Science.gov

Sample records for advanced ultrasonic techniques

  1. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  2. A comparison of conventional and advanced ultrasonic inspection techniques in the characterization of TMC materials

    NASA Astrophysics Data System (ADS)

    Holland, Mark R.; Handley, Scott M.; Miller, James G.; Reighard, Mark K.

    Results obtained with a conventional ultrasonic inspection technique as well as those obtained with more advanced ultrasonic NDE methods in the characterization of an 8-ply quasi-isotropic titanium matrix composite (TMC) specimen are presented. Images obtained from a conventional ultrasonic inspection of TMC material are compared with those obtained using more sophisticated ultrasonic inspection methods. It is suggested that the latter techniques are able to provide quantitative images of TMC material. They are able to reveal the same potential defect indications while simultaneously providing more quantitative information concerning the material's inherent properties. Band-limited signal loss and slope-of-attenuation images provide quantitative data on the inherent material characteristics and defects in TMC.

  3. A comparison of conventional and advanced ultrasonic inspection techniques in the characterization of TMC materials

    NASA Technical Reports Server (NTRS)

    Holland, Mark R.; Handley, Scott M.; Miller, James G.; Reighard, Mark K.

    1992-01-01

    Results obtained with a conventional ultrasonic inspection technique as well as those obtained with more advanced ultrasonic NDE methods in the characterization of an 8-ply quasi-isotropic titanium matrix composite (TMC) specimen are presented. Images obtained from a conventional ultrasonic inspection of TMC material are compared with those obtained using more sophisticated ultrasonic inspection methods. It is suggested that the latter techniques are able to provide quantitative images of TMC material. They are able to reveal the same potential defect indications while simultaneously providing more quantitative information concerning the material's inherent properties. Band-limited signal loss and slope-of-attenuation images provide quantitative data on the inherent material characteristics and defects in TMC.

  4. Non-contact ultrasonic technique for rapid and advanced analysis of fibrous materials

    NASA Astrophysics Data System (ADS)

    Periyaswamy, T.; Lerch, T. P.; Balasubramanian, K.

    2012-05-01

    Fibrous ensembles are, typically, multi-scale flexible assemblies with unique physical and rheological properties, unlike continuum materials. Macroscopic behaviors of these materials are greatly the result of non-linear interactions at the micro levels. These micro-scale interactions can be assessed by capturing the material behavior under low mechanical stress conditions. While ultrasonic based non-destructive testing was suitably implemented for continuum materials, their application to fibrous structures was limited primarily due to the inherent structural arrangements of these unique assemblies. Discontinuities, non-uniform orientations and multi-phase components make these ensembles difficult to study using the existing scan-based methods. This work presents a novel rapid and advanced analysis tool for complex fibrous systems using a noncontact air-coupled ultrasonic system. Five characteristic features of ultrasound signals transmitted through fibrous structures were studied, i.e., dampness in signal flight, signal velocity, power spectral density, signal power and rate of amplitude attenuation. Analysis of these features under two different acoustic frequencies, 500 kHz and 1 MHz, allowed us to study the componentized behavior of these materials for three of the key mechanical properties including bending rigidity, shear rigidity and low stress tensile stress. A material response index (MRI) was also derived using the signal features.

  5. Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds

    SciTech Connect

    Moyer, M.W.

    2001-01-11

    A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

  6. Ultrasonic techniques for process monitoring and control.

    SciTech Connect

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  7. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  8. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  9. Ultrasonic thermometry using pulse techniques.

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Carnevale, E. H.

    1972-01-01

    Ultrasonic pulse techniques have been developed which, when applied to inert gases, provide temperature measurements up to 8000 K. The response time can be less than 1 msec. This is a significant feature in studying shock-heated or combusting gases. Using a momentary contact coupling technique, temperature has been measured inside steel from 300 to 1500 K. Thin-wire sensors have been used above 2000 K in nuclear and industrial applications where conditions preclude the use of thermocouples, resistance devices, or optical pyrometers. At 2500 K, temperature sensitivity of 0.1% is obtained in Re wire sensors 5 cm long by timing five round trips with an electronic instrument that resolves the time interval between selected echoes to 0.1 microsec. Sensors have been operated at rotational speeds over 2000 rpm and in noisy environments. Temperature profiling of up to ten regions using only a single guided path or beam has also been accomplished.

  10. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  11. Ultrasonic non invasive techniques for microbiological instrumentation

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.

    2010-01-01

    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  12. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1990-01-01

    Results of tests to measure ice growth in natural (flight) and artificial (icing wind tunnel) icing conditions are presented. Ice thickness is measured using an ultrasonic pulse-echo technique. Two icing regimes, wet and dry ice growth, are identified and the unique ultrasonic signal characteristics associated with these different types of ice growth are described. Ultrasonic measurements of ice growth on cylinders and airfoils exposed to artificial and natural icing conditions are presented. An accuracy of plus or minus 0.5 mm is achieved for ice thickness measurement using the pulse-echo technique. The performance of two-probe type ice detectors is compared to the surface mounted ultrasonic system. The ultrasonically measured ice accretion rates and ice surface condition (wet or dry) are used to compare the heat transfer characteristics for flight and icing wind tunnel environments. In general the heat transfer coefficient is inferred to be higher in the wind tunnel environment, not likely due to higher freestream turbulence levels. Finally, preliminary results of tests to measure ice growth on airfoil using an array of ultrasonic transducers are described. Ice profiles obtained during flight in natural icing conditions are shown and compared with mechanical and stereo image measurements.

  13. Recent modelling advances for ultrasonic TOFD inspections

    SciTech Connect

    Darmon, Michel; Ferrand, Adrien; Dorval, Vincent; Chatillon, Sylvain; Lonné, Sébastien

    2015-03-31

    The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws can also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.

  14. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  15. Plane wave facing technique for ultrasonic elastography

    NASA Astrophysics Data System (ADS)

    Lee, Mingu; Shim, Hwan; Cheon, Byeong Geun; Jung, Yunsub

    2014-03-01

    A shear wave generation technique which exploits multiple plane waves facing with each other toward their center line is introduced. On this line, ultrasonic waves interfere constructively resulting two planar shear waves that propagate to the opposite directions parallel to the transducer instead of oblique wave from multiple point focused pushes due to the temporal inconsistency of the pushes. One advantage of the plane wave facing technique over an unfocused push beam is that it generates much larger shear waves because it actively takes advantage of constructive interference between waves and, moreover, a larger number of elements can be used without diffusing the beam pattern. Field II simulated intensity maps of the push beams using the proposed method are presented with those of multiple point focusing and unfocusing techniques for comparison. In the simulation, two plane waves are considered for the simplicity, and the number of elements, apodization, and steering angles for facing are varied as parameters. Also, elasticity images of CIRS 049A phantom are presented using the proposed technique with comb-shaped push beams, i.e. multiple push beams are used simultaneously at different locations. L7-4 transducer is used for the simulation and elasticity imaging.

  16. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  17. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    SciTech Connect

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  18. Advanced Ultrasonic Measurement Methodology for Non-Invasive Interrogation and Identification of Fluids in Sealed Containers

    SciTech Connect

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-16

    The Hazardous Materials Response Unit (HMRU) and the Counterterrorism and Forensic Science Research Unit (CTFSRU), Laboratory Division, Federal Bureau of Investigation (FBI) have been mandated to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a portable, hand-held, hazardous materials acoustic inspection device (HAZAID) that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The HAZAID prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the HAZAID prototype. High bandwidth ultrasonic transducers combined with the advanced pulse compression technique allowed researchers to 1) impart large amounts of energy, 2) obtain high signal-to-noise ratios, and 3) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of this feasibility study demonstrated that the HAZAID experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  19. Techniques for enhancing laser ultrasonic nondestructive evaluation

    SciTech Connect

    Candy, J; Chinn, D; Huber, R; Spicer, J; Thomas, G

    1999-02-16

    Ultrasonic nondestructive evaluation is an extremely powerful tool for characterizing materials and detecting defects. A majority of the ultrasonic nondestructive evaluation is performed with piezoelectric transducers that generate and detect high frequency acoustic energy. The liquid needed to couple the high frequency acoustic energy from the piezoelectric transducers restricts the applicability of ultrasonics. For example, traditional ultrasonics cannot evaluate parts at elevated temperatures or components that would be damaged by contact with a fluid. They are developing a technology that remotely generates and detects the ultrasonic pulses with lasers and consequently there is no requirement for liquids. Thus the research in laser-based ultrasound allows them to solve inspection problems with ultrasonics that could not be done before. This technology has wide application in many Lawrence Livermore National Laboratory programs, especially when remote and/or non-contact sensing is necessary.

  20. Automatic railway wheelset inspection system by using ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Wang, Li; Wang, Zeyong; Zhao, Quanke; Zhang, Yu; Peng, Jianping; Yang, Kai

    2011-12-01

    As one of the most important transportation, the safety of railway is paid much attention to. The quality of wheel should be checked periodically, especially in high-speed application. Normally, Non Destructive Testing (NDT), such as ultrasonic inspection method, is applied on wheels to find the defect. A stationary automatic railway wheelset inspection system by using ultrasonic technique is described in this paper. The phased array ultrasonic technique and wheel defect inspection method is described in detail. Specially designed line is installed for wheelset transportation. Wheelset lifting and rotating device is used for wheelset loading, unloading and rotating. A steel frame with complicated mechanical structure and ultrasonic devices are designed for wheelset defect detecting. System ultrasonic performance, system working flow, system control networking, data processing and results displaying are also described in the paper. Now, the system is installed in Chinese EMU maintenance center for disassembled wheelset inspection and the safety of wheels is well protected.

  1. Research on the application of laser ultrasonic technique in weaponry

    NASA Astrophysics Data System (ADS)

    Kong, Lingjian; Xu, Jun; Yan, Yisheng; Gu, Xiaofei; Zhu, Guifang

    2005-12-01

    Laser Ultrasonics is a new branch in Ultrasonics, which is based on the generation of ultrasonic by a laser and the detection of stress wave with laser interferometer, and is an ideal combination of laser and ultrasonic for non-destructive testing. It is a noncontact, remote and precise technique for nondestructive testing of materials and products. Firstly, this paper introduces the principles of laser ultrasonic generation, and the ablation excitation theory. And then optical detection method of laser-induced ultrasonic with the confocal Fabry-Perot interferometer is introduced. Based on the principles of laser-induced ultrasonic generation and detection, the integrated structure of the laser ultrasonic induced by laser line source and detected by a confocal Fabry-Perot interferometer is presented to detect multilayer structure such as solid propellant rocket motor structures in weaponry. Considering how laser ultrasonics would be used in the field and some mostly effects to the results. The laser system, accepting its present limitations, was optimized and developed for the inspection of the multilayer structure of solid propellant rocket motor as the experimental program progressed.

  2. Advanced ultrasonic testing of complex shaped composite structures

    NASA Astrophysics Data System (ADS)

    Dolmatov, D.; Zhvyrblya, V.; Filippov, G.; Salchak, Y.; Sedanova, E.

    2016-06-01

    Due to the wide application of composite materials it is necessary to develop unconventional quality control techniques. One of the methods that can be used for this purpose is ultrasonic tomography. In this article an application of a robotic ultrasonic system is considered. Precise positioning of the robotic scanner and path generating are defined as ones of the most important aspects. This study proposes a non-contact calibration method of a robotic ultrasonic system. Path of the scanner requires a 3D model of controlled objects which are created in accordance with the proposed algorithm. The suggested techniques are based on implementation of structured light method.

  3. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  4. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The ultrasonic nondestructive evaluation techniques discussed in the present paper indicate potentials for material characterization and property prediction. Stress wave interaction and material transfer function concepts are examined as a basis for explaining correlations between material mechanical behavior and ultrasonically measured quantities. It is observed that the effect and criticality of any discrete flaw, such as crack, inclusion, or any other stress raiser, is definable only in terms of its material microstructural environment. This underscores the importance of ultrasonic techniques capable of characterizing the stress wave energy transfer properties of a material.

  5. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  6. Measuring elastic constants using non-contact ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Perry, R.; Cleanthous, D.; Backhouse, D. J.; Moore, I. J.; Clough, A. R.; Stone, D. I.

    2012-05-01

    The use of ultrasound for measuring elastic constants and phase transitions is well established. Standard measurements use piezoelectric transducers requiring couplant and contact with the sample. Recently, non-destructive testing (NDT) has seen an increase in the use of non-contact ultrasonic techniques, for example electromagnetic acoustic transducers (EMATs) and laser ultrasound, due to their many benefits. For measurements of single crystals over a range of temperatures non-contact techniques could also bring many benefits. These techniques do not require couplant, and hence do not suffer from breaking of the bond between transducer and sample during thermal cycling, and will potentially lead to a simpler and more adaptable measurement system with lower risk of sample damage. We present recent work adapting EMAT advances from NDT to measurements of single crystals at cryogenic temperatures and illustrate this with measurements of magnetic phase transitions in Gd64Sc36 using both contact and non-contact transducers. We discuss the measurement techniques implemented to overcome noise problems, and a digital pulse-echo-overlap technique, using data analysis in the frequency domain to measure the velocity.

  7. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  8. Ultrasonic technique for characterizing skin burns

    DOEpatents

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  9. Helium-flow measurement using ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Sondericker, J. H.

    1983-08-01

    The ideal cryogenic instrumentation for the colliding beam accelerator helium distribution system does not add pressure drop to the system, functions over the entire temperature range, has high resolution, and delivers accurate mass flow measurement data. The design and testing of an ultrasonic flowmeter which measures helium flow under different temperatures are described.

  10. Ultrasonic techniques for imaging and measurements in molten aluminum.

    PubMed

    Ono, Yuu; Moisan, Jean-François; Jen, Cheng-Kuei

    2003-12-01

    In order to achieve net shape forming, processing of aluminum (Al) in the molten state is often necessary. However, few sensors and techniques have been reported in the literature due to difficulties associated with molten Al, such as high temperature, corrosiveness, and opaqueness. In this paper, development of ultrasonic techniques for imaging and measurements in molten Al using buffer rods operated at 10 MHz is presented. The probing end of the buffer rod, having a flat surface or an ultrasonic lens, was immersed into molten Al while the other end with an ultrasonic transducer was air-cooled to room temperature. An ultrasonic image of a character "N", engraved on a stainless steel plate immersed in molten Al, and its corrosion have been observed at 780 degrees C using the focused probe in ultrasonic pulse-echo mode. Because cleanliness of molten Al is crucial for part manufacturing and recycling in Al processing, inclusion detection experiments also were carried out using the nonfocused probe in pitch-catch and pulse-echo modes. Backscattered ultrasonic signals from manually added silicon carbide particles, with an average diameter of 50 microm, in molten Al have been successfully observed at 780 degrees C. For optimal image quality, the spatial resolution of the focused probe was crucial, and the high signal-to-noise ratio of the nonfocused probe was the prime factor responsible for the inclusion detection sensitivity using backscattered ultrasonic signals. In addition, it was found that ultrasound could provide an alternative method for evaluating the degree of wetting between a solid material and a molten metal. Our experimental results showed that there was no ultrasonic coupling at the interface between an alumina rod and molten Al up to 1000 degrees C; therefore, no wetting existed at this interface. Also because ultrasonic velocity in alumina is temperature dependent, this rod proved to be able to be used as an in-line temperature monitoring sensor under

  11. Introduction of measurement techniques in ultrasonic electronics: Basic principles and recent trends

    NASA Astrophysics Data System (ADS)

    Mizutani, Koichi; Wakatsuki, Naoto; Ebihara, Tadashi

    2016-07-01

    Measurement — the act of measuring physical properties that we perform — has the potential to contribute to the successful advancement of sciences and society. To open doors in physics and other sciences, various measurement methods and related applications have been developed, and ultrasound has remained a useful probe, power source, and interesting measurement object for the past two centuries. In this paper, we first summarize the basic principles of ultrasound from the viewpoint of measurement techniques for readers who just have started studying or are interested in the field of ultrasonic electronics. Moreover, we also introduce recent studies — ultrasonic properties of materials, measurement techniques, piezoelectric devices, nonlinear acoustics, biomedical ultrasound, and ocean acoustics — and their trends related to measurement techniques in ultrasonic electronics to provide some ideas for related applications.

  12. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    SciTech Connect

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  13. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  14. Image measurement technique on vibration amplitude of ultrasonic horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-bin; Wu, Zhi-qun; Zhu, Jian-ping; He, Jian-guo; Liu, Guang-min

    2013-10-01

    The paper proposes a method to measure vibration amplitude of ultrasonic horn which is a very important component in the spindle for micro-electrical-chemical discharging machining. The method of image measuring amplitude on high frequency vibration is introduced. Non-contact measurement system based on vision technology is constructed. High precision location algorithm on image centroid, quadratic location algorithm, is presented to find the center of little light spot. Measurement experiments have been done to show the effect of image measurement technique on vibration amplitude of ultrasonic horn. In the experiments, precise calibration of the vision system is implemented using a normal graticule to obtain the scale factor between image pixel and real distance. The vibration amplitude of ultrasonic horn is changed by modifying the voltage amplitude of pulse power supply. The image of feature on ultrasonic horn is captured and image processing is carried out. The vibration amplitudes are got at different voltages.

  15. Residual stress measurement and analysis using ultrasonic techniques.

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.; Chapman, J. R.; Wert, J. J.

    1973-01-01

    A technique which utilizes ultrasonic radiation has been developed to measure residual stresses in metals. This technique makes it possible to detect and measure the magnitude of the principle stresses and also to obtain their direction. The velocities of ultrasonic waves in materials are measured as the time to travel a fixed path length, and the change in transit time is related to the applied stress. The linear relationship obtained allows a procedure based on this principle to be used for the measurement of residual stress using surface waves and shear waves. A method for plotting stress profiles through a material using surface waves uses varying frequencies for the ultrasonic wave. A limitation of the shear wave method is considered. The system used for this technique is called the Modified Time of Flight System.

  16. Advanced Ultrasonic Tomograph of Children's Bones

    NASA Astrophysics Data System (ADS)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  17. Ultrasonic technique for inspection of GPHS capsule girth weld integrity

    SciTech Connect

    Placr, Arnost

    1993-05-01

    An innovative nondestructive examination (NDE) technique for the inspection of integrity of General Purpose Heat Source (GPHS) capsule girth welds (Figure 1) was developed employing a Lamb (plate) wave as the mode of the sound propagation. Reliability of the Lamb wave technique was tested on GPHS capsules using plutonium pallet simulators. All ten capsules, which were previously rejected, passed ultrasonic (UT) inspection using the Lamb wave technique.

  18. A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.

    ERIC Educational Resources Information Center

    Yunus, W. Mahmood Mat; Ahmad, Maulana

    1996-01-01

    Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)

  19. Experimental techniques in ultrasonics for NDE and material characterization

    NASA Astrophysics Data System (ADS)

    Tittmann, B. R.

    A development status evaluation is presented for ultrasonics NDE characterization of aerospace alloys and composites in such application as the Space Shuttle, Space Station Freedom, and hypersonic aircraft. The use of such NDE techniques extends to composite-cure monitoring, postmanufacturing quality assurance, and in-space service inspection of such materials as graphite/epoxy, Ti alloys, and Al honeycomb. Attention is here given to the spectroscopy of elastically scattered wave pulses from flaws, the acoustical imaging of flaws in honeycomb structures, and laser-based ultrasonics for the noncontact inspection of composite structures.

  20. A novel ultrasonic micro-dissection technique for biomedicine.

    PubMed

    Sun, Lining; Wang, Huixiang; Chen, Liguo; Liu, Yaxin

    2006-12-22

    Molecular techniques are transforming our understanding of cellular function and disease. However, accurate molecular analysis methods will be limited if the input DNA, RNA, or protein is not derived from pure population of cells or is contaminated by the wrong cells. A novel Ultrasonic Vibration Micro-dissection (UVM) method was proposed to procure pure population of targeted cells from tissue sections for subsequent analysis. The principle of the ultrasonic vibration cutting is analyzed, and a novel micro-tool is designed. A multilayer piezoelectric actuator is used to actuate a sharp needle vibrating with high frequency and low amplitude (approx. 16-50 kHz, and 0-3 microm) to cut the tissue. Contrast experiment was done to test the feasibility of UVM method. Experimental results show that the embedded tissue can be quickly and precisely cut with the ultrasonic vibration micro-dissection method. PMID:16844160

  1. Double threshold ultrasonic distance measurement technique and its application

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Chen, Qiang; Wu, Jiangtao

    2014-04-01

    The double threshold method realized by hardware circuits and high performance timing chip TDC-GP21 was successfully adapted to solve the key problem of ultrasonic distance measurement, the accurate time-of-flight (TOF) measurement of ultrasonic wave. Compared with other techniques of TOF measurement, the double threshold method presented in this work can suppress noise in the received signal, and achieve a time resolution of around 22 ps and real-time. This method is easy to realize and pertains the advantage of low cost. To compensate temperature and pressure deviations, a temperature measurement module of 10 mK in precision as well as a pressure measurement module of 0.01% in accuracy was developed. The system designed in this work can be exactly used as a two paths ultrasonic gas flowmeter without any adjustment of the hardware circuit. The double threshold method was further corroborated using experiment results of both the ultrasonic distance measurement and ultrasonic gas flow measurement. In distance measurement, the maximum absolute deviation and the maximum relative error are 0.69 mm and 0.28%, respectively, for a target distance range of 100-600 mm. In flow measurement, the maximum absolute deviation and the worst repeatability are 1.16% and 0.65% for a flow in the range of 50-700 m3/h.

  2. Double threshold ultrasonic distance measurement technique and its application.

    PubMed

    Li, Weihua; Chen, Qiang; Wu, Jiangtao

    2014-04-01

    The double threshold method realized by hardware circuits and high performance timing chip TDC-GP21 was successfully adapted to solve the key problem of ultrasonic distance measurement, the accurate time-of-flight (TOF) measurement of ultrasonic wave. Compared with other techniques of TOF measurement, the double threshold method presented in this work can suppress noise in the received signal, and achieve a time resolution of around 22 ps and real-time. This method is easy to realize and pertains the advantage of low cost. To compensate temperature and pressure deviations, a temperature measurement module of 10 mK in precision as well as a pressure measurement module of 0.01% in accuracy was developed. The system designed in this work can be exactly used as a two paths ultrasonic gas flowmeter without any adjustment of the hardware circuit. The double threshold method was further corroborated using experiment results of both the ultrasonic distance measurement and ultrasonic gas flow measurement. In distance measurement, the maximum absolute deviation and the maximum relative error are 0.69 mm and 0.28%, respectively, for a target distance range of 100-600 mm. In flow measurement, the maximum absolute deviation and the worst repeatability are 1.16% and 0.65% for a flow in the range of 50-700 m(3)/h. PMID:24784646

  3. Remote measurement of corrosion using ultrasonic techniques

    SciTech Connect

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy`s treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation.

  4. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented. PMID:11800125

  5. New Techniques: Muon Glaciology and Ultrasonic Logging

    NASA Astrophysics Data System (ADS)

    Chirkin, D.; Allen, J.; Bay, R. C.; Bramall, N.; Price, P. B.

    2003-12-01

    The strain rate of cold glacial ice depends mainly on the stress tensor, temperature, grain size, and crystal habit. Lab measurements cannot be made at both the low stresses and low temperatures relevant to flow of cold glacial ice. Field studies with inclinometers measure only the horizontal components of flow. We have developed a new method for measuring the 3D strain-rate field at -40o to -15oC, using the AMANDA neutrino-detecting array frozen into deep ice at South Pole. Each strain detector consists of a photomultiplier tube (PMT) in its pressure vessel. AMANDA has ˜600 PMTs at depths 1500 to 2300 m in a ˜0.02 km3 volume. The coordinates of each PMT relative to a coordinate system moving down slope at 9 m yr-1 can be measured with s.d. <1 m in 1 day by mapping trajectories of down-going cosmic-ray muons that pass through the array. The PMTs record the arrival times of the Cherenkov light emitted along the muon trajectory. Use of maximum likelihood for 105 muon tracks allows PMT positions to be determined; their positions are then updated at six-month intervals. We will report results of strain-rate measurements in three dimensions, made in 2000, 2001, and 2002 at T ≈ -30oC. Applying the same technique to the future 1 km3 IceCube array, by averaging over subsets of the 5000 detectors, values of the strain-rate tensor as small as 3x 10-5 yr-1 can be measured as a function of temperature and lateral position. The vertical strain rate due to snow accumulation, estimated to be ˜ 3x 10-5 yr-1, can be measured and will serve as a check on the method. The second new method is designed to measure mean grain size in the ice surrounding a borehole. We will adapt an all-digital logging tool originally developed by Advanced Logic Technology (Luxembourg) for geophysics prospecting in rock boreholes. A 1.3 MHz transducer emits acoustic pulses horizontally into the ice in increments of 5o in azimuth and records the wave train back-scattered from grain boundaries. For

  6. Ultrasonic techniques for the evaluation of ceramic joints

    SciTech Connect

    Simpson, W.A. Jr.; McClung, R.W.

    1987-04-01

    The increasing use of structural ceramics in high-temperature applications has led to the need for nondestructive evaluation techniques to ensure the integrity of the ceramic materials and the quality of joints consisting of ceramics bonded to ceramics or to metals. We describe the development of ultrasonic techniques for the characterization of ceramic materials and for the detection of flaws in these materials and at ceramic joints. This work has led to the ability to determine which face of a 60-..mu..m-thick layer of braze filler material is unbonded, thus providing information about the integrity of the ceramic-filler metal bond. We also describe the development of a rapid technique using Lamb waves to probe the bond between alumina coupons in flexure-strength specimens, whose geometry makes conventional ultrasonic evaluation of the bond difficult.

  7. Time-of-flight measurement techniques for airborne ultrasonic ranging.

    PubMed

    Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon

    2013-02-01

    Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908

  8. Advanced defect detection algorithm using clustering in ultrasonic NDE

    NASA Astrophysics Data System (ADS)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  9. Ultrasonic examination techniques for multicouple thermoelectric subcomponents and assemblies: Status report

    SciTech Connect

    Cook, K.V.; McClung, R.W.; Simpson, W.A. Jr.; Cunningham, R.A. Jr.

    1986-09-01

    Since the early 1960s, the United States has been using radioisotope thermoelectric generators (RTGs), developed by the US Department of Energy and its predecessors, for a variety of environments including space. A recent concept in building RTGs uses modular components to allow for an advanced, lighter space mission generator that provides scaled power level outputs. The scalability feature of the modular isotopic thermoelectric generator (MITG) represents a major advance over earlier RTG designs. However, special problems are encountered in applying nondestructive testing methods because of the miniature size of parts that require inspection. This report describes the status of ultrasonic inspection methods being developed to examine the subcomponents and assemblies of the; MITG. The principal emphasis has been to evaluate various bonds between subcomponents using ultrasonic techniques that employ focused search units and a pulse-echo method.

  10. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  11. Non-destructive evaluation of anchorage zones by ultrasonics techniques.

    PubMed

    Kharrat, M; Gaillet, L

    2015-08-01

    This work aims to evaluate the efficiency and reliability of two Non-Destructive Testing (NDT) methods for damage assessment in bridges' anchorages. The Acousto-Ultrasonic (AU) technique is compared to classical Ultrasonic Testing (UT) in terms of defect detection and structural health classification. The AU technique is firstly used on single seven-wire strands damaged by artificial defects. The effect of growing defects on the waves traveling through the strands is evaluated. Thereafter, three specimens of anchorages with unknown defects are inspected by the AU and UT techniques. Damage assessment results from both techniques are then compared. The structural health conditions of the specimens can be then classified by a damage severity criterion. Finally, a damaged anchorage socket with mastered defects is controlled by the same techniques. The UT allows the detection and localization of damaged wires. The AU technique is used to bring out the effect of defects on acoustic features by comparing a healthy and damaged anchorage sockets. It is concluded that the UT method is suitable for local and crack-like defects, whereas the AU technique enables the assessment of the global structural health of the anchorage zones. PMID:25824342

  12. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    PubMed

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%). PMID:26262619

  13. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    PubMed Central

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  14. Analysis of ultrasonic techniques for monitoring milk coagulation during cheesemaking

    NASA Astrophysics Data System (ADS)

    Budelli, E.; Pérez, N.; Lema, P.; Negreira, C.

    2012-12-01

    Experimental determination of time of flight and attenuation has been proposed in the literature as alternatives to monitoring the evolution of milk coagulation during cheese manufacturing. However, only laboratory scale procedures have been described. In this work, the use of ultrasonic time of flight and attenuation to determine cutting time and its feasibility to be applied at industrial scale were analyzed. Limitations to implement these techniques at industrial scale are shown experimentally. The main limitation of the use of time of flight is its strong dependence with temperature. Attenuation monitoring is affected by a thin layer of milk skin covering the transducer, which modifies the signal in a non-repetitive way. The results of this work can be used to develop alternative ultrasonic systems suitable for application in the dairy industry.

  15. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  16. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  17. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  18. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  19. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M. )

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co[sup 60] gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  20. Advanced qualification techniques

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Shaneyfelt, M. R.; Meisenheimer, T. L.; Fleetwood, D. M.

    1994-06-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML 'builds in' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish 'process capability' is illustrated and a comparison of 10-keV x-ray and Co-60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  1. Ultrasonic inspection technique for composite doubler/aluminum skin bond integrity for aircraft

    NASA Astrophysics Data System (ADS)

    Gieske, John H.; Roach, Dennis P.; Walkington, Phillip D.

    1998-03-01

    As part of the FAA's National Aging Aircraft Research Program to foster new technologies for civil aircraft maintenance and repair, use of bonded composite doublers on metal aircraft structures has been advanced. Research and validation of such doubler applications on U.S. certified commercial aircraft has begun. A specific composite application to assess the capabilities of composite doublers was chosen on a L-1011 aircraft for reinforcement of the corner of a cargo door frame where a boron-epoxy repair patch of up to 72 plies was installed. A primary inspection requirement for these doublers is the identification of disbonds between the composite laminate and the aluminum parent material. This paper describes the development of an ultrasonic pulse-echo technique using a modified immersion focus transducer where a robust signal amplitude signature of the composite/aluminum interface is obtained to characterize the condition of the bond. Example waveforms and C-scan images are shown to illustrate the ultrasonic response for various transducer configurations using a boron-epoxy/aluminum skin calibration test sample where disbonds and delaminations were built-in. The modified focus transducer is compatible with portable ultrasonic scanning systems that utilize the weeper or dripless bubbler technologies when an ultrasonic inspection of the boron-epoxy composite doublers installed on aircraft is implemented.

  2. Ultrasonic inspection technique for composite doubler/aluminum skin bond integrity for aircraft

    SciTech Connect

    Gieske, J.H.; Roach, D.P.; Walkington, P.D.

    1998-02-01

    As part of the FAA`s National Aging Aircraft Research Program to foster new technologies for civil aircraft maintenance and repair, use of bonded composite doublers on metal aircraft structures has been advanced. Research and validation of such doubler applications on US certified commercial aircraft has begun. A specific composite application to assess the capabilities of composite doublers was chosen on a L-1011 aircraft for reinforcement of the comer of a cargo door frame where a boron-epoxy repair patch of up to 72 plies was installed. A primary inspection requirement for these doublers is the identification of disbonds between the composite laminate and the aluminum parent material. This paper describes the development of an ultrasonic pulse echo technique using a modified immersion focus transducer where a robust signal amplitude signature of the composite aluminum interface is obtained to characterize the condition of the bond. Example waveforms and C-scan images are shown to illustrate the ultrasonic response for various transducer configurations using a boron-epoxy aluminum skin calibration test sample where disbonds and delaminations were built-in. The modified focus transducer is compatible with portable ultrasonic scanning systems that utilize the weeper or dripless bubbler technologies when an ultrasonic inspection of the boron-epoxy composite doublers installed on aircraft is implemented.

  3. Measurement of ice accretion using ultrasonic pulse echo techniques

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.

    1987-01-01

    Many figures are given to illustrate the measurement of ice deposition using ultrasonic pulse echo techniques. The basic concept is to measure the thickness of the ice by relating the pulse echo time to the speed of sound. The measurements are made in an icing research tunnel (IRT), where echo patterns are videotaped during icing exposures under a variety of conditions. Typical echo patterns for different types of ice are illustrated. A table summarizing the icing rates measured in the IRT, along with the presence or absence of surface water is also given.

  4. Ultrasonic technique for extracting nanofibers from nature materials

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Ping; Feng, Xi-Qiao; Gao, Huajian

    2007-02-01

    This letter reports a simple and versatile approach for extracting bionanofibers from natural materials using the ultrasonic technique. Bionanofibers have been fabricated from various materials, e.g., spider and silkworm silks, chitin fibers, collagen, cotton, bamboo, and ramee and hemp fibers. The obtained nanofibers have uniform diameters in the range of 25-120nm and possess the optimized hierarchical structures and superior properties of natural materials which have formed after the evolution of many millions of years. This methodology might be valuable to provide a convenient, versatile, and environmentally benign fabrication method for producing bionanofibers at an industrial scale.

  5. A backscatter difference technique for ultrasonic bone assessment

    PubMed Central

    Hoffmeister, Brent K.; Wilson, Anne R.; Gilbert, Matthew J.; Sellers, Mark E.

    2012-01-01

    Ultrasonic backscatter techniques may offer a useful approach for detecting changes in cancellous bone caused by osteoporosis and other diseases. The goal of this study was to investigate the utility of a backscatter difference technique for ultrasonic bone assessment. Measurements were performed on 22 cube-shaped specimens of human cancellous bone using four broadband transducers with center frequencies 2.25, 5, 7.5, and 10 MHz. The backscatter difference spectrum D(f) was obtained by subtracting power spectra (in dB) from two different portions of the same backscatter signal. D(f) was found to be a monotonically increasing, quasi-linear function of frequency when averaged over multiple measurement sites on multiple specimens. The frequency slope of D(f) demonstrated weak to moderate correlations with specimen density (R = 0.21–0.80). The frequency averaged mean of D(f) demonstrated moderate to good correlations with density (R = 0.70–0.95). These results suggest that parameters based on the frequency averaged mean of the backscatter difference spectrum may be useful for bone assessment purposes. PMID:23231136

  6. Ultrasonic technique for monitoring of liquid density variations.

    PubMed

    Kazys, R; Rekuviene, R; Sliteris, R; Mazeika, L; Zukauskas, E

    2015-01-01

    A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process. PMID:25638115

  7. Ultrasonic technique for monitoring of liquid density variations

    NASA Astrophysics Data System (ADS)

    Kazys, R.; Rekuviene, R.; Sliteris, R.; Mazeika, L.; Zukauskas, E.

    2015-01-01

    A novel ultrasonic measurement technique for density measurements of different liquids in extreme conditions has been developed. The proposed density measurement method is based on transformation of the acoustic impedance of the measured liquid. The higher accuracy of measurements is achieved by means of the λ/4 acoustic matching layer between the load and the ultrasonic waveguide transducer. Introduction of the matching layer enhances sensitivity of the measurement system. Sometimes, the density measurements must be performed in very complex conditions: high temperature (up to 200 °C), pressure (up to 10 MPa), and high chemical activity of the medium under measurement. In this case, the special geometry metal waveguides are proposed to use in order to protect the piezoelectric transducer surface from influence of a high temperature. The experimental set-up of technique was calibrated using the reference liquids with different densities: ethyl ether, ethyl alcohol, distilled water, and different concentration (20%, 40%, and 60%) sugar-water solutions. The uncertainty of measurements is less than 1%. The proposed measurement method was verified in real conditions by monitoring the density of a melted polypropylene during manufacturing process.

  8. Ultrasonic Techniques for Baseline-Free Damage Detection in Structures

    NASA Astrophysics Data System (ADS)

    Dutta, Debaditya

    This research presents ultrasonic techniques for baseline-free damage detection in structures in the context of structural health monitoring (SHM). Conventional SHM methods compare signals obtained from the pristine condition of a structure (baseline signals) with those from the current state, and relate certain changes in the signal characteristics to damage. While this approach has been successful in the laboratory, there are certain drawbacks of depending on baseline signals in real field applications. Data from the pristine condition are not available for most existing structures. Even if they are available, operational and environmental variations tend to mask the effect of damage on the signal characteristics. Most important, baseline measurements may become meaningless while assessing the condition of a structure after an extreme event such as an earthquake or a hurricane. Such events may destroy the sensors themselves and require installation of new sensors at different locations on the structure. Baseline-free structural damage detection can broaden the scope of SHM in the scenarios described above. A detailed discussion on the philosophy of baseline-free damage detection is provided in Chapter 1. Following this discussion, the research questions are formulated. The organization of this document and the major contributions of this research are also listed in this chapter. Chapter 2 describes a fully automated baseline-free technique for notch and crack detection in plates using a collocated pair of piezoelectric wafer transducers for measuring ultrasonic signals. Signal component corresponding to the damage induced mode-converted Lamb waves is extracted by processing the originally measured ultrasonic signals. The damage index is computed as a function of this mode-converted Lamb wave signal component. An over-determined system of Lamb wave measurements is used to find a least-square estimate of the measurement errors. This error estimate serves as the

  9. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  10. Solids concentration measurements in molten wax by an ultrasonic technique

    SciTech Connect

    Soong, Y.; Gamwo, I.K.; Blackwell, A.G.; Schehl, R.R.; Zarochak, M.F.

    1994-12-31

    The application of the three-phase slurry reactor system to coal liquefaction processing and chemical industries has recently received considerable attention. To design and efficiently operate a three-phase slurry reactor, the degree of dispersion of the solid (catalyst) in the reactor should be understood. The solids distribution within the reactor greatly affects its performance. An ultrasonic technique is under development for measuring solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 189 C. The data show that the velocity and attenuation of the sound are well-defined functions of the solid and gas concentrations in the molten wax.

  11. Capabilities of Ultrasonic Techniques for the Far-Side Examination of Austenitic Stainless Steel Piping Welds.

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-02-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, four circumferential welds in 610mm diameter, 36mm thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and with low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  12. Ultrasonic velocity technique for monitoring property changes in fiber-reinforced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Bhatt, Ramakrishna T.

    1991-01-01

    A technique for measuring ultrasonic velocity was used to monitor changes that occur during processing and heat treatment of a SiC/RBSM composite. Results indicated that correlations exist between the ultrasonic velocity data and elastic modulus and interfacial shear strength data determined from mechanical tests. The ultrasonic velocity data can differentiate strength. The advantages and potential of this nondestructive evaluation method for fiber reinforced ceramic matrix composite applications are discussed.

  13. Solid concentration measurements in a three-phase slurry reactor by an ultrasonic technique

    SciTech Connect

    Soong, Y.; Blackwell, A.G.; Schehl, R.R.; Zarochak, M.F.

    1993-12-31

    This paper reports on the status of the development of an ultrasonic technique to measure the solid concentrations in a three-phase slurry reactor. Preliminary ultrasonic measurements have been made on slurries consisting of water, glass beads, and air bubbles. The data show that both the sound speed and attenuation are well-defined functions of the solid concentration in the slurries. A correlation exists between the solid concentration and the changing of the ultrasonic signal.

  14. Advances in the development of ultrasonic search units for coarse-grained structures

    SciTech Connect

    Mohr, F.; Bernus, L.V.; Schmid, R.; Malmer, C.

    1994-12-31

    Increasingly stringent inspection requirements at home and abroad are being matched by further advances in the existing range of examination systems and equipment. These requirements are the driving force behind the expansion of inspection programs for austenitic materials. A general description on inspection methods for austenitic steel which would be suitable for inclusion in the pertinent codes and standards has yet to be elaborated. The results of measurements obtained using electromagnetic ultrasonic transducers show considerable promise. With horizontally polarized transverse waves it is possible to detect longitudinal discontinuities through the weld metal, even if the inspection is performed from one side only. Examination for transverse discontinuities is more difficult. For such applications it is necessary to use inspection techniques which have been specially optimized to the particular application. Cast austenitic steel is the most difficult material to examine. The following measures can improve its examinability: (1) selection of lower frequencies to prevent scattering of the ultrasonic beam; (2) use of focusing techniques, e.g. synthetic aperture techniques to improve the signal-to-noise; (3) exact matching of search units to the geometry of the item to be examined. The problems encountered in connection with search units and inspection methods are discussed in the following on the basis of actual practical examples.

  15. System and technique for ultrasonic determination of degree of cooking

    DOEpatents

    Bond, Leonard J.; Diaz, Aaron A.; Judd, Kayte M.; Pappas, Richard A.; Cliff, William C.; Pfund, David M.; Morgen, Gerald P.

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  16. Capabilities of Ultrasonic Techniques for Far-Side Examinations of Austenitic Stainless Steel Piping Welds.

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-01-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately length-size flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, austenitic stainless steel specimens with flaws located on the far-side of full penetration structural welds were used. The welds were fabricated with varied welding parameters to simulate as-built conditions in the components, and were examined with phased array technology at 2.0 MHz, and low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to reliably detect and length-size, but not depth size, notches and implanted fatigue cracks through the welds.

  17. Ultrasonic Testing, Aviation Quality Control (Advanced): 9227.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction covers the theory of ultrasonic sound, methods of applying soundwaves to test specimens and interpreting results, calibrating the ultrasonic equipment, and the use of standards. Study periods, group discussions, and extensive use of textbooks and training manuals are to be used. These are listed along with references and…

  18. Inspection of composite materials with an advanced ultrasonic flaw detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, W.

    The structures and shapes of the composite material products are described. Methods of ultrasonic wave detection are described. New damage detection equipment for laminate and honeycomb structures is addressed.

  19. Assessment of Crack Detection in Cast Austenitic Piping Components Using Advanced Ultrasonic Methods.

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2007-01-01

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the utility, effec¬tiveness and limitations of ultrasonic testing (UT) inspection techniques as related to the in-service inspec¬tion of primary system piping components in pressurized water reactors (PWRs). Cast stainless steel pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The low-frequency ultrasonic method employed a zone-focused, multi-incident angle inspection protocol (operating at 250-450 kHz) coupled with a synthetic aperture focusing technique (SAFT) for improved signal-to-noise and advanced imaging capabilities. The phased array approach was implemented with a modified instrument operating at 500 kHz and composite volumetric images of the specimens were generated. Re¬sults from laboratory studies for assessing detection, localization and sizing effectiveness are discussed in this paper.

  20. The application research of laser ultrasonic technique used in testing compound material

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Kong, Lingjian; Gu, Xiaofei; Luo, Jijun; Hou, Xun

    2005-01-01

    The principles of laser ultrasonic generation and measurements with pulsed laser are presented. There are two kinds of means to actuate ultrasonic pulse: elasticity actuating and ablation actuating. The progress in laser ultrasonic about laser ultrasound generation, detection, propagation and its applications is introduced briefly. Applications in the field of Non-Destructive Testing (NDT) are reviewed. In the field of Non-Destructive Testing, according to the principle, the laser ultrasonic testing system consists of laser system, laser interferometer, photoelectric detector and receiving system with signal amplifier. Thus, long-range and non-contact on-line detection of ultrasonic testing system was realized. In view of some of the problems, the developing trends of such techniques are analyzed.

  1. Ultrasonic Technologies for Advanced Process Monitoring, Measurement, and Control

    SciTech Connect

    Bond, Leonard J. ); Morra, Marino ); Greenwood, Margaret S. ); Bamberger, Judith A. ); Pappas, Richard A. )

    2003-06-02

    Ultrasonic signals are well suited to the characterization of liquids, slurries and multi-phase flows. Ultrasound sensor systems provide real-time, in-situ measurements or visualizations and the sensing systems are compact, rugged and relatively inexpensive. The objective is to develop ultrasonic sensors that (1) can be attached permanently to a pipeline wall, possibly as a spool piece inserted into the line and (2) can clamp onto an existing pipeline wall and be movable to another location. Two examples of systems based on pulse-echo and transmission signal analysis are used to illustrate some of the capabilities of ultrasonic on-line measurements with technologies that have use in the nuclear, petro-chemical, and food process industries.

  2. Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers.

    PubMed

    Gómez Álvarez-Arenas, Tomás E; Camacho, Jorge; Fritsch, Carlos

    2016-04-01

    This paper proposes a novel passive focusing system for Air-Coupled Ultrasonic (ACU) piezoelectric transducers which is inspired by the Newtonian-Cassegrain (NC) telescope concept. It consist of a primary spherical mirror with an output hole and a flat secondary mirror, normal to the propagation axis, that is the transducer surface itself. The device is modeled and acoustic field is calculated showing a collimated beam with a symmetrical focus. A prototype according to this design is built and tested with an ACU piezoelectric transducer with center frequency at 400 kHz, high-sensitivity, wideband and 25 mm diameter flat aperture. The acoustic field is measured and compared with calculations. The presented prototype exhibit a 1.5 mm focus width and a collimated beam up to 15 mm off the output hole. In addition, the performance of this novel design is compared, both theoretically and experimentally, with two techniques used before for electrostatic transducers: the Fresnel Zone Plate - FZP and the off-axis parabolic or spherical mirror. The proposed NC arrangement has a coaxial design, which eases the transducers positioning and use in many applications, and is less bulky than off-axis mirrors. Unlike in off-axis mirrors, it is now possible to use a spherical primary mirror with minimum aberrations. FZP provides a more compact solution and is easy to build, but presents some background noise due to interference of waves diffracted at out of focus regions. By contrast, off-axis parabolic mirrors provide a well defined focus and are free from background noise, although they are bulky and more difficult to build. Spherical mirrors are more easily built, but this yields a non symmetric beam and a poorly defined focus. PMID:26799129

  3. Ultrasonics

    NASA Technical Reports Server (NTRS)

    Leonard, B. E.; Gardner, C. G.

    1973-01-01

    Ultrasonic testing is discussed as a primary means of nondestructive evaluation of subsurface flaws. The advantages and disadvantages are listed. The elementary principles, basic components of test units, scan modes, resonance testing, detection of fatigue cracks, monitoring fatigue crack growth, and determination of residual stress are discussed.

  4. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  5. Bruce Thompson: Adventures and advances in ultrasonic backscatter

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.

    2012-05-01

    Over the course of his professional career Dr. R. Bruce Thompson published several hundred articles on non-destructive evaluation, the majority dealing with topics in ultrasonics. One longtime research interest of Dr. Thompson, with applications both to microstructure characterization and defect detection, was backscattered grain noise in metals. Over a 20 year period he led a revolving team of staff members and graduate students investigating various aspects of ultrasonic backscatter. As a member of that team I had the privilege of working along side Dr. Thompson for many years, serving as a sort of Dr. Watson to Bruce's Sherlock Holmes. This article discusses Dr. Thompson's general approaches to modeling backscatter, the research topics he chose to explore to systematically elucidate a better understanding of the phenomena, and the many contributions to the field achieved under his leadership. The backscatter work began in earnest around 1990, motivated by a need to improve inspections of aircraft engine components. At that time Dr. Thompson launched two research efforts. The first led to the heuristic Independent Scatterer Model which could be used to estimate the average grain noise level that would be seen in any given ultrasonic inspection. There the contribution from the microstructure was contained in a measureable parameter known as the Figure-of-Merit or FOM. The second research effort, spearheaded by Dr. Jim Rose, led to a formal relationship between FOM and details of the metal microstructure. The combination of the Independent Scattering Model and Rose's formalism provided a powerful tool for investigating backscatter in metals. In this article model developments are briefly reviewed and several illustrative applications are discussed. These include: the determination of grain size and shape from ultrasonic backscatter; grain noise variability in engine-titanium billets and forgings; and the design of ultrasonic inspection systems to improve defect

  6. Applications of the Ultrasonic Serial Number Restoration Technique to Guns and Typical Stolen Articles

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1976-01-01

    An ultrasonic cavitation method for restoring obliterated serial numbers has been further explored by application to articles involved in police cases. The method was applied successfully to gun parts. In one case portions of numbers were restored after prior failure by other laboratories using chemical etching techniques. The ultrasonic method was not successful on a heavily obliterated and restamped automobile engine block, but it was partially successful on a motorcycle gear-case housing. Additional studies were made on the effect of a larger diameter ultrasonic probe, and on the method's ability to restore numbers obliterated by peening.

  7. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  8. Nondestructive evaluation of notched cracks in mortars by nonlinear ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ren, Jun; Yin, Tingyuan

    2016-04-01

    In this paper, a nonlinear ultrasonic technique is used to nondestructively characterise concentrated defects in cement-based materials. Cracks are artificially notched in mortar samples and five different crack widths are used to simulate increased damage of samples. The relative ratio of second harmonic amplitude to the square of fundamental ultrasonic signal amplitude is defined as the damage indicator of the nonlinear ultrasonic technique, which is measured for mortar samples in conjunction with a typical linear nondestructive evaluation parameter - ultrasonic pulse velocity. It is found that both linear and nonlinear damage parameters have a good correlation with the change of crack width, while the nonlinearity parameter shows a better sensitivity to the width increase. In addition, the nonlinearity parameter presents an exponential increase with the crack growth, indicating an accelerating nonlinear ultrasonic response of materials to increased internal damage in the late phase. The results demonstrate that the nonlinear ultrasonic technique based on the second harmonic principle keeps the high sensitivity to the isolated cracks in cement-based materials, similarly to the case of distributed cracks in previous studies. The developed technique could thus be a useful experimental tool for the assessment of concentrated damage of concrete structures.

  9. Application of Ultrasonic Techniques for Brain Injury Diagnosis

    SciTech Connect

    Kasili, P.M.; Mobley, J.; Norton, S.J.; Vo-Dinh, T.

    1999-09-19

    In this work, we evaluate methods for detecting brain injury using ultrasound. We have used simulations of ultrasonic fields in the head to model the phase distortion of the skull. In addition we present experimental data from the crania of large animals. The experimental data help us understand and evaluate the performance of different transducers in acquiring the backscatter data from the brain through the skull. Both the simulations and acquired data illustrate the superiority of lower-frequency (<= 1 MHz) ultrasonic fields for transcranial acquisition of signals from inside the brain. Additionally, the experimental work shows that the higher-frequency (5 MHz) ultrasound can also be useful in acquiring clean nearfield data to help detect the position of the inner boundary of the skull.

  10. Torsional ultrasonic technique for reactor vessel liquid level measurement

    NASA Astrophysics Data System (ADS)

    Dress, W. B.

    A detailed study of an ultrasonic waveguide employed as a level, density, and temperature sensor was undertaken. The purpose was to show how such a device might be used in the nuclear power industry to provide reliable level information with a multifunction sensor, thus overcoming several of the errors that led to the accident at Three Mile Island. Some additional work is needed to answer the question raised by the current study, most noticably the damping effects of flowing water.

  11. Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Nigel J.; Eddies, Rod; Dods, Sam

    2011-08-01

    Ground-penetrating radar (GPR) and ultrasonic 'pulse echo' techniques are well-established methods for the imaging, investigation and analysis of steel reinforced concrete structures and are important civil engineering survey tools. GPR is, arguably, the more widely-used technique as it is suitable for a greater range of problem scenarios (i.e., from rebar mapping to moisture content determination). Ultrasonic techniques are traditionally associated with the engineering-based, non-destructive testing of concrete structures and their integrity analyses (e.g., flaw detection, shear/longitudinal velocity determination, etc). However, when used in an appropriate manner, both techniques can be considered complementary and provide a unique way of imaging the sub-surface that is suited to a range of geotechnical problems. In this paper, we present a comparative study between mid-to-high frequency GPR (450 MHz and 900 MHz) and array-based, shear wave, pulse-echo ultrasonic surveys using proprietary instruments and conventional GPR data processing and visualisation techniques. Our focus is the practical detection of sub-metre scale voids located under steel reinforced concrete sections in realistic survey conditions (e.g., a capped, relict mine shaft or vent). Representative two-dimensional (2D) sections are presented for both methods illustrating the similarities/differences in signal response and the temporal-spatial target resolutions achieved with each technique. The use of three-dimensional data volumes and time slices (or 'C-scans') for advanced interpretation is also demonstrated, which although common in GPR applications is under-utilised as a technique in general ultrasonic surveys. The results show that ultrasonic methods can perform as well as GPR for this specific investigation scenario and that they have the potential of overcoming some of the inherent limitations of GPR investigations (i.e., the need for careful antenna frequency selection and survey design in

  12. Application of Wavelet Packet Entropy Flow Manifold Learning in Bearing Factory Inspection Using the Ultrasonic Technique

    PubMed Central

    Chen, Xiaoguang; Liu, Dan; Xu, Guanghua; Jiang, Kuosheng; Liang, Lin

    2015-01-01

    For decades, bearing factory quality evaluation has been a key problem and the methods used are always static tests. This paper investigates the use of piezoelectric ultrasonic transducers (PUT) as dynamic diagnostic tools and a relevant signal classification technique, wavelet packet entropy (WPEntropy) flow manifold learning, for the evaluation of bearing factory quality. The data were analyzed using wavelet packet entropy (WPEntropy) flow manifold learning. The results showed that the ultrasonic technique with WPEntropy flow manifold learning was able to detect different types of defects on the bearing components. The test method and the proposed technique are described and the different signals are analyzed and discussed. PMID:25549173

  13. Surface displacement measured by beam distortion detection technique: Application to picosecond ultrasonics

    SciTech Connect

    Chigarev, N.; Rossignol, C.; Audoin, B.

    2006-11-15

    A sensitive technique of surface displacement measurement without interferometry is proposed for the goals of picosecond ultrasonics. Simple description of detection mechanism is provided on the basis of paraxial approximation of light diffraction. Test experiments with gold and tungsten layers have been performed and analyzed. The efficiency of the technique is compared with interferometry and reflectometry methods.

  14. In-line mixing states monitoring of suspensions using ultrasonic reflection technique.

    PubMed

    Zhan, Xiaobin; Yang, Yili; Liang, Jian; Zou, Dajun; Zhang, Jiaqi; Feng, Luyi; Shi, Tielin; Li, Xiwen

    2016-02-01

    Based on the measurement of echo signal changes caused by different concentration distributions in the mixing process, a simple ultrasonic reflection technique is proposed for in-line monitoring of the mixing states of suspensions in an agitated tank in this study. The relation between the echo signals and the concentration of suspensions is studied, and the mixing process of suspensions is tracked by in-line measurement of ultrasonic echo signals using two ultrasonic sensors. Through the analysis of echo signals over time, the mixing states of suspensions are obtained, and the homogeneity of suspensions is quantified. With the proposed technique, the effects of impeller diameter and agitation speed on the mixing process are studied, and the optimal agitation speed and the minimum mixing time to achieve the maximum homogeneity are acquired under different operating conditions and design parameters. The proposed technique is stable and feasible and shows great potential for in-line monitoring of mixing states of suspensions. PMID:26548526

  15. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    SciTech Connect

    Park, Junpil Lim, Juyoung; Cho, Younho; Krishnaswamy, Sridhar

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  16. Some Recent Advances of Ultrasonic Diagnostic Methods Applied to Materials and Structures (Including Biological Ones)

    NASA Astrophysics Data System (ADS)

    Nobile, Lucio; Nobile, Stefano

    This paper gives an overview of some recent advances of ultrasonic methods applied to materials and structures (including biological ones), exploring typical applications of these emerging inspection technologies to civil engineering and medicine. In confirmation of this trend, some results of an experimental research carried out involving both destructive and non-destructive testing methods for the evaluation of structural performance of existing reinforced concrete (RC) structures are discussed in terms of reliability. As a result, Ultrasonic testing can usefully supplement coring thus permitting less expensive and more representative evaluation of the concrete strength throughout the whole structure under examination.

  17. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  18. Torsional ultrasonic technique for reactor vessel liquid level measurement

    SciTech Connect

    Dress, W.B.

    1983-01-01

    We have undertaken a detailed study of an ultrasonic waveguide employed as a level, density, and temperature sensor. The purpose of this study was to show how such a device might be used in the nuclear power industry to provide reliable level information with a multifunction sensor, thus overcomming several of the errors that led to the accident at Three Mile Island. Some additional work is needed to answer the questions raised by the current study, most noticably the damping effects of flowing water.

  19. Elaboration of some signal processing algorithms in ultrasonic techniques: application to materials NDT

    PubMed

    Drai; Sellidj; Khelil; Benchaala

    2000-03-01

    In ultrasonic techniques, information on defect characterization possibilities has required more evolved technique development than classical methods. To obtain a high probability of defect detection, these methods use signal-processing algorithms in order to enhance the signal-to-noise ratio. These methods are also used to discriminate between planar and volumetric defects. In this paper, some signal-processing algorithms are developed and implemented on a computer to allow their utilization in real-time processing of ultrasonics NDT results. PMID:10829714

  20. Nonintrusive ultrasonic flow measurement techniques and their applications to BTU metering

    NASA Astrophysics Data System (ADS)

    Sheen, S. H.; Karvelas, D. E.; Raptis, A. C.

    1987-04-01

    The paper reviews the state-of-the-art ultrasonic flow measurement techniques and assesses their potential application to BTU metering for District Heating and Cooling (DHC). The assessed techniques include Doppler, transit-time, and cross-correlation ultrasonic flowmeters which are currently available on the market. A novel modification of the flow instruments to include temperature measurement is also discussed. The modified flowmeter provides a direct measurement of heat content in hot water flow, thus, it allows one to meter the BTU consumption of a DHC system.

  1. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  2. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  3. Soil remediation by an advanced oxidative method assisted with ultrasonic energy.

    PubMed

    Flores, Roberto; Blass, Georgina; Domínguez, Vanessa

    2007-02-01

    A new process for the remediation of soil contaminated with hydrocarbons is proposed. The innovation consists on coupling an advanced oxidative method, using a Fenton-type catalyst, with the application of ultrasonic energy. The use of ultrasonic energy not only assists the desorption of the contaminants from the soil, but also promotes the formation of OH radicals, which are the oxidant agents involved in the oxidation process. Different Fenton-like catalysts were employed in the present study; however, the highest removal of toluene and xylenes were obtained with iron sulfate and copper sulfate, respectively. Also, hydrogen peroxide was tested at different concentrations, and it was found that increasing its concentration enhanced the removal of all the contaminants. Finally, it was demonstrated that applying ultrasonic energy to the reacting system process noticeably enhanced the global efficiency of the process due to a synergistic effect in conjunction with the hydrogen peroxide concentration and type of catalyst. PMID:17079076

  4. New technology for the design of advanced ultrasonic transducers for high-power applications.

    PubMed

    Parrini, Lorenzo

    2003-06-01

    A new high-frequency ultrasonic transducer for wire bonding has been conceived, designed, prototyped and tested. In the design phase an advanced approach was used and established. The method is based on the two basic principles of modularity and iteration. The transducer is decomposed to its elementary components. For each component an initial design is obtained with finite elements method (FEM) simulations. The simulated ultrasonic modules are then built and characterized experimentally through laser-interferometry measurements and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be iteratively adjusted and optimized. The achieved FEM simulations exhibit a remarkably high-predictive potential and allow full control on the vibration behavior of the ultrasonic modules and of the whole transducer. The new transducer is fixed on the wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the converter to be attached on the wire bonder not only in longitudinal nodes but also in radial nodes of the ultrasonic field excited in the horn. This leads to a nearly complete decoupling of the transducer to the wire bonder, which has not been previously obtained. The new approach to mount ultrasonic transducers on a welding-device is of major importance not only for wire bonding but also for all high-power ultrasound applications and has been patented. PMID:12782257

  5. Advanced measurement techniques, part 1

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Carraway, Debra L.; Manuel, Gregory S.; Croom, Cynthia C.

    1987-01-01

    In modern laminar flow flight and wind tunnel research, it is important to understand the specific cause(s) of laminar to turbulent boundary layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The process of transition involves both the possible modes of disturbance growth, and the environmental conditioning of the instabilities by freestream or surface conditions. The possible modes of disturbance growth include viscous, inviscid, and modes which may bypass these natural ones. Theory provides information on the possible modes of disturbance amplification, but experimentation must be relied upon to determine which of those modes actually dominates the transition process in a given environment. The results to date of research on advanced devices and methods used for the study of transition phenomena in the subsonic and transonic flight and wind tunnel environments are presented.

  6. Correlation of the deply technique with ultrasonic imaging of impact damage in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Smith, B. T.; Heyman, J. S.; Buoncristiani, A. M.; Blodgett, E. D.; Miller, J. G.

    1989-01-01

    The ultrasonic quantitative NDE of graphite-epoxy composites is difficult because of the inherent inhomogeneity of the material. An examination technique must discriminate between inherent scattering centers in an undamaged region and the scattering centers due to defects or damage. Two NDE techniques that can make this distinction were used to image and quantify the extent of damage resulting from a low-energy impact. These results were then compared with those from a destructive technique. The first NDE technique, polar backscatter, employed a nonzero polar angle insonifying method to reduce specular reflection from the surface of the sample; the second NDE technique used a normal-incidence ultrasonic beam. Results from both NDE methods were subsequently correlated with those from a destructive technique, the deply method. Both the qualitative and quantitative agreement of the methods was excellent.

  7. An ultrasonic technique of quenching stress control in steels and alloys

    SciTech Connect

    Muraviev, V.V.; Sukharev, E.M.; Kurbator, A.N.

    1996-12-31

    Quenching stress is important for usage properties and reliability of components, often it cause to crack generation, other prohibitive defects and destruction. So, opportune, timely quenching stress testing is a high-priority task. One of the possible acoustic technique of quenching stress evaluation was investigated for some type of steels and aluminum alloys. Acoustic stress test measurements is based on correlationship of ultrasonic wave velocity and stresses. Beside this the author studied collation between structural internal stress and frequency spectrum characteristics changes. Residual quenching stress in steels was measured by X-ray techniques. The author suggests that internal stress is the cause of structural changes leading to changes of mechanical properties (hardness, toughness yield stress, etc.) and it is the reason of correlation between ultrasonic velocity and mechanical properties. The experiments show strong correlation of internal stress and ultrasonic velocity for longitudinal, shear and surface waves and for mechanical properties and ultrasonic velocity (also for all type of waves). The author concludes that ultrasonic velocity change measurements can be used to investigate, evaluate and test stress state changes caused by quenching process.

  8. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Astrophysics Data System (ADS)

    Yost, William T.; Cantrell, John H.

    2002-11-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  9. System and technique for ultrasonic characterization of settling suspensions

    DOEpatents

    Greenwood, Margaret S.; Panetta, Paul D.; Bamberger, Judith A.; Pappas, Richard A.

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  10. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  11. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.

  12. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  13. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  14. INVESTIGATING ULTRASONIC DIFFRACTION GRATING SPECTROSCOPY AND REFLECTION TECHNIQUES FOR CHARACTERIZING SLURRY PROPERTIES

    EPA Science Inventory

    The objectives of the project are to investigate the use of (1) ultrasonic diffraction grating spectroscopy (UDGS) for measuring the particle size of a slurry and (2) shear wave reflection techniques to measure the viscosity of a slurry. For the first topic, the basic principle...

  15. Technique for ultrasonic cleaning with volatile solvents eliminates need for hoods or condensers

    NASA Technical Reports Server (NTRS)

    Pipersky, E.

    1969-01-01

    Technique ultrasonically cleans small quantities of small mechanical parts in organic solvents without the need for vapor removal equipment. Parts are placed in a thin plastic bag with the solvent and then suspended in a cleaning tank containing the water-detergent solution.

  16. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.

    1993-01-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  17. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  18. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this

  19. Nuclear material investigations by advanced analytical techniques

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Kuri, G.; Martin, M.; Froideval, A.; Cammelli, S.; Orlov, A.; Bertsch, J.; Pouchon, M. A.

    2010-10-01

    Advanced analytical techniques have been used to characterize nuclear materials at the Paul Scherrer Institute during the last decade. The analysed materials ranged from reactor pressure vessel (RPV) steels, Zircaloy claddings to fuel samples. The processes studied included copper cluster build up in RPV steels, corrosion, mechanical and irradiation damage behaviour of PWR and BWR cladding materials as well as fuel defect development. The used advanced techniques included muon spin resonance spectroscopy for zirconium alloy defect characterization while fuel element materials were analysed by techniques derived from neutron and X-ray scattering and absorption spectroscopy.

  20. Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chen, Jianwei; Zhang, Zhenzhen

    2015-09-01

    We present the application of a laser ultrasonic technique in nondestructive characterization of the bonding layer (BL) in a thermal barrier coating (TBC). A physical mode of a multilayered medium is established to describe the propagation of a longitudinal wave generated by a laser in a TBC system. Furthermore, the theoretical analysis on the ultrasonic transmission in TBC is carried out in order to derive the expression of the BL transmission coefficient spectrum (TCS) which is used to determine the velocity of the longitudinal wave in the BL. We employ the inversion method combined with TCS to ascertain the attenuation coefficient of the BL. The experimental validations are performed with TBC specimens produced by an electron-beam physical vapor deposition method. In those experiments, a pulsed laser with a width of 10 ns is used to generate an ultrasonic signal while a two-wave mixing interferometer is created to receive the ultrasonic signals. By introducing the wavelet soft-threshold method that improves the signal-to-noise ratio, the laser ultrasonic testing results of TBC with an oxidation of 1 cycle, 10 cycles, and 100 cycles show that the attenuation coefficients of the BL become larger with an increase in the oxidation time, which is evident for the scanning electron microscopy observations, in which the thickness of the thermally grown oxide increases with oxidation time.

  1. New acousto-ultrasonic techniques applied to aerospace materials

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    The use of an NdYAG pulsed laser for generating ultrasonic waves for NDE in resin matrix composites was investigated. A study was conducted of the use of the 1.064 micron wavelength NdYAG pulsed laser with the neat, unreinforced resin as well as graphite fiber/polymer composite specimens. In the case of the neat resins it was found that, at normal incidence, about 25 percent of the laser pulse energy was reflected at the incident surface. An attenuation coefficient for the polyimide resin, PMR-15 was determined to be approximately 5.8 np/cm. It was found in energy balance studies that graphite fiber/polymer specimens attenuate the laser beam more than do neat resins. The increase absorption is in the graphite fibers. The occurrence of laser induced surface damage was also studied. For the polymer neat resin, damage appears as pit formation over a small fraction of the pulse impact area and discoloration over a larger part of the area. A damage threshold was inferred from observed damage as a function of pulse energy. The 600 F cured PMR-15 and PMR-11 exhibit about the same amount of damage for a given laser pulse energy. The damage threshold is between 0.06 and 0.07 J/sq cm.

  2. The anisotropy of biological composites studied with ultrasonic technique.

    PubMed

    Bucur, Voichita; Declercq, Nico F

    2006-12-22

    One of the most common biological composites is wood material. This natural orthotropic like material is characterized by a high anisotropy determined by the special disposition of the microstructure elements. The anisotropy of wood can be described in various ways using the values of ultrasonic velocities of bulk waves (longitudinal and shear) observed on the velocity surface deduced from the theoretical relationships given by the Christofel's equation. The simultaneous view into the three symmetry planes of the anisotropic behavior of wood is presented on the velocity surface. The spatial filtering action of wood structure is easily connected with longitudinal and shear velocities. The first step in examining the anisotropy of wood is to relate the velocities to the symmetry axes. The simplest way to describe the anisotropy of wood is to express the ratios of velocities. These ratios can be calculated separately for longitudinal or shear waves or for a combination of both. The birefringence of shear waves have a particular interest for the fine definition of anisotropy. A more global appreciation of wood anisotropy than the values of individual velocities is given with acoustic invariants. The stability of calculation of acoustic invariants versus different propagation angles confirms the validity of the chosen model for the tested material. Wood species having high density and any important organized structure in the millimeter scale exhibit a high ratio of invariants. The acoustic behavior of tropical wood species is less anisotropic than that of species from a temperate zone having low density. PMID:16828138

  3. The development of ultrasonic techniques for nondestructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Chapman, Gilbert B., II

    Demands for improvements in aerospace and automotive energy-efficiency, performance, corrosion resistance, body stiffness and style have increased the use of adhesive bonds to help meet those demands by providing joining technology that accommodates a wider variety of materials and design options. However, the history of adhesive bond performance clearly indicates the need for a robust method of assuring the existence of the required consistent level of adhesive bond integrity in every bonded region. This investigation seeks to meet that need by the development of new, complementary ultrasonic techniques for the evaluation of these bonds, and thus provide improvements over previous methods by extending the range of resolution, speed and applications. The development of a 20 MHz pulse-echo method for nondestructive evaluation of adhesive bonds will accomplish the assessment of bond joints with adhesive as thin as 0.1 mm. This new method advances the state of the art by providing a high-resolution, phase-sensitive procedure that identifies the bond state at each interface of the adhesive with the substrate(s), by the acquisition and analysis of acoustic echoes reflected from interfaces between layers with large acoustic impedance mismatch. Because interface echo amplitudes are marginal when the acoustic impedance of the substrate is close to that of the adhesive, a 25 kHz Lamb wave technique was developed to be employed in such cases, albeit with reduced resolution. Modeling the ultrasonic echoes and Lamb-wave signals was accomplished using mathematical expressions developed from the physics of acoustic transmission, attenuation and reflection in layered media. The models were validated by experimental results from a variety of bond joint materials, geometries and conditions, thereby confirming the validity of the methodology used for extracting interpretations from the phase-sensitive indications, as well as identifying the range and limits of applications. Results

  4. Extraction of organochlorine pesticides in sediments using soxhlet, ultrasonic and accelerated solvent extraction techniques

    NASA Astrophysics Data System (ADS)

    Lang, Yinhai; Cao, Zhengmei; Nie, Xinhua

    2005-04-01

    The application of soxhlet, ultrasonic and accelerated solvent extraction techniques to the analysis of six organochlorine pesticides (α-HCH, β-HCH, γ-HCH, o, p‧-DDT, p, p‧-DDT and p, p‧-DDE) in Taihu Lake sediment samples is described. It was found that the limits of quantification ranged from 0.002 µgg-1 to 0.004 µgg-1, and the recoveries of organochlorine pesticides with the three extraction techniques were acceptable (>80.7%). With a mass selective detector, better results were obtained by accelerated solvent extraction using hexane-acetone (1:1) as compared with soxhlet and ultrasonic extraction. It was shown that the accelerated solvent extraction was the optimum technique for the analysis of organochlorine pesticides in sediments. The general features of the three extraction techniques are also presented.

  5. Application of laser ultrasonic non-destructive evaluation technique to additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manzo, Anthony J.; Kenderian, Shant; Helvajian, Henry

    2016-04-01

    The change in properties of a propagating ultrasonic wave has been a mainstay characterization tool of the nondestructive evaluation (NDE) industry for identifying subsurface defects (e.g. damage). A variant of this concept could be applicable to 3D additive manufacturing where the existence of defects (e.g. pores) within a sub-layer could mark a product as non-qualifying. We have been exploring the utility of pulsed laser ultrasonic excitation coupled with CW laser heterodyne detection as an all optical scheme for characterizing sub surface layer properties. The all-optical approach permits a straight forward integration into a laser additive processing tool. To test the concept, we have developed an experimental system that generates pulsed ultrasonic waves (the probe) with high bandwidth (<<10MHz) and a surface displacement sensor that can capture the ultrasonic "return" signal with bandwidth close to 300 MHz. The use of high frequencies enables the detection of smaller defect sites. The technique is time resolved with the sensor and probe as point (>>30-200 microns) beams. Current tests include characterizing properties of spot weld joints between two thin stainless steel plates. The long term objective is to transition the technique into a laser additive manufacturing tool.

  6. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-1, Fundamentals of Ultrasonic Testing.

    ERIC Educational Resources Information Center

    Spaulding, Bruce

    This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…

  7. Reliability of the Ultrasonic Technique Applied to Detection of Pipe Weld Defects

    NASA Astrophysics Data System (ADS)

    Rebello, J. M. A.; Carvalho, A. A.; Sagrilo, L. V. S.; Soares, S. D.

    2007-03-01

    The objective of this work is to evaluate the reliability of the ultrasonic nondestructive test technique (NDT), for specific test conditions, using POD (probability of detection) curves developed by experimental procedures. Two classes of defects, lack of penetration (LP) and lack of fusion (LF) were intentionally inserted in 24 weld beads belonging to 4 API X70 steel pipeline specimens with an outer diameter of 254mm and wall thickness of 19.05mm. These specimens were inspected using manual and automatic ultrasonic techniques. The results, besides producing real POD curves, showed the superiority of the automatic techniques over the manual test in the probability of detection of these two classes of defects.

  8. Use of an ultrasonic-acoustic technique for nondestructive evaluation of fiber composite strength

    NASA Technical Reports Server (NTRS)

    Vary, A.; Bowles, K. J.

    1978-01-01

    This report describes the ultrasonic-acoustic technique used to measure a 'Stress Wave Factor'. In a prior study this factor was found effective in evaluating the interlaminar shear strength of fiber-reinforced composites. Details of the method used to measure the stress wave factor are described. In addition, frequency spectra of the stress waves are analyzed in order to clarify the nature of the wave phenomena involved. The stress wave factor can be measured with simple contact probes requiring only one-side access to a part. This is beneficial in nondestructive evaluations because the waves can run parallel to fiber directions and thus measure material properties in directions assumed by actual loads. Moreover, the technique can be applied where conventional through transmission techniques are impractical or where more quantitative data are required. The stress wave factor was measured for a series of graphite/polyimide composite panels and results obtained are compared with through transmission immersion ultrasonic scans.

  9. A technique for quantitatively measuring microstructurally induced ultrasonic noise

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Gray, T. A.; Thompson, R. B.

    A method for quantifying backscattered grain noise amplitudes in pulse/echo inspections is presented. The technique employs positional averaging to extract the rms grain noise as a function of time, or equivalently, as a function of depth in the specimen. This technique has been demonstrated for focussed transducer inspections of titanium alloys. A simple grain noise model that assumes incoherent single scattering by the individual metal grains is presented as a first step toward the development of a comprehensive theory.

  10. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.; Niederleithinger, E.

    2013-07-01

    Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  11. Nondestructive Evaluation of Holed CFRP Laminates by a New Technique to Visualize Propagation of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Yashiro, Shigeki; Takatsubo, Junji; Toyama, Nobuyuki; Okabe, Tomonaga; Takeda, Nobuo

    This study investigated damage detection in holed CFRP laminates by using a newly developed technique for visualizing ultrasonic waves. This technique provided a moving diagram of propagating waves with non-contact scanning by a pulsed laser. Its measurement scheme overcame the difficulties of sensitivity in conventional methods and enabled us to observe ultrasonic waves on CFRP laminates. We observed two types of ultrasonic waves propagating on the CFRP laminate in the measured snapshots. These waves were identified as the S0 and the A0 Lamb modes by the dispersion curves, confirming the validity of the visualization technique for composite laminates. Furthermore, ply cracks and delamination, as well as the damage during manufacturing, were observed near the hole in the loaded specimens, and we successfully visualized the Lamb waves scattered by the delamination. The region of wave scattering agreed with the damage observed by soft X-ray radiography. These inspection results demonstrated the usefulness of the visualization technique in inspecting composite laminates.

  12. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  13. Physical principles of ultrasonic non-destructive evaluation of advanced composites

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1988-01-01

    Results are presented from the continued investigations into the use of ultrasonic measurement techniques for the detection and characterization of porosity. The effects that bleeder cloth impressions (left after the cure process) have on the capability of polar backscatter to interrogate volume effects such as porosity are described. Some preliminary data regarding a comparison of phase sensitive and phase insensitivie detection for materials characterization is presented.

  14. Quantitative mapping of pore fraction variations in silicon nitride using an ultrasonic contact scan technique

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.

    1993-01-01

    An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.

  15. A comparison in vitro of two ultrasonic root canal preparation techniques.

    PubMed

    Yap, S Y; Stock, C J

    1992-11-01

    Two ultrasonic techniques were compared for their ability to clean and shape root canals in extracted human teeth. One technique was recommended by the manufacturer (Cavi-Endo, Dentsply), while the other was a modification by the authors of the stepdown technique. Mesiobuccal root canals of molars were instrumented using these techniques, after which a silicone impression material was injected into the prepared canals. The roots were then split longitudinally and one half was stained for debris scoring while the silicone impressions were assessed for shape. The results showed that the modified technique produced significantly cleaner canals than the recommended technique. The shaping ability of both techniques was difficult to evaluate because of the complex morphology of molar root canals. The final shape of the prepared canal depended more on the initial shape than on the instrumentation technique. PMID:1306862

  16. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive

  17. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  18. Split spectrum technique as a preprocessor for ultrasonic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Karpur, Prasanna

    Split-spectrum preprocