Glenn Research Center (GRC) and the Hyper-X Program of the NASA Langley Research Center (LaRC). The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. These methods are based on nontraditional 3D corrugated and composite nozzle, inlet, propeller and screw designs such as the Bluebell and Telescope nozzles, Mobius-shaped screws, etc. These are the main subject of our other projects, of which one is the NASA MURED's FAR Award. Working jointly with this project team, our team also analyzes additional methods for exhaust jet noise reduction. These methods are without essential thrust loss and even with thrust augmentation.

  6. Numerical Simulation of One- And Two-Phase Flows In Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail M.

    2002-01-01

    In this report, we present some results of problems investigated during joint research between the Hampton University (HU) Fluid Mechanics and Acoustics Laboratory (FM&AL), NASA Glenn Research Center (GRC) and the Hyper-X Program of the NASA Langley Research Center (LaRC). This work is supported by joint research between the NASA GRC/HU FM&AL and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a Civilian Research and Development Foundation (CRDF) grant, #RE1-2068. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. These methods are based on nontraditional 3D (three dimensional) corrugated and composite nozzle, inlet, propeller and screw designs such as the Bluebell and Telescope nozzles, Mobius-shaped screws, etc. These are the main subject of our other projects, of which one is the NASA MURED's (Minority University Research and Education Division) FAR (Faculty Awards for Research) Award, #NAG-3-2249. Working jointly with this project team, our team also analyzes additional methods for exhaust jet noise reduction. These methods are without essential thrust loss and even with thrust augmentation. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and experimental tests at the Hampton University campus, NASA and IM/MSU. The main results obtained by FM&AL team were published in the papers and patents.

  7. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  8. A rotating two-phase gas/liquid flow for pressure reduction in underwater plasma arc welding

    SciTech Connect

    Steinkamp, H.; Creutz, M.; Mewes, D.; Bartzsch, J.

    1994-12-31

    Plasma arc welding processes are used in off-shore industry for the construction and maintenance in the wet surrounding of underwater structures and pipelines. In greater water depth the density of the plasma gas increase because of the greater hydrostatic pressure. This causes an increase of the conductive heat losses to the wet surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. To keep up the energy flux to the workpiece a pressure reduction is favorable against the surrounding. The plasma arc has to burn in a locally dry area. This requirement can be fulfilled by a rotating disc placed above the workpiece. In the gap between the lower end of the cylinder and the workpiece a rotating two-phase flow is maintained. The flow around the rotating disc is experimentally investigated. The rotating disc is placed above the surface of the workpiece which is simulated by a flat plate. Water is forced out of the cylinder due to centrifugal forces set up by the rotating disc and flat plate. The velocity distribution in the flow is measured by Laser-Doppler-Anemometry. The phase distribution in the two-phase flow in the gap is measured by local electrical probes. The static pressure in the gaseous atmosphere is reduced in comparison to the hydrostatic pressure of the surrounding water. The pressure reduction is given by the void fraction, the phase distribution and the volume flow rates of both phases in the gap as well as by the speed of revolution and the design of the disc and the work surface. Apart from the investigations on the fluid dynamics, the method to reduce the pressure was technically proved. Experiments were carried out under water with a plasma MIG welder.

  9. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows

    NASA Astrophysics Data System (ADS)

    Minier, Jean-Pierre; Profeta, Christophe

    2015-11-01

    This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems

  10. A Cartesian Adaptive Level Set Method for Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Ham, F.; Young, Y.-N.

    2003-01-01

    In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.

  11. Simulation of two-phase flow in elbow with problem solving

    NASA Astrophysics Data System (ADS)

    Ahmai, Somayeh; Al-Makky, Ahmed

    2014-04-01

    Multiphase flows occurring in circular curved pipes exhibit important physical phenomena.They are characterized by a large pressure drop and are composed of different phases. In the past, erosion-corrosion was measured through the use of experimental methods. Today numerical simulation models provide a more in depth look into the problem of erosion. Solid particle erosion is of major concern in the industrial engineering sector. In this study, erosion occurring in a (90)-degree elbow has been simulated. The generated two-dimensional data was done through the use of the Commercial software ANSYS Fluent. The primary idea comes from the petrochemicals industry. To overcome this problem, counter measures are proposed in this paper to the piping setup in order to protect pumps from unwanted excessive sand concentrations. Note that the physical properties of the simulated fluid mixture are taken the same as for the real-studied sample.

  12. A discontinuous Galerkin front tracking method for two-phase flows with surface tension

    SciTech Connect

    Nguyen, V.-T.; Peraire, J.; Cheong, K.B.; Persson, P.-O.

    2008-12-28

    A Discontinuous Galerkin method for solving hyperbolic systems of conservation laws involving interfaces is presented. The interfaces are represented by a collection of element boundaries and their position is updated using an arbitrary Lagrangian-Eulerian method. The motion of the interfaces and the numerical fluxes are obtained by solving a Riemann problem. As the interface is propagated, a simple and effective remeshing technique based on distance functions regenerates the grid to preserve its quality. Compared to other interface capturing techniques, the proposed approach avoids smearing of the jumps across the interface which leads to an improvement in accuracy. Numerical results are presented for several typical two-dimensional interface problems, including flows with surface tension.

  13. Sound-induced Interfacial Dynamics in a Microfluidic Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Mak, Sze Yi; Shum, Ho Cheung

    2014-11-01

    Retrieving sound wave by a fluidic means is challenging due to the difficulty in visualizing the very minute sound-induced fluid motion. This work studies the interfacial response of multiphase systems towards fluctuation in the flow. We demonstrate a direct visualization of music in the form of ripples at a microfluidic aqueous-aqueous interface with an ultra-low interfacial tension. The interface shows a passive response to sound of different frequencies with sufficiently precise time resolution, enabling the recording of musical notes and even subsequent reconstruction with high fidelity. This suggests that sensing and transmitting vibrations as tiny as those induced by sound could be realized in low interfacial tension systems. The robust control of the interfacial dynamics could be adopted for droplet and complex-fiber generation.

  14. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.

    PubMed

    Liu, Haihu; Valocchi, Albert J; Kang, Qinjun

    2012-04-01

    We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35

  15. A study on the characteristics of upward air-water two-phase flow in a large diameter pipe

    SciTech Connect

    Shen, Xiuzhong; Saito, Yasushi; Mishima, Kaichiro; Nakamura, Hideo

    2006-10-15

    An adiabatic upward co-current air-water two-phase flow in a vertical large diameter pipe (inner diameter, D: 0.2m, ratio of pipe length to diameter, L/D: 60.5) was experimentally investigated under various inlet conditions. Flow regimes were visually observed, carefully analyzed and classified into five, i.e. undisturbed bubbly, agitated bubbly, churn bubbly, churn slug and churn froth. Void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with four-sensor optical probes. Both the measured void fraction and the measured IAC demonstrated radial core-peak distributions in most of the flow regimes and radial wall peak in the undisturbed bubbly flow only. The bubble frequency also showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the radial direction in undisturbed bubbly, agitated bubbly and churn bubbly flows and showed a core-peak radial distribution in the churn slug flow due to the existence of certain amount of large and deformed bubbles in this flow regime. The measurements of interfacial direction showed that the main and the secondary bubbly flow could be displayed by the main flow peak and the secondary flow peak, respectively, in the probability density function (PDF) of the interfacial directional angle between the interfacial direction and the z-axis, {eta}{sub zi}. The local average {eta}{sub zi }at the bubble front or rear hemisphere ({eta}{sub zi}{sup F} and {eta}{sub zi}{sup R}) reflected the local bubble movement and was in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large diameter pipe quantitatively by the cross-sectional area-averaged {eta}{sub zi }at bubbly front hemisphere ({eta}{sub zi}{sup F}-bar). Bubbles in the undisturbed bubbly flow moved in a

  16. Present state-of-the-art of two-phase flow model calculations

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Ding, Jianmin; Bouillard, J. X.

    1992-07-01

    Argonne National Laboratory (ANL) has developed two- and three-dimensional computer programs to predict hydrodynamics in complex fluid/solids systems including atmospheric and pressurized bubbling and circulating fluidized-bed combustors and gasifiers, concentrated suspension (slurry) piping systems and advanced particle-bed reactors for space-based applications, for example. The computer programs are based upon phenomenological mechanistic models and can predict frequency of bubble formation, bubble size and growth, bubble frequency and rise-velocity, solids volume fraction, gas and solids velocities and low dimension chaotic attracters. The results of these hydrodynamic calculations are used as inputs to mechanistic models to predict heat transfer and erosion and have been used to produce simplified models and guidelines to assist in design and scaling. An extensive coordinated effort involving industry, government, and university laboratory data has served to validate the various models. Babcock & Wilcox (B&W), in close collaboration with ANL, has developed the three dimensional FORCE2 computer program which is both transient as well as steady state.

  17. Present state-of-the-art of two-phase flow model calculations

    SciTech Connect

    Lyczkowski, R.W.; Ding, Jianmin; Bouillard, J.X.

    1992-07-01

    Argonne National Laboratory (ANL) has developed two- and three-dimensional computer programs to predict hydrodynamics in complex fluid/solids systems including atmospheric and pressurized bubbling and circulating fluidized-bed combustors and gasifiers, concentrated suspension (slurry) piping systems and advanced particle-bed reactors for space-based applications, for example. The computer programs are based upon phenomenological mechanistic models and can predict frequency of bubble formation, bubble size and growth, bubble frequency and rise-velocity, solids volume fraction, gas and solids velocities and low dimension chaotic attracters. The results of these hydrodynamic calculations are used as inputs to mechanistic models to predict heat transfer and erosion and have been used to produce simplified models and guidelines to assist in design and scaling. An extensive coordinated effort involving industry, government, and university laboratory data has served to validate the various models. Babcock & Wilcox (B&W), in close collaboration with ANL, has developed the three dimensional FORCE2 computer program which is both transient as well as steady-state.

  18. Present state-of-the-art of two-phase flow model calculations

    SciTech Connect

    Lyczkowski, R.W.; Ding, Jianmin; Bouillard, J.X.

    1992-07-01

    Argonne National Laboratory (ANL) has developed two- and three-dimensional computer programs to predict hydrodynamics in complex fluid/solids systems including atmospheric and pressurized bubbling and circulating fluidized-bed combustors and gasifiers, concentrated suspension (slurry) piping systems and advanced particle-bed reactors for space-based applications, for example. The computer programs are based upon phenomenological mechanistic models and can predict frequency of bubble formation, bubble size and growth, bubble frequency and rise-velocity, solids volume fraction, gas and solids velocities and low dimension chaotic attracters. The results of these hydrodynamic calculations are used as inputs to mechanistic models to predict heat transfer and erosion and have been used to produce simplified models and guidelines to assist in design and scaling. An extensive coordinated effort involving industry, government, and university laboratory data has served to validate the various models. Babcock Wilcox (B W), in close collaboration with ANL, has developed the three dimensional FORCE2 computer program which is both transient as well as steady-state.

  19. Analytic solution to verify code predictions of two-phase flow in a boiling water reactor core channel

    SciTech Connect

    Chen, K.F.; Olson, C.A.

    1983-09-01

    One reliable method that can be used to verify the solution scheme of a computer code is to compare the code prediction to a simplified problem for which an analytic solution can be derived. An analytic solution for the axial pressure drop as a function of the flow was obtained for the simplified problem of homogeneous equilibrium two-phase flow in a vertical, heated channel with a cosine axial heat flux shape. This analytic solution was then used to verify the predictions of the CONDOR computer code, which is used to evaluate the thermal-hydraulic performance of boiling water reactors. The results show excellent agreement between the analytic solution and CONDOR prediction.

  20. Analytic solution to verify code predictions of two-phase flow in a boiling water reactor core channel. [CONDOR code

    SciTech Connect

    Chen, K.F.; Olson, C.A.

    1983-09-01

    One reliable method that can be used to verify the solution scheme of a computer code is to compare the code prediction to a simplified problem for which an analytic solution can be derived. An analytic solution for the axial pressure drop as a function of the flow was obtained for the simplified problem of homogeneous equilibrium two-phase flow in a vertical, heated channel with a cosine axial heat flux shape. This analytic solution was then used to verify the predictions of the CONDOR computer code, which is used to evaluate the thermal-hydraulic performance of boiling water reactors. The results show excellent agreement between the analytic solution and CONDOR prediction.