Sample records for advanced ultra-supercritical pressure

  1. High Materials Performance in Supercritical CO2 in Comparison with Atmospheric Pressure CO2 and Supercritical Steam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Gordon; Tylczak, Joseph; Carney, Casey

    2017-02-26

    This presentation covers environments (including advanced ultra-supercritical (A-USC) steam boiler/turbine and sCO2 indirect power cycle), effects of pressure, exposure tests, oxidation results, and mechanical behavior after exposure.

  2. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  3. Large Scale Screening of Low Cost Ferritic Steel Designs For Advanced Ultra Supercritical Boiler Using First Principles Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    Advanced Ultra Supercritical Boiler (AUSC) requires materials that can operate in corrosive environment at temperature and pressure as high as 760°C (or 1400°F) and 5000psi, respectively, while at the same time maintain good ductility at low temperature. We develop automated simulation software tools to enable fast large scale screening studies of candidate designs. While direct evaluation of creep rupture strength and ductility are currently not feasible, properties such as energy, elastic constants, surface energy, interface energy, and stack fault energy can be used to assess their relative ductility and creeping strength. We implemented software to automate the complex calculations tomore » minimize human inputs in the tedious screening studies which involve model structures generation, settings for first principles calculations, results analysis and reporting. The software developed in the project and library of computed mechanical properties of phases found in ferritic steels, many are complex solid solutions estimated for the first time, will certainly help the development of low cost ferritic steel for AUSC.« less

  4. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Phillips, Jeffrey; Hendrix, Howard

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C).more » These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO 2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of

  5. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of

  7. Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure.

    PubMed

    Hou, Guolian; Du, Huan; Yang, Yu; Huang, Congzhi; Zhang, Jianhua

    2018-03-01

    The thermal power plant, especially the ultra-supercritical unit is featured with severe nonlinearity, strong multivariable coupling. In order to deal with these difficulties, it is of great importance to build an accurate and simple model of the coordinated control system (CCS) in the ultra-supercritical unit. In this paper, an improved T-S fuzzy model identification approach is proposed. First of all, the k-means++ algorithm is employed to identify the premise parameters so as to guarantee the number of fuzzy rules. Then, the local linearized models are determined by using the incremental historical data around the cluster centers, which are obtained via the stochastic gradient descent algorithm with momentum and variable learning rate. Finally, with the proposed method, the CCS model of a 1000 MW USC unit in Tai Zhou power plant is developed. The effectiveness of the proposed approach is validated by the given extensive simulation results, and it can be further employed to design the overall advanced controllers for the CCS in an USC unit. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery

  9. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Lowmore » temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  10. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry.

    PubMed

    Jumaah, Firas; Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta; Sandahl, Margareta

    2016-08-01

    In this study, a rapid and sensitive ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS) method has been developed and partially validated for the separation of carotenoids within less than 6 min. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The length of polyene chain as well as the number of hydroxyl groups in the structure of the studied carotenoids determines their differences in the physiochemical properties and thus the separation that is achieved on this column. All of the investigated carotenoids were baseline separated with resolution values greater than 1.5. The effects of gradient program, back pressure, and column temperature were studied with respect to chromatographic properties such as retention and selectivity. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in both positive and negative mode, using both direct infusion and hyphenated with UHPSFC. The ESI in positive mode provided the highest response. The coefficient of determination (R (2)) for all calibration curves were greater than 0.998. Limit of detection (LOD) was in the range of 2.6 and 25.2 ng/mL for α-carotene and astaxanthin, respectively, whereas limit of quantification (LOQ) was in the range of 7.8 and 58.0 ng/mL for α-carotene and astaxanthin, respectively. Repeatability and intermediate precision of the developed UHPSFC-MS method were determined and found to be RSD < 3 % and RSD < 6 %, respectively. The method was applied in order to determine carotenoids in supercritical fluid extracts of microalgae and rosehip. Graphical Abstract Ultra-high performance supercritical fluid chromatography-a rapid separation method for the analysis of carotenoids in rosehip and microalgae samples.

  11. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and

  12. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was

  13. High Pressure Steam Oxidation of Alloys for Advanced Ultra-Supercritical Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Gordon R.

    A steam oxidation test was conducted at 267 ± 17 bar and 670°C for 293 hr. A comparison test was run at 1 bar. All of the alloys showed an increase in scale thickness and oxidation rate with pressure, and TP304H and IN625 had very large increases. Fine-grained TP304H at 267 bar behaved like a coarse grained alloy, indicative of high pressure increasing the critical Cr level needed to form and maintain a chromia scale. At 267 bar H230, H263, H282, IN617 and IN740 had kp values a factor of one–to-two orders of magnitude higher than at 1 bar. IN625more » had a four order of magnitude increase in kp at 267 bar compared to 1 bar. Possible causes for increased oxidation rates with increased pressure were examined, including increased solid state diffusion within the oxide scale and increased critical Cr content to establish and maintain a chromia scale.« less

  14. Microstructural evolution in advanced boiler materials for ultra-supercritical coal power plants

    NASA Astrophysics Data System (ADS)

    Wu, Quanyan

    The goal of improving the efficiency of pulverized coal powerplants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam temperatures approaching 760°C under a stress of 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other conventional alloys. As part of a large DOE-funded consortium, new and existing materials based on advanced austenitic stainless steels and nickel base superalloys are being evaluated for these very demanding applications. In the present work, the nickel base superalloys of Inconel 617, CCA617, Haynes 230 and Inconel 740, and austenitic alloys Super 304H and HR6W, were evaluated on their microstructural properties over elevated temperature ageing and creep rupture conditions. The materials were aged for different lengths of time at temperatures relevant to USC applications, i.e., in the range from 700 to 800°C. The precipitation behaviors, namely of the gamma', carbides and eta phase in some conditions in nickel base superalloys, carbides in Haynes 230, Cu-rich precipitates in Super 304H and Laves phase particles in HR6W, were studied in detail using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and related analytical techniques. Particular attention has been given on the structure, morphology and compositional distinctiveness of various phases (including gamma, gamma', carbides, secondary phase precipitates, and other types of particles) and their nature, dislocation structures and other types of defects. The results were presented and discussed in light of associated changes in microhardness in the cases of aged samples, and in close reference to mechanical testing (including tensile and creep rupture tests) wherever available. Several mechanical strengthening

  15. DNS of High Pressure Supercritical Combustion

    NASA Astrophysics Data System (ADS)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  16. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  17. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Analysis of new psychoactive substances in human urine by ultra-high performance supercritical fluid and liquid chromatography: Validation and comparison.

    PubMed

    Borovcová, Lucie; Pauk, Volodymyr; Lemr, Karel

    2018-05-01

    New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute-filter-and-shoot protocol utilizing propan-2-ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (<3 min) and short total analysis time. Precision was well <15% with a few exceptions in liquid chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tensile and creep deformation of a newly developed Ni-Fe-based superalloy for 700 °C advanced ultra-supercritical boiler applications

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Zhong, Z. H.; Yu, Z. S.; Yin, H. F.; Dang, Y. Y.; Zhao, X. B.; Yang, Z.; Lu, J. T.; Yan, J. B.; Gu, Y.

    2015-07-01

    A new Ni-Fe-based superalloy, HT-X, has been developed for applications in 700 °C advanced ultra-supercritical (A-USC) boilers. The HT-X alloy is subjected to various heat treatments. Tensile tests are conducted at room temperature (RT), 700 °C and 750 °C. Creep tests are carried out under conditions of 700 °C/300 MPa and 750 °C/150 MPa. After aging treatment, the yield strength of the HT-X alloy at RT and 750 °C is 787 MPa and 624 MPa, respectively. When additional thermal exposure at 750 °C for 5400 h is applied, the yield strength is decreased to 656 MPa at RT and 480 MPa at 700 °C. For an aged specimen, the a/2<110>dislocation shearing process occurs when tensile testing is conducted at RT and 750 °C. As the γ' precipitate size increases in the specimen that is thermally exposed at 750 °C for 5400 h, Orowan bowing is the dominant dislocation process, and stacking faults develop in the γ' precipitates at both RT and 700 °C. Dislocation slip combined with climb is the dominant mechanism under the creep testing conditions. The factors that affect the mechanical properties and deformation mechanisms are discussed.

  20. United States Advanced Ultra-Supercritical Component Test Facility for 760°C Steam Power Plants ComTest Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Horst; Purgert, Robert Michael

    Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increasemore » cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO 2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO 2 emissions, compared to CO 2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760°C). The steam turbine

  1. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.

    PubMed

    Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel

    2017-11-01

    Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The

  2. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2007-05-28

    be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass, energy, and momentum...are very dependent on pressure, chemical reaction rates in supercritical fluids can be highly pressure-dependent [6-9]. The kinetic reaction rate

  3. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Justin R; Rother, Gernot; Browning, Jim

    2012-01-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300 473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can bemore » used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO2 in contact with quartz and Si/SiO2 wafers are also shown.« less

  4. High-Pressure Liquid Chromatograph with Mass Spectrometric Detection for Analysis of Supercritical Fuels Pyrolysis Products

    DTIC Science & Technology

    2006-08-01

    conditions will necessarily be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which...Spectrometric Detection for 5a. CONTRACT NUMBER Analysis of Supercritical Fuels Pyrolysis Products 5b. GRANT NUMBER FA9550-05-1-0253 5c... supercritical pyrolysis experiments with the model fuels 1-methylnaphthalene and toluene. The HPLC/UV/MS instrument facilitated the identification of fifteen 5

  5. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have

  6. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods.

    PubMed

    Šulniūtė, Vaida; Pukalskas, Audrius; Venskutonis, Petras Rimantas

    2017-06-01

    Ten Salvia species, S. amplexicaulis, S. austriaca, S. forsskaolii S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. stepposa and S. verticillata were fractionated using supercritical carbon dioxide and pressurized liquid (ethanol and water) extractions. Fifteen phytochemicals were identified using commercial standards (some other compounds were identified tentatively), 11 of them were quantified by ultra high pressure chromatography (UPLC) with quadruple and time-of-flight mass spectrometry (Q/TOF, TQ-S). Lipophilic CO 2 extracts were rich in tocopherols (2.36-10.07mg/g), while rosmarinic acid was dominating compound (up to 30mg/g) in ethanolic extracts. Apigenin-7-O-β-d-glucuronide, caffeic and carnosic acids were quantitatively important phytochemicals in the majority other Salvia spp. Antioxidatively active constituents were determined by using on-line high-performance liquid chromatography (HPLC) analysis combined with 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay (HPLC-DPPH). Development of high pressure isolation process and comprehensive characterisation of phytochemicals in Salvia spp. may serve for their wider applications in functional foods and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  8. Tabulated pressure measurements on an executive-type jet transport model with a supercritical wing

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1975-01-01

    A 1/9 scale model of an existing executive type jet transport refitted with a supercritical wing was tested on in the 8 foot transonic pressure tunnel. The supercritical wing had the same sweep as the original airplane wing but had maximum thickness chord ratios 33 percent larger at the mean geometric chord and almost 50 percent larger at the wing-fuselage juncture. Wing pressure distributions and fuselage pressure distributions in the vicinity of the left nacelle were measured at Mach numbers from 0.25 to 0.90 at angles of attack that generally varied from -2 deg to 10 deg. Results are presented in tabular form without analysis.

  9. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.

    2011-04-26

    A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations thatmore » change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.« less

  10. Supercritical Fuel Measurements

    DTIC Science & Technology

    2012-09-01

    TERMS Fuels, supercritical fluids , stimulated scattering, Brillouin scattering, Rayleigh scattering, elastic properties, thermal properties 16...10 Supercritical Cell and Fluid Handling ....................................................................................... 11...motion in supercritical fluids . Thus, the method can perform diagnostics on the heat transfer of high-temperature and high-pressure fuels, measuring

  11. Influence of supercritical CO(2) pressurization on the phase behavior of mixed cholesteryl esters.

    PubMed

    Huang, Zhen; Feng, Mei; Su, Junfeng; Guo, Yuhua; Liu, Tie-Yan; Chiew, Yee C

    2010-09-15

    Evidences indicating the presence of phase transformations in the mixed cholesteryl benzoate (CBE) and cholesteryl butyrate (CBU) under the supercritical CO(2) pressurization, by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD), are presented in this work. These include (1) the DSC heating curve of pure CBU; (2) the DSC heating curves of CBU/CBE mixtures; (3) the XRD spectra of pure CBU; (4) the XRD spectra of CBU/CBE mixtures; (5) CBU and CBE are miscible in either solid phase or liquid phase over the whole composition range. As a result of the presence of these phase transformations induced by pressurization, it could be deduced that a solid solution of the CBU/CBE mixture might have formed at the interfaces under supercritical conditions, subsequently influencing their dissolving behaviors in supercritical CO(2). Copyright 2010 Elsevier B.V. All rights reserved.

  12. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Modified HR3C Austenitic Heat-Resistant Steel for Ultra-supercritical Power Plants Applications Beyond 650 °C

    NASA Astrophysics Data System (ADS)

    Zhu, C. Z.; Yuan, Y.; Zhang, P.; Yang, Z.; Zhou, Y. L.; Huang, J. Y.; Yin, H. F.; Dang, Y. Y.; Zhao, X. B.; Lu, J. T.; Yan, J. B.; You, C. Y.

    2018-02-01

    A modified HR3C austenitic steel has been designed by optimizing the chemical composition. Compared with a commercial HR3C alloy, the modified steel has comparable oxidation resistance, yield strength, and plasticity, but higher creep rupture strength and impact toughness after long-term thermal exposure. The results suggest that the modified alloy is a promising candidate for the applications of ultra-supercritical power plants operating beyond 650 °C.

  14. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  15. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2010-05-30

    supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...With regard to physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass...effects in supercritical fluids , often affecting chemical reaction pathways by facilitating the formation of certain transition states [6]. Because

  16. Development of an Accelerated Methodology to Study Degradation of Materials in Supercritical Water for Application in High Temperature Power Plants

    NASA Astrophysics Data System (ADS)

    Rodriguez, David

    The decreasing supply of fossil fuel sources, coupled with the increasing concentration of green house gases has placed enormous pressure to maximize the efficiency of power generation. Increasing the outlet temperature of these power plants will result in an increase in operating efficiency. By employing supercritical water as the coolant in thermal power plants (nuclear reactors and coal power plants), the plant efficiency can be increased to 50%, compared to traditional reactors which currently operate at 33%. The goal of this dissertation is to establish techniques to characterize the mechanical properties and corrosion behavior of materials exposed to supercritical water. Traditionally, these tests have been long term exposure tests spanning months. The specific goal of this dissertation is to develop a methodology for accelerated estimation of corrosion rates in supercritical water that can be sued as a screening tool to select materials for long term testing. In this study, traditional methods were used to understand the degradation of materials in supercritical water and establish a point of comparison to the first electrochemical studies performed in supercritical water. Materials studied included austenitic steels (stainless steel 304, stainless steel 316 and Nitronic 50) and nickel based alloys (Inconel 625 and 718). Surface chemistry of the oxide layer was characterized using scanning electron microscopy, X-ray diffraction, FT-IR, Raman and X-ray photoelectron spectroscopies. Stainless steel 304 was subjected to constant tensile load creep tests in water at a pressure of 27 MPa and at temperatures of 200 °C, 315 °C and supercritical water at 450 °C for 24 hours. It was determined that the creep rate for stainless steel 304 exposed to supercritical water would be unacceptable for use in service. It was observed that the formation of hematite was favored in subcritical temperatures, while magnetite was formed in the supercritical region. Corrosion of

  17. Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.

    1993-01-01

    This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.

  18. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  19. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  20. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  1. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.; Jiang, P. X.; Liu, B.

    2012-07-01

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experimentsmore » using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)« less

  2. Nested subcritical flows within supercritical systems

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems.

  3. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  4. Ultra-high-performance supercritical fluid chromatography with quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) for analysis of lignin-derived monomeric compounds in processed lignin samples.

    PubMed

    Prothmann, Jens; Sun, Mingzhe; Spégel, Peter; Sandahl, Margareta; Turner, Charlotta

    2017-12-01

    The conversion of lignin to potentially high-value low molecular weight compounds often results in complex mixtures of monomeric and oligomeric compounds. In this study, a method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) has been developed. Seven different columns were explored for maximum selectivity. Makeup solvent composition and ion source settings were optimised using a D-optimal design of experiment (DoE). Differently processed lignin samples were analysed and used for the method validation. The new UHPSFC/QTOF-MS method showed good separation of the 40 compounds within only 6-min retention time, and out of these, 36 showed high ionisation efficiency in negative electrospray ionisation mode. Graphical abstract A rapid and selective method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS).

  5. Supercritical transitiometry of polymers.

    PubMed

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  6. Application of ultra-high performance supercritical fluid chromatography for the determination of carotenoids in dietary supplements.

    PubMed

    Li, Bing; Zhao, Haiyan; Liu, Jing; Liu, Wei; Fan, Sai; Wu, Guohua; Zhao, Rong

    2015-12-18

    A quick and simple ultra-high performance supercritical fluid chromatography-photodiode array detector method was developed and validated for the simultaneous determination of 9 carotenoids in dietary supplements. The influences of stationary phase, co-solvent, pressure, temperature and flow rate on the separation of carotenoids were evaluated. The separation of the carotenoids was carried out using an Acquity UPC(2) HSS C18 SB column (150mm×3.0mm, 1.8μm) by gradient elution with carbon dioxide and a 1:2 (v:v) methanol/ethanol mixture. The column temperature was set to 35°C and the backpressure was 15.2MPa. Under these conditions, 9 carotenoids and the internal standard, β-apo-8'-carotenal, were successfully separated within 10min. The correlation coefficients (R(2)) of the calibration curves were all above 0.997, the limits of detection for the 9 carotenoids were in the range of 0.33-1.08μg/mL, and the limits of quantification were in the range of 1.09-3.58μg/mL. The mean recoveries were from 93.4% to 109.5% at different spiking levels, and the relative standard deviations were between 0.8% and 6.0%. This method was successfully applied to the determination of 9 carotenoids in commercial dietary supplements. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  8. Simulations of dissociation constants in low pressure supercritical water

    NASA Astrophysics Data System (ADS)

    Halstead, S. J.; An, P.; Zhang, S.

    2014-09-01

    This article reports molecular dynamics simulations of the dissociation of hydrochloric acid and sodium hydroxide in water from ambient to supercritical temperatures at a fixed pressure of 250 atm. Corrosion of reaction vessels is known to be a serious problem of supercritical water, and acid/base dissociation can be a significant contributing factor to this. The SPC/e model was used in conjunction with solute models determined from density functional calculations and OPLSAA Lennard-Jones parameters. Radial distribution functions were calculated, and these show a significant increase in solute-solvent ordering upon forming the product ions at all temperatures. For both dissociations, rapidly decreasing entropy of reaction was found to be the controlling thermodynamic factor, and this is thought to arise due to the ions produced from dissociation maintaining a relatively high density and ordered solvation shell compared to the reactants. The change in entropy of reaction reaches a minimum at the critical temperature. The values of pKa and pKb were calculated and both increased with temperature, in qualitative agreement with other work, until a maximum value at 748 K, after which there was a slight decrease.

  9. Flight measurements of surface pressures on a flexible supercritical research wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1985-01-01

    A flexible supercritical research wing, designated as ARW-1, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing Program. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained during flights at altitudes of 15,000, 20,000, and 25,000 feet at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as nearly continuous functions of angle of attack for constant values of Mach number. The surface pressure coefficients are also presented individually as a function of Mach number for an angle of attack of 2.0 deg. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Reynolds numbers for the tests ranged from 5.7 to 8.4 x 1,000,000.

  10. Advanced Stimulated Scattering Measurements in Supercritical Fluids

    DTIC Science & Technology

    2006-09-01

    supercritical fluid measurement techniques. Ajay Agrawal, optical diagnostics. Mel Roquemore, turbine engines. Fred Schauer, pulse detonation propulsion...Lett. 87, 233902 (2001). 11. R. W. Gammon, H. L. Swinney, and H. Z. Cummins, "Brillouin scattering in carbon dioxide in the critical region," Phys. Rev...Stimulated Scattering Measurements in Supercritical F49620-03-C-0015 Fluids 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d

  11. Enrichment desired quality chitosan fraction and advance yield by sequential static and static-dynamic supercritical CO2.

    PubMed

    Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang

    2015-11-20

    This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  13. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    NASA Astrophysics Data System (ADS)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2

  14. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    PubMed

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of supercritical environment on hydrocarbon-fuel injection

    NASA Astrophysics Data System (ADS)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  16. Supercritical droplet combustion and related transport phenomena

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  17. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  18. Supercritical crystallization: The RESs-process and the GAS-process

    NASA Astrophysics Data System (ADS)

    Berends, Edwin M.

    1994-09-01

    This Doctoral Ph.D. thesis describes the development of two novel crystallization processes utilizing supercritical fluids either as a solvent, the RESS-process, or as an anti-solvent, the GAS-process. In th RESS-process precipitation of the solute is performed by expansion of the solution over a nozzle to produce ultra-fine, monodisperse particles without any solvent inclusions. In the GAS-process a high pressure gas is dissolved into the liquid phase solvent, where it causes a volumetric expansion of this liquid solvent and lowers the equilibrium solubility. Particle size, particle size distribution and other particle characteristics such as their shape, internal structure and the residual amount of solvent in the particles are expected to be influenced by the liquid phase expansion profile.

  19. Pressure distributions on a rectangular aspect-ratio-6, slotted supercritical airfoil wing with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.

    1976-01-01

    An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.

  20. Characterizing pressure issues due to turbulent flow in tubing, in ultra-fast chiral supercritical fluid chromatography at up to 580bar.

    PubMed

    Berger, Terry A

    2016-12-02

    It has been widely suggested that the outlet pressure be changed to maintain constant density ("isopycnic" conditions) when comparing the kinetic performance of different columns in supercritical fluid chromatography (SFC). However, at high flow rates, flow in the tubing is turbulent, causing large extra-column pressure drops that limit options for changing outlet pressure. Some of these pressure drops occur before and some after the column, obscuring the actual column inlet and outlet pressures. In this work, a 4.6×100mm, 1.8μm R,R-Whelk-O1 column was used with low dispersion LD (120μm) plumbing to generate sub-1min chiral separations. However, the optimum, or near optimum, flow rate was 5mL-min -1 , producing a system pressure of 580bar (with 40% methanol, outlet pressure 120bar). Both the flow rate and pump pressure required were near the limits of the instrument, and significantly exceeded the capability of many other SFC's. Extra-column pressure drops (ΔP ec ) were as high as 200bar, caused mostly by turbulent flow in the tubing. The ΔP ec increased by more than the square of the flow rate. Reynolds Numbers (Re) were calculated for tubing as a function of flow rate between 100 and 400bar and 5-20% methanol in CO 2 , and 40°-60°C. This represents the most extensive analysis of turbulence in tubing in the SFC literature. Flow in 120μm ID tubing was calculated to be laminar below 1.0mL-min -1 , mostly transitional up to 2.5mL-min -1 and virtually always turbulent at 3mL-min -1 and higher. Flow in 170μm tubing is turbulent at lower flows but generates half the ΔP ec due to the lower mobile phase linear velocity. The results suggest that, while sub-minute chromatograms are easily generated, 4.6mm columns are not very user friendly for use with sub-2μm packings. The high flow rates required just to reach optimum result in high ΔP ec generated by the tubing, causing uncertainty in the true column inlet, outlet, and average column pressure/density. When

  1. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  2. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552

  3. Electrochemistry in supercritical fluids

    PubMed Central

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  4. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  5. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineralmore » transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.« less

  6. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells.

    PubMed

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-05-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow. Consequently, hydrocarbons can be extracted while keeping the algae viable. In this study, the effects of pressure on the viability of B. braunii cells were tested hydrostatically and under supercritical CO 2 conditions. Viability was determined by light microscopy, methylene blue uptake and by re-cultivation of the algae after treatments to follow the growth. It was concluded that supercritical CO 2 was lethal to the algae, whereas hydrostatic pressure treatments up to 150 bar have not affected cell viability and recultivation was successful. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  8. Research activities on supercritical fluid science in food biotechnology.

    PubMed

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  9. Hyphenation of ultra high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 1. Study of the coupling parameters for the analysis of natural non-polar compounds.

    PubMed

    Duval, Johanna; Colas, Cyril; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric

    2017-08-04

    An analytical method based on Ultra-High-Performance Supercritical Fluid Chromatography (UHPSFC) coupled with Atmospheric Pressure Chemical Ionization - High-resolution mass spectrometry (APCI-Q-TOF-HRMS) was developed for compounds screening from oily samples. The hyphenation was made using a commercial UHPLC device coupled to a CO 2 pump in order to perform the chromatographic analysis. An adaptation of the injection system for compressible fluids was accomplished for this coupling: this modification of the injection sequence was achieved to prevent unusual variations of the injected volume related to the use of a compressible fluid. UHPSFC-HRMS hyphenation was optimized to enhance the response of the varied compounds from a seed extract (anthraquinones, free fatty acids, diacylglycerols, hydroxylated triacylglycerols and triacylglycerols). No split was used prior to the APCI ionization source, allowing introducing all the compounds in the spectrometer, ensuring a better sensitivity for minor compounds. The effects of a mechanical make-up (T-piece) added before this ionization source was discussed in terms of standard deviation of response, response intensity and fragmentation percentage. The location of the T-piece with regards to the backpressure regulator (BPR), the flow rate and the nature of the make-up solvent were studied. Results show that the effects of the studied parameters depend on the nature of the compounds, whereas the make-up addition favours the robustness of the mass response (quantitative aspect). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Isoprene/methyl acrylate Diels-Alder reaction in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, B.; Akgerman, A.

    1999-12-01

    The Diels-Alder reaction between isoprene and methyl acrylate was carried out in supercritical carbon dioxide in the temperature range 110--140 C and the pressure range 95.2--176.9 atm in a 300 cm{sup 3} autoclave. The high-pressure phase behavior of the reaction mixture in the vicinity of its critical region was determined in a mixed vessel with a sight window to ensure that all the experiments were performed in the supercritical single-phase region. Kinetic data were obtained at different temperatures, pressures, and reaction times. It was observed that in the vicinity of the critical point the reaction rate constant decreases with increasingmore » pressure. It was also determined that the reaction selectivity does not change with operating conditions. Transition-state theory was used to explain the effect of pressure on reaction rate and product selectivity. Additional experiments were conducted at constant temperature but different phase behaviors (two-phase region, liquid phase, supercritical phase) by adjusting the initial composition and pressure. It was shown that the highest reaction rate is in the supercritical region.« less

  11. Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials.

    PubMed

    Padmajan Sasikala, Suchithra; Poulin, Philippe; Aymonier, Cyril

    2016-04-13

    Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Advanced germanium layer transfer for ultra thin body on insulator structure

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuro; Chang, Wen-Hsin; Irisawa, Toshifumi; Ishii, Hiroyuki; Hattori, Hiroyuki; Poborchii, Vladimir; Kurashima, Yuuichi; Takagi, Hideki; Uchida, Noriyuki

    2016-12-01

    We present the HEtero-Layer Lift-Off (HELLO) technique to obtain ultra thin body (UTB) Ge on insulator (GeOI) substrates. The transferred ultra thin Ge layers are characterized by the Raman spectroscopy measurements down to the thickness of ˜1 nm, observing a strong Raman intensity enhancement for high quality GeOI structure in ultra thin regime due to quantum size effect. This advanced Ge layer transfer technique enabled us to demonstrate UTB-GeOI nMOSFETs with the body thickness of only 4 nm.

  13. Flow Distribution Measurement Feasibility in Supercritical CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lance, Blake

    2017-12-01

    Supercritical CO 2 (sCO 2) is a fluid of interest for advanced power cycles that can reach thermal to electric energy conversion efficiencies of 50% or higher. Of particular interest for fossil-fired natural gas is the Allam cycle that captures nearly all CO 2 emissions and exports it as a fluid stream where it may be of value. The combustion process conditions are unlike any before realized with 90-95% CO 2 concentration, temperatures around 1000°C, and pressures near 300 bar. This work outlines the experimental feasibility of flow measurements to acquire the first known data in pure sCO 2 atmore » similar but reduced temperature and pressure conditions.« less

  14. Practical development of continuous supercritical fluid process using high pressure and high temperature micromixer

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shin-Ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2015-12-01

    In the synthesis of metal oxide fine particles by continuous supercritical hydrothermal method, the particle characteristics are greatly affected by not only the reaction conditions (temperature, pressure, residence time, concentration, etc.), but also the heating rate from ambient to reaction temperature. Therefore, the heating method by direct mixing of starting solution at room temperature with supercritical water is a key technology for the particle production having smaller size and narrow distribution. In this paper, mixing engineering study through comparison between conventional T-shaped mixers and recently developed swirl mixers was carried out in the hydrothermal synthesis of NiO nanoparticles from Ni(NO3)2 aqueous solution at 400 °C and 30 MPa. Inner diameter in the mixers and total flow rates were varied. Furthermore, the heating rate was calculated by computational fluid dynamics (CFD) simulation. Relationship between the heating rate and the average particle size were discussed. It was clarified that the miniaturization of mixer inner diameter and the use of the swirl flow were effective for improving mixing performance and contributed to produce small and narrow distribution particle under same experimental condition of flow rate, temperature, pressure, residence time, and concentration of the starting materials. We have focused the mixer optimization due to a difference in fluid viscosity.

  15. Oxy-combustor operable with supercritical fluid

    DOEpatents

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  16. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    NASA Astrophysics Data System (ADS)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  17. Summary on the depressurization from supercritical pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.; Chen, Y.; Ammirable, L.

    When a fluid discharges from a high pressure and temperature system, a 'choking' or critical condition occurs, and the flow rate becomes independent of the downstream pressure. During a postulated loss of coolant accident (LOCA) of a water reactor the break flow will be subject to this condition. An accurate estimation of the critical flow rate is important for the evaluation of the reactor safety, because this flow rate controls the loss of coolant inventory and energy from the system, and thus has a significant effect on the accident consequences[1]. In the design of safety systems for a super criticalmore » water reactor (SCWR), postulated LOCA transients are particularly important due to the lower coolant inventory compared to a typical PWR for the same power output. This lower coolant inventory would result in a faster transient response of the SCWR, and hence accurate prediction of the critical discharge is mandatory. Under potential two-phase conditions critical flow is dominated by the vapor content or quality of the vapor, which is closely related with the onset of vaporization and the interfacial interaction between phases [2]. This presents a major challenge for the estimation of the flow rate due to the lack of the knowledge of those processes, especially under the conditions of interest for the SCWR. According to the limited data of supercritical fluids, the critical flows at conditions above the pseudo-critical point seem to be fairly stable and consistent with the subcritical homogeneous equilibrium model (HEM) model predictions, while having a lower flow rate than those in the two-phase region. Thus the major difficulty in the prediction of the depressurization flow rates remains in the region where two phases co-exist at the top of the vapor dome. In this region, the flow rate is strongly affected by the nozzle geometry and tends to be unstable. Various models for this region have been developed with different assumptions, e.g. the HEM and Moody

  18. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  19. The thermal circuit of a nuclear power station's unit built around a supercritical-pressure water-cooled reactor

    NASA Astrophysics Data System (ADS)

    Silin, V. A.; Zorin, V. M.; Tagirov, A. M.; Tregubova, O. I.; Belov, I. V.; Povarov, P. V.

    2010-12-01

    Main results obtained from calculations of the steam generator and thermal circuit of the steam turbine unit for a nuclear power unit with supercritical-pressure water coolant and integral layout are presented. The obtained characteristics point to the advisability of carrying out further developments of this promising nuclear power technology.

  20. Simulated propeller slipstream effects on a supercritical wing

    NASA Technical Reports Server (NTRS)

    Welge, H. R.; Crowder, J. P.

    1978-01-01

    To quantify the installed performance of high speed (M = 0.8) turboprop propulsion systems, an experimental program designed to assess the magnitude of the aerodynamic interference of a propeller slipstream on a supercritical wing has been conducted. The test was conducted in the NASA Ames 14-foot wind tunnel. An ejector-nacelle propeller slipstream simulator was used to produce a slipstream with characteristics typical of advanced propellers presently being investigated. A supercritical wing-body configuration was used to evaluate the interference effects. A traversing total pressure rake was used to make flow field measurements behind the wing and to calibrate the slipstream simulator. The force results indicated that the interference drag amounted to an increase of ten counts or about 3% of the wing-body drag for a two engine configuration at the nominal propeller operating conditions. However, at the higher swirl angles (11 deg vs. 7 deg nominally) the interference drag was favorable by about the same magnitude.

  1. Simultaneous destraction and desulfurization of Illinois coals with supercritical ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, B.C.

    1983-01-01

    Various Illinois coals (with Illinois number6 being the main one) are liquefied with various supercritical solvents (ethanol being the main solvent) at 543-598 K, system pressures of 6.99-24.23 MPa, flow rates of 3.0-7.5 ml/min, reaction time of 0-180 minutes, and coal particle sizes of 0.36-0.85 mm to 1.00-2.36 mm to systematically investigate the effects of flow rates, reaction time, coal particle size, temperature, pressure, coal characteristics (by using different Illinois coals), supercritical medium (by using different solvents), and the addition of potassium hydroxide. The % weight loss of coal and the % sulfur removal during destraction and desulfurization of coalmore » are functions of the flow rate, the reaction time, the coal particle size, temperature, pressure and the supercritical solvent. Temperature, pressure and the supercritical medium are the most important parameters in controlling the % weight loss of coal and the % sulfur removal. The % weight loss of coal can be related to a power law and fits quite nicely into a second order kinetic model. The % sulfur removal also follows a second order kinetic model. A secondary reaction is observed during the destraction process, which implies that destraction, and possibly desulfurization, of coal is a multistep reaction including a physical extraction step where the major portion of the coal and sulfur was removed and then followed by a chemical reaction. Supercritical ethanol definitely enhances the removal of sulfur compounds from coal. The enhanced selectivity by supercritical ethanol is greatest at a pressure just above the critical pressure of ethanol. Finally, addition of a base such as potassium hydroxide enhances both % weight loss of coal and the % sulfur removal.« less

  2. Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang

    2018-02-01

    The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.

  3. Enantiomeric separation and quantification of R/S-amphetamine in urine by ultra-high performance supercritical fluid chromatography tandem mass spectrometry.

    PubMed

    Hegstad, S; Havnen, H; Helland, A; Spigset, O; Frost, J

    2018-03-01

    To distinguish between legal and illegal consumption of amphetamine reliable analytical methods for chiral separation of the R- and S-enantiomers of amphetamine in biological specimens are required. In this regard, supercritical fluid chromatography (SFC) has several potential advantages over liquid chromatography, including rapid separation of enantiomers due to low viscosity and high diffusivity of supercritical carbon dioxide, the main component in the SFC mobile phase. A method for enantiomeric separation and quantification of R- and S-amphetamine in urine was developed and validated using ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS). Sample preparation prior to UHPSFC-MS/MS analysis was a semi-automatic solid phase extraction method. The UHPSFC-MS/MS method used a Chiralpak AD-3 column with a mobile phase consisting of CO 2 and 0.2% cyclohexylamine in 2-propanol. The injection volume was 2 μL and run-time was 6 min. MS/MS detection was performed with positive electrospray ionization and two multiple reaction monitoring transitions (m/z 136.1 > 119.0 and m/z 136.1 > 91.0). The calibration range was 50-10,000 ng/mL for each enantiomer. The between-assay relative standard deviations were in the range of 3.7-7.6%. Recovery was 92-93% and matrix effects ranged from 100 to 104% corrected with internal standard. After development and validation, the method has been successfully implemented in routine use at our laboratory for both separation and quantification of R/S-amphetamine, and has proved to be a reliable and useful tool for distinguishing intake of R- and S-amphetamine in authentic patient samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  5. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    PubMed

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  6. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  7. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    PubMed Central

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben

    2015-01-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157

  8. Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time.

    PubMed

    Barjaktarović, Branislava; Sovilj, Milan; Knez, Zeljko

    2005-04-06

    Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.

  9. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  10. Boiler materials for ultra supercritical coal power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Shingledecker, John; Pschirer, James

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this projectmore » is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a

  11. Field-portable supercritical CO{sub 2} extractor

    DOEpatents

    Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Woodcock, L.J.

    1997-06-10

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending there between, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell. 10 figs.

  12. Field-portable supercritical CO.sub.2 extractor

    DOEpatents

    Wright, Bob W.; Zemanian, Thomas S.; Robins, William H.; Woodcock, Leslie J.

    1997-01-01

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending therebetween, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell.

  13. Supercritical Fluid Spray Application Process for Adhesives and Primers

    DTIC Science & Technology

    2003-03-01

    The basic scheme of SFE process consists of three steps. A solvent, typically carbon dioxide, first is heated and pressurized to a supercritical...passivation step to remove contaminants and to prevent recontamination. Bok et al. (25) describe a pressure pulsation mechanism to stimulate improved...in as a liquid, and then it is heated to above its critical temperature to become a supercritical fluid. The sample is injected and dissolved into

  14. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  15. Dehydrating and Sterilizing Wastes Using Supercritical CO2

    NASA Technical Reports Server (NTRS)

    Brown, Ian J.

    2006-01-01

    A relatively low-temperature process for dehydrating and sterilizing biohazardous wastes in an enclosed life-support system exploits (1) the superior mass-transport properties of supercritical fluids in general and (2) the demonstrated sterilizing property of supercritical CO2 in particular. The wastes to be treated are placed in a chamber. Liquid CO2, drawn from storage at a pressure of 850 psi (approx.=5.9 MPa) and temperature of 0 C, is compressed to pressure of 2 kpsi (approx.=14 MPa) and made to flow into the chamber. The compression raises the temperature to 10 C. The chamber and its contents are then further heated to 40 C, putting the CO2 into a supercritical state, in which it kills microorganisms in the chamber. Carrying dissolved water, the CO2 leaves the chamber through a back-pressure regulator, through which it is expanded back to the storage pressure. The expanded CO2 is refrigerated to extract the dissolved water as ice, and is then returned to the storage tank at 0 C

  16. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    NASA Technical Reports Server (NTRS)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  17. Supercritical Fluid Facilitated Growth of Copper and Aluminum Oxide Nanoparticles

    ERIC Educational Resources Information Center

    Williams, Geoffrey L.; Vohs, Jason K.; Brege, Jonathan J.; Fahlman, Bradley D.

    2005-01-01

    Supercritical fluids (SCFs) possess properties that are intermediate between liquids and gases. The combination of supercritical fluid technology with advanced characterization techniques such as electron microscopy provided a practical and rewarding undergraduate laboratory experiment.

  18. Study of UltraHigh Performance Supercritical Fluid Chromatography to measure free fatty acids with out fatty acid ester preparation.

    PubMed

    Ashraf-Khorassani, M; Isaac, G; Rainville, P; Fountain, K; Taylor, L T

    2015-08-01

    Most lipids are best characterized by their fatty acids which may differ in (a) chain length, (b) degree of unsaturation, (c) configuration and position of the double bonds, and (d) the presence of other functionalities. Thus, a fast, simple, and quantitative analytical technique to determine naturally occurring free fatty acids (FFA) in different samples is very important. Just as for saponified acylglycerols, the determination of FFA's has generally been carried out by high resolution gas chromatography (HRGC). The use of an open tubular capillary column coupled with a flame ionization or mass spectrometric detector provides for both high resolution and quantification of FFA's but only after conversion of all free fatty acids to fatty acid methyl esters (FAME) or pentafluorobenzyl esters. Unfortunately, volatilization of labile ester derivatives of mono- and poly-unsaturated FFA's can cause both thermal degradation and isomerization of the fatty acid during HRGC. The employment of a second generation instrument (here referred to as UltraHigh Performance Supercritical Fluid Chromatograph, UHPSFC) with high precision for modified flow and repeated back pressure adjustment in conjunction with sub-2μm various bonded silica particles (coupled with evaporative light scattering, ELSD, and mass spectrometric, MS, detection) for separation and detection of the following mixtures is described: (a) 31 free fatty acids, (b) isomeric FFA's, and (c) lipophilic materials in two real world fish oil samples. Limits of detection for FFA's via UHPSFC/MS and UHPSFC/ELSD versus detection of FAME's via HRGC/MS are quantitatively compared. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Steady- and unsteady-pressure measurements on a supercritical-wing model with oscillating control surfaces at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.

    1983-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static pressure orifices and 164 in situ dynamic pressure gages for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Results from the present test (the third in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60, 0.78, and 0.86 and are presented in tabular form.

  20. Bio-oil production from biomass via supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds weremore » identified by GC-MS obtained in acetone and ethanol respectively.« less

  1. Simple, rapid, and environmentally friendly method for the separation of isoflavones using ultra-high performance supercritical fluid chromatography.

    PubMed

    Wu, Wenjie; Zhang, Yuan; Wu, Hanqiu; Zhou, Weie; Cheng, Yan; Li, Hongna; Zhang, Chuanbin; Li, Lulu; Huang, Ying; Zhang, Feng

    2017-07-01

    Isoflavones are natural substances that exhibit hormone-like pharmacological activities. The separation of isoflavones remains an analytical challenge because of their similar structures. We show that ultra-high performance supercritical fluid chromatography can be an appropriate tool to achieve the fast separation of 12 common dietary isoflavones. Among the five tested columns the Torus DEA column was found to be the most effective column for the separation of these isoflavones. The impact of individual parameters on the retention time and separation factor was evaluated. These parameters were optimized to develop a simple, rapid, and green method for the separation of the 12 target analytes. It only took 12.91 min using gradient elution with methanol as an organic modifier and formic acid as an additive. These isoflavones were determined with limit of quantitation ranging from 0.10 to 0.50 μg/mL, which was sufficient for reliable determination of various matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  3. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water

    PubMed Central

    Hayashi, Hiromichi; Hakuta, Yukiya

    2010-01-01

    This paper summarizes specific features of supercritical hydrothermal synthesis of metal oxide particles. Supercritical water allows control of the crystal phase, morphology, and particle size since the solvent's properties, such as density of water, can be varied with temperature and pressure, both of which can affect the supersaturation and nucleation. In this review, we describe the advantages of fine particle formation using supercritical water and describe which future tasks need to be solved. PMID:28883312

  4. Step-wise supercritical extraction of carbonaceous residua

    DOEpatents

    Warzinski, Robert P.

    1987-01-01

    A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

  5. Experimental study of elliptical jet from sub to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations weremore » carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.« less

  6. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  7. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    NASA Technical Reports Server (NTRS)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  9. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  10. The utility of ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis.

    PubMed

    Storbeck, Karl-Heinz; Gilligan, Lorna; Jenkinson, Carl; Baranowski, Elizabeth S; Quanson, Jonathan L; Arlt, Wiebke; Taylor, Angela E

    2018-05-15

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed. These systems combine the resolution of GC with the high-throughput capabilities of UHPLC. Uptake of this new technology into research and clinical labs has been slow, possibly due to the perceived increase in complexity. Here we therefore present fundamental principles of UHPSFC-MS/MS and the likely applications for this technology in the clinical research setting, while commenting on potential hurdles based on our experience to date. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  13. The NASA supercritical-wing technology

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Patterson, J. C., Jr.

    1978-01-01

    A number of high aspect ratio supercritical wings in combination with a representative wide body type fuselage were tested in the Langley 8 foot transonic pressure tunnel. The wing parameters investigated include aspect ratio, sweep, thickness to chord ratio, and camber. Subsequent to these initial series of tests, a particular wing configuration was selected for further study and development. Tests on the selected wing involved the incorporation of a larger inboard trailing edge extension, an inboard leading edge extension, and flow through nacelles. Range factors for the various supercritical wing configurations are compared with those for a reference wide body transport configuration.

  14. Supercritical Water Mixture (SCWM) Experiment

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  15. Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints.

    PubMed

    Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng

    2018-05-01

    The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  17. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.

  18. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature andmore » pressure conditions in magmatic geothermal systems.« less

  19. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  20. Size-selective separation of polydisperse gold nanoparticles in supercritical ethane.

    PubMed

    Williams, Dylan P; Satherley, John

    2009-04-09

    The aim of this study was to use supercritical ethane to selectively disperse alkanethiol-stabilized gold nanoparticles of one size from a polydisperse sample in order to recover a monodisperse fraction of the nanoparticles. A disperse sample of metal nanoparticles with diameters in the range of 1-5 nm was prepared using established techniques then further purified by Soxhlet extraction. The purified sample was subjected to supercritical ethane at a temperature of 318 K in the pressure range 50-276 bar. Particles were characterized by UV-vis absorption spectroscopy, TEM, and MALDI-TOF mass spectroscopy. The results show that with increasing pressure the dispersibility of the nanoparticles increases, this effect is most pronounced for smaller nanoparticles. At the highest pressure investigated a sample of the particles was effectively stripped of all the smaller particles leaving a monodisperse sample. The relationship between dispersibility and supercritical fluid density for two different size samples of alkanethiol-stabilized gold nanoparticles was considered using the Chrastil chemical equilibrium model.

  1. [Supercritical CO2 extraction and component analysis of Aesculus wilsonii seed oil].

    PubMed

    Chen, Guang-Yu; Shi, Zhao-Hua; Li, Hai-Chi; Ge, Fa-Huan; Zhan, Hua-Shu

    2013-03-01

    To research the optimal extraction process of supercritical CO2 extraction and analyze the component of the oil extracted from Aesculus wilsonii seed. Using the yield of Aesculus wilsonii seed oil as the index, optimized supercritical CO2 extraction parameter by orthogonal experiment methodology and analysed the compounds of Aesculus wilsonii seed oil by GC-MS. The optimal parameters of the supercritical CO2 extraction of the oil extracted from Aesculus wilsoniit seed were determined: the extraction pressure was 28 MPa and the temperature was 38 degrees C, the separation I pressure was 12 MPa and the temperature was 40 degrees C, the separation II pressure was 5 MPa and the temperature was 40 degrees C, the extraction time was 110 min. The average extraction rate of Aesculus wilsonii seed oil was 1.264%. 26 kinds of compounds were identified by GC-MS in Aesculus wilsonii seed oil extracted by supercritical CO2. The main components were fatty acids. Comparing with the petroleum ether extraction, the supercritical CO2 extraction has higher extraction rate, shorter extraction time, more clarity oil. The kinds of fatty acids with high amounts in Aesculus wilsonii seed oil is identical in general, the kinds of fatty acids with low amounts in Aesculus wilsonii seed oil have differences.

  2. Selective free radical reactions using supercritical carbon dioxide.

    PubMed

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  3. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  4. Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit

    NASA Astrophysics Data System (ADS)

    Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao

    Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.

  5. Measurements of surface-pressure and wake-flow fluctuations in the flow field of a whitcomb supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Roos, F. W.; Riddle, D. W.

    1977-01-01

    Measurements of surface pressure and wake flow fluctuations were made as part of a transonic wind tunnel investigation into the nature of a supercritical airfoil flow field. Emphasis was on a range of high subsonic Mach numbers and moderate lift coefficients corresponding to the development of drag divergence and buffeting. Fluctuation data were analyzed statistically for intensity, frequency content, and spatial coherence. Variations in these parameters were correlated with changes in the mean airfoil flow field.

  6. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  7. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.

  8. Large Eddy Simulation of a Supercritical Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi

    2017-11-01

    Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.

  9. Buffet characteristics of the F-8 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Deangelis, V. M.; Monaghan, R. C.

    1977-01-01

    The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.

  10. Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers.

    PubMed

    Salerno, Aurelio; Diéguez, Sara; Diaz-Gomez, Luis; Gómez-Amoza, José L; Magariños, Beatriz; Concheiro, Angel; Domingo, Concepción; Alvarez-Lorenzo, Carmen; García-González, Carlos A

    2017-06-30

    Supercritical foaming allows for the solvent-free processing of synthetic scaffolds for bone regeneration. However, the control on the pore interconnectivity and throat pore size with this technique still needs to be improved. The use of plasticizers may help overcome these limitations. Eugenol, a GRAS natural compound extracted from plants, is proposed in this work as an advanced plasticizer with bioactive properties. Eugenol-containing poly(ε-caprolactone) (PCL) scaffolds were obtained by supercritical foaming (20.0 MPa, 45 °C, 17 h) followed by a one or a two-step depressurization profile. The effects of the eugenol content and the depressurization profile on the porous structure of the material and the physicochemical properties of the scaffold were evaluated. The combination of both processing parameters was successful to simultaneously tune the pore interconnectivity and throat sizes to allow mesenchymal stem cells infiltration. Scaffolds with eugenol were cytocompatible, presented antimicrobial activity preventing the attachment of Gram positive (S. aureus, S. epidermidis) bacteria and showed good tissue integration.

  11. Methods for producing films using supercritical fluid

    DOEpatents

    Yonker, Clement R.; Fulton, John L.

    2004-06-15

    A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The T.sub.g of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.

  12. Ultra-high-pressure liquid chromatography-tandem mass spectrometry method for the determination of alkylphenols in soil.

    PubMed

    Wang, Jing; Pan, Hefang; Liu, Zhengzheng; Ge, Fei

    2009-03-20

    A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 microm, 50 mm x 2.1mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0-103.4%, with the RSD<15%. The calibration curves for alkylphenols were linear within the range of 0.01-0.4 microg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 microg/kg.

  13. (Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods – A Review

    PubMed Central

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work. PMID:25988118

  14. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  15. Effect of ultra-high pressure on small animals, tardigrades and Artemia

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Mori, Yoshihisa; Takarabe, Kenichi; Fujii, Akiko; Saigusa, Masayuki; Matsushima, Yasushi; Yamazaki, Daisuke; Ito, Eiji; Galas, Simon; Saini, Naurang L.

    2016-12-01

    This research shows that small animals, tardigrades (Milnesium tardigradum) in tun (dehydrated) state and Artemia salina cists (dried eggs) can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

  16. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, Helena L.; Filardo, Giuseppe

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  17. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, H.L.; Filardo, G.

    1990-10-23

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

  18. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [Optimization of supercritical fluid extraction of bioactive components in Ligusticum chuanxiong by orthogonal array design].

    PubMed

    Hu, Li-Cui; Wu, Xun; Yang, Xue-Dong

    2013-10-01

    With the yields of ferulic acid, coniferylferulate, Z-ligustilide, senkyunolide A, butylidenephthalide, butylphthalide, senkyunolide I, senkyunolide H, riligustilide, levistolide A, and total pharmacologically active ingredient as evaluation indexes, the extraction of Ligusticum chuanxiong by supercritical fluid technology was investigated through an orthogonal experiment L9 (3(4)). Four factors, namely temperature, pressure, flow rate of carbon dioxide, co-solvent concentration of the supercritical fluid, were investigated and optimized. Under the optimized conditions, namely 65 degrees C of temperature, 35 MPa of pressure, 1 L x min(-1) of CO2 flow rate, 8% of co-solvent concetration, supercritical fluid extraction could achieve a better yield than the conventional reflux extraction using methanol. And the supercritical fluid extraction process was validated to be stable and reliable.

  20. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  1. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  2. Preparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process

    PubMed Central

    Zhang, Xiaonan; Zhao, Xiuhua; Zu, Yuangang; Chen, Xiaoqiang; Lu, Qi; Ma, Yuliang; Yang, Lei

    2012-01-01

    The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine. PMID:23202916

  3. Ultra-Low Density Organic-Inorganic Composite Materials Possessing Thermally Insulating and Acoustic Damping Properties

    DTIC Science & Technology

    1992-05-07

    Officer. Dr. Kenneth Wynne d. Brief Description of Project- We are investigating the design and synthesis of strong, ultra-low density xerogel and aerogel ...materials of this type would have applications in a broad range of areas including lightweight engine components, high temperature coatings, aircraft wings...we plan to investigate the formation of ultra-low density composites using supercritical universal drying (SCUD) techniques. SiO2 aerogel materials

  4. Inhibition effect in supercritical water oxidation of hydroquinone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thammanayakatip, C.; Oshima, Yoshito; Koda, Seiichiro

    1998-05-01

    In the oxidation reactions of hydroquinone under a supercritical conditions (temperature of 683 K and pressure of 24.5 MPa), the conversion was found to become saturated despite the very fast initial reaction. This behavior was quite different from that under a subcritical condition (temperature of 633 K and pressure of 24.5 MPa). Under both conditions, p-benzoquinone was found to be an important intermediate. The yield of CO{sub 2} was very small, which indicates a strong inhibition effect of hydroquinone and/or its derivatives. These inhibition phenomena should be taken into account very carefully in the application of supercritical water oxidation formore » treating waste organic materials where a complete decomposition is very important.« less

  5. Application of digital holographic interferometry to pressure measurements of symmetric, supercritical and circulation-control airfoils in transonic flow fields

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.

    1987-01-01

    Six airfoil interferograms were evaluated using a semiautomatic image-processor system which digitizes, segments, and extracts the fringe coordinates along a polygonal line. The resulting fringe order function was converted into density and pressure distributions and a comparison was made with pressure transducer data at the same wind tunnel test conditions. Three airfoil shapes were used in the evaluation to test the capabilities of the image processor with a variety of flows. Symmetric, supercritical, and circulation-control airfoil interferograms provided fringe patterns with shocks, separated flows, and high-pressure regions for evaluation. Regions along the polygon line with very clear fringe patterns yielded results within 1% of transducer measurements, while poorer quality regions, particularly near the leading and trailing edges, yielded results that were not as good.

  6. Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels

    NASA Technical Reports Server (NTRS)

    Locke, Justin M.; Landrum, D. Brian

    2005-01-01

    Sound understanding of the cooling efficiency of supercritical hydrogen is crucial to the development of high pressure thrust chambers for regeneratively cooled LOX/LH2 rocket engines. This paper examines historical heat transfer correlations for supercritical hydrogen and the effects of uncertainties in hydrogen property data. It is shown that uncertainty due to property data alone can be as high as 10%. Previous heated tube experiments with supercritical hydrogen are summarized, and data from a number of heated tube experiments are analyzed to evaluate conditions for which the available correlations are valid.

  7. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q

  8. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  9. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  10. Supercritical Brayton Cycle Nuclear Power System Concepts

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  11. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less

  12. Design of an efficient space constrained diffuser for supercritical CO2 turbines

    NASA Astrophysics Data System (ADS)

    Keep, Joshua A.; Head, Adam J.; Jahn, Ingo H.

    2017-03-01

    Radial inflow turbines are an arguably relevant architecture for energy extraction from ORC and supercritical CO 2 power cycles. At small scale, design constraints can prescribe high exit velocities for such turbines, which lead to high kinetic energy in the turbine exhaust stream. The inclusion of a suitable diffuser in a radial turbine system allows some exhaust kinetic energy to be recovered as static pressure, thereby ensuring efficient operation of the overall turbine system. In supercritical CO 2 Brayton cycles, the high turbine inlet pressure can lead to a sealing challenge if the rotor is supported from the rotor rear side, due to the seal operating at rotor inlet pressure. An alternative to this is a cantilevered layout with the rotor exit facing the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of any diffuser. Previous studies into conical diffuser geometries for supercritical CO 2 have shown that in order to achieve optimal static pressure recovery, longer geometries of a shallower cone angle are necessitated when compared to air. A diffuser with a combined annular-radial arrangement is investigated as a means to package the aforementioned geometric characteristics into a limited space claim for a 100kW radial inflow turbine. Simulation results show that a diffuser of this design can attain static pressure rise coefficients greater than 0.88. This confirms that annular-radial diffusers are a viable design solution for supercritical CO2 radial inflow turbines, thus enabling an alternative cantilevered rotor layout.

  13. Physical properties of the benchmark models program supercritical wing

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.

    1993-01-01

    The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.

  14. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles

    NASA Astrophysics Data System (ADS)

    Kruizenga, Alan Michael

    An experimental facility was built to perform heat transfer and pressure drop measurements in supercritical carbon dioxide. Inlet temperatures ranged from 30--125 °C with mass velocities ranging from 118--1050 kg/m2s and system pressures of 7.5--10.2 MPa. Tests were performed in horizontal, upward, and downward flow conditions to test the influence of buoyancy forces on the heat transfer. Horizontal tests showed that for system pressures of 8.1 MPa and up standard Nusselt correlations predicted the heat transfer behavior with good agreement. Tests performed at 7.5 MPa were not well predicted by existing correlations, due to large property variations. The data collected in this work can be used to better understand heat transfer near the critical point. The CFD package FLUENT was found to yield adequate prediction for the heat transfer behavior for low pressure cases, where standard correlations were inaccurate, however it was necessary to have fine mesh spacing (y+˜1) in order to capture the observed behavior. Vertical tests found, under the test conditions considered, that flow orientation had little or no effect on the heat transfer behavior, even in flow regions where buoyancy forces should result in a difference between up and down flow heat transfer. CFD results found that for a given set of boundary conditions a large increase in the gravitational acceleration could cause noticeable heat transfer deterioration. Studies performed with CFD further led to the hypothesis that typical buoyancy induced heat transfer deterioration exhibited in supercritical flows were mitigated through a complex interaction with the inertial force, which is caused by bulk cooling of the flow. This hypothesis to explain the observed data requires further investigation. Prototypic heat exchangers channels (i.e. zig-zag) proved that the heat transfer coefficient was consistently three to four times higher as compared to straight channel geometry. However, the form pressure loss due

  16. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip.

    PubMed

    Cheng, Xiang; Qi, ZhenBang; Burdyny, Thomas; Kong, Tian; Sinton, David

    2018-02-01

    This study demonstrates the efficacy of low pressure supercritical CO 2 extraction of astaxanthin from disrupted Haematococcus pluvialis. A microfluidic reactor was employed that enabled excellent control and allowed direct monitoring of the whole process at the single cell level, in real time. Astaxanthin extraction using ScCO 2 achieved 92% recovery at 55 °C and 8 MPa applied over 15 h. With the addition of co-solvents, ethanol and olive oil, the extraction rates in both experiments were significantly improved reaching full recovery within a few minutes. Notably, for the ethanol case, the timescales of extraction process are reduced 1800-fold from 15 h to 30 s at 55 °C and 8 MPa, representing the fastest complete astaxanthin extraction at such low pressures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development and validation of ultra-high performance supercritical fluid chromatography method for determination of illegal dyes and comparison to ultra-high performance liquid chromatography method.

    PubMed

    Khalikova, Maria A; Šatínský, Dalibor; Solich, Petr; Nováková, Lucie

    2015-05-18

    A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70°C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min(-1). The UV-vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices - Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50-9.09 mg kg(-1) (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg(-1) to 0.60 mg kg(-1) (1.80 mg kg(-1) for Fast Garnet) for standard solution and from 0.25 mg kg(-1) to 1.00 mg kg(-1) (2.50 mg kg(-1) for Fast Garnet, 1.50 mg kg(-1) for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5-107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real

  18. Unsteady pressure and structural response measurements of an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1988-01-01

    Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjunction with the flow separating and reattaching in the trailing edge region.

  19. Unsteady pressure and structural response measurements on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1988-01-01

    Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjuction with the flow separating and reattaching in the trailing edge region.

  20. Method and apparatus for waste destruction using supercritical water oxidation

    DOEpatents

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  1. Ultrahigh hydrostatic pressure extraction of flavonoids from Epimedium koreanum Nakai

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhang, Shouqin; Dou, Jianpeng; Zhu, Junjie; Liang, Qing

    2011-02-01

    Herba Epimedii is one of the most famous Chinese herbal medicines listed in the Pharmacopoeia of the People's Republic of China, as one of the representatives of traditional Chinese herb, it has been widely applied in the field of invigorate the kidney and strengthen 'Yang'. The attention to Epimedium extract has more and more increased in recent years. In this work, a novel extraction technique, ultra-high hydrostatic pressure extraction (UPE) technology was applied to extract the total flavonoids of E. koreanum. Three factors (pressure, ethanol concentration and extraction time) were chosen as the variables of extraction experiments, and the optimum UPE conditions were pressure 350 MPa; ethanol concentration 50% (v/v); extraction time 5 min. Compared with Supercritical CO2 extraction, Reflux extraction and Ultrasonic-assisted extraction, UPE has excellent advantages (shorter extraction time, higher yield, better antioxidant activity, lower energy consumption and eco-friendly).

  2. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    PubMed

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  3. Supercritical Fluid Extraction of Pyrrolidine Alkaloid from Leaves of Piper amalago L.

    PubMed Central

    Filho, L. C.; Faiões, V. S.; Cunha-Júnior, E. F.; Torres-Santos, E. C.; Cortez, D. A. G.

    2017-01-01

    Supercritical fluid extraction was used to extract the alkaloid N-[7-(3′,4′-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl]pyrrolidine from leaves of Piper amalago L. A three-level orthogonal array design matrix, OAD OA9(34), was used for optimization of the parameters of supercritical extraction of the alkaloid, employing supercritical carbon dioxide: extraction time (20, 40, and 60 min), temperature (40, 50, and 60°C), pressure (150, 200, and 250 bar), and the use of cosolvents (ethanol, methanol, and propyleneglycol). All parameters had significant effect on the alkaloid yield. The alkaloid yield after 60 min of extraction without cosolvents at 9 different conditions (32) in terms of temperature (40, 50, and 60°C) and pressure (150, 200, and 250 bar) was also evaluated. The optimal yield (≈3.8 mg g−1) was obtained with supercritical CO2 + methanol (5% v : v) at 40°C and 200 bar for 60 min of extraction. PMID:28539966

  4. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  5. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  6. Diffusion coefficients of phenylbutazone in supercritical CO2 and in ethanol.

    PubMed

    Kong, Chang Yi; Watanabe, Kou; Funazukuri, Toshitaka

    2013-03-01

    The diffusion coefficients D(12) of phenylbutazone at infinite dilution in supercritical CO(2) were measured by the chromatographic impulse response (CIR) method. The measurements were carried out over the temperature range from 308.2 to 343.2 K at pressures up to 40.0 MPa. In addition, the D(12) data of phenylbutazone at infinite dilution in ethanol were also measured by the Taylor dispersion method at 298.2-333.2K and at atmospheric pressure. The D(12) value of phenylbutazone increased from 4.45×10(-10) m(2) s(-1) at 298.2 K and 0.1 MPa in ethanol to about 1.43×10(-8) m(2) s(-1) at 343.2 K and 14.0 MPa in supercritical CO(2). It was found that all diffusion data of phenylbutazone measured in this study in supercritical CO(2) and in ethanol can be satisfactorily represented by the hydrodynamic equation over a wide range of fluid viscosity from supercritical state to liquid state with average absolute relative deviation of 5.4% for 112 data points. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Molecular Gibbs Surface Excess and CO2-Hydrate Density Determine the Strong Temperature- and Pressure-Dependent Supercritical CO2-Brine Interfacial Tension.

    PubMed

    Ji, Jiayuan; Zhao, Lingling; Tao, Lu; Lin, Shangchao

    2017-06-29

    In CO 2 geological storage, the interfacial tension (IFT) between supercritical CO 2 and brine is critical for the storage capacitance design to prevent CO 2 leakage. IFT relies not only on the interfacial molecule properties but also on the environmental conditions at different storage sites. In this paper, supercritical CO 2 -NaCl solution systems are modeled at 343-373 K and 6-35 MPa under the salinity of 1.89 mol/L using molecular dynamics simulations. After computing and comparing the molecular density profile across the interface, the atomic radial distribution function, the molecular orientation distribution, the molecular Gibbs surface excess (derived from the molecular density profile), and the CO 2 -hydrate number density under the above environmental conditions, we confirm that only the molecular Gibbs surface excess of CO 2 molecules and the CO 2 -hydrate number density correlate strongly with the temperature- and pressure-dependent IFTs. We also compute the populations of two distinct CO 2 -hydrate structures (T-type and H-type) and attribute the observed dependence of IFTs to the dominance of the more stable, surfactant-like T-type CO 2 -hydrates at the interface. On the basis of these new molecular mechanisms behind IFT variations, this study could guide the rational design of suitable injecting environmental pressure and temperature conditions. We believe that the above two molecular-level metrics (Gibbs surface excess and hydrate number density) are of great fundamental importance for understanding the supercritical CO 2 -water interface and engineering applications in geological CO 2 storage.

  8. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is

  9. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  10. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  11. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  12. Experimental trim drag values and flow-field measurements for a wide-body transport model with conventional and supercritical wings

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1982-01-01

    The purpose of this study was to determine if advanced supercritical wings incur higher trim drag values at cruise conditions than current wide body technology wings. Relative trim drag increments were measured in an experimental wind tunnel investigation conducted in the Langley 8 Foot Transonic Pressure Tunnel. The tests utilized a high aspect ratio supercritical wing and a wide body aircraft wing, in conjunction with five different horizontal tail configurations, mounted on a representative wide body fuselage. The three low tail and two T-tail configurations were designed to measure the effects of horizontal tail size, location, and camber on the trim drag increments for the two wings. Longitudinal force and moment data were taken at a Mach number of 0.82 and design cruise lift coefficients for the wide body and supercritical wings of 0.45 and 0.55, respectively. The data indicate that the supercritical wing does not have significantly higher trim drag than the wide body wing. A reduction in tail size, combined with relaxed static stability, produced trim drag reductions for both wings. The cambered tails had higher trim drag increments than the symmetrical tails for both wings, and the T-tail configurations had lower trim drag increments than the low tail configurations.

  13. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].

    PubMed

    Wu, Yan; Xiao, Xin-yu; Ge, Fa-huan

    2012-02-01

    To study the extraction conditions of Sapindus mukorossi oil by Supercritical CO2 Extraction and identify its components. Optimized SFE-CO2 Extraction by response surface methodology and used GC-MS to analysie Sapindus mukorossi oil compounds. Established the model of an equation for the extraction rate of Sapindus mukorossi oil by Supercritical CO2 Extraction, and the optimal parameters for the Supercritical CO2 Extraction determined by the equation were: the extraction pressure was 30 MPa, temperature was 40 degrees C; The separation I pressure was 14 MPa, temperature was 45 degrees C; The separation II pressure was 6 MPa, temperature was 40 degrees C; The extraction time was 60 min and the extraction rate of Sapindus mukorossi oil of 17.58%. 22 main compounds of Sapindus mukorossi oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 86.59%. This process is reliable, safe and with simple operation, and can be used for the extraction of Sapindus mukorossi oil.

  14. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  15. [Extraction of 10-Deacetyl Baccatin by Supercritical CO2 from Taxus yunnanensis Branches and Leaves].

    PubMed

    Tang, Yang-qin; Li, Hai-chi; Huang, Wen-jie; Xiong, Yan; Ge, Fa-huan

    2015-04-01

    To study the supercritical CO2 fluids extraction (SFE) method to extract the components from Taxus yunnanensis. Medicinal meterials were extracted by supercritical CO2, and then purified by industrial chromatography. Using the extraction yield of 10-DAB as the index,single factor test was carried out to investigate the effect of co-solvent, extraction time, extraction pressure, extraction temperature, pressure and temperature of separation kettle I. Then orthogonal experiment was used to optimize the best extraction condition. The suitable extraction condition was as follows: the ratio of co-solvent (80% ethanol) amount and the madicinal materials was 3: 1, Separation kettle I pressure was 14 MPa, separation kettle I temperature was 40 °C, extraction pressure was 25 MPa, extraction temperature was 60 T and extraction time was 90 min. The extract was separated by industrial chromatographic and then crystallized. The supercritical CO2 extraction and purification process of 10-DAB were simple and feasible.

  16. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  17. Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO2 ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry.

    PubMed

    Gao, Boyan; Luo, Yinghua; Lu, Weiying; Liu, Jie; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-03-01

    A supercritical CO 2 ultra-performance convergence chromatography (UPC 2 ) system was utilized with a quadrupole time-of-flight mass spectrometry (Q-TOF MS) to examine the triacylglycerol compositions of sunflower, corn and soybean oils. UPC 2 provided an excellent resolution and separation for the triacylglycerols, while the high performance Q-TOF MS system was able to provide the molecular weight and fragment ions information for triacylglycerol compound characterization. A total of 33 triacylglycerols were identified based on their elementary compositions and MS 2 fragment ion profiles, and their levels in the three oils were estimated. The combination of UPC 2 and Q-TOF MS may determine triacylglycerol compositions for oils and fats, and provide sn-position information for fatty acids, which may be important for food nutritional value and stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ultra-high performance supercritical fluid chromatography-mass spectrometry procedure for analysis of monosaccharides from plant gum binders.

    PubMed

    Pauk, Volodymyr; Pluháček, Tomáš; Havlíček, Vladimír; Lemr, Karel

    2017-10-09

    The ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) procedure for analysis of native monosaccharides was developed. Chromatographic conditions were investigated to separate a mixture of four hexoses, three pentoses, two deoxyhexoses and two uronic acids. Increasing water content in methanol modifier to 5% and formic acid to 4% improved peak shapes of neutral monosaccharides and allowed complete elution of highly polar uronic acids in a single run. An Acquity HSS C18SB column outperformed other three tested stationary phases (BEH (silica), BEH 2-ethylpyridine, CSH Fluoro-Phenyl) in terms of separation of isomers and analysis time (4.5 min). Limits of detection were in the range 0.01-0.12 ng μL -1 . Owing to separation of anomers, identification of critical pairs (arabinose-xylose and glucose-galactose) was possible. Feasibility of the new method was demonstrated on plant-derived polysaccharide binders. Samples of watercolor paints, painted paper and three plant gums widely encountered in painting media (Arabic, cherry and tragacanth) were decomposed prior the analysis by microwave-assisted hydrolysis at 40 bar initial pressure using 2 mol L -1 trifluoroacetic acid. Among tested temperatures, 120 °C ensured appropriate hydrolysis efficiency for different types of gum and avoided excessive degradation of labile monosaccharides. Procedure recovery tested on gum Arabic was 101% with an RSD below 8%. Aqueous hydrolysates containing monosaccharides in different ratios specific to each type of plant gum were diluted or analyzed directly. Filtration of samples before hydrolysis reduced interferences from a paper support and identification of gum Arabic in watercolor-painted paper samples was demonstrated. Successful identification of pure gum Arabic was confirmed for sample quantities as little as 1 μg. Two classification approaches were compared and principal component analysis was superior to analysis based on peak area

  19. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  20. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet

  1. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.

    PubMed

    Calgaro, C O; Schlemmer, D F; da Silva, M D C R; Maziero, E V; Tanabe, E H; Bertuol, D A

    2015-11-01

    Technological development and intensive marketing support the growth in demand for electrical and electronic equipment (EEE), for which printed circuit boards (PCBs) are vital components. As these devices become obsolete after short periods, waste PCBs present a problem and require recycling. PCBs are composed of ceramics, polymers, and metals, particularly Cu, which is present in highest percentages. The aim of this study was to develop an innovative method to recover Cu from the PCBs of old mobile phones, obtaining faster reaction kinetics by means of leaching with supercritical CO2 and co-solvents. The PCBs from waste mobile phones were characterized, and evaluation was made of the reaction kinetics during leaching at atmospheric pressure and using supercritical CO2 with H2O2 and H2SO4 as co-solvents. The results showed that the PCBs contained 34.83 wt% of Cu. It was found that the supercritical extraction was 9 times faster, compared to atmospheric pressure extraction. After 20 min of supercritical leaching, approximately 90% of the Cu contained in the PCB was extracted using a 1:20 solid:liquid ratio and 20% of H2O2 and H2SO4 (2.5 M). These results demonstrate the efficiency of the process. Therefore the supercritical CO2 employment in the PCBs recycling is a promising alternative and the CO2 is environmentally acceptable and reusable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  3. Plasma microreactor in supercritical xenon and its application to diamondoid synthesis

    NASA Astrophysics Data System (ADS)

    Oshima, F.; Stauss, S.; Ishii, C.; Pai, D. Z.; Terashima, K.

    2012-10-01

    The generation of plasmas in a microreactor is demonstrated in xenon from atmospheric pressure up to supercritical conditions. Ac high voltage at a frequency of 15 kHz was applied across a 25-µm discharge gap between a tungsten wire and a fused silica micro-capillary tube in a coaxial configuration. Using this continuous flow supercritical fluid microreactor, it was possible to synthesize diamantane and other diamondoids up to nonamantane, using adamantane as a precursor and seed. It is anticipated that plasmas generated in supercritical fluid microreactors may not only allow faster fabrication of diamondoids, but also offer opportunities for the fabrication of other nanomaterials.

  4. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  5. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

    PubMed Central

    Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-01-01

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492

  6. Ultra-thin nanocrystalline diamond membranes as pressure sensors for harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be; IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek

    2014-02-17

    Glass and diamond are suitable materials for harsh environments. Here, a procedure for fabricating ultra-thin nanocrystalline diamond membranes on glass, acting as an electrically insulating substrate, is presented. In order to investigate the pressure sensing properties of such membranes, a circular, highly conductive boron-doped nanocrystalline diamond membrane with a resistivity of 38 mΩ cm, a thickness of 150 nm, and a diameter of 555 μm is fabricated in the middle of a Hall bar structure. During the application of a positive differential pressure under the membrane (0–0.7 bar), four point piezoresistive effect measurements are performed. From these measurements, it can be concluded that the resistancemore » response of the membrane, as a function of differential pressure, is highly linear and sensitive.« less

  7. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    EPA Science Inventory

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  8. High-resolution imaging of the supercritical antisolvent process

    NASA Astrophysics Data System (ADS)

    Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.

    2005-06-01

    A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.

  9. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    DOE PAGES

    Hu, Po; Wilson, Paul

    2014-01-01

    The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in themore » code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.« less

  10. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    PubMed

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing.

    PubMed

    Santo, Islane Espirito; Campardelli, Roberta; Albuquerque, Elaine Cabral; Vieira De Melo, Silvio A B; Reverchon, Ernesto; Della Porta, Giovanna

    2015-11-01

    Supercritical fluid extraction using a high-pressure packed tower is proposed not only to remove the ethanol residue from liposome suspensions but also to affect their size and distribution leading the production of nanosomes. Different operating pressures, temperatures, and gas to liquid ratios were explored and ethanol was successfully extracted up to a value of 400 ppm; liposome size and distribution were also reduced by the supercritical processing preserving their integrity, as confirmed by Z-potential data and Trasmission Electron Microscopy observations. Operating at 120 bar and 38°C, nanosomes with a mean diameter of about 180 ± 40 nm and good storage stability were obtained. The supercritical processing did not interfere on drug encapsulation, and no loss of entrapped drug was observed when the water-soluble fluorescein was loaded as a model compound. Fluorescein encapsulation efficiency was 30% if pure water was used during the supercritical extraction as processing fluid; whereas an encapsulation efficiency of 90% was obtained if the liposome suspension was processed in water/fluorescein solution. The described technology is easy to scale up to an industrial production and merge in one step the solvent extraction, liposome size engineering, and an excellent drug encapsulation in a single operation unit. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  13. Modeling Solvation in Supercritical CO2.

    PubMed

    Ingrosso, Francesca; Ruiz-López, Manuel F

    2017-10-06

    In recent decades, a microscopic understanding of solute-solvent intermolecular interactions has been key to advances in technologies based on supercritical carbon dioxide. In many cases, computational work has provided the impetus for new discoveries, shedding new light on important concepts such as the local structure around the solute in the supercritical medium, the influence of the peculiar properties of the latter on the molecular behavior of dissolved substances and, importantly, CO 2 -philicity. In this Review, the theoretical work that has been relevant to these developments is surveyed and, by presenting some crucial open questions, the possible routes to achieving further progress based on the interplay between theory and experiments is discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2009-07-01

    Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be suremore » that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact

  15. MALEIC ANHYDRIDE HYDROGENATION OF PD/AL2O3 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM

    EPA Science Inventory

    Hydrogenation of maleic anhydride (MA) to either y-butyrolactone of succinic anhydride over simple Pd/Al2O3 impregnated catalyst in supercritical CO2 medium has been studied at different temperatures and pressures. A comparison of the supercritical CO2 medium reaction with the c...

  16. Pressure ulcer prevention in patients with advanced illness.

    PubMed

    White-Chu, E Foy; Reddy, Madhuri

    2013-03-01

    Pressure ulcers can be challenging to prevent, particularly in patients with advanced illnesses. This review summarizes the relevant literature since 2011. Through a MEDLINE and CINAHL database search from January 1, 2011 to June 1, 2012, a total of 14 abstracts were found addressing the prevention of pressure ulcers in persons with advanced illness. Search terms included pressure ulcer, prevention, and control. Advanced illness was defined as patients transitioning from curative to supportive and palliative care. Ten original studies and four review articles specifically addressed pressure ulcer prevention. There were four articles that specifically addressed patients with advanced illness. The studies varied in quality. One systematic review, one randomized controlled trial, three prospective trials, two retrospective trials, one cost-effectiveness analysis, one quality improvement project, one comparative descriptive design, and four review articles were found. The interventions for pressure ulcer prevention were risk assessment, repositioning, surface selection, nutritional support and maintenance of skin integrity with or without incontinence. The quality of pressure ulcer prevention studies in persons with advanced illness is poor. Increased number and higher quality studies are needed to further investigate this important topic for these fragile patients.

  17. Study on influence of three kinds of stress on crack propagation in butt welds of spiral coil waterwall for ultra supercritical boiler

    NASA Astrophysics Data System (ADS)

    Yan, Zhenrong; Si, Jun

    2017-09-01

    The spiral coil waterwall is the main pressure parts and the core functional components of Ultra Supercritical Boiler. In the process of operation, the spiral coil waterwall is under the combined action of welding residual stress, installation defects stress and working fluid stress, Cracks and crack propagation are easy to occur in butt welds with defects. In view of the early cracks in the butt welds of more T23 water cooled walls, in this paper, the influence of various stresses on the crack propagation in the butt welds of spiral coil waterwall was studied by numerical simulation. Firstly, the welding process of T23 water cooled wall tube was simulated, and the welding residual stress field was obtained. Then,on the basis, put the working medium load on the spiral coil waterwall, the supercoated stress distribution of the welding residual stress and the stress of the working medium is obtained. Considering the bending moment formed by stagger joint which is the most common installation defects, the stress field distribution of butt welds in T23 water-cooled wall tubes was obtained by applying bending moment on the basis of the stress field of the welding residual stress and the working medium stress. The results show that, the welding residual stress is small, the effect of T23 heat treatment after welding to improve the weld quality is not obvious; The working medium load plays a great role in the hoop stress of the water cooled wall tube, and promotes the cracks in the butt welds; The axial stress on the water cooled wall tube produced by the installation defect stress is obvious, the stagger joint, and other installation defects are the main reason of crack propagation of spiral coil waterwall. It is recommended that the control the bending moment resulting from the stagger joint not exceed 756.5 NM.

  18. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  19. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  20. Forsterite [Mg 2 SiO 4 )] Carbonation in Wet Supercritical CO 2 : An in Situ High-Pressure X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd Schaef, Herbert; McGrail, Bernard P.; Loring, John L.

    2013-01-02

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring with forsterite (Mg2SiO4) exposed to wet supercritical CO2. Forsterite was selected as it is an important olivine group mineral present in igneous and mafic rocks and has been the subject of a large number of aqueous dissolutionmore » studies that can be compared with non-aqueous fluid tests in this study. Transformation reactions were examined by in situ high pressure x-ray diffraction in the presence of supercritical carbon dioxide (scCO2) containing dissolved water at conditions relevant to carbon sequestration. Under modest pressures (90 bar) and temperatures (50°C), scCO2 saturated with water was found to convert >70 wt% forsterite to a hydrated magnesium carbonate, nesquehonite (MgCO3 •3H2O) and magnesite (MgCO3), after 72 hours of reaction. However, comparable tests with scCO2 at only partial water saturation (82%) showed a significantly slower carbonation rate with only ~30-39 wt% conversion to nesquehonite and no evidence of the anhydrous form (MgCO3). Further decreases in water content of the scCO2 continued to reduce the extent of carbonation, until a critical moisture threshold (~30%) was crossed where forsterite no longer reacted in the presence of the wet scCO2 to form crystalline carbonates. Increasing the temperature to 75°C produced anhydrous magnesium carbonate, magnesite (MgCO3), preceded by the intermediate phase, hydromagnesite [Mg(CO3)4(OH)2 •4H2O]. Measurements conducted during in situ IR experiments at 50°C and 30% saturation identified the presence of an amorphous

  1. Particle Formation and Product Formulation Using Supercritical Fluids.

    PubMed

    Knez, Željko; Knez Hrnčič, Maša; Škerget, Mojca

    2015-01-01

    Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.

  2. A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1971-01-01

    An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.

  3. General corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Nakazono, Y.; Iwai, T.; Abe, H.

    2010-03-01

    The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy but there are numerous potential problems, particularly with materials. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. Austenitic stainless steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520Ti) by using a supercritical water autoclave. Corrosion tests on the austenitic 1520S and 1520Ti steels in supercritical water were performed at 400, 500 and 600°C with exposures up to 1000h. The amount of weight gain, weight loss and weight of scale were evaluated after the corrosion test in supercritical water for both austenitic steels. After 1000h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m2 at 400°C and 500°C . But both weight gain and weight loss of 1520Ti were larger than those of 1520S at 600°C . By increasing the temperature to 600°C, the surface of 1520Ti was covered with magnetite formed in supercritical water and dissolution of the steel alloying elements has been observed. In view of corrosion, 1520S may have larger possibility than 1520Ti to adopt a

  4. Quantitative Determination of Cannabinoids in Cannabis and Cannabis Products Using Ultra-High-Performance Supercritical Fluid Chromatography and Diode Array/Mass Spectrometric Detection.

    PubMed

    Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M; Wanas, Amira S; Mehmedic, Zlatko; van Antwerp, John; ElSohly, Mahmoud A; Khan, Ikhlas A

    2017-05-01

    Ultra-high-performance supercritical fluid chromatography (UHPSFC) is an efficient analytical technique and has not been fully employed for the analysis of cannabis. Here, a novel method was developed for the analysis of 30 cannabis plant extracts and preparations using UHPSFC/PDA-MS. Nine of the most abundant cannabinoids, viz. CBD, ∆ 8 -THC, THCV, ∆ 9 -THC, CBN, CBG, THCA-A, CBDA, and CBGA, were quantitatively determined (RSDs < 6.9%). Unlike GC methods, no derivatization or decarboxylation was required prior to UHPSFC analysis. The UHPSFC chromatographic separation of cannabinoids displayed an inverse elution order compared to UHPLC. Combining with PDA-MS, this orthogonality is valuable for discrimination of cannabinoids in complex matrices. The developed method was validated, and the quantification results were compared with a standard UHPLC method. The RSDs of these two methods were within ±13.0%. Finally, chemometric analysis including principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to differentiate between cannabis samples. © 2016 American Academy of Forensic Sciences.

  5. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jr., R.L.; Fang, Z.; Tohoku)

    In this review, diamond anvil type cells (DACs) are reviewed as a method for studying supercritical water systems. The hydrothermal DAC provides easy and safe experimental access to high pressure (30-3000 MPa) and high temperature (400-800 C) regions and the device allows exploration of supercritical systems at high density (400-1200 kg/m{sup 3}), which is usually difficult or costly with batch or flow systems. In the first part of this review, characteristics of DACs regarding anvil type, DAC type, anvil alignment, heating, analytical methods, pressure and temperature determination, gasket, loading, physical size are discussed with emphasis on DACs that can bemore » used to generate conditions of interest for understanding supercritical water systems. In the second part of this review, applications and key findings of studies on supercritical water systems from geology, chemical, biomass, energy, environmental, polymer, and materials related fields are discussed. Some of the key findings determined with DAC are related to the dissolution or existence of phases at conditions of high temperature and high pressure, however, DAC has been used in many quantitative studies to determine fundamental properties such as speeds of sound, phase behavior, solubilities, partition coefficients and viscosities. Future prospects for DAC as a method for exploring supercritical water systems include combination of DAC with transmission electron microscopy (TEM) for studying nanostructures, use of high-speed streak cameras to study high-speed reactions, combustions, and energetic materials, use of time-dependent loads to study kinetics, precipitation and crystallization phenomena, the use of DAC with synchrotron radiation to follow reaction and material processes in situ, and the many modifications that can be made to DAC anvils and rapid heating methods such as lasers and masers used in conjunction with in situ techniques. The DAC is a highly versatile instrument and should find

  6. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.

    PubMed

    Li, Ying; Yang, Da-Jian; Chen, Shi-Lin; Chen, Si-Bao; Chan, Albert Sun-Chi

    2008-07-09

    The aim of the study was to develop and evaluate a new method for the production of puerarin phospholipids complex (PPC) microparticles. The advanced particle formation method, solution enhanced dispersion by supercritical fluids (SEDS), was used for the preparation of puerarin (Pur), phospholipids (PC) and their complex particles for the first time. Evaluation of the processing variables on PPC particle characteristics was also conducted. The processing variables included temperature, pressure, solution concentration, the flow rate of supercritical carbon dioxide (SC-CO2) and the relative flow rate of drug solution to CO2. The morphology, particle size and size distribution of the particles were determined. Meanwhile Pur and phospholipids were separately prepared by gas antisolvent precipitation (GAS) method and solid characterization of particles by the two supercritical methods was also compared. Pur formed by GAS was more orderly, purer crystal, whereas amorphous Pur particles between 0.5 and 1microm were formed by SEDS. The complex was successfully obtained by SEDS exhibiting amorphous, partially agglomerated spheres comprised of particles sized only about 1microm. SEDS method may be useful for the processing of other pharmaceutical preparations besides phospholipids complex particles. Furthermore adopting a GAS process to recrystallize pharmaceuticals will provide a highly versatile methodology to generate new polymorphs of drugs in addition to conventional techniques.

  7. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  8. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  9. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    NASA Astrophysics Data System (ADS)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  10. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  11. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    PubMed

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  12. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    PubMed

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  13. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    EPA Science Inventory

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  14. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  15. Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.

    PubMed

    Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng

    2017-03-01

    As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO 2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO 2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO 2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO 2 dyeing technique.

  16. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  17. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  18. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    PubMed

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  19. Measurements of unsteady pressure and structural response for an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1994-01-01

    Results are presented which define unsteady flow conditions associated with the high-dynamic structural response of a high-aspect-ratio, elastic, supercritical wing at transonic speeds. The wing was tested in the Langley Transonic Dynamics Tunnel with a heavy gas test medium. The supercritical wing, designed for a cruise lift coefficient of 0.53 at a Mach number of 0.80, experienced the high-dynamic structural response from Mach 0.90 to 0.94 with the maximum response occurring at about Mach 0.92. At the maximum response conditions of the wing, the forcing function appears to be the oscillatory chordwise movement of strong shocks located on the upper and lower surfaces of the wing in conjunction with the flow separation on the lower surface of the wing in the trailing-edge cove region.

  20. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  1. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  2. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  4. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    PubMed Central

    Sovová, Helena; Nobre, Beatriz P.; Palavra, António

    2016-01-01

    Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters. PMID:28773546

  5. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less

  6. An investigation of supercritical-CO2 copper electroplating parameters for application in TSV chips

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao; Lai, Wei-Hong; Sanchez, Jorge

    2015-01-01

    This study uses supercritical electroplating for the filling of through silicon vias (TSVs) in chips. The present study utilizes the inductively coupled plasma reactive ion etching (ICP RIE) process technique to etch the TSVs and discusses different supercritical-CO2 electroplating parameters, such as the supercritical pressure, the electroplating current density’s effect on the TSV Cu pillar filling time, the I-V curve, the electrical resistance and the hermeticity. In addition, the results for all the tests mentioned above have been compared to results from traditional electroplating techniques. For the testing, we will first discuss the hermeticity of the TSV Cu pillars, using a helium leaking test apparatus to assess the vacuum sealing of the fabricated TSV Cu pillars. In addition, this study also conducts tests for the electrical properties, which include the measurement of the electrical resistance of the TSV at both ends in the horizontal direction, followed by the passing of a high current (10 A, due to probe limitations) to check if the TSV can withstand it without burnout. Finally, the TSV is cut in half in cross-section to observe the filling of Cu pillars by the supercritical electroplating and check for voids. The important characteristic of this study is the use of the supercritical electroplating process without the addition of any surfactants to aid the filling of the TSVs, but by taking advantage of the high permeability and low surface tension of supercritical fluids to achieve our goal. The results of this investigation point to a supercritical pressure of 2000 psi and a current density of 3 A dm-2 giving off the best electroplating filling and hermeticity, while also being able to withstand a high current of 10 A, with a relatively short electroplating time of 3 h (when compared to our own traditional dc electroplating).

  7. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    NASA Astrophysics Data System (ADS)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  8. An ultra-fast fiber optic pressure sensor for blast event measurements

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  9. Benzil fluorescence and phosphorescence emissions: a pertinent probe for the kinematic behaviour and microheterogeneity of supercritical CO 2

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Nitin; Serpa, Carlos; Isilda Silva, M.; Arnaut, Luis G.; Formosinho, Sebastião J.

    2001-10-01

    The relative intensity (RI) of the phosphorescence and fluorescence from the relaxed trans-planar geometry of benzil has been studied as a function of pressure and temperature in supercritical carbon dioxide (SC-CO 2). The nature of the variation of RI with pressure and temperature is similar to that of the kinematic viscosity (KV) with the two said parameters. The experimental results have been interpreted in terms of microheterogeneity of the supercritical fluid (SCF).

  10. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  11. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.

    PubMed

    Bertuol, Daniel A; Machado, Caroline M; Silva, Mariana L; Calgaro, Camila O; Dotto, Guilherme L; Tanabe, Eduardo H

    2016-05-01

    Continuing technological development decreases the useful lifetime of electronic equipment, resulting in the generation of waste and the need for new and more efficient recycling processes. The objective of this work is to study the effectiveness of supercritical fluids for the leaching of cobalt contained in lithium-ion batteries (LIBs). For comparative purposes, leaching tests are performed with supercritical CO2 and co-solvents, as well as under conventional conditions. In both cases, sulfuric acid and H2O2 are used as reagents. The solution obtained from the supercritical leaching is processed using electrowinning in order to recover the cobalt. The results show that at atmospheric pressure, cobalt leaching is favored by increasing the amount of H2O2 (from 0 to 8% v/v). The use of supercritical conditions enable extraction of more than 95wt% of the cobalt, with reduction of the reaction time from 60min (the time employed in leaching at atmospheric pressure) to 5min, and a reduction in the concentration of H2O2 required from 8 to 4% (v/v). Electrowinning using a leach solution achieve a current efficiency of 96% and a deposit with cobalt concentration of 99.5wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    EPA Science Inventory

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  13. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.

    PubMed

    Sacha, Gregory A; Schmitt, William J; Nail, Steven L

    2006-01-01

    The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.

  14. Thermal induced flow oscillations in heat exchangers for supercritical fluids

    NASA Technical Reports Server (NTRS)

    Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.

    1972-01-01

    Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.

  15. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale.

    PubMed

    Song, Wei; Qiao, Xue; Liang, Wen-fei; Ji, Shuai; Yang, Lu; Wang, Yuan; Xu, Yong-wei; Yang, Ying; Guo, De-an; Ye, Min

    2015-10-01

    Curcumin is the major constituent of turmeric (Curcuma longa L.). It has attracted widespread attention for its anticancer and anti-inflammatory activities. The separation of curcumin and its two close analogs, demethoxycurcumin and bisdemethoxycurcumin, has been challenging by conventional techniques. In this study, an environmentally friendly method based on supercritical fluid chromatography was established for the rapid and facile separation of the three curcuminoids directly from the methanol extract of turmeric. The method was first developed and optimized by ultra performance convergence chromatography, and was then scaled up to preparative supercritical fluid chromatography. Eluted with supercritical fluid CO2 containing 8-15% methanol (containing 10 mM oxalic acid) at a flow rate of 80 mL/min, curcumin, demethoxycurcumin and bisdemethoxycurcumin could be well separated on a Viridis BEH OBD column (Waters, 250 mm × 19 mm, 5 μm) within 6.5 min. As a result, 20.8 mg of curcumin (97.9% purity), 7.0 mg of demethoxycurcumin (91.1%), and 4.6 mg of bisdemethoxycurcumin (94.8%) were obtained after a single step of supercritical fluid chromatography separation with a mean recovery of 76.6%. Showing obvious advantages in low solvent consumption, large sample loading, and easy solvent removal, supercritical fluid chromatography was proved to be a superior technique for the efficient separation of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    1999-01-01

    The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.

  17. Structural Transitions in Elemental Tin at Ultra High Pressures up to 230 GPa

    NASA Astrophysics Data System (ADS)

    Gavriliuk, A. G.; Troyan, I. A.; Ivanova, A. G.; Aksenov, S. N.; Starchikov, S. S.; Lyubutin, I. S.; Morgenroth, W.; Glazyrin, K. V.; Mezouar, M.

    2017-12-01

    The crystal structure of elemental Sn was investigated by synchrotron X-ray diffraction at ultra high pressures up to ˜230 GPa creating in diamond anvil cells. Above 70 GPa, a pure bcc structure of Sn was observed, which is stable up to 160GPa, until an occurrence of the hcp phase was revealed. At the onset of the bcc- hcp transition at pressure of about 160GPa, the drop of the unit cell volume is about 1%. A mixture of the bcc- hcp states was observed at least up to 230GPa, and it seems that this state could exist even up to higher pressures. The fractions of the bcc and hcp phases were evaluated in the pressure range of the phase coexistence 160-230 GPa. The difference between static and dynamic compression and its effect on the V- P phase diagram of Sn are discussed.

  18. Ultra fast all-optical fiber pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-05-01

    Traumatic brain injury (TBI) is a great potential threat to soldiers who are exposed to explosions or athletes who receive cranial impacts. Protecting people from TBI has recently attracted a significant amount of attention due to recent military operations in the Middle East. Recording pressure transient data in a blast event is very critical to the understanding of the effects of blast events on TBI. However, due to the fast change of the pressure during blast events, very few sensors have the capability to effectively track the dynamic pressure transients. This paper reports an ultra fast, miniature and all-optical fiber pressure sensor which could be mounted at different locations of a helmet to measure the fast changing pressure simultaneously. The sensor is based on Fabry-Perot (FP) principle. The end face of the fiber is wet etched. A well controlled thickness silicon dioxide diaphragm is thermal bonded on the end face to form an FP cavity. A shock tube test was conducted at Natick Soldier Research Development and Engineering Center, where the sensors were mounted in a shock tube side by side with a reference sensor to measure the rapidly changing pressure. The results of the test demonstrated that the sensor developed had an improved rise time (shorter than 0.4 μs) when compared to a commercially available reference sensor.

  19. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    NASA Astrophysics Data System (ADS)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  20. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    PubMed

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  1. Pulsed Laser Ablation Synthesis of Diamond Molecules in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Nakahara, Sho; Stauss, Sven; Miyazoe, Hiroyuki; Shizuno, Tomoki; Suzuki, Minoru; Kataoka, Hiroshi; Sasaki, Takehiko; Terashima, Kazuo

    2010-09-01

    Nanocarbon materials have been synthesized by pulsed laser ablation (532 nm; 52 J/cm2; 7 ns; 10 Hz) of highly oriented pyrolytic graphite in adamantane-dissolved supercritical xenon at a temperature T = 290.2 K and pressure p = 5.86 MPa. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp3 hybridized bonds also found in diamond structures. The synthesis of diamantane was confirmed by gas chromatography-mass spectrometry. The same measurements also indicate the possible synthesis of other diamondoids up to octamantane. Thus, laser ablation in supercritical fluids is proposed as one practical method of synthesizing diamondoids.

  2. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    PubMed Central

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-01-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747

  3. Effects of Natural Osmolytes on the Protein Structure in Supercritical CO2: Molecular Level Evidence.

    PubMed

    Monhemi, Hassan; Housaindokht, Mohammad Reza; Nakhaei Pour, Ali

    2015-08-20

    Protein instability in supercritical CO2 limits the application of this green solvent in enzyme-catalyzed reactions. CO2 molecules act as a protein denaturant at high pressure under supercritical conditions. Here, for the first time, we show that natural osmolytes could stabilize protein conformation in supercritical CO2. Molecular dynamics simulation is used to monitor the effects of adding different natural osmolytes on the conformation and dynamics of chymotrypsin inhibitor 2 (CI2) in supercritical CO2. Simulations showed that CI2 is denatured at 200 bar in supercritical CO2, which is in agreement with experimental observations. Interestingly, the protein conformation remains native after addition of ∼1 M amino acid- and sugar-based osmolyte models. These molecules stabilize protein through the formation of supramolecular self-assemblies resulting from macromolecule-osmolyte hydrogen bonds. Nevertheless, trimethylamine N-oxide, which is known as a potent osmolyte for protein stabilization in aqueous solutions, amplifies protein denaturation in supercritical CO2. On the basis of our structural analysis, we introduce a new mechanism for the osmolyte effect in supercritical CO2, an "inclusion mechanism". To the best of our knowledge, this is the first study that introduces the application of natural osmolytes in a supercritical fluid and describes mechanistic insights into osmolyte action in nonaqueous media.

  4. Supercritical water oxidation for wastewater treatment Preliminary study of urea destruction

    NASA Technical Reports Server (NTRS)

    Timberlake, S. H.; Hong, G. T.; Simson, M.; Modell, M.

    1982-01-01

    Supercritical water oxidation is being investigated as a method of treating spacecraft wastewater for recycle. In this process, oxidation is conducted in an aqueous phase maintained above the critical temperature (374 C) and pressure (215 bar) of water. Organic materials are oxidized with efficiencies greater than 99.99 percent in residence times of less than 1 minute. This paper presents preliminary results for urea destruction. Above 650 C, urea can be completely broken down to nitrogen gas, carbon dioxide and water by supercritical water oxidation, without the use of a specific catalyst.

  5. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun

    2013-03-01

    Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid

  6. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.

    PubMed

    Sodeifian, Gholamhossein; Sajadian, Seyed Ali; Honarvar, Bizhan

    2018-04-01

    Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.

  7. An experimental study of transonic flow about a supercritical airfoil. Static pressure and drag data obtained from tests of a supercritical airfoil and an NACA 0012 airfoil at transonic speeds, supplement

    NASA Technical Reports Server (NTRS)

    Spaid, F. W.; Dahlin, J. A.; Roos, F. W.; Stivers, L. S., Jr.

    1983-01-01

    Surface static-pressure and drag data obtained from tests of two slightly modified versions of the original NASA Whitcomb airfoil and a model of the NACA 0012 airfoil section are presented. Data for the supercritical airfoil were obtained for a free-stream Mach number range of 0.5 to 0.9, and a chord Reynolds number range of 2 x 10 to the 6th power to 4 x 10 to the 6th power. The NACA 0012 airfoil was tested at a constant chord Reynolds number of 2 x 10 to the 6th power and a free-stream Mach number range of 0.6 to 0.8.

  8. Supercritical waste oxidation of aqueous wastes

    NASA Technical Reports Server (NTRS)

    Modell, M.

    1986-01-01

    For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.

  9. Ketoprofen-β-cyclodextrin inclusion complexes formation by supercritical process technology

    NASA Astrophysics Data System (ADS)

    Sumarno, Rahim, Rizki; Trisanti, Prida Novarita

    2017-05-01

    Ketoprofen was a poorly soluble which anti-inflammatory, analgesic and antipyretic drug, solubility of which can be enchanced by form complexation with β-cyclodextrin. Besides that, the inclusion complex reduces the incidence of gastrointestinal side effect of drug. The aims of this research are to study the effect of H2O concentration in the supercritical carbondioxide and operation condition in the formation of ketoprofen-β-Cyclodextrin inclusion complex. This research was began by dissolved H2O in supercritical CO2 at 40°C and various saturation pressures. Then, dissolved H2O contacted with (1:5 w/w) ketoprofen-β-Cyclodextrin mixture at 50°C and various operation pressures. It called saturation process. Saturation was done for ±2 hours with agitation process and continued by decompression process. The products were characterized by drug Release, Differential Scanning Calorimetry (DCS) dan Scanning Electron Microscopy (SEM) analyses. The percentage from this work were 76,82%-89,99% for inclusion complexes. The percentage drug release of ketoprofen were 82,83%-88,36% on various inclusion pressure and various inclusion period.

  10. Catalytic Intermolecular Pauson - Khand Reactions in Supercritical Ethylene.

    PubMed

    Jeong; Hwang

    2000-02-01

    Ethylene is not only a substrate, but also a solvent: Catalytic intermolecular Pauson - Khand reactions of terminal alkynes were carried out in supercritical ethylene to provide 2-substituted cyclopentenones in moderate to high yields [Eq. (1)]. Under these conditions, even a low pressure of CO (5 atm) is sufficient for the reaction to take place.

  11. Ultra-high-speed variable focus optics for novel applications in advanced imaging

    NASA Astrophysics Data System (ADS)

    Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.

    2018-02-01

    With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.

  12. Toward Better Modeling of Supercritical Turbulent Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth

    2008-01-01

    study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.

  13. Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils.

    PubMed

    Crepier, Julien; Le Masle, Agnès; Charon, Nadège; Albrieux, Florian; Duchene, Pascal; Heinisch, Sabine

    2018-06-01

    Extensive characterization of complex mixtures requires the combination of powerful analytical techniques. A Supercritical Fluid Chromatography (SFC) method was previously developed, for the specific case of fast pyrolysis bio oils, as an alternative to gas chromatography (GC and GC × GC) or liquid chromatography (LC and LC × LC), both separation methods being generally used prior to mass spectrometry (MS) for the characterization of such complex matrices. In this study we investigated the potential of SFC hyphenated to high resolution mass spectrometry (SFC-HRMS) for this characterization using Negative ion Atmospheric Pressure Chemical ionization ((-)APCI) for the ionization source. The interface between SFC and (-)APCI/HRMS was optimized from a mix of model compounds with the objective of maximizing the signal to noise ratio. The main studied parameters included both make-up flow-rate and make-up composition. A methodology for the treatment of APCI/HRMS data is proposed. This latter allowed for the identification of molecular formulae. Both SFC-APCI/HRMS method and data processing method were applied to a mixture of 36 model compounds, first analyzed alone and then spiked in a bio-oil. In both cases, 19 compounds could be detected. Among them 9 could be detected in a fast pyrolysis bio-oil by targeted analysis. The whole procedure was applied to the characterization of a bio-oil using helpful representations such as mass-plots, van Krevelen diagrams and heteroatom class distributions. Finally the results were compared with those obtained with a Fourier Transform ion-cyclotron resonance mass spectrometer (FT-ICR/MS). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian J.; Pan, Feng

    2014-09-24

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperaturemore » and pressure conditions of EGS reservoirs.« less

  15. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment.

    PubMed

    Gai, Yanzhe; Wang, Wucong; Xiao, Ding; Zhao, Yaping

    2018-03-01

    Ultrasound coupled with supercritical CO 2 has become an important method for exfoliation of graphene, but behind which a peeling mechanism is unclear. In this work, CFD simulation and experiment were both investigated to elucidate the mechanism and the effects of the process parameters on the exfoliation yield. The experiments and the CFD simulation were conducted under pressure ranging from 8MPa to 16MPa, the ultrasonic power ranging from 12W to 240W and the frequency of 20kHz. The numerical analysis of fluid flow patterns and pressure distributions revealed that the fluid shear stress and the periodical pressure fluctuation generated by ultrasound were primary factors in exfoliating graphene. The distribution of the fluid shear stress decided the effective exfoliation area, which, in turn, affected the yield. The effective area increased from 5.339cm 3 to 8.074cm 3 with increasing ultrasonic power from 12W to 240W, corresponding to the yield increasing from 5.2% to 21.5%. The pressure fluctuation would cause the expansion of the interlayers of graphite. The degree of the expansion increased with the increase of the operating pressure but decreased beyond 12MPa. Thus, the maximum yield was obtained at 12MPa. The cavitation might be generated by ultrasound in supercritical CO 2 . But it is too weak to exfoliate graphite into graphene. These results provide a strategy in optimizing and scaling up the ultrasound-assisted supercritical CO 2 technique for producing graphene. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Instabilities encountered during heat transfer to a supercritical fluid

    NASA Technical Reports Server (NTRS)

    Cornelius, A. J.

    1969-01-01

    Investigation was made of the unstable behavior of a heat-transfer loop operating at a supercritical pressure. Natural convection operation of the loop, with observations on acoustic and slow oscillatory behavior, was emphasized during testing. The basic cause of both types of behavior appeared to originate in the heated boundary layer.

  17. Flight Wing Surface Pressure and Boundary-Layer Data Report from the F-111 Smooth Variable-Camber Supercritical Mission Adaptive Wing

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.

    1997-01-01

    Flight tests were conducted using the advanced fighter technology integration F-111 (AFTI/F-111) aircraft modified with a variable-sweep supercritical mission adaptive wing (MAW). The MAW leading- and trailing-edge variable-camber surfaces were deflected in flight to provide a near-ideal wing camber shape for the flight condition. The MAW features smooth, flexible upper surfaces and fully enclosed lower surfaces, which distinguishes it from conventional flaps that have discontinuous surfaces and exposed or semi-exposed mechanisms. Upper and lower surface wing pressure distributions were measured along four streamwise rows on the right wing for cruise, maneuvering, and landing configurations. Boundary-layer measurements were obtained near the trailing edge for one of the rows. Cruise and maneuvering wing leading-edge sweeps were 26 deg for Mach numbers less than 1 and 45 deg or 58 deg for Mach numbers greater than 1. The landing wing sweep was 9 deg or 16 deg. Mach numbers ranged from 0.27 to 1.41, angles of attack from 2 deg to 13 deg, and Reynolds number per unit foot from 1.4 x 10(exp 6) to 6.5 x 10(exp 6). Leading-edge cambers ranged from O deg to 20 deg down, and trailing-edge cambers ranged from 1 deg up to 19 deg down. Wing deflection data for a Mach number of 0.85 are shown for three cambers. Wing pressure and boundary-layer data are given. Selected data comparisons are shown. Measured wing coordinates are given for three streamwise semispan locations for cruise camber and one spanwise location for maneuver camber.

  18. Ultra-high pressure waterjets efficient in removing coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    Little if any thought was given to pipeline rehabilitation 50 years, a time when pipe manufacturers often coated the external diameter of pipe with coal tar to help eliminate corrosion. Unfortunately, contractors rehabilitating these pipelines today encounter major difficulties when attempting to remove coal tar with traditional removal processes. A leading pipeline rehabilitation firm, F.F. Yockey Company, Inc. of Magnolia, Texas, faced a constant challenge stripping coal tar with rotating knives and brushes. The process generated heat that melted the tar and caused the machines to jam. Another problem was the damage to the substrate caused by the friction-based cleaningmore » techniques of rotating knives and brushes. The knives also failed to completely clean the substrate, leaving behind a significant amount of residue. Contractors learned that new coating bonded poorly to the substrates covered with residual contaminants, thus yielding unsatisfactory results. As he looked for a solution, Dick Yockey, president and CEO of R.F. Yockey, began exploring the use of ultra-high pressure waterjet surface preparation equipment. This system involved water pressurized at levels ranging from 35,000 to 55,000 psi. The water travels through small orifices in a high-speed rotating nozzle, forming a cohesive stream of water. This paper reviews the design and performance of this system.« less

  19. Measurement of diffusion in fluid systems: Applications to the supercritical fluid region

    NASA Astrophysics Data System (ADS)

    Bruno, Thomas J.

    1994-04-01

    The experimental procedures that are applicable to the measurement of diffusion in supercritical fluid solutions are reviewed. This topic is of great importance to the proper design of advanced aircraft and turbine fuels, since the fuels on these aircraft may sometimes operate under supercritical fluid conditions. More specifically, we will consider measurements of the binary interaction diffusion coefficient D exp 12 of a solute (species 1) and the solvent (species 2). In this discussion, the supercritical fluid is species 2, and the solute, species 1, will be at a relatively low concentration, sometimes approaching infinite dilution. After a brief introduction to the concept of diffusion, we will discuss in detail the use of chromatographic methods, and then briefly treat light scattering, nuclear magnetic resonance spectra, and physical methods.

  20. Supercritical Extraction of Scopoletin from Helichrysum italicum (Roth) G. Don Flowers.

    PubMed

    Jokić, Stela; Rajić, Marina; Bilić, Blanka; Molnar, Maja

    2016-09-01

    The increasing popularity of immortelle (Helichrysum italicum (Roth) G. Don) and its products, particularly in the cosmetic industry, is evident nowadays. This plant is a source of coumarins, especially scopoletin, which are highly soluble in supercritical CO2 . The objective of this study was to perform the supercritical CO2 extraction process of Helichrysum italicum flowers at different values of pressure and temperature and to optimise the extraction process using response surface methodology in terms of obtaining the highest extraction yield and yield of extracted scopoletin. Extraction was performed in a supercritical extraction system under different extraction conditions of pressure and temperature determined by central composite rotatable design. The mass of flowers in the extractor of 40 g, extraction time of 90 min and CO2 mass flow rate of 1.94 kg/h were kept constant during experiments. Antioxidant activity was determined using the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay method. Scopoletin concentration was determined by HPLC. Changes in extraction conditions affect the extracting results remarkably. The greatest extraction yield (6.31%) and the highest yield of scopoletin (1.933 mg/100 g) were obtained under extraction conditions of 20 MPa and 40°C. Extracts have also proven to possess antioxidant activity (44.0-58.1% DPPH scavenging activity) influenced by both temperature and pressure applied within the investigated parameters. The extraction conditions, especially pressure, exhibited significant influence on the extraction yield as well as the yield of extracted scopoletin and antioxidant activity of extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  2. Circuit design advances for ultra-low power sensing platforms

    NASA Astrophysics Data System (ADS)

    Wieckowski, Michael; Dreslinski, Ronald G.; Mudge, Trevor; Blaauw, David; Sylvester, Dennis

    2010-04-01

    This paper explores the recent advances in circuit structures and design methodologies that have enabled ultra-low power sensing platforms and opened up a host of new applications. Central to this theme is the development of Near Threshold Computing (NTC) as a viable design space for low power sensing platforms. In this paradigm, the system's supply voltage is approximately equal to the threshold voltage of its transistors. Operating in this "near-threshold" region provides much of the energy savings previously demonstrated for subthreshold operation while offering more favorable performance and variability characteristics. This makes NTC applicable to a broad range of power-constrained computing segments including energy constrained sensing platforms. This paper explores the barriers to the adoption of NTC and describes current work aimed at overcoming these obstacles in the circuit design space.

  3. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.

    PubMed

    García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-15

    The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.

  4. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    PubMed

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. NASA supercritical laminar flow control airfoil experiment

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1982-01-01

    The design and goals of experimental investigations of supercritical LFC airfoils conducted in the NASA Langley 8-ft Transonic Pressure Tunnel beginning in March 1982 are reviewed. Topics addressed include laminarization aspects; flow-quality requirements; simulation of flight parameters; the setup of screens, honeycomb, and sonic throat; the design cycle; theoretical pressure distributions and shock-free limits; drag divergence and stability analysis; and the LFC suction system. Consideration is given to the LFC airfoil model, the air-flow control system, airfoil-surface instrumentation, liner design and hardware, and test options. Extensive diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  6. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGES

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; ...

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m -3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m -3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m -3 (T = 333.15 K,more » p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m -3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  7. Effect of pressure on secondary structure of proteins under ultra high pressure liquid chromatographic conditions.

    PubMed

    Makarov, Alexey; LoBrutto, Rosario; Karpinski, Paul

    2013-11-29

    There are several spectroscopic techniques such as IR and CD, that allow for analyzing protein secondary structure in solution. However, a majority of these techniques require using purified protein, concentrated enough in the solution, to produce a relevant spectrum. Fundamental principles for the usage of reversed-phase ultra high pressure liquid chromatography (UHPLC) as an alternative technique to study protein secondary structures in solution were investigated. Several "model" proteins, as well as several small ionizable and neutral molecules, were used for these studies. The studies were conducted with UHPLC in isocratic mode, using premixed mobile phases at constant flow rate and temperature. The pressure was modified by a backpressure regulator from about 6000psi to about 12,000psi. It was found that when using a mobile phase composition at which proteins were fully denatured (loss of alpha-helix secondary structure), the retention factors of the proteins increased upon pressure increase in the same manner as non-proteins. When using a mobile phase composition in which proteins were not fully denatured, it was observed that the retention factors of the proteins displayed a much steeper (by one order of magnitude) increase in retention upon pressure increase. It was concluded that in a mobile phase in which the protein is not initially fully denatured, the increase of pressure may facilitate the folding back of the protein to its native state (alpha-helix secondary structure). The impact of different mobile phase compositions on the denaturation of the proteins was studied using CD (Circular Dichroism). Moreover, the effect of flow rate on retention of proteins and small molecules was studied at constant pressure on the different pore size silicas and the impact of internal frictional heating was evaluated. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Estimation of pressure-, temperature- and frictional heating-related effects on proteins' retention under ultra-high-pressure liquid chromatographic conditions.

    PubMed

    Fekete, Szabolcs; Guillarme, Davy

    2015-05-08

    The goal of this work was to evaluate the changes in retention induced by frictional heating, pressure and temperature under ultra high pressure liquid chromatography (UHPLC) conditions, for four model proteins (i.e. lysozyme, myoglobin, fligrastim and interferon alpha-2A) possessing molecular weights between 14 and 20kDa. First of all, because the decrease of the molar volume upon adsorption onto a hydrophobic surface was more pronounced for large molecules such as proteins, the impact of pressure appears to overcome the frictional heating effects. Nevertheless, we have also demonstrated that the retention decrease due to frictional heating was not negligible with such large biomolecules in the variable inlet pressure mode. Secondly, it is clearly shown that the modification of retention under various pressure and temperature conditions cannot be explained solely by the frictional heating and pressure effects. Indeed, some very uncommon van't Hoff plots (concave plots with a maximum) were recorded for our model/therapeutic proteins. These maximum retention factors values on the van't Hoff plots indicate a probable change of secondary structure/conformation with pressure and temperature. Based on these observations, it seems that the combination of pressure and temperature causes the protein denaturation and this folding-unfolding procedure is clearly protein dependent. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Comparison of analytical and experimental steadyand unsteady-pressure distributions at Mach number 0.78 for a high-aspect-ratio supercritical wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Mccain, W. E.

    1984-01-01

    The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

  10. Supercritical water oxidation of landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shuzhong, E-mail: s_z_wang@yahoo.cn; Guo Yang; Chen Chongming

    2011-09-15

    Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is themore » main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.« less

  11. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  12. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  13. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.

    PubMed

    Rehman, M; Shekunov, B Y; York, P; Colthorpe, P

    2001-10-01

    Solubilities of a model compound (nicotinic acid) in pure supercritical carbon dioxide (SC-CO(2)) and SC-CO(2) modified with methanol have been measured in the pressure range of 80-200 bar and between temperatures of 35 and 90 degrees C. On-line ultraviolet detection enabled a simple and relatively fast measurement of very low levels of solubility (10(-7) mol fraction) with good accuracy in pure and modified SC-CO(2). The solute solubility in both pure SC-CO(2) and SC-CO(2) modified with methanol increased with pressure at all investigated temperatures. A retrograde solubility behavior was observed in that, at pressures below 120 bar, a solubility decrease on temperature increase occurred. Solubility data were used to calculate supersaturation values and to define optimum operating conditions to obtain crystalline particles 1-5 microm in diameter using the solution-enhanced dispersion by supercritical fluids (SEDS) process, thereby demonstrating the feasibility of a one-step production process for particulate pharmaceuticals suitable for respiratory drug delivery. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1570-1582, 2001

  14. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  15. Validation of a program for supercritical power plant calculations

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Łukowicz, Henryk; Bartela, Łukasz; Michalski, Sebastian

    2011-12-01

    This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.

  16. Supercritical oxygen heat transfer. [regenerative cooling

    NASA Technical Reports Server (NTRS)

    Spencer, R. G.; Rousar, D. C.

    1977-01-01

    Heat transfer to supercritical oxygen was experimentally measured in electrical heated tubes. Experimental data were obtained for pressures ranging from 17 to 34.5 MPa (2460 to 5000 psia), and heat fluxes from 2 to 90 million w/sq cm (1.2 to 55 Btu/(sq in. sec)). Bulk temperatures ranged from 96 to 217 K (173 to 391 R). Experimental data obtained by other investigators were added to this to increase the range of pressure down to 2 MPa (290 psia) and increase the range of bulk temperature up to 566 K (1019 R). From this compilation of experimental data a correlating equation was developed which predicts over 95% of the experimental data within + or - 30%.

  17. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  18. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    PubMed

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Aerodynamic characteristics of an improved 10-percent-thick NASA supercritical airfoil. [Langley 8 foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1974-01-01

    Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.

  20. Application of supercritical antisolvent method in drug encapsulation: a review

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2011-01-01

    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO2 flow rate, and the liquid phase flow rate on particle size and its distribution. PMID:21796245

  1. BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research

    DOE PAGES

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less

  2. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  3. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less

  4. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar

    The supercritical carbon-dioxide (referred to as SC-CO 2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO 2 direct cycle gas fast reactor has also been recently proposed. The SC-CO 2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO 2 densities, and allows for smaller components size, fewermore » components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO 2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO 2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO 2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO 2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO 2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO 2 environment is the possibility for simultaneous occurrence of carburization during oxidation of the material. Carburization

  5. Computational Modeling of Supercritical and Transcritical Flows

    DTIC Science & Technology

    2017-01-09

    Acentric factor I. Introduction Liquid rocket and gas turbine engines operate at high pressures. For gas turbines, the combustor pressurecan be 60 − 100...an approach the liquid gas interface is tracked.4 We note that an overwhelming majority of the computational studies have similarly focused on purely...A standard approach for supercritical flows is to treat the multicomponent mixture of species as a dense fluid using a real gas equation of state such

  6. Comparison of Nitronic 50 and Stainless Steel 316 for use in Supercritical Water Environments

    NASA Astrophysics Data System (ADS)

    Karmiol, Zachary

    Increased efficiency can greatly benefit any mode of power production. Many proposed coal, natural gas, and nuclear reactors attempt to realize this goal through the use of increased operating temperatures and pressures, and as such require materials capable of withstanding extreme conditions. One such design employs supercritical water, which in addition to high temperatures and pressures is also highly oxidizing. A critical understanding of both mechanical and oxidation characteristics of candidate materials are required to determine the viability of materials for these reactors. This work investigates two potential materials, austenitic stainless steels, namely, Nitronic-50 and stainless steel 316, for use in these conditions. The supercritical water loop at the University of Nevada, Reno allowed for the study of materials at both subcritical and supercritical conditions. The materials were investigated mechanically using slow strain rate tests under conditions ranging from an inert nitrogen atmosphere, to both subcritical and supercritical water, with the failed samples surface characterized by optical microscopy, scanning electron microscopy, and Raman spectroscopy. Electrochemical studies were performed via potentiodynamic polarization in subcritical water only, and characterized using Raman spectroscopy. The samples were also exposed to supercritical water, and characterized using Raman spectroscopy. Nitronic-50 was found to have superior mechanical characteristics to stainless steel 316. SS-316 was found to have a surface film consisting of iron oxides, while the surface film of N-50 consisted predominantly of nickel-iron spinel. The crack interior of the sample was different from the exterior, indicating that the time and temperature of the exposure might play a defining role in determining the chemistry of the film.

  7. A Procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    USGS Publications Warehouse

    Kolak, Jonathan J.

    2006-01-01

    Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.

  8. Solute Nucleation and Growth in Supercritical Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.

    1996-01-01

    This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.

  9. Supercritical Fluid Fractionation of JP-8

    DTIC Science & Technology

    1991-12-26

    applications, such as coffee decaffeination , spice extraction, and lipids purification. The processing principles have also long been well known and ipracticed...PRINCIPLES OF SUPERCRITICAL FLUID EXTRACTION 8 A. Background on Supercritical Fluid Solubility 8 B. Supercritical Fluid Extraction Process ...Operation I0 1. Batch Extraction of Solid Materials 10 2. Counter-Current Continuous SCF Processing of Liquid 15 Products 3. Supercritical Fluid Extraction vs

  10. Extraction of ewe's milk cream with supercritical carbon dioxide.

    PubMed

    González Hierro, M T; Ruiz-Sala, P; Alonso, L; Santa-María, G

    1995-04-01

    The extraction of ewe's milk cream by supercritical carbon dioxide in the pressure range 9-30 MPa (90-300 bar) and at temperatures of 40 degrees C and 50 degrees C was studied. The solubility of total fat increased with pressure at both temperatures until a plateau was reached. The extraction of cholesterol also increased with pressure until a plateau was reached and it was higher at 50 degrees C than at 40 degrees C when the pressure was > or = 15 MPa (150 bar). The triglyceride composition of each extract, determined by GC, showed that extracts obtained at lower pressures were enriched in short-chain triglycerides and their concentration decreased as the pressure increased. In the other hand, long-chain triglycerides were enriched in the extracts obtained at higher pressures and their concentration rose with increasing pressure.

  11. Two-structured solid particle model for predicting and analyzing supercritical extraction performance.

    PubMed

    Samadi, Sara; Vaziri, Behrooz Mahmoodzadeh

    2017-07-14

    Solid extraction process, using the supercritical fluid, is a modern science and technology, which has come in vogue regarding its considerable advantages. In the present article, a new and comprehensive model is presented for predicting the performance and separation yield of the supercritical extraction process. The base of process modeling is partial differential mass balances. In the proposed model, the solid particles are considered twofold: (a) particles with intact structure, (b) particles with destructed structure. A distinct mass transfer coefficient has been used for extraction of each part of solid particles to express different extraction regimes and to evaluate the process accurately (internal mass transfer coefficient was used for the intact-structure particles and external mass transfer coefficient was employed for the destructed-structure particles). In order to evaluate and validate the proposed model, the obtained results from simulations were compared with two series of available experimental data for extraction of chamomile extract with supercritical carbon dioxide, which had an excellent agreement. This is indicative of high potentiality of the model in predicting the extraction process, precisely. In the following, the effect of major parameters on supercritical extraction process, like pressure, temperature, supercritical fluid flow rate, and the size of solid particles was evaluated. The model can be used as a superb starting point for scientific and experimental applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, R.D.; Renslo, A.R.; Danheiser, R.L.

    1999-04-15

    Amorphous fumed silica (SiO{sub 2}) was shown to increase yields and selectivities of several Diels-Alder reactions in gaseous and supercritical CO{sub 2}. Pressure effects on the Diels-Alder reaction were explored using methyl vinyl ketone and penta-1,3-diene at 80 C. The selectivity of the reaction was not affected by pressure/density. As pressure was increased, the yield decreased. At the reaction temperature, adsorption isotherms at various pressures were obtained for the reactants and the Diels-Alder adduct. As expected when pressure is increased, the ratio of the amount of reactants adsorbed to the amount of reactants in the fluid phase decreases, thus causingmore » the yield to decrease. The Langmuir adsorption model fit the adsorption data. The Langmuir equilibrium partitioning constants all decreased with increasing pressure. The effect of temperature on adsorption was experimentally determined and traditional heats of adsorption were calculated. However, since supercritical CO{sub 2} is a highly compressible fluid, it is logical to examine the effect of temperature at constant density. In this case, entropies of adsorption were obtained. The thermodynamic properties that influence the real enthalpy and entropy of adsorption were derived. Methods of doping the silica and improving yields and selectivities were also explored.« less

  13. An analysis of the sliding pressure start-up of SCWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.; Yang, J.; Li, H.

    In this paper, the preliminary sliding pressure start-up system and scheme of supercritical water-cooled reactor in CGNPC (CGN-SCWR) were proposed. Thermal-hydraulic behavior in start-up procedures was analyzed in detail by employing advanced reactor subchannel analysis software ATHAS. The maximum cladding temperature (MCT for short) and core power of fuel assembly during the whole start-up process were investigated comparatively. The results show that the recommended start-up scheme meets the design requirements from the perspective of thermal-hydraulic. (authors)

  14. Densification of Supercritical Carbon Dioxide Accompanied by Droplet Formation When Passing the Widom Line

    NASA Astrophysics Data System (ADS)

    Pipich, Vitaliy; Schwahn, Dietmar

    2018-04-01

    Thermal density fluctuations of supercritical CO2 were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.

  15. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo

    2018-02-01

    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  16. Ultra-high pressure water jetting for coating removal and surface preparation

    NASA Technical Reports Server (NTRS)

    Johnson, Spencer T.

    1995-01-01

    This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.

  17. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  18. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  19. Prediction of the effects of thermal stratification on pressure and temperature response of the Apollo supercritical oxygen tank

    NASA Technical Reports Server (NTRS)

    Chen, I. M.; Anderson, R. E.

    1971-01-01

    A semiempirical design-oriented model has been developed for the prediction of the effects of thermal stratification on tank pressure and heater temperature response for the Apollo supercritical oxygen tank. The heat transfer formulation describes laminar free convection at low-g and takes into account the radiation and conduction processes occurring in the tank. The nonequilibrium thermodynamic behavior of the system due to localized heating of the stored fluid is represented by the characteristics of a discrete number of fluid regions and thermal nodes. Solutions to the time dependent variable fluid property problem are obtained through the use of a reference temperature procedure. A criterion which establishes the reference temperature as a function of the fluid density ratio is derived. The analytical results are compared with the flight data.

  20. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading.

    PubMed

    Tsai, Wen-Chyan; Rizvi, Syed S H

    2017-06-01

    A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Supercritical Fluid Extraction of Metal Chelate: A Review.

    PubMed

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  2. In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction.

    PubMed

    Yang, Zhi; Gu, Qinfen; Hemar, Yacine

    2013-08-14

    The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Preliminary kinetic evaluation of an immobilized polysaccharide sub-2μm column using a low dispersion supercritical fluid chromatograph.

    PubMed

    Berger, Terry A

    2017-08-11

    The performance of a 3×50mm, 1.6μm d p column with an immobilized polysaccharide stationary phase (ChiralPak IA-U) was evaluated for efficiency, and pressure drop, with respect to flow rate and modifier concentration using supercritical fluid chromatography (SFC). This appears to be the first such report using such a column in SFC. A unique low dispersion (ultra-high performance) SFC was used for the evaluation. The minimum reduced plate height of 2.78, indicates that the maximum efficiency was similar to or better than coated polysaccharide columns. Selectivity was different from ChiralPak AD, with the same chiral selector, as reported by many others. At high flows and high methanol concentrations, pump pressures sometimes approached 600bar. With 5% methanol, pressure vs. flow rate was non-linear suggesting turbulent flow in the connector tubing. The optimum flow rate (F opt ) at 40% methanol was ≈0.8mL/min, where the column efficiency was highest. At 5% methanol, F opt increased to ≈1.6mL/min, but efficiency degraded noticeably. The differences in F opt suggests that the solute diffusion coefficients are a strong function of modifier concentration. Several sub-1min separations, including a 7.5s separation, are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    PubMed

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-01-01

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.

  5. FOREWORD: The 4th CCM International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa)

    NASA Astrophysics Data System (ADS)

    Legras, Jean-Claude; Jousten, Karl; Severn, Ian

    2005-12-01

    The fourth CCM (Consultative Committee for Mass and related quantities) International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa) was held at the Institute of Physics in London from 19-21 April 2005. The event, which was organized by the Low, Medium and High Pressure working groups of the CCM, was attended by in excess of one hundred participants with representatives from five continents and every regional metrology organization. The purpose of this conference is to review all the work that is devoted to the highest quality of pressure measurement by primary standards as well as the dissemination of the pressure scale. A total of 52 papers were presented orally, and 26 as posters, in sessions that covered the following topics: Latest scientific advances in pressure and vacuum metrology Innovative transfer standards, advanced sensors and new instrument development Primary (top-level) measurement standards International and regional key comparisons New approaches to calibration It is interesting the note that since the third conference in 1999 the pressure range covered has increased by two orders of magnitude to 109 Pa, to take into account more exacting scientific and industrial demands for traceable vacuum measurement. A further feature of the conference was the increased range of instrumentation and techniques used in the realization and potential realization of pressure standards. Seton Bennett, Director of International Metrology at the National Physical Laboratory, opened the conference and Andrew Wallard, Director of the Bureau International des Poids et Mesures (BIPM), gave the keynote address which described the implementation of the mutual recognition arrangement and the resulting removal of metrological barriers to international trade. Many experts have contributed significant amounts of their time to organize the event and to review the submitted papers. Thanks are due to all of these people

  6. The design of supercritical wings by the use of three-dimensional transonic theory

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1979-01-01

    A procedure was developed for the design of transonic wings by the iterative use of three dimensional, inviscid, transonic analysis methods. The procedure was based on simple principles of supersonic flow and provided the designer with a set of guidelines for the systematic alteration of wing profile shapes to achieve some desired pressure distribution. The method was generally applicable to wing design at conditions involving a large region of supercriterical flow. To illustrate the method, it was applied to the design of a wing for a supercritical maneuvering fighter that operates at high lift and transonic Mach number. The wing profiles were altered to produce a large region of supercritical flow which was terminated by a weak shock wave. The spanwise variation of drag of this wing and some principles for selecting the streamwise pressure distribution are also discussed.

  7. PREFACE: Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Haozhe; Wenk, Hans-Rudolf; Duffy, Thomas S.

    2006-06-01

    One of the major goals of geophysical research is to understand deformation in the deep Earth. The COMPRES (Consortium for Materials Properties Research in Earth Sciences) workshop on `Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures' was held on 21-23 October 2005 at the Advanced Photon Source, Argonne National Laboratory, organized by Haozhe Liu, Hans-Rudolf Wenk and Thomas S Duffy, and provided an opportunity to assemble more than 50 scientists from six countries. Experts in diamond anvil cell (DAC) design, large-volume high-pressure apparatus and data analysis defined the current state of ultra-high pressure deformation studies and explored initiatives to push the technological frontier. The DAC, when used in radial diffraction geometry, emerges as a powerful tool for investigation of plasticity and elasticity of materials at high pressures. More information regarding this workshop can be found at the website: http://www.hpcat.aps.anl.gov/Hliu/Workshop/Index1.htm. In this special issue of Journal of Physics: Condensed Matter, 17 manuscripts review the state-of-the-art and we hope they will stimulate researchers to participate in this field and take it forward to a new level. A major incentive for high-pressure research has been the need of geophysicists to understand composition, physical properties and deformation in the deep Earth in order to interpret the macroscopically observed seismic anisotropy. In the mantle and core, materials deform largely in a ductile manner at low stresses and strain rates. From observational inferences and experiments at lower pressures, it is considered plausible that deformation occurs in the field of dislocation creep or diffusion creep and deformation mechanisms depend in a complex way on stress, strain rate, pressure, temperature, grain size and hydration state. With novel apparatus such as the rotational Drickamer press or deformation DIA (D-DIA) multianvil apparatus, large volumes (approximately 10

  8. Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.

    1994-01-01

    Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.

  9. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badziak, J.; Rosiński, M.; Krousky, E.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of suchmore » pressure with other laser-based methods known so far.« less

  10. Nucleation of Super-Critical Carbon Dioxide in a Venturi Nozzle

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin; Pidaparti, Sandeep; Ranjan, Devesh

    2015-11-01

    The supercritical carbon dioxide (S-CO2) Brayton cycle combines the primary advantages of the ideal Brayton and Rankine cycles by utilizing CO2 above its critical pressure. In addition to single phase and small back work ratios, supercritical fluids offer other advantages, e.g. heat transfer augmentation and low specific volume. Pressure reduction at the entrance of the compressor may cause homogenous nucleation, vapor production, and collapse of bubbles due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and affect the materials used in design. The flow of S-CO2 through a venturi nozzle near the critical point has been studied. A transient compressible 3D Navier-Stokes solver, coupled with continuity, and energy equation has been used. Developed FIT libraries based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO2 properties. The mass fraction of vapor created in the venturi has been calculated using homogeneous equilibrium model (HEM). The flow conditions that lead to nucleation have been investigated. The sensitivity of nucleation to the inlet pressure and temperature, flow rate, and venturi profile has been shown.

  11. Densification of Supercritical Carbon Dioxide Accompanied by Droplet Formation When Passing the Widom Line.

    PubMed

    Pipich, Vitaliy; Schwahn, Dietmar

    2018-04-06

    Thermal density fluctuations of supercritical CO_{2} were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.

  12. Ultra-Fast Supercritical Hydrothermal Synthesis of Tobermorite under Thermodynamically Metastable Conditions.

    PubMed

    Diez-Garcia, Marta; Gaitero, Juan J; Dolado, Jorge S; Aymonier, Cyril

    2017-03-13

    Tobermorite is a fibrillar mineral of the family of calcium silicates. In spite of not being abundant in nature, its structure and properties are reasonably well known because of its interest in the construction industry. Currently, tobermorite is synthesized by hydrothermal methods at mild temperatures. The problem is that such processes are very slow (>5 h) and temperature cannot be increased to speed them up because tobermorite is metastable over 130 °C. Furthermore the product obtained is generally foil-like and not very crystalline. Herein we propose an alternative synthesis method based on the use of a continuous flow reactor and supercritical water. In spite of the high temperature, the transformation of tobermorite to more stable phases can be prevented by accurately controlling the reaction time. As a result, highly crystalline fibrillar tobermorite can be obtained in just a few seconds under thermodynamically metastable conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process.

    PubMed

    Velaga, Sitaram P; Ghaderi, Raouf; Carlfors, Johan

    2002-01-14

    Crystallisation and subsequent milling of pharmaceutical powders by traditional methods often cause variations in physicochemical properties thereby influencing bioavailability of the formulation. Crystallisation of drug substances using supercritical fluids (SFs) offers some advantages over existing traditional methods in controlling particle characteristics. The novel particle formation method, solution enhanced dispersion by supercritical (SEDS) fluids was used for the preparation of hydrocortisone (HC) particles. The influence of processing conditions on the solid-state properties of the particles was studied. HC, an anti-inflammatory corticosteroid, particles were prepared from acetone and methanol solutions using the SEDS process. The solutions were dispersed with supercritical CO(2), acting as an anti-solvent, through a specially designed co-axial nozzle into a pressured vessel maintained at a specific constant temperature and pressure. The temperatures and pressures studied were 40-90 degrees C and 90-180 bar, respectively. The relative flow rates of drug solution to CO(2) were varied between 0.002 and 0.03. Solid-state characterisation of particles included differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), solubility studies and scanning electron microscopy (SEM) examination. The aerodynamic properties of SEDS prepared particles were determined by a multistage liquid impinger (MLI). Particles produced from acetone solutions were crystalline needles, melting at 221+/-2 degrees C. Their morphology was independent of processing conditions. With methanol solutions, particles were flakes or needles depending on the processing temperature and pressure. This material melted at 216+/-1 degrees C, indicating a different crystal structure from the original material, in agreement with observed differences in the position and intensity of the XRPD peaks. The simulated lung deposition, using the MLI, for HC powder was improved after SEDS

  14. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    USDA-ARS?s Scientific Manuscript database

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (<100 nm) (DNR) stabilized using combinations of whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  15. Nanoparticles in Porous Microparticles Prepared by Supercritical Infusion and Pressure Quench Technology for Sustained Delivery of Bevacizumab

    PubMed Central

    K.Yandrapu, Sarath; Upadhyay, Arun K.; Petrash, J. Mark; Kompella, Uday B.

    2014-01-01

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9 fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Flour 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases. PMID:24131101

  16. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

    PubMed

    Yandrapu, Sarath K; Upadhyay, Arun K; Petrash, J Mark; Kompella, Uday B

    2013-12-02

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.

  17. New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction.

    PubMed

    Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna

    2010-12-01

    The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.

  18. Kinetics of Supercritical Water Oxidation

    DTIC Science & Technology

    1995-12-31

    milestone and Sandia Technical Report. A much-needed report describing in detail the operation of the Supercritical Fluids Reactor (SFR) was also...years. In addition, the literature research required to arrive at this optimal design will be used to improve the performance of the Supercritical Fluids ...the Supercritical Fluids Reactor (SFR)" (Sandia National Laboratories Report SAND-8203, Livermore, CA, 1995). R. R. Steeper, "Methane and Methanol

  19. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  20. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    PubMed

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  1. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    NASA Astrophysics Data System (ADS)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  2. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process.

    PubMed

    Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang

    2008-12-15

    Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.

  3. Wind-tunnel measurements of the chordwise pressure distribution and profile drag of a research airplane model incorporating a 17-percent-thick supercritical wing

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1973-01-01

    The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.

  4. UltraSail CubeSat Solar Sail Flight Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, David; Burton, Rodney; Coverstone, Victoria; Swenson, Gary

    2013-01-01

    UltraSail is a next-generation, highrisk, high-payoff sail system for the launch, deployment, stabilization, and control of very large (km2 class) solar sails enabling high payload mass fractions for interplanetary and deep space spacecraft. UltraSail is a non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation- flying microsatellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 km2, sail subsystem area densities approaching 1 g/m2, and thrust levels many times those of ion thrusters used for comparable deep space missions. UltraSail can achieve outer planetary rendezvous, a deep-space capability now reserved for high-mass nuclear and chemical systems. There is a twofold rationale behind the UltraSail concept for advanced solar sail systems. The first is that sail-andboom systems are inherently size-limited. The boom mass must be kept small, and column buckling limits the boom length to a few hundred meters. By eliminating the boom, UltraSail not only offers larger sail area, but also lower areal density, allowing larger payloads and shorter mission transit times. The second rationale for UltraSail is that sail films present deployment handling difficulties as the film thickness approaches one micrometer. The square sail requires that the film be folded in two directions for launch, and similarly unfolded for deployment. The film is stressed at the intersection of two folds, and this stress varies inversely with the film thickness. This stress can cause the film to yield, forming a permanent crease, or worse, to perforate. By rolling the film as UltraSail does, creases are prevented. Because the film is so thin, the roll thickness is small. Dynamic structural analysis of UltraSail coupled with dynamic control analysis shows that the system can be designed to eliminate longitudinal torsional waves created while controlling the pitch of the blades

  5. Micronization of Taxifolin by Supercritical Antisolvent Process and Evaluation of Radical Scavenging Activity

    PubMed Central

    Zu, Shuchong; Yang, Lei; Huang, Jinming; Ma, Chunhui; Wang, Wenjie; Zhao, Chunjian; Zu, Yuangang

    2012-01-01

    The aim of this study was to prepare micronized taxifolin powder using the supercritical antisolvent precipitation process to improve the dissolution rate of taxifolin. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters, such as temperature (35–65 °C), pressure (10–25 MPa), solution flow rate (3–6 mL/min) and concentration of the liquid solution (5–20 mg/mL) on the precipitate crystals were investigated. With a lower temperature, a stronger pressure and a lower concentration of the liquid solution, the size of crystals decreased. The precipitation temperature, pressure and concentration of taxifolin solution had a significant effect. However, the solution flow rate had a negligible effect. It was concluded that the physicochemical properties and dissolution rate of crystalline taxifolin could be improved by physical modification such as particle size reduction using the supercritical antisolvent (SAS) process. Further, the SAS process was a powerful methodology for improving the physicochemical properties and radical scavenging activity of taxifolin. PMID:22942740

  6. Green separation and characterization of fatty acids from solid wastes of leather industry in supercritical fluid CO2.

    PubMed

    Onem, Ersin; Renner, Manfred; Prokein, Michael

    2018-05-26

    Considerable tannery waste is generated by leather industry around the world. Recovery of the value-added products as natural fats from the solid wastes gained interest of many researchers. In this study, supercritical fluid separation method was applied for the fatty acid isolation from leather industry solid wastes. Pre-fleshing wastes of the double-face lambskins were used as natural fat source. Only supercritical CO 2 was used as process media without any solvent additive in high-pressure view cell equipment. The effect of different conditions was investigated for the best separation influence. The parameters of pressure (100 to 200 bar), temperature (40 to 80 °C), and time (1 to 3 h) were considered. Extraction yields and fat yields of the parameters were statistically evaluated after the processes. Maximum 78.57 wt% fat yield was obtained from leather industry fleshings in supercritical fluid CO 2 at 200 bar, 80 °C, and 2 h. Morever, conventional Soxhlet and supercritical CO 2 extracted fatty acids were characterized by using gas chromatography (GC) coupled with mass spectrometry (MS) and flame ionization detector (FID). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) characterizations were also done. The results showed that supercritical fluid CO 2 extraction was highly effective for the fat separation as green solvent and leather industry tannery wastes could be used for the value-added products.

  7. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  8. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    NASA Astrophysics Data System (ADS)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  9. Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer

    discussed. As the thermodynamic properties of a fluid are strongly dependent on the dimensions and the conditions in which the process is taken place, the models are limited to the hardware designed for this experiment setup. In order to evolve other applications, they need to be generalized and adjusted to fit the situations accordingly. As usual, the experiment data are to be submitted to these calculations to complete the models, and also to test and to proof if they satisfy some general properties of the systems that are already known. This leads to another very important part of the work -the experiments. Because of the sophistication of the behavior of fluids around their critical points, throughout the literature the theoretical description of the phase transition as well as other processes taken place under this circumstance, still depends largely on the empirical analysis. No matter how well considered a model can be, it represents only a partial and a simplified picture of the whole process. So the experimental part is of great importance not only as a support to the theoretical solution, but also as a means to get first hand data especially for the processes under investigation in this work. As solvent supercritical carbon dioxide was chosen considering its unique economical and ecological effects. As solutes DL-α-tocopherol and n-hexane were cho-sen. Two fundamental mass transfer processes are observed, namely diffusion and nucleation, both in laboratory as well as under compensated gravity (The experiment are to be performed in parabolic flight this March 2010). Both phenomena are obtained under isothermal condition through adjustments of the pressure inside a high pressure container. The container was spe-cially designed for this case. It has a cylindrical geometry with two pistons as movable walls on both sides to control the solvent volume. For diffusion a droplet of sample is fixed between two wetting barriers in the middle of the container with filled

  10. The effects of ultrasonic agitation on supercritical CO2 copper electroplating.

    PubMed

    Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Guan-Lin; Sánchez, Jorge; Shyu, Jenq-Huey

    2018-01-01

    Applying ultrasound to the electroplating process can improve mechanical properties and surface roughness of the coating. Supercritical electroplating process can refine grain to improve the surface roughness and hardness. However, so far there is no research combining the above two processes to explore its effect on the coating. This study aims to use ultrasound (42kHz) in supercritical CO 2 (SC-CO 2 ) electroplating process to investigate the effect of ultrasonic powers and supercritical pressures on the properties of copper films. From the results it was clear that higher ultrasonic irradiation resulted in higher current efficiency, grain refinement, higher hardness, better surface roughness and higher internal stress. SEM was also presented to verify the correctness of the measured data. The optimal parameters were set to obtain the deposit at pressure of 2000psi and ultrasonic irradiation of 0.157W/cm 3 . Compared with SC-CO 2 electroplating process, the current efficiency can be increased from 77.57% to 93.4%, the grain size decreases from 24.34nm to 22.45nm, the hardness increases from 92.87Hv to 174.18Hv, and the surface roughness decreases from 0.83μm to 0.28μm. Therefore, this study has successfully integrated advantages of ultrasound and SC-CO 2 electroplating, and proved that applied ultrasound to SC-CO 2 electroplating process can significantly improve the mechanical properties of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol.

    PubMed

    Becker, Jacob; Hald, Peter; Bremholm, Martin; Pedersen, Jan S; Chevallier, Jacques; Iversen, Steen B; Iversen, Bo B

    2008-05-01

    Nanocrystalline ZrO(2) samples with narrow size distributions and mean particle sizes below 10 nm have been synthesized in a continuous flow reactor in near and supercritical water as well as supercritical isopropyl alcohol using a wide range of temperatures, pressures, concentrations and precursors. The samples were comprehensively characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), and the influence of the synthesis parameters on the particle size, particle size distribution, shape, aggregation and crystallinity was studied. On the basis of the choice of synthesis parameters either monoclinic or tetragonal zirconia phases can be obtained. The results suggest a critical particle size of 5-6 nm for nanocrystalline monoclinic ZrO(2) under the present conditions, which is smaller than estimates reported in the literature. Thus, very small monoclinic ZrO(2) particles can be obtained using a continuous flow reactor. This is an important result with respect to improvement of the catalytic properties of nanocrystalline ZrO(2).

  12. Isolation of essential oil from different plants and herbs by supercritical fluid extraction.

    PubMed

    Fornari, Tiziana; Vicente, Gonzalo; Vázquez, Erika; García-Risco, Mónica R; Reglero, Guillermo

    2012-08-10

    Supercritical fluid extraction (SFE) is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs. Supercritical CO(2) is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid-solid extraction. This review provides a comprehensive and updated discussion of the developments and applications of SFE in the isolation of essential oils from plant matrices. SFE is normally performed with pure CO(2) or using a cosolvent; fractionation of the extract is commonly accomplished in order to isolate the volatile oil compounds from other co-extracted substances. In this review the effect of pressure, temperature and cosolvent on the extraction and fractionation procedure is discussed. Additionally, a comparison of the extraction yield and composition of the essential oil of several plants and herbs from Lamiaceae family, namely oregano, sage, thyme, rosemary, basil, marjoram and marigold, which were produced in our supercritical pilot-plant device, is presented and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Lam, Elisa; Gu, Qinfen; Swedlund, Peter J.; Marchesseau, Sylvie; Hemar, Yacine

    2015-11-01

    The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.

  14. Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.

    PubMed

    Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde

    2018-05-18

    Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c *  = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.

    PubMed

    Tozuka, Yuichi; Miyazaki, Yuta; Takeuchi, Hirofumi

    2010-02-15

    An improved system using both supercritical antisolvent precipitation and rapid expansion from supercritical to aqueous solution (RESAS) was proposed to overcome the problem of low solubility of medicinal substances in scCO(2). When the ethanol solution with IMC was sprayed into the vessel purged with scCO(2), no precipitation of IMC was observed if the CO(2) pressure was more than 15MPa at 40 degrees C. This indicates that very small droplets of the ethanol solution with IMC could disperse in the high pressure CO(2). After expansion into distilled water using an RESAS device, this same solution, in CO(2) at high pressure, produced submicron particles of IMC. For the pharmaceutical application, the IMC suspension was freeze-dried and re-dispersed to the aqueous media. SEM images of freeze-dried sample showed that the suspension was composed of submicron particles with 300-500 nm. Although the average particle size of re-dispersed IMC related significantly to the pressure and temperature in the vessel on scCO(2) processing, the freeze-dried sample of the IMC suspension after the treatment shows good redispersibility as a nanosuspension. This apparatus is found to be a promising way to produce fine crystals of IMC with a high yield. Copyright 2009 Elsevier B.V. All rights reserved.

  16. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Blanco, Alfonso; García, José; Benedito, José; Mulet, Antonio; Gallego-Juárez, Juan A.; Blasco, Miguel

    2010-01-01

    Oil is an important component of almonds and other vegetable substrates that can show an influence on human health. In this work the development and validation of an innovative, robust, stable, reliable and efficient ultrasonic system at pilot scale to assist supercritical CO2 extraction of oils from different substrates is presented. In the extraction procedure ultrasonic energy represents an efficient way of producing deep agitation enhancing mass transfer processes because of some mechanisms (radiation pressure, streaming, agitation, high amplitude vibrations, etc.). A previous work to this research pointed out the feasibility of integrating an ultrasonic field inside a supercritical extractor without losing a significant volume fraction. This pioneer method enabled to accelerate mass transfer and then, improving supercritical extraction times. To commercially develop the new procedure fulfilling industrial requirements, a new configuration device has been designed, implemented, tested and successfully validated for supercritical fluid extraction of oil from different vegetable substrates.

  17. Analysis of supercritical vapor explosions using thermal detonation wave theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamoun, B.I.; Corradini, M.L.

    The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixingmore » conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.« less

  18. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  19. Supercritical fluid extraction of 11C-labeled metabolites in tissue using supercritical ammonia.

    PubMed

    Jacobson, G B; Moulder, R; Lu, L; Bergström, M; Markides, K E; Långström, B

    1997-02-01

    Supercritical fluid extraction (SFE) of 11C-labeled tracer compounds and their metabolites from biological tissue was performed using supercritical ammonia in an attempt to develop a rapid extraction procedure that allowed subsequent analysis of the labeled metabolites. Metabolites were extracted from kidneys and brain in rats given in vivo injections of the radiotracers O-[2-11C]acetyl-L-carnitine and N-[11C]methylpiperidyl benzilate, respectively. Only a minimal sample pretreatment of the tissue was necessary, i.e., cutting into 10-20 pieces and mixing with the drying agent Hydromatrix, before it was loaded into the extraction vessel. Extraction efficiency was measured for SFE at temperatures over the range of 70-150 degrees C and a pressure of 400 bar. For O-[2-11C]acetyl-L-carnitine, 66% of the radioactivity was trapped in the collected fractions and 12% remained in the extraction vessel. For the more lipophilic N-[11C]methylpiperidyl benzilate, 93% of the activity was collected and less than 1% remained in the extraction vessel. Labeled metabolites were analyzed by LC and also, in the case, of O-[2-11C]acetyl-L-carnitine by LC/MS. The complete extraction procedure, from removal of the biological tissue until an extract was ready for analysis, was 25 min, corresponding to about one half-life of the radionuclide 11C.

  20. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Controlled Expansion of Supercritical Solution: A Robust Method to Produce Pure Drug Nanoparticles With Narrow Size-Distribution.

    PubMed

    Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko

    2016-08-01

    We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  3. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less

  4. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  5. Corrosion Behavior of FBR Structural Materials in High Temperature Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Furukawa, Tomohiro; Inagaki, Yoshiyuki; Aritomi, Masanori

    A key problem in the application of a supercritical carbon dioxide (CO2) turbine cycle to a fast breeder reactor (FBR) is the corrosion of structural material by supercritical CO2 at high temperature. In this study, corrosion test of high-chromium martensitic steel (12Cr-steel) and FBR grade type 316 stainless steel (316FR), which are candidate materials for FBRs, were performed at 400-600°C in supercritical CO2 pressurized at 20MPa. Corrosion due to the high temperature oxidation in exposed surface was measured up to approximately 2000h in both steels. In the case of 12Cr-steel, the weight gain showed parabolic growth with exposure time at each temperature. The oxidation coefficient could be estimated by the Arrhenius function. The specimens were covered by two successive oxide layers, an Fe-Cr-O layer (inside) and an Fe-O layer (outside). A partial thin oxide diffusion layer appeared between the base metal and the Fe-Cr-O layer. The corrosion behavior was equivalent to that in supercritical CO2 at 10MPa, and no effects of CO2 pressure on oxidation were observed in this study. In the case of 316FR specimens, the weight gain was significantly lower than that of 12Cr-steel. Dependency of neither temperature nor exposed time on oxidation was not observed, and the value of all tested specimens was within 2g/m2. Nodule shape oxides which consisted of two structures, Fe-Cr-O and Fe-O were observed on the surface of the 316FR specimen. Carburizing, known as a factor in the occurrence of breakaway corrosion and/or the degradation of ductility, was observed on the surface of both steels.

  6. Supercritical (and Subcritical) Fluid Behavior and Modeling: Drops, Streams, Shear and Mixing Layers, Jets and Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1999-01-01

    A critical review of recent investigations in the real of supercritical (and subcritical) fluid behavior is presented with the goal of obtaining a perspective on the peculiarities of high pressure observations.

  7. Experimental study on heat transfer to supercritical water flowing through tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Gu, H.; Cheng, X.

    2012-07-01

    A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less

  8. Flavor characterization of sugar-added pennywort (Centella asiatica L.) juices treated with ultra-high pressure and thermal processes.

    PubMed

    Apichartsrangkoon, Arunee; Wongfhun, Pronprapa; Gordon, Michael H

    2009-01-01

    The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.

  9. Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil.

    PubMed

    Subroto, Erna; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2017-04-01

    A series of experiments was conducted to determine optimum conditions for supercritical carbon dioxide extraction of candlenut oil. A Taguchi experimental design with L 9 orthogonal array (four factors in three levels) was employed to evaluate the effects of pressure of 25-35 MPa, temperature of 40-60 °C, CO 2 flow rate of 10-20 g/min and particle size of 0.3-0.8 mm on oil solubility. The obtained results showed that increase in particle size, pressure and temperature improved the oil solubility. The supercritical carbon dioxide extraction at optimized parameters resulted in oil yield extraction of 61.4% at solubility of 9.6 g oil/kg CO 2 . The obtained candlenut oil from supercritical carbon dioxide extraction has better oil quality than oil which was extracted by Soxhlet extraction using n-hexane. The oil contains high unsaturated oil (linoleic acid and linolenic acid), which have many beneficial effects on human health.

  10. Intramolecular vibrational redistribution of CH 2I 2 dissolved in supercritical Xe

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Shimojima, A.; Kajimoto, O.

    2003-03-01

    Intramolecular vibrational energy redistribution (IVR) of CH 2I 2 in supercritical Xe has been studied. The first overtone of the C-H stretching mode was excited with a near infrared laser pulse and the transient UV absorption near 390 nm was monitored. Signals showed a rise and decay profile, which gave the IVR and VET (intermolecular vibrational energy transfer) rates, respectively. Solvent density dependence of each rate was obtained by tuning the pressure at a constant temperature. The IVR rate in supercritical Xe increased with increasing solvent density and asymptotically reached a limiting value. This result suggests that the IVR process of CH 2I 2 in condensed phase is a solvent-assisted process.

  11. Aerodynamic Characteristics of a 14-Percent-Thick NASA Supercritical Airfoil Designed for a Normal-Force Coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    This report documents the experimental aerodynamic characteristics of a 14 percent thick supercritical airfoil based on an off design sonic pressure plateau criterion. The design normal force coefficient was 0.7. The results are compared with those of the family related 10 percent thick supercritical airfoil 33. Comparisons are also made between experimental and theoretical characteristics and composite drag rise characteristics derived for a full scale Reynolds number of 40 million.

  12. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  13. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    PubMed

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  14. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    PubMed Central

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  15. Design and application of a test rig for super-critical power transmission shafts

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Smalley, A.

    1979-01-01

    The design, assembly, operational check-out and application of a test facility for testing supercritical power transmission shafts under realistic conditions of size, speed and torque are described. Alternative balancing methods and alternative damping mechanisms are demonstrated and compared. The influence of torque upon the unbalance distribution is studied, and its effect on synchronous vibrations is investigated. The feasibility of operating supercritical power transmission shafting is demonstrated, but the need for careful control, by balancing and damping, of synchronous and nonsynchronous vibrations is made clear. The facility was demonstrated to be valuable for shaft system development programs and studies for both advanced and current-production hardware.

  16. Recent Analytical Techniques Advances in the Carotenoids and Their Derivatives Determination in Various Matrixes.

    PubMed

    Giuffrida, Daniele; Donato, Paola; Dugo, Paola; Mondello, Luigi

    2018-04-04

    In the present perspective, different approaches to the carotenoids analysis will be discussed providing a brief overview of the most advanced both monodimensional and bidimensional liquid chromatographic methodologies applied to the carotenoids analysis, followed by a discussion on the recents advanced supercritical fluid chromatography × liquid chromatography bidimensional approach with photodiode-array and mass spectrometry detection. Moreover a discussion on the online supercritical fluid extraction-supercritical fluid chromatography with tandem mass spectrometry detection applied to the determination of carotenoids and apocarotenoids will also be provided.

  17. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R.

    2010-03-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO2 (SCCO2). The solubility of CO2 in PCL allows for the impregnation of CO2-soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO2 to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35°C and 40 °C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  18. Combination of supercritical CO2 and vacuum distillation for the fractionation of bergamot oil.

    PubMed

    Fang, Tao; Goto, Motonobu; Sasaki, Mitsuru; Hirose, Tsutomu

    2004-08-11

    Supercritical CO2 can be used to separate oxygenated compounds from essential oils. This technique still cannot replace vacuum distillation as an industrial process because of low recoveries and inconsistent results. In the present work, a comparison between the two methods was made in terms of composition, recovery, and color. Vacuum distillation and supercritical CO2 are complementary processes for producing high quality oxygenated compounds with high recovery rates. The former is more suitable for removing monoterpenes at low fraction temperatures (< or =308 K), and the latter is more suitable for separating oxygenated compounds from pigments and waxes. Consequently, the two methods were combined. For supercritical CO2 fractionation, the parameters of pressure, temperature gradient, and the ratio of solvent to feed were investigated for the fractionation of oxygenated compounds with high recoveries (> or =85%) and without other macromolecules, such as pigments and waxes.

  19. SOLUBILITY OF ORGANIC BIOCIDES IN SUPERCRITICAL CO2 AND CO2+ COSOLVENT MIXTURES

    EPA Science Inventory

    Solubilities of four organic biocides in supercritical carbon dioxide (Sc-CO2) were measured using a dynamic flowr apparatus over a pressure range of 10 to 30 MPa and temperature of 35-80 degrees C. The biocides studied were: Amical-48 (diiodomethyl p-tolyl sulfone), chlorothalo...

  20. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    NASA Astrophysics Data System (ADS)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the

  1. [Study on supercritical CO2 extraction of xiaoyaosan and its GC-MS fingerprint].

    PubMed

    Zuo, Ya-Mei; Tian, Jun-Sheng; Guo, Xiao-Qing; Zhou, Yu-Zhi; Gao, Xiao-Xia; Qin, Xue-Mei

    2014-02-01

    To determine the optimum conditions of supercritical CO2 extraction of Xiaoyaosan, and establish its fingerprint by gas chromatography-mass spectrometry (GC-MS), the yield of extract were investigated, an orthogonal test was used to quantify the effects of extraction temperature, pressure, CO2 flow rate and time, and fingerprint analysis of different batches of extracts were by GC-MS. The optimal extraction conditions were determined as follows: extraction pressure 20 MPa, extraction temperature 50 degrees C, CO2 flow rate 25 kg x h(-1), extraction time 3 h, and average yield 2.2%. The GC-MS fingerprint was established and 27 common peaks were found, whose contents add up to 81.89% of the total peak area. Among them, 21 compounds were identified, accounting for 53.20% of the total extract. The extraction process is reasonable and favorable for industrial production. The GC-MS method is accurate, reliable, reproducible, and can be used for quality control of supercritical CO2 extract from Xiaoyaosan.

  2. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, S. P.; Zhou, L. J.; Wang, Z. W.

    2014-03-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency.

  3. Fabrication and Performance of MEMS-Based Pressure Sensor Packages Using Patterned Ultra-Thick Photoresists

    PubMed Central

    Chen, Lung-Tai; Chang, Jin-Sheng; Hsu, Chung-Yi; Cheng, Wood-Hi

    2009-01-01

    A novel plastic packaging of a piezoresistive pressure sensor using a patterned ultra-thick photoresist is experimentally and theoretically investigated. Two pressure sensor packages of the sacrifice-replacement and dam-ring type were used in this study. The characteristics of the packaged pressure sensors were investigated by using a finite-element (FE) model and experimental measurements. The results show that the thermal signal drift of the packaged pressure sensor with a small sensing-channel opening or with a thin silicon membrane for the dam-ring approach had a high packaging induced thermal stress, leading to a high temperature coefficient of span (TCO) response of −0.19% span/°C. The results also show that the thermal signal drift of the packaged pressure sensors with a large sensing-channel opening for sacrifice-replacement approach significantly reduced packaging induced thermal stress, and hence a low TCO response of −0.065% span/°C. However, the packaged pressure sensors of both the sacrifice-replacement and dam-ring type still met the specification −0.2% span/°C of the unpackaged pressure sensor. In addition, the size of proposed packages was 4 × 4 × 1.5 mm3 which was about seven times less than the commercialized packages. With the same packaging requirement, the proposed packaging approaches may provide an adequate solution for use in other open-cavity sensors, such as gas sensors, image sensors, and humidity sensors. PMID:22454580

  4. A study of power cycles using supercritical carbon dioxide as the working fluid

    NASA Astrophysics Data System (ADS)

    Schroder, Andrew Urban

    A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a

  5. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  6. Electrodeposition of metals from supercritical fluids

    PubMed Central

    Ke, Jie; Su, Wenta; Howdle, Steven M.; George, Michael W.; Cook, David; Perdjon-Abel, Magda; Bartlett, Philip N.; Zhang, Wenjian; Cheng, Fei; Levason, William; Reid, Gillian; Hyde, Jason; Wilson, James; Smith, David C.; Mallik, Kanad; Sazio, Pier

    2009-01-01

    Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology. PMID:19706479

  7. Optimization of the Supercritical Carbon Dioxide Separation of Bergapten from Bergamot Essential Oil.

    PubMed

    Sicari, Vincenzo

    2018-01-01

    The possibility of following traditional cold-press extraction with the post process continuous separation of bergapten from bergamot essential oil was investigated. A fractionation tower was used in an experiment in which cold-pressed bergamot oil was extracted in a continuous countercurrent process by supercritical carbon dioxide under different conditions. Bergapten is fairly soluble in CO2 in its supercritical phase, in particular at a density of 277.90 kg⋅m-3, corresponding to a pressure of 8 MPa and temperature of 40°C. Under these conditions, an extract with 0.198% bergapten was obtained, a figure slightly below the percentage of bergapten contained in cold-pressed oil (0.21%). However, at densities below 200 kg⋅m-3, the amount of bergapten in the extracted oil was negligible. Of all tested conditions for separation, the best was found to be at a pressure of 8 MPa and temperature of 70°C, conditions under which bergapten was not detected. The results of the experiment showed that bergapten, and the non-volatile fraction in general, was extracted only in small quantities and was not extracted at all with at a CO2 pressure of 8 MPa.

  8. Supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  9. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal

  10. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achievedmore » using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm -3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.« less

  11. Ultra-low frequency Raman spectroscopy of SWNTs under high pressure

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Quirke, N.; Zerulla, D.

    2016-09-01

    Radial deformation phenomena of carbon nanotubes (CNTs) are attracting increased attention because even minimal changes of the CNT's cross section can result in significant changes of their electronic and optical properties. It is therefore important to have the ability to sensitively probe and characterize this radial deformation. High pressure Raman spectroscopy offers a general and powerful method to study such effects in SWNTs. In this experimental work, we focus in particular on one theoretically predicted Raman vibrational mode, the so-called "Squash Mode" (SM), named after its vibrational mode pattern, which has an E2g symmetry representation and exists at shifts below the radial breathing mode (RBM) region. The Squash mode was predicted to be more sensitive to environmental changes than the RBM. Here we report on a detailed, experimental detection of SMs of aligned SWNT arrays with peaks as close as 18 cm-1 to the laser excitation energy. Furthermore, we investigate how the SM of aligned CNT arrays reacts when exposed to a high pressure environment of up to 9 GPa. The results confirm the theoretical predictions regarding the angular and polarization dependent variations of the SM's intensity with respect to their excitation. Furthermore, clear Raman upshifts of SM under pressures of up to 9 GPa are presented. The relative changes of these upshifts, and hence the sensitivity, are much higher than that of RBMs because of larger radial displacement of some of the participating carbon atoms during the SM vibration. These novel ultra-sensitive Raman SM shifts of SWNTs provide enhanced sensitivity and demonstrate new opportunities for nano-optical sensors applications.

  12. Lox droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1994-01-01

    A systematic investigation has been conducted to study the effects of ambient flow conditions (i.e. pressure and velocity) on supercritical droplet gasification in a forced-convective environment. The model is based on the time-dependent conservation equations in axisymmetric coordinates, and accommodates thermodynamic nonidealities and transport anomalies. In addition, an efficient scheme for evaluating thermophysical properties over the entire range of fluid thermodynamic states is established. The analysis allows a thorough examination of droplet behavior during its entire lifetime, including transient gasification, dynamic deformation, and shattering. A parametric study of droplet vaporization rate in terms of ambient pressure and Reynolds number is also conducted.

  13. Study of poly(L-lactide) microparticles based on supercritical CO2.

    PubMed

    Chen, Ai-Zheng; Pu, Xi-Ming; Kang, Yun-Qing; Liao, Li; Yao, Ya-Dong; Yin, Guang-Fu

    2007-12-01

    Poly(L-lactide) (PLLA) microparticles were prepared in supercritical anti-solvent process. The effects of several key factors on surface morphology, and particle size and particle size distribution were investigated. These factors included initial drops size, saturation ratio of PLLA solution, pressure, temperature, concentration of the organic solution, the flow rate of the solution and molecular weight of PLLA. The results indicated that the saturation ratio of PLLA solution, concentration of the organic solution and flow rate of the solution played important roles on the properties of products. Various microparticles with the mean particle size ranging from 0.64 to 6.64 microm, could be prepared by adjusting the operational parameters. Fine microparticles were obtained in a process namely solution-enhanced dispersion by supercritical fluids (SEDS) process with dichloromethane/acetone mixture as solution.

  14. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  15. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    PubMed

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Phytochemical profile, antioxidant and antimicrobial activity of extracts obtained from erva-mate (Ilex paraguariensis) fruit using compressed propane and supercritical CO2.

    PubMed

    Fernandes, Ciro E F; Scapinello, Jaqueline; Bohn, Aline; Boligon, Aline A; Athayde, Margareth L; Magro, Jacir Dall; Palliga, Marshall; Oliveira, J Vladimir; Tres, Marcus V

    2017-01-01

    Traditionally, Ilex paraguariensis leaves are consumed in tea form or as typical drinks like mate and terere, while the fruits are discarded processing and has no commercial value. The aim of this work to evaluate phytochemical properties, total phenolic compounds, antioxidant and antimicrobial activity of extracts of Ilex paraguariensis fruits obtained from supercritical CO 2 and compressed propane extraction. The extraction with compressed propane yielded 2.72 wt%, whereas with supercritical CO 2 1.51 wt% was obtained. The compound extracted in larger amount by the two extraction solvents was caffeine, 163.28 and 54.17 mg/g by supercritical CO 2 and pressurized propane, respectively. The antioxidant activity was more pronounced for the supercritical CO 2 extract, with no difference found in terms of minimum inhibitory concentration for Staphylococcus aureus for the two extracts and better results observed for Escherichia coli when using supercritical CO 2 .

  17. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  18. Evaporation of LOX under supercritical and subcritical conditions

    NASA Technical Reports Server (NTRS)

    Yang, A. S.; Hsieh, W. H.; Kuo, K. K.; Brown, J. J.

    1993-01-01

    The evaporation of LOX under supercritical and subcritical conditions was studied experimentally and theoretically. In experiments, the evaporation rate and surface temperature were measured for LOX strand vaporizing in helium environments at pressures ranging from 5 to 68 atmospheres. Gas sampling and chromatography analysis were also employed to profile the gas composition above the LOX surface for the purpose of model validation. A comprehensive theoretical model was formulated and solved numerically to simulate the evaporation process of LOX at high pressures. The model was based on the conservation equations of mass, momentum, energy, and species concentrations for a multicomponent system, with consideration of gravitational body force, solubility of ambient gases in liquid, and variable thermophysical properties. Good agreement between predictions and measured oxygen mole fraction profiles was obtained. The effect of pressure on the distribution of the Lewis number, as well as the effect of variable diffusion coefficient, were further examined to elucidate the high-pressure transport behavior exhibited in the LOX vaporization process.

  19. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry

    PubMed Central

    Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M.; Wanas, Amira S.; van Antwerp, John; Parcher, Jon F.; ElSohly, Mahmoud A.; Khan, Ikhlas A.

    2016-01-01

    Abstract Introduction: Decarboxylation is an important step for efficient production of the major active components in cannabis, for example, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). These cannabinoids do not occur in significant concentrations in cannabis but can be formed by decarboxylation of their corresponding acids, the predominant cannabinoids in the plant. Study of the kinetics of decarboxylation is of importance for phytocannabinoid isolation and dosage formulation for medical use. Efficient analytical methods are essential for simultaneous detection of both neutral and acidic cannabinoids. Methods: C. sativa extracts were used for the studies. Decarboxylation conditions were examined at 80°C, 95°C, 110°C, 130°C, and 145°C for different times up to 60 min in a vacuum oven. An ultra-high performance supercritical fluid chromatography/photodiode array-mass spectrometry (UHPSFC/PDA-MS) method was used for the analysis of acidic and neutral cannabinoids before and after decarboxylation. Results: Decarboxylation at different temperatures displayed an exponential relationship between concentration and time indicating a first-order or pseudo-first-order reaction. The rate constants for Δ9-tetrahydrocannabinolic acid-A (THCA-A) were twice those of the cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). Decarboxylation of THCA-A was forthright with no side reactions or by-products. Decarboxylation of CBDA and CBGA was not as straightforward due to the unexplained loss of reactants or products. Conclusion: The reported UHPSFC/PDA-MS method provided consistent and sensitive analysis of phytocannabinoids and their decarboxylation products and degradants. The rate of change of acidic cannabinoid concentrations over time allowed for determination of rate constants. Variations of rate constants with temperature yielded values for reaction energy. PMID:28861498

  20. Supercritical impregnation and optical characterization of loaded foldable intraocular lenses using supercritical fluids.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Li, Yanfeng; He, Wei; Badens, Elisabeth

    2017-10-01

    To prepare drug-loaded intraocular lenses (IOLs) used to combine cataract surgery with postoperative complication treatment through supercritical impregnation while preserving their optical properties. Aix-Marseille Université, CNRS, Centrale Marseille, Laboratoire de Mécanique, Modélisation & Procédés Propres, Marseille, France, and He University Eye Hospital, Liaoning Province, China. Experimental study. Supercritical impregnations of commercial foldable IOLs used in cataract surgery with ciprofloxacin (an antibiotic) and dexamethasone 21-phosphate disodium salt (an antiinflammatory drug) were performed in a noncontinuous mode. Impregnation amounts were determined through drug-release kinetic studies. The optical characterizations of IOLs were determined by evaluating the dioptric power and the imaging quality by determining the modulating transfer function (MTF) at a specified spatial frequency according to the International Organization for Standardization (ISO 11979-2:2014). Transparent IOLs presenting an effective impregnation were obtained with a prolonged drug delivery during approximately 10 days. Optical characterizations (dioptric powers and MTF values) show preserved optical properties after supercritical treatment/impregnation. Supercritical treatments/impregnations do not damage the optical properties of IOLs and are therefore adequate for the preparation of delivery devices used for cataract surgery. Copyright © 2017. Published by Elsevier Inc.

  1. Solubility of caffeine from green tea in supercritical CO2: a theoretical and empirical approach.

    PubMed

    Gadkari, Pravin Vasantrao; Balaraman, Manohar

    2015-12-01

    Decaffeination of fresh green tea was carried out with supercritical CO2 in the presence of ethanol as co-solvent. The solubility of caffeine in supercritical CO2 varied from 44.19 × 10(-6) to 149.55 × 10(-6) (mole fraction) over a pressure and temperature range of 15 to 35 MPa and 313 to 333 K, respectively. The maximum solubility of caffeine was obtained at 25 MPa and 323 K. Experimental solubility data were correlated with the theoretical equation of state models Peng-Robinson (PR), Soave Redlich-Kwong (SRK), and Redlich-Kwong (RK). The RK model had regressed experimental data with 15.52 % average absolute relative deviation (AARD). In contrast, Gordillo empirical model regressed the best to experimental data with only 0.96 % AARD. Under supercritical conditions, solubility of caffeine in tea matrix was lower than the solubility of pure caffeine. Further, solubility of caffeine in supercritical CO2 was compared with solubility of pure caffeine in conventional solvents and a maximum solubility 90 × 10(-3) mol fraction was obtained with chloroform.

  2. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  3. Experimental evaluation of shockless supercritical airfoils in cascade

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Buggele, A. E.; Shaw, L. M.

    1983-01-01

    Surface Mach number distributions, total pressure loss coefficients, and schlieren images of the flow are presented over a range of inlet Mach numbers and air angles. Several different trailing edge geometries were tested. At design conditions a leading edge separation bubble was observed resulting in higher losses than anticipated. The minimum losses were obtained at a negative incidence condition in which the flow was accelerating over most of the supercritical region. Relatively minor differences in losses were measured with the different trailing edge geometries studied.

  4. Investigation to optimize the passive shock wave-boundary layer control for supercritical airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Ficarra, R.; Orozco, R.

    1983-01-01

    The optimization of passive shock wave/boundary layer control for supercritical airfoil drag reduction was investigated in a 3 in. x 15.4 in. Transonic Blowdown Wind Tunnel. A 14% thick supercritical airfoil was tested with 0%, 1.42% and 2.8% porosities at Mach numbers of .70 to .83. The 1.42% case incorporated a linear increase in porosity with the flow direction while the 2.8% case was uniform porosity. The static pressure distributions over the airfoil, the wake impact pressure data for determining the profile drag, and the Schlieren photographs for porous surface airfoils are presented and compared with the results for solid-surface airfoils. While the results show that linear 1.42% porosity actually led to a slight increase in drag it was found that the uniform 2.8% porosity can lead to a drag reduction of 46% at M = .81.

  5. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  6. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  7. Aerodynamic characteristics of two 10-percent-thick NASA supercritical airfoils with different upper surface curvature distributions. [Langley 8 foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1974-01-01

    In order to assess the degree to which the characteristic region of low curvature of the supercritical airfoil can be practically extended on the upper surface, the aerodynamic characteristics of two supercritical airfoils with different upper surface curvature distributions were measured at Mach numbers from 0.60 to 0.81. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.

  8. Supercritical fluid extraction. Principles and practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, M.A.; Krukonis, V.J.

    This book is a presentation of the fundamentals and application of super-critical fluid solvents (SCF). The authors cover virtually every facet of SCF technology: the history of SCF extraction, its underlying thermodynamic principles, process principles, industrial applications, and analysis of SCF research and development efforts. The thermodynamic principles governing SCF extraction are covered in depth. The often complex three-dimensional pressure-temperature composition (PTx) phase diagrams for SCF-solute mixtures are constructed in a coherent step-by-step manner using the more familiar two-dimensional Px diagrams. The experimental techniques used to obtain high pressure phase behavior information are described in detail and the advantages andmore » disadvantages of each technique are explained. Finally, the equations used to model SCF-solute mixtures are developed, and modeling results are presented to highlight the correlational strengths of a cubic equation of state.« less

  9. Valorization of horse manure through catalytic supercritical water gasification.

    PubMed

    Nanda, Sonil; Dalai, Ajay K; Gökalp, Iskender; Kozinski, Janusz A

    2016-06-01

    The organic wastes such as lignocellulosic biomass, municipal solid waste, sewage sludge and livestock manure have attracted attention as alternative sources of energy. Cattle manure, a waste generated in surplus amounts from the feedlot, has always been a chief environmental concern. This study is focused on identifying the candidacy of horse manure as a next generation feedstock for biofuel production through supercritical water gasification. The horse manure was gasified in supercritical water to examine the effects of temperature (400-600°C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15-45min) at a pressure range of 23-25MPa. The horse manure and resulting biochar were characterized through carbon-hydrogen-nitrogen-sulfur (CHNS), inductively coupled plasma-mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM). The effects of alkali catalysts such as NaOH, Na2CO3 and K2CO3 at variable concentrations (1-2wt%) were investigated to maximize the hydrogen yields. Supercritical water gasification of horse manure with 2wt% Na2CO3 at 600°C and 1:10 biomass-to-water ratio for 45min revealed maximum hydrogen yields (5.31mmol/g), total gas yields (20.8mmol/g) with greater carbon conversion efficiency (43.1%) and enhanced lower heating value of gas products (2920kJ/Nm(3)). The manure-derived biochars generated at temperatures higher than 500°C also demonstrated higher thermal stability (weight loss <34%) and larger carbon content (>70wt%) suggesting their application in enhancing soil fertility and carbon sequestration. The results propose that supercritical water gasification could be a proficient remediation technology for horse manure to generate hydrogen-rich gas products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Application of ultra high pressure (UHP) in starch chemistry.

    PubMed

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  11. Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Min; He, Shih-Ming; Huang, Chi-Hsien; Huang, Cheng-Chun; Shih, Wen-Pin; Chu, Chun-Lin; Kong, Jing; Li, Ju; Su, Ching-Yuan

    2016-02-01

    In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa-1, which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches.In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 105, which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (~55 μm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra

  12. Hydrogen production from high moisture content biomass in supercritical water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antal, M.J. Jr.; Xu, X.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22more » MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.« less

  13. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  14. Geothermal energy production with supercritical fluids

    DOEpatents

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  15. Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Fisher, John W.

    2012-01-01

    The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications.

  16. Supercritical CO2 extract of Cinnamomum zeylanicum: chemical characterization and antityrosinase activity.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Tuveri, Enrica; Sanjust, Enrico; Meli, Massimo; Sollai, Francesca; Zucca, Paolo; Rescigno, Antonio

    2007-11-28

    The volatile oil of the bark of Cinnamomum zeylanicum was extracted by means of supercritical CO2 fluid extraction in different conditions of pressure and temperature. Its chemical composition was characterized by GC-MS analysis. Nineteen compounds, which in the supercritical extract represented >95% of the oil, were identified. (E)-Cinnamaldehyde (77.1%), (E)-beta-caryophyllene (6.0%), alpha-terpineol (4.4%), and eugenol (3.0%) were found to be the major constituents. The SFE oil of cinnamon was screened for its biological activity about the formation of melanin in vitro. The extract showed antityrosinase activity and was able to reduce the formation of insoluble flakes of melanin from tyrosine. The oil also delayed the browning effect in apple homogenate. (E)-Cinnamaldehyde and eugenol were found to be mainly responsible of this inhibition effect.

  17. Dynamics of Supercritical Flows

    DTIC Science & Technology

    2012-08-26

    to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi

  18. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  19. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry.

    PubMed

    Klink, Dennis; Schmitz, Oliver Johannes

    2016-01-05

    Atmospheric-pressure laser ionization mass spectrometry (APLI-MS) is a powerful method for the analysis of polycyclic aromatic hydrocarbon (PAH) molecules, which are ionized in a selective and highly sensitive way via resonance-enhanced multiphoton ionization. APLI was presented in 2005 and has been hyphenated successfully to chromatographic separation techniques like high performance liquid chromatography (HPLC) and gas chromatography (GC). In order to expand the portfolio of chromatographic couplings to APLI, a new hyphenation setup of APLI and supercritical-fluid chromatography (SFC) was constructed and aim of this work. Here, we demonstrate the first hyphenation of SFC and APLI in a simple designed way with respect to different optimization steps to ensure a sensitive analysis. The new setup permits qualitative and quantitative determination of native and also more polar PAH molecules. As a result of the altered ambient characteristics within the source enclosure, the quantification of 1-hydroxypyrene (1-HP) in human urine is possible without prior derivatization. The limit of detection for 1-HP by SFC-APLI-TOF(MS) was found to be 0.5 μg L(-1), which is lower than the 1-HP concentrations found in exposed persons.

  20. Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides.

    PubMed

    Villa-Lerma, Guadalupe; González-Márquez, Humberto; Gimeno, Miquel; Trombotto, Stéphane; David, Laurent; Ifuku, Shinsuke; Shirai, Keiko

    2016-06-01

    The hydrolysis of chitin treated under supercritical conditions was successfully carried out using chitinases obtained by an optimized fermentation of the fungus Lecanicillium lecanii. The biopolymer was subjected to a pretreatment based on suspension in supercritical 1,1,1,2-tetrafluoroethane (scR134a), which possesses a critical temperature and pressure of 101°C and 40bar, respectively, followed by rapid depressurization to atmospheric pressure and further fibrillation. This methodology was compared to control untreated chitins and chitin subjected to steam explosion showing improved production of reducing sugars (0.18mg/mL), enzymatic hydrolysis and high acetylation (FA of 0.45) in products with degrees of polymerization between 2 and 5. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Capillary pressure heterogeneity and hysteresis for the supercritical CO2/water system in a sandstone

    NASA Astrophysics Data System (ADS)

    Pini, Ronny; Benson, Sally M.

    2017-10-01

    We report results from an experimental investigation on the hysteretic behaviour of the capillary pressure curve for the supercritical CO2-water system in a Berea Sandstone core. Previous observations have highlighted the importance of subcore-scale capillary heterogeneity in developing local saturations during drainage; we show in this study that the same is true for the imbibition process. Spatially distributed drainage and imbibition scanning curves were obtained for mm-scale subsets of the rock sample non-invasively using X-ray CT imagery. Core- and subcore-scale measurements are well described using the Brooks-Corey formalism, which uses a linear trapping model to compute mobile saturations during imbibition. Capillary scaling yields two separate universal drainage and imbibition curves that are representative of the full subcore-scale data set. This enables accurate parameterisation of rock properties at the subcore-scale in terms of capillary scaling factors and permeability, which in turn serve as effective indicators of heterogeneity at the same scale even when hysteresis is a factor. As such, the proposed core-analysis workflow is quite general and provides the required information to populate numerical models that can be used to extend core-flooding experiments to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.

  2. Sub- and supercritical jet disintegration

    NASA Astrophysics Data System (ADS)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  3. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.

    PubMed

    Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando

    2008-02-14

    Solid-state, crystallographic purity and careful monitoring of the polymorphism of drugs and excipients are currently an integral part of the development of modern drug delivery systems. The reproducible preparation of organic crystals in a specific form and size is a major issue that must be addressed. A recent approach for obtaining pharmaceutical materials in pure physical form is represented by the technologies based on supercritical fluids. The present work aims to provide a critical review of the recent advances in the use of supercritical fluids for the preparation and control of the specific physical form of pharmaceutical substances with particular attention to those fluids used for drug delivery systems. These innovative technologies are highly promising for future application in particle design and engineering.

  4. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  5. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE PAGES

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    2017-05-02

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  6. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  7. Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds.

    PubMed

    Zamora, A; Trujillo, A J; Armaforte, E; Waldron, D S; Kelly, A L

    2012-09-01

    The objective of this study was to investigate the influence of conventional and ultra-high-pressure homogenization on interactions between proteins within drained rennet curds. The effect of fat content of milk (0.0, 1.8, or 3.6%) and homogenization treatment on dissociation of proteins by different chemical agents was thus studied. Increasing the fat content of raw milk increased levels of unbound whey proteins and calcium-bonded caseins in curds; in contrast, hydrophobic interactions and hydrogen bonds were inhibited. Both homogenization treatments triggered the incorporation of unbound whey proteins in the curd, and of caseins through ionic bonds involving calcium salts. Conventional homogenization-pasteurization enhanced interactions between caseins through hydrogen bonds and hydrophobic interactions. In contrast, ultra-high-pressure homogenization impaired hydrogen bonding, led to the incorporation of both whey proteins and caseins through hydrophobic interactions and increased the amount of unbound caseins. Thus, both homogenization treatments provoked changes in the protein interactions within rennet curds; however, the nature of the changes depended on the homogenization conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    PubMed

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  9. Extraction of nobiletin from Citrus Unshiu peels by supercritical fluid and its CRE-mediated transcriptional activity.

    PubMed

    Oba, Chisato; Ota, Masaki; Nomura, Koichiro; Fujiwara, Hironori; Takito, Jiro; Sato, Yoshiyuki; Ohizumi, Yasushi; Inomata, Hiroshi

    2017-04-15

    Polymethoxyflavone (PMF) is one of bioactive compounds in Citrus Unshiu and included mainly in the peels rather than the fruits, seeds and leaves. Supercritical CO 2 extraction is one candidate for selective extraction of polymethoxyflavone and in this study, supercritical CO 2 extraction with/without ethanol entrainer from Citrus Unshiu peels was examined at a temperature of 333K and a pressure of 30MPa. CRE (cyclic AMP response element)-mediated transcriptional assay was examined by using the extracts from supercritical fluid extraction. The results showed that extracts including nobiletin increased with increasing ethanol concentration in supercritical CO 2 and the elapsed extraction time. Extracts at ethanol concentration of 5 mol% showed high CRE-mediated transcription activity. This can be caused by activity of the extract including nobiletin in addition to the other methoxylated flavonoid species such as tangeretin. Extracts at ethanol concentration of 50% showed the highest CRE-mediated transcription activity, which can be attributed to flavonoid glycoside such as hesperidin. From our investigations, flavonoid glycoside can be one of promoters of CRE-mediated transcription activity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla.

    PubMed

    Yang, Wenzhi; Zhang, Yibei; Pan, Huiqin; Yao, Changliang; Hou, Jinjun; Yao, Shuai; Cai, Luying; Feng, Ruihong; Wu, Wanying; Guo, Dean

    2017-02-05

    Increasing challenge arising from configurational interconversion in aqueous solvent renders it rather difficult to isolate high-purity tautomeric reference standards and thus largely hinders the holistic quality control of traditional Chinese medicine (TCM). Spiro oxindole alkaloids (SOAs), as the markers for the medicinal Uncaria herbs, can easily isomerize in polar or aqueous solvent via a retro-Mannich reaction. In the present study, supercritical fluid chromatography (SFC) is utilized to separate and isolate two pairs of 7-epimeric SOAs, including rhynchophylline (R) and isorhynchophylline (IR), corynoxine (C) and corynoxine B (CB), from Uncaria macrophylla. Initially, the solvent that can stabilize SOA epimers was systematically screened, and acetonitrile was used to dissolve and as the modifier in SFC. Then, key parameters of ultra-high performance SFC (ultra-performance convergence chromatography, UPC 2 ), comprising stationary phase, additive in modifier, column temperature, ABPR pressure, and flow rate, were optimized in sequence. Two isocratic UPC 2 methods were developed on the achiral Torus 1-AA and Torus Diol columns, suitable for UV and MS detection, respectively. MCI gel column chromatography fractionated the U. macrophylla extract into two mixtures (R/IR and C/CB). Preparative SFC, using a Viridis Prep Silica 2-EP OBD column and acetonitrile-0.2% diethylamine in CO 2 as the mobile phase, was finally employed for compound purification. As a result, the purity of four SOA compounds was all higher than 95%. Different from reversed-phase HPLC, SFC, by use of water-free mobile phase (inert CO 2 and aprotic modifier), provides a solution to rapid analysis and isolation of tautomeric reference standards for quality control of TCM. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru

    2007-07-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficialmore » in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.« less

  12. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    PubMed

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  13. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.

    PubMed

    Anwar, Mohammed; Ahmad, Iqbal; Warsi, Musarrat H; Mohapatra, Sharmistha; Ahmad, Niyaz; Akhter, Sohail; Ali, Asgar; Ahmad, Farhan J

    2015-10-01

    The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Oefelein, Joseph C.; Garcia, Roberto (Technical Monitor)

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  15. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Norman K.

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect tomore » the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”« less

  16. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  17. Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw

    2014-01-01

    Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less

  18. Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly(dimethylsiloxane).

    PubMed

    Sanli, D; Erkey, C

    2013-11-27

    Monolithic composites of silica aerogels with hydroxyl-terminated poly(dimethylsiloxane) (PDMS(OH)) were developed with a novel reactive supercritical deposition technique. The method involves dissolution of PDMS(OH) in supercritical CO2 (scCO2) and then exposure of the aerogel samples to this single phase mixture of PDMS(OH)-CO2. The demixing pressures of the PDMS(OH)-CO2 binary mixtures determined in this study indicated that PDMS(OH) forms miscible mixtures with CO2 at a wide composition range at easily accessible pressures. Upon supercritical deposition, the polymer molecules were discovered to react with the hydroxyl groups on the silica aerogel surface and form a conformal coating on the surface. The chemical attachment of the polymer molecules on the aerogel surface were verified by prolonged extraction with pure scCO2, simultaneous deposition with superhydrophobic and hydrophilic silica aerogel samples and ATR-FTIR analysis. All of the deposited silica aerogel samples were obtained as monoliths and retained their transparency up to around 30 wt % of mass uptake. PDMS(OH) molecules were found to penetrate all the way to the center of the monoliths and were distributed homogenously throughout the cylindrical aerogel samples. Polymer loadings as high as 75.4 wt % of the aerogel mass could be attained. It was shown that the polymer uptake increases with increasing exposure time, as well as the initial polymer concentration in the vessel.

  19. Transient heat transfer to a forced flow of supercritical helium at 4.2 K

    NASA Astrophysics Data System (ADS)

    Bloem, W. B.

    The transient heat transfer coefficient of supercritical helium flowing through a rectangular copper tube with a hydraulic diameter of 5 mm has been measured. The conditions of the flow were: inlet bulk temperature of the fluid was 4.2 K pressures from 3 to 10 bar and Reynolds numbers between 1.5 × 10 4 and 2 × 10 5. The tube was heated on four sides with heat fluxes up to 9800 W m -2. From the experiments it followed that during the first tens of milliseconds the heat transfer is determined by the heat conduction in the boundary layer of the supercritical helium flow. The heat transfer coefficient can be described by h = 0.5(Π λ p C p/t) 1/2. Although the helium properties λ p and Cp are a strong function of pressure and temperature, it was remarkable that the temperature increase during a heat pulse was almost the same at different flow pressures. After analysing the data an empirical relation, h =b ṁ0.75 (t t/t) case1/n, was derived, which predicts the heat transfer coefficient at a given mass flow, ṁ, to within 10% during 0.1 s. The constants b, n and tt are related to the mass flow, ṁ, and the pressure of the fluid.

  20. Evaporation and combustion of LOX under supercritical and subcritical conditions

    NASA Technical Reports Server (NTRS)

    Yang, A. S.; Hsieh, W. H.; Kuo, K. K.

    1993-01-01

    The objective is to study the evaporation and combustion of LOX under supercritical and subcritical conditions both experimentally and theoretically. In the evaporation studies, evaporation rate and surface temperature were measured when LOX vaporizing in helium environments at pressures ranging from 5 to 68 atm. A Varian 3700 gas chromatograph was employed to measure the oxygen concentration above the LOX surface. For the combustion tests, high-magnification video photography was used to record direct images of the flame shape of a LOX/H2/He laminar diffusion flame. The gas composition in the post-flame region is also being measured with the gas sampling and chromatography analysis. These data are being used to validate the theoretical model. A comprehensive theoretical model with the consideration of the solubility of ambient gases as well as variable thermophysical properties was formulated and solved numerically to study the gasification and burning of LOX at elevated pressures. The calculated flame shape agreed reasonably well with the edge of the observed luminous flame surface. The effect of gravity on the flame structure of laminar diffusion flames was found to be significant. In addition, the predicted results using the flame-sheet model were compared with those based upon full equilibrium calculations (which considered the formation of intermediate species) at supercritical pressures. Except at the flame front where temperature exceeded 2,800 K, the flame-sheet and equilibrium solutions in terms of temperature distributions were in very close agreement. The temperature deviation in the neighborhood of the flame front is caused by the effect of high-temperature dissociation.

  1. HYDROGENATION OF 4-OXOISOPHORONE OVER PD/AL2/O2 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM

    EPA Science Inventory

    Hydrogenation of 4-oxoisophorone has been studied over 1% Pd/Al2O3 impregnated catalyst in supercritical CO2 medium at different reaction conditions. The effect of temperature, pressure and reaction medium on the conversion and product selectivity is discussed. Phase behavior stu...

  2. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, D.; Rovere, M.; Gallo, P., E-mail: gallop@fis.uniroma3.it

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show howmore » different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.« less

  3. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    PubMed

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  4. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    PubMed

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  5. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    PubMed Central

    Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.

    2013-01-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584

  6. Final Techno-Economic Analysis of 550 MWe Supercritical PC Power Plant CO 2 Capture with Linde-BASF Advanced PCC Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Devin; Stoffregen, Torsten; Rigby, Sean

    This topical report presents the techno-economic evaluation of a 550 MWe supercritical pulverized coal (PC) power plant utilizing Illinois No. 6 coal as fuel, integrated with 1) a previously presented (for a subcritical PC plant) Linde-BASF post-combustion CO 2 capture (PCC) plant incorporating BASF’s OASE® blue aqueous amine-based solvent (LB1) [Ref. 6] and 2) a new Linde-BASF PCC plant incorporating the same BASF OASE® blue solvent that features an advanced stripper interstage heater design (SIH) to optimize heat recovery in the PCC process. The process simulation and modeling for this report is performed using Aspen Plus V8.8. Technical information frommore » the PCC plant is determined using BASF’s proprietary thermodynamic and process simulation models. The simulations developed and resulting cost estimates are first validated by reproducing the results of DOE/NETL Case 12 representing a 550 MWe supercritical PC-fired power plant with PCC incorporating a monoethanolamine (MEA) solvent as used in the DOE/NETL Case 12 reference [Ref. 2]. The results of the techno-economic assessment are shown comparing two specific options utilizing the BASF OASE® blue solvent technology (LB1 and SIH) to the DOE/NETL Case 12 reference. The results are shown comparing the energy demand for PCC, the incremental fuel requirement, and the net higher heating value (HHV) efficiency of the PC power plant integrated with the PCC plant. A comparison of the capital costs for each PCC plant configuration corresponding to a net 550 MWe power generation is also presented. Lastly, a cost of electricity (COE) and cost of CO 2 captured assessment is shown illustrating the substantial cost reductions achieved with the Linde-BASF PCC plant utilizing the advanced SIH configuration in combination with BASF’s OASE® blue solvent technology as compared to the DOE/NETL Case 12 reference. The key factors contributing to the reduction of COE and the cost of CO 2 captured, along with

  7. Didanosine polymorphism in a supercritical antisolvent process.

    PubMed

    Bettini, R; Menabeni, R; Tozzi, R; Pranzo, M B; Pasquali, I; Chierotti, M R; Gobetto, R; Pellegrino, L

    2010-04-01

    Solid-state properties of active ingredients are crucial in pharmaceutical development owing to their significant clinical and economical implications. In the present work we investigated the solid-state properties and the solubility in water of didanosine, DDI, re-crystallized from a dimethylsulfoxide solution using supercritical CO(2) as an antisolvent (SAS process) for comparison with the commercially available drug product. We also applied modern solid-state NMR (SS NMR) techniques, namely 2D (1)H DQ CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) and (1)H-(13)C on- and off-resonance CP (cross polarization) FSLG-HETCOR experiments, known for providing reliable information about (1)H-(1)H and (1)H-(13)C intra- and intermolecular proximities, in order to address polymorphism issues arising from the crystallization of a new form in the supercritical process. A new polymorph of didanosine was obtained from the supercritical antisolvent process and characterized by means of 1D and 2D multinuclear ((1)H, (13)C, (15)N) SS NMR. The particle size of the new crystal phase was reduced by varying the antisolvent density through a pressure increase. The structural differences between the commercial product and the SAS re-crystallized DDI are highlighted by X-ray diffractometry and well described by solid-state NMR. The carbon C6 (13)C chemical shift suggests that both commercial and re-crystallized didanosine samples are in the enol form. The analysis of homo- and heteronuclear proximities obtained by means of 2D NMR experiments shows that commercial and SAS re-crystallized DDI possess very similar molecular conformation and hydrogen bond network, but different packing. The new polymorph proved to be a metastable form at ambient conditions, showing higher solubility in water and lower stability to mechanical stress. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  9. Dielectric Interactions and the Prediction of Retention Times of Pesticides in Supercritical Fluid Chromatography with CO2

    NASA Astrophysics Data System (ADS)

    Alvarez, Guillermo A.; Baumanna, Wolfram

    2005-02-01

    A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of

  10. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins.

    PubMed

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-16

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  11. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins

    NASA Astrophysics Data System (ADS)

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-01

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  12. Supercritical water oxidation treatment of textile sludge.

    PubMed

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  13. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  14. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  15. Anomalous sorption of supercritical fluids on polymer thin films.

    PubMed

    Wang, Xiaochu; Sanchez, Isaac C

    2006-10-24

    Unusual sorption has been reported in thin polymer films exposed to near-critical CO2. When the supercritical fluid approaches the critical point, the film appears to thicken, but it is not clear whether the film swells or there is an adsorption layer on the film surface. A combination of the gradient theory of inhomogeneous systems and the Sanchez-Lacombe equation of state has been used to investigate this phenomenon. It is shown analytically that surface adsorption on an attractive surface is proportional to the compressibility of the fluid. We have also investigated numerically the sorption of supercritical CO2 on poly(dimethylsiloxane) and polyisobutylene, and supercritical 1,1-difluoroethane on polystyrene. By calculating the Gibbs adsorption and adsorption layer thickness of the supercritical fluids, we found in all cases (different substrates, different supercritical fluids) that maximum adsorption occurs when the supercritical fluid is near its compressibility maximum.

  16. Bulk Group-III Nitride Crystal Growth in Supercritical Ammonia-Sodium Solutions

    NASA Astrophysics Data System (ADS)

    Griffiths, Steven Herbert

    Gallium nitride (GaN) and its alloys with indium nitride (InGaN) and aluminum nitride (AlGaN), collectively referred to as Group-III Nitride semiconductors, have enabled white solid-state lighting (SSL) sources and power electronic devices. While these technologies have already made a lasting, positive impact on society, improvements in design and efficiency are anticipated by shifting from heteroepitaxial growth on foreign substrates (such as sapphire, Si, SiC, etc.) to homoepitaxial growth on native, bulk GaN substrates. Bulk GaN has not supplanted foreign substrate materials due to the extreme conditions required to achieve a stoichiometric GaN melt (temperatures and pressures in excess of 2200°C and 6 GPa, respectively). The only method used to produce bulk GaN on an industrial scale is hydride vapor phase epitaxy (HVPE), but the high cost of gaseous precursors and relatively poor crystal quality have limited the adoption of this technology. A solution growth technique known as the ammonothermal method has attracted interest from academia and industry alike for its ability to produce bulk GaN boules of exceedingly high crystal quality. The ammonothermal method employs supercritical ammonia (NH3) solutions to dissolve, transport, and crystallize GaN. However, ammonothermal growth pressures are still relatively high (˜200 MPa), which has thus far prevented the acquisition of fundamental crystal growth knowledge needed to efficiently (i.e. through data-driven approaches) advance the field. This dissertation focused on addressing the gaps in the literature through two studies employing in situ fluid temperature analysis. The first study focused on identifying the solubility of GaN in supercritical NH3-Na solutions. The design and utilization of in situ and ex situ monitoring equipment enabled the first reports of the two-phase nature of supercritical NH3-Na solutions, and of Ga-alloying of Ni-containing autoclave components. The effects of these error sources on

  17. Instrumentation for analytical scale supercritical fluid chromatography.

    PubMed

    Berger, Terry A

    2015-11-20

    Analytical scale supercritical fluid chromatography (SFC) is largely a sub-discipline of high performance liquid chromatography (HPLC), in that most of the hardware and software can be used for either technique. The aspects that separate the 2 techniques stem from the use of carbon dioxide (CO2) as the main component of the mobile phase in SFC. The high compressibility and low viscosity of CO2 mean that pumps, and autosamplers designed for HPLC either need to be modified or an alternate means of dealing with compressibility needs to be found. The inclusion of a back pressure regulator and a high pressure flow cell for any UV-Vis detector are also necessary. Details of the various approaches, problems and solutions are described. Characteristics, such as adiabatic vs. isothermal compressibility, thermal gradients, and refractive index issues are dealt with in detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Solubility and Phase Behavior of CL20 and RDX in Supercritical Carbon Dioxide

    DTIC Science & Technology

    2004-12-01

    with Enhanced mass transfer (SAS-EMTM) are potential green processes for producing ultrafine particles . In these processes, the material to be...particulated will be dissolved (solubilized) into an environmentally benign solvent such as supercritical carbon dioxide and then condensed to ultrafine ... particles by reducing the pressure and temperature of the mixture. Theoretical and/or predictive models are required for process simulation and to

  19. Advanced Turbomachinery Components for Supercritical CO 2 Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Michael

    2016-03-31

    Six indirectly heated supercritical CO 2 (SCO 2 ) Brayton cycles with turbine inlet conditions of 1300°F and 4000 psia with varying plant capacities from 10MWe to 550MWe were analyzed. 550 MWe plant capacity directly heated SCO 2 Brayton cycles with turbine inlet conditions of 2500°F and 4000 psia were also analyzed. Turbomachinery configurations and conceptual designs for both indirectly and directly heated cycles were developed. Optimum turbomachinery and generator configurations were selected and the resulting analysis provides validation that the turbomachinery conceptual designs meet efficiency performance targets. Previously identified technology gaps were updated based on these conceptual designs. Materialmore » compatibility testing was conducted for materials typically used in turbomachinery housings, turbine disks and blades. Testing was completed for samples in unstressed and stressed conditions. All samples exposed to SCO 2 showed some oxidation, the extent of which varied considerably between the alloys tested. Examination of cross sections of the stressed samples found no evidence of cracking due to SCO 2 exposure.« less

  20. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  1. Preparation of highly pure zeaxanthin particles from sea water-cultivated microalgae using supercritical anti-solvent recrystallization.

    PubMed

    Chen, Chao-Rui; Hong, Siang-En; Wang, Yuan-Chuen; Hsu, Shih-Lan; Hsiang, Daina; Chang, Chieh-Ming J

    2012-01-01

    Xanthophylls, including zeaxanthin, are considered dietary supplements with a potentially positive impact on age-related macular degeneration. Using pilot-scale column fractionation coupled with supercritical anti-solvent (SAS) recrystallization, highly pure zeaxanthin particulates were prepared from ultrasonic extracts of the microalgae, Nannochloropsis oculata, grown in sea water. Column partition chromatography increased the concentration of zeaxanthin from 36.2 mg/g of the ultrasonic extracts to 425.6 mg/g of the collected column fractions. A response surface methodology was systematically designed for the SAS process by changing feed concentration, CO(2) flow rate and anti-solvent pressure. Zeaxanthin-rich particles with a purity of 84.2% and a recovery of 85.3% were produced using supercritical anti-solvent recrystallization from the column eluate at a feed concentration of 1.5 mg/mL, CO(2) flow rate of 48.6 g/min and pressure of 135 bar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    NASA Astrophysics Data System (ADS)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  3. Pressure Safety: Advanced Self-Study 30120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    2016-02-29

    Pressure Safety Advance Self-Study (Course 30120) consists of an introduction, five modules, and a quiz. To receive credit in UTrain for completing this course, you must score 80% or better on the 15-question quiz (check UTrain). Directions for initiating the quiz are appended to the end of this training manual. This course contains several links to LANL websites. UTrain might not support active links, so please copy links into the address line in your browser.

  4. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts.

    PubMed

    Zhang, Ruifen; Su, Dongxiao; Hou, Fangli; Liu, Lei; Huang, Fei; Dong, Lihong; Deng, Yuanyuan; Zhang, Yan; Wei, Zhencheng; Zhang, Mingwei

    2017-08-01

    To establish optimal ultra-high-pressure (UHP)-assisted extraction conditions for procyanidins from lychee pericarp, a response surface analysis method with four factors and three levels was adopted. The optimum conditions were as follows: 295 MPa pressure, 13 min pressure holding time, 16.0 mL/g liquid-to-solid ratio, and 70% ethanol concentration. Compared with conventional ethanol extraction and ultrasonic-assisted extraction methods, the yields of the total procyanidins, flavonoids, and phenolics extracted using the UHP process were significantly increased; consequently, the oxygen radical absorbance capacity and cellular antioxidant activity of UHP-assisted lychee pericarp extracts were substantially enhanced. LC-MS/MS and high-performance liquid chromatography quantification results for individual phenolic compounds revealed that the yield of procyanidin compounds, including epicatechin, procyanidin A2, and procyanidin B2, from lychee pericarp could be significantly improved by the UHP-assisted extraction process. This UHP-assisted extraction process is thus a practical method for the extraction of procyanidins from lychee pericarp.

  5. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    PubMed

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  6. Rate variations of a hetero-Diels--Alder reaction in supercritical fluid CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.L.; Glaeser, R.; Bush, D.

    1999-11-01

    The hetero-Diels-Alder reaction between anthracene and excess 4-phenyl-1,2,4-triazoline-3,5-dione has been investigated in supercritical CO{sub 2} at 40 C and pressures between 75 and 216 bar. Biomolecular reaction rate constants have been measured via fluorescence spectroscopy by following the decrease in anthracene concentration with reaction time. The reaction rate is elevated in the vicinity of the critical pressure. This difference is consistent with local composition enhancement and can be modeled with the Peng-Robinson equation of state.

  7. The Microstructural Evolution of Haynes 282 Alloy During Long-Term Exposure Tests

    NASA Astrophysics Data System (ADS)

    Fu, Rui; Zhao, Shuangqun; Wang, Yanfeng; Li, Qiang; Ma, Yunhai; Lin, Fusheng; Chi, Chengyu

    Haynes 282 alloy is a γ' precipitation strengthened nickel based superalloy designed by Haynes International Incorporation in 2005. This alloy is currently being evaluated for use as high temperature components at 700°C Advanced-Ultra Supercritical (A-USC)power plants, thus it is particularly important to have good creep property and microstructure stability.

  8. Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials.

    PubMed

    Villegas, Carolina; Torres, Alejandra; Rios, Mauricio; Rojas, Adrián; Romero, Julio; de Dicastillo, Carol López; Valenzuela, Ximena; Galotto, María José; Guarda, Abel

    2017-09-01

    Supercritical impregnation was used to incorporate a natural compound with antibacterial activity into biopolymer-based films to develop active food packaging materials. Impregnation tests were carried out under two pressure conditions (9 and 12MPa), and three depressurization rates (0.1, 1 and 10MPamin -1 ) in a high-pressure cell at a constant temperature equal to 40°C. Cinnamaldehyde (Ci), a natural compound with proven antimicrobial activity, was successfully incorporated into poly(lactic acid) films (PLA) using supercritical carbon dioxide (scCO 2 ), with impregnation yields ranging from 8 to 13% w/w. Higher pressure and slower depressurization rate seem to favor the Ci impregnation. The incorporation of Ci improved thermal, structural and mechanical properties of the PLA films. Impregnated films were more flexible, less brittle and more resistant materials than neat PLA films. The tested samples showed strong antibacterial activity against the selected microorganisms. In summary, this study provides an innovative route to the development of antibacterial biodegradable materials, which could be used in a wide range of applications of active food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2012-12-01

    Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). The models can be applied to analysis of CO2 storage only in relatively deeply-buried reservoirs where pressure exceeds CO2 critical pressure. At these supercritical reservoir conditions only one supercritical CO2-rich phase appears in aquifer due to CO2 injection. In shallow aquifers where reservoir pressure is less than the critical pressure CO2 can split in two different liquid-like and gas-like phases (e.g. Spycher et al., 2003). Thus a region of three-phase flow of water, liquid and gaseous CO2 can appear near the CO2 injection point. Today there is no widely used and generally accepted numerical model capable of the three-phase flows with two CO2-rich phases. In this work we propose a new hydrodynamic simulator MUFITS (Multiphase Filtration Transport Simulator) for multiphase compositional modeling of CO2-H2O mixture flows in porous media at conditions of interest for carbon sequestration. The simulator is effective both for supercritical flows in a wide range of pressure and temperature and for subcritical three-phase flows of water, liquid CO2 and gaseous CO2 in shallow reservoirs. The distinctive feature of the proposed code lies in the methodology for mixture properties determination. Transport equations and Darcy correlation are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The potential is determined using a three-parametric generalization of Peng-Robinson equation of state fitted to experimental data (Todheide, Takenouchi, Altunin etc.). We apply MUFITS to simple 1D and 2D test problems of CO2 injection in shallow reservoirs subjected to phase changes between

  10. Microscopic solvent structure of subcritical and supercritical methanol from ultraviolet/visible absorption and fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Sako, Takeshi; Sugeta, Tsutomu; Otake, Katsuto; Takebayashi, Yoshihiro; Kamizawa, Chiyoshi; Uesugi, Masayuki; Kato, Masahiro

    1999-09-01

    Ultraviolet/visible absorption and fluorescence spectroscopies at different temperatures and pressures were applied to investigate the microscopic solvent structures of subcritical and supercritical methanol using 4-nitroanisole, ethyl-(4-dimethylamino)benzoate, Reichardt's dye, and anthracene as the probe molecules. It was found that at temperatures higher than 150 °C the long winding chains of sequentially hydrogen-bonded methanol molecules were probably broken, but the small hydrogen-bonded aggregates possibly existed in methanol even at higher temperature. It was also found that the solvation process of the anthracene molecule in the S0-ground state obeyed the Langmuir adsorption model. However, in the case of fluorescence measurements in supercritical methanol, we detected deviations from the simple Langmuir adsorption model. These deviations were explained in terms of preferential solvation of the solvent molecules around photoexcited anthracene. Judging from the experimental results, it was concluded that the local density augmentation of the supercritical methanol around the nonpolar solute was a short-ranged effect, which did not correspond directly to the large isothermal compressibility of fluid near the critical point.

  11. Concerning the Role of Supercritical Carbon Dioxide in SN 1 Reactions.

    PubMed

    Qiao, Yun X; Theyssen, Nils; Eifert, Tobias; Liauw, Marcel A; Franciò, Giancarlo; Schenk, Karolin; Leitner, Walter; Reetz, Manfred T

    2017-03-17

    A series of S N 1-type reactions has been studied under various conditions to clarify the role of supercritical carbon dioxide (scCO 2 ) as reaction medium for this kind of transformations. The application of scCO 2 did not result in higher yields in any of the experiments in comparison to those under neat conditions or in the presence of other inert compressed gases. High-pressure UV/Vis spectroscopic measurements were carried out to quantify the degree of carbocation formation of a highly S N 1-active alkyl halide as a function of the applied solvent. No measureable concentration of carbocations could be detected in scCO 2 , just like in other low polarity solvents. Taken together, these results do not support the previously claimed activating effect via enhanced S N 1 ionization due to the quadrupolar moment of the supercritical fluid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions.

    PubMed

    Ajiboye, Adejumoke Lara; Trivedi, Vivek; Mitchell, John C

    2017-08-21

    Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO 2 ). The efficiency of the scCO 2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6-10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1-16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h.

  13. Investigation of some effects of humidity on aerodynamic characteristics on a 10-percent-thick NASA supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1976-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel to determine the effects of wind-tunnel humidity on the aerodynamic characteristics of a 10-percent-thick NASA supercritical airfoil. Effects of dewpoint variation from 267 K (20 F) to 294 K (70 F) were investigated. The tunnel stagnation temperature was 322 K (120 F) and the stagnation pressure was 0.1013 MN/09 m (1 atm).

  14. Simultaneous determination of four alkaloids in Lindera aggregata by ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Han, Zheng; Zheng, Yunliang; Chen, Na; Luan, Lianjun; Zhou, Changxin; Gan, Lishe; Wu, Yongjiang

    2008-11-28

    A new separation and quantification method using liquid chromatography under ultra-high-pressure in combination with tandem mass spectrometry (MS/MS) was developed for simultaneous determination of four alkaloids in Lindera aggregata. The analysis was performed on an Acquity UPLC BEH C(18) column (50mmx2.1mm, 1.7microm particle size; Waters, Milford, MA, USA) utilizing a gradient elution profile and a mobile phase consisting of (A) water containing 10mM ammonium acetate adjusted to pH 3 with acetic acid and (B) acetonitrile. An electrospray ionization (ESI)-tandem interface in the positive mode was employed prior to mass spectrometric detection. The calibration curve was linear over the range of 17.1-856ng for boldine, 42.4-2652ng for norboldine, 6.1-304ng for reticuline and 0.5-50ng for linderegatine, respectively. The average recoveries ranged from 99.2 to 101.4% with RSDs< or =2.7%. Then, four L. aggregata samples from different batches were analyzed using the established method. The results indicated that ultra-high-pressure liquid chromatography-tandem mass spectrometry provided improved chromatographic parameters resulting in significantly increased sample throughput including lower solvent consumption and lower limits of quantitation (LOQs) for most of target analytes compared to previous method employing conventional high-performance liquid chromatography (HPLC) separation. So, the established method was validated, sensitive and reliable for the determination of four alkaloids in L. aggregata.

  15. Parameters optimization of supercritical fluid-CO2 extracts of frankincense using response surface methodology and its pharmacodynamics effects.

    PubMed

    Zhou, Jing; Ma, Xing-miao; Qiu, Bi-Han; Chen, Jun-xia; Bian, Lin; Pan, Lin-mei

    2013-01-01

    The volatile oil parts of frankincense (Boswellia carterii Birdw.) were extracted with supercritical carbon dioxide under constant pressure (15, 20, or 25 MPa) and fixed temperature (40, 50, or 60°C), given time (60, 90, or 120 min) aiming at the acquisition of enriched fractions containing octyl acetate, compounds of pharmaceutical interest. A mathematical model was created by Box-Behnken design, a popular template for response surface methodology, for the extraction process. The response value was characterized by synthetical score, which comprised yields accounting for 20% and content of octyl acetate for 80%. The content of octyl acetate was determined by GC. The supercritical fluid extraction showed higher selectivity than conventional steam distillation. Supercritical fluid-CO(2) for extracting frankincense under optimum condition was of great validity, which was also successfully verified by the pharmacological experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Supercritical hydrogen-free and catalyst-free hydrogenation: Possibilities of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubin, S.P.

    1995-12-01

    In this work, the authors generalize the results of preliminary investigations of a catalyst-free hydrogenation process, which roughly revealed the applicability limits of the method and its potentialities. Experiments were carried out in standard autoclaves of various volume and also in glass ampules placed into an autoclave, which contained the same solvent as the contents of the ampule. The transition into the supercritical state was accomplished by increasing the reactor temperature and, hence, the internal pressure.

  17. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroyuki R.; Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of themore » disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.« less

  18. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    PubMed Central

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  19. β-Sitosterol: supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds.

    PubMed

    Sajfrtová, Marie; Licková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdenek

    2010-04-22

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15-60 MPa and temperatures of 40-80 degrees C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 degrees C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 degrees C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  20. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent.

    PubMed

    Macías-Sánchez, Maria Dolores; Mantell Serrano, Casimiro; Rodríguez Rodríguez, Miguel; Martínez de la Ossa, Enrique; Lubián, Luís M; Montero, Olimpio

    2008-05-01

    The extraction of carotenoids and chlorophylls using carbon dioxide modified with ethanol as a cosolvent is an alternative to solvent extraction because it provides a high-speed extraction process. In the study described here, carotenoid and chlorophyll extraction with supercritical CO(2 )+ ethanol was explored using freeze-dried powders of three microalgae (Nannochloropsis gaditana, Synechococcus sp. and Dunaliella salina) as the raw materials. The operation conditions were as follows: pressures of 200, 300, 400 and 500 bar, temperatures of 40, 50 and 60 degrees C. Analysis of the extracts was performed by measuring the absorbance and by using empirical correlations. The results demonstrate that it is necessary to work at a temperature of 50-60 degrees C and a pressure range of 300-500 bar, depending on the type of microalgae, in order to obtain the highest yield of pigments. The best carotenoid/chlorophyll ratios were obtained by using supercritical fluid extraction + cosolvent instead of using conventional extraction. The higher selectivity of the former process should facilitate the separation and purification of the two extracted pigments.

  1. Solubility of α-Tocopheryl Succinate in Supercritical Carbon Dioxide Using Offline HPLC-MS/MS Analysis

    PubMed Central

    Hybertson, Brooks M.

    2010-01-01

    The solubility of the vitamin E-related compound α-tocopheryl succinate in supercritical carbon dioxide was measured at pressures ranging from (15.0 to 30.0) MPa and temperatures of (40 and 50) °C using a simple microsampling type apparatus with a 100.5 μL sample loop to remove aliquots and collect them in ethanol for off line analysis. α-Tocopheryl succinate concentrations in the collected samples were measured using HPLC-MS/MS analysis. The solubility of α-tocopheryl succinate in supercritical carbon dioxide ranged from mole fractions of 0.28 × 10−5 at 15.0 MPa and 50 °C to 2.56 × 10−5 at 30.0 MPa and 50 °C. PMID:20953319

  2. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  3. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances

    PubMed Central

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  4. Paprika (Capsicum annuum) oleoresin extraction with supercritical carbon dioxide.

    PubMed

    Jarén-Galán, M; Nienaber, U; Schwartz, S J

    1999-09-01

    Paprika oleoresin was fractionated by extraction with supercritical carbon dioxide (SCF-CO(2)). Higher extraction volumes, increasing extraction pressures, and similarly, the use of cosolvents such as 1% ethanol or acetone resulted in higher pigment yields. Within the 2000-7000 psi range, total oleoresin yield always approached 100%. Pigments isolated at lower pressures consisted almost exclusively of beta-carotene, while pigments obtained at higher pressures contained a greater proportion of red carotenoids (capsorubin, capsanthin, zeaxanthin, beta-cryptoxanthin) and small amounts of beta-carotene. The varying solubility of oil and pigments in SCF-CO(2) was optimized to obtain enriched and concentrated oleoresins through a two-stage extraction at 2000 and 6000 psi. This technique removes the paprika oil and beta-carotene during the first extraction step, allowing for second-stage oleoresin extracts with a high pigment concentration (200% relative to the reference) and a red:yellow pigment ratio of 1.8 (as compared to 1.3 in the reference).

  5. Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Webb, Lannie D.; Mccain, William E.; Rose, Lucinda A.

    1988-01-01

    Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing.

  6. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis,more » and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.« less

  7. Ultra-wide-field imaging in diabetic retinopathy; an overview.

    PubMed

    Ghasemi Falavarjani, Khalil; Wang, Kang; Khadamy, Joobin; Sadda, Srinivas R

    2016-06-01

    To present an overview on ultra-wide-field imaging in diabetic retinopathy. A comprehensive search of the pubmed database was performed using the search terms of "ultra-wide-field imaging", "ultra-wide-field fluorescein angiography" and "diabetic retinopathy". The relevant original articles were reviewed. New advances in ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. A consistent finding amongst these articles was that ultra-wide-field imaging improved detection of peripheral lesion. There was discordance among the studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema. Visualization of the peripheral retina using ultra-wide-field imaging improves diagnosis and classification of diabetic retinopathy. Additional studies are needed to better define the association of peripheral diabetic lesions with diabetic macular edema.

  8. Numerical simulation of abutment pressure redistribution during face advance

    NASA Astrophysics Data System (ADS)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  9. Supercritical water oxidation of products of human metabolism

    NASA Technical Reports Server (NTRS)

    Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON

    1986-01-01

    Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.

  10. Ultra-High Pressure Driver and Nozzle Survivability in the RDHWT/MARIAH II Hypersonic Wind Tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantino, M.; Brown, G.; Raman, K.

    2000-06-02

    An ultra-high pressure device provides a high enthalpy (> 2500 kJ/kg), low entropy (< 5 kJ/kg-K) air source for the RDHWT/MARIAH II Program Medium Scale Hypersonic Wind Tunnel. The design uses stagnation conditions of 2300 MPa (330,000 Psi) and 750 K (900 F) in a radial configuration of intensifiers around an axial manifold to deliver pure air at 100 kg/s mass flow rates for run times suitable for aerodynamic, combustion, and test and evaluation applications. Helium injection upstream of the nozzle throat reduces the throat wall recovery temperature to about 1200 K and reduces the oxygen concentration at the nozzlemore » wall.« less

  11. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  12. Production of oridonin-rich extracts from Rabdosia rubescens using hyphenated ultrasound-assisted supercritical carbon dioxide extraction.

    PubMed

    Yang, Yu-Chiao; Lin, Pei-Hui; Wei, Ming-Chi

    2017-08-01

    Among active components in Rabdosia rubescens, oridonin has been considered a key component and the most valuable compound because it has a wide range of activities beneficial to human health. To produce a high-quality oridonin extract, an alternative hyphenated procedure involving an ultrasound-assisted and supercritical carbon dioxide (HSC-CO 2 ) extraction method to extract oridonin from R. rubescens was developed in this study. Fictitious solubilities of oridonin in supercritical CO 2 (SC-CO 2 ) with ultrasound assistance were measured by using the dynamic method at temperatures ranging from 305.15 K to 342.15 K over a pressure range of 11.5 to 33.5 MPa. Fictitious solubilities of oridonin at different temperatures and pressures were over the range of 2.13 × 10 -6 to 10.09 × 10 -6 (mole fraction) and correlated well with the density-based models, including the Bartle model, the Chrastil model, the Kumar and Johnston model and the Mendez-Santiago and Teja model, with overall average absolute relative deviations (AARDs) of 6.29%, 4.39%, 3.12% and 5.07%, respectively. Oridonin exhibits retrograde solubility behaviour in the supercritical state. Fictitious solubility data were further determined and obtained a good fit with four semi-empirical models. Simultaneously, the values of the total heat of solution, vaporisation and solvation of oridonin were estimated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Development of an advanced rocket propellant handler's suit.

    PubMed

    Doerr, D F

    2001-01-01

    advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit. c 2001. Elsevier Science Ltd. All rights reserved.

  14. Development of an advanced rocket propellant handler's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    2001-01-01

    advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit. c 2001. Elsevier Science Ltd. All rights reserved.

  15. Development of an advanced rocket propellant handler's suit

    NASA Astrophysics Data System (ADS)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or ˜1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comprobable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in

  16. An experimental study of a supercritical trailing-edge flow

    NASA Technical Reports Server (NTRS)

    Brown, J. L.; Viswanath, P. R.

    1984-01-01

    An experimental study has been conducted of a transonic, turbulent, high-Reynolds-number blunt trailing-edge flow. The model shape and the surface pressure distribution are characteristics of a modern supercritical airfoil under shock-free conditions. Reynolds number and pressure gradient scaling of the boundary layer are relevant to airfoil applications. The data set is exceptionally accurate and consistent, with the momentum balance accounting for the flux of momentum to within 1 percent, except in the immediate vicinity of the blunt trailing edge. The experimental flow exhibits strong viscous-inviscid interaction and higher-order boundary-layer effects including strong adverse streamwise pressure gradient, significant normal pressure gradients associated with surface and streamline curvature, and significant wake curvature. Navier-Stokes calculations with a two-equation K-epsilon turbulence model predict the correct pressure distribution which demonstrates the utility of these engineering tools. The experiment approaches separation at the strailing edge. However, in comparison to the experiment, the calculations predict too high skin friction and insufficient displacement thickness growth. An analysis of the turbulent and mean flow fields reveals the turbulence model defects are likely in modeling the dissipation source and sink terms, and in the eddy viscosity relation.

  17. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    PubMed

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  18. Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1972-01-01

    Wind tunnel tests have been conducted on a research airplane model with an NASA supercritical wing to define the general character of the flow over the wing and to aid in structural design of the full scale airplane. Pressure measurements were made at Mach numbers from 0.25 to 1.30 for sideslip angles from -2.50 deg to 2.50 deg over a moderate range of angles of attack and dynamic pressures. Except for representative figures, the results are presented in tabular form without detailed analysis.

  19. Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried; Meyer, Romain

    2017-04-01

    The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical

  20. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  1. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  2. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Astrophysics Data System (ADS)

    Marsik, S. J.; Morea, S. F.

    1985-03-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  3. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  4. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2010-01-01

    A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.

  5. Enantioseparation of napropamide by supercritical fluid chromatography: Effects of the chromatographic conditions and separation mechanism.

    PubMed

    Zhao, Lu; Xie, Jingqian; Guo, Fangjie; Liu, Kai

    2018-05-01

    Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO 2 . In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide-type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back-pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO 2 with 20% 2-propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2-propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back-pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns. © 2018 Wiley Periodicals, Inc.

  6. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  7. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.

  8. Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements

    NASA Astrophysics Data System (ADS)

    Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.

    2010-09-01

    The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.

  9. Test Cases for a Rectangular Supercritical Wing Undergoing Pitching Oscillations

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.

    2000-01-01

    Steady and unsteady measured pressures for a Rectangular Supercritical Wing (RSW) undergoing pitching oscillations have been presented. From the several hundred compiled data points, 27 static and 36 pitching oscillation cases have been proposed for computational Test Cases to illustrate the trends with Mach number, reduced frequency, and angle of attack. The wing was designed to be a simple configuration for Computational Fluid Dynamics (CFD) comparisons. The wing had an unswept rectangular planform plus a tip of revolution, a panel aspect ratio of 2.0, a twelve per cent thick supercritical airfoil section, and no twist. The model was tested over a wide range of Mach numbers, from 0.27 to 0.90, corresponding to low subsonic flows up to strong transonic flows. The higher Mach numbers are well beyond the design Mach number such as might be required for flutter verification beyond cruise conditions. The pitching oscillations covered a broad range of reduced frequencies. Some early calculations for this wing are given for lifting pressure as calculated from a linear lifting surface program and from a transonic small perturbation program. The unsteady results were given primarily for a mild transonic condition at M = 0.70. For these cases the agreement with the data was only fair, possibly resulting from the omission of viscous effects. Supercritical airfoil sections are known to be sensitive to viscous effects (for example, one case cited). Calculations using a higher level code with the full potential equations have been presented for one of the same cases, and with the Euler equations. The agreement around the leading edge was improved, but overall the agreement was not completely satisfactory. Typically for low-aspect-ratio rectangular wings, transonic shock waves on the wing tend to sweep forward from root to tip such that there are strong three-dimensional effects. It might also be noted that for most of the test, the model was tested with free transition, but a

  10. Silica hydride intermediate for octadecylsilica and phenyl bonded phase preparation via heterogeneous hydrosilation in supercritical carbon dioxide.

    PubMed

    Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D

    2011-04-15

    Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    PubMed

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  12. Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2.

    PubMed

    Hu, Lizhi; Llibin, Sun; Li, Jun; Qi, Liangjun; Zhang, Xu; Yu, Dianyu; Walid, Elfalleh; Jiang, Lianzhou

    2015-12-01

    The transesterification of phytosterol and soybean oil was performed using Novozym 435 in supercritical carbon dioxide (SC-CO2). The transesterification reaction was conducted in soybean oil containing 5-25% phytosterol at 55-95 °C and free-water solvent. The effects of temperature, reaction time, phytosterol concentration, lipase dosage and reaction pressure on the conversion rate of transesterification were investigated. The optimal reaction conditions were the reaction temperature (85 °C), reaction time (1 h), phytosterol concentration (5%), reaction pressure (8 Mpa) and lipase dosage (1%). The highest conversion rate of 92% could be achieved under the optimum conditions. Compared with the method of lipase-catalyzed transesterification of phytosterol and soybean oil at normal pressure, the transesterification in SC-CO2 reduced significantly the reaction temperature and reaction time.

  13. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the

  14. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The use of ultra-high pressure liquid chromatography with tandem mass spectrometric detection of analysis of agrochemical residues and mycotoxines in food - challenges and applications

    USDA-ARS?s Scientific Manuscript database

    In the field of food contaminant analysis, the most significant development of recent years has been the integration of ultra-high pressure liquid chromatography (UHPLC), coupled to tandem quadrupole mass spectrometry (MS/MS), into analytical applications. In this review, we describe the emergence o...

  16. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  17. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li

    2012-08-01

    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  19. Blended polymer materials extractable with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cai, Mei

    Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical

  20. The computational modeling of supercritical carbon dioxide flow in solid wood material

    NASA Astrophysics Data System (ADS)

    Gething, Brad Allen

    The use of supercritical carbon dioxide (SC CO2) as a solvent to deliver chemicals to porous media has shown promise in various industries. Recently, efforts by the wood treating industry have been made to use SC CO 2 as a replacement to more traditional methods of chemical preservative delivery. Previous studies have shown that the SC CO2 pressure treatment process is capable of impregnating solid wood materials with chemical preservatives, but concentration gradients of preservative often develop during treatment. Widespread application of the treatment process is unlikely unless the treatment inconsistencies can be improved for greater overall treating homogeneity. The development of a computational flow model to accurately predict the internal pressure of CO2 during treatment is integral to a more consistent treatment process. While similar models that attempt to describe the flow process have been proposed by Ward (1989) and Sahle-Demessie (1994), neither have been evaluated for accuracy. The present study was an evaluation of those models. More specifically, the present study evaluated the performance of a computational flow model, which was based on the viscous flow of compressible CO2 as a single phase through a porous medium at the macroscopic scale. Flow model performance was evaluated through comparisons between predicted pressures that corresponded to internal pressure development measured with inserted sensor probes during treatment of specimens. Pressure measurements were applied through a technique developed by Schneider (2000), which utilizes epoxy-sealed stainless steel tubes that are inserted into the wood as pressure probes. Two different wood species were investigated as treating specimens, Douglas-fir and shortleaf pine. Evaluations of the computational flow model revealed that it is sensitive to input parameters that relate to both processing conditions and material properties, particularly treating temperature and wood permeability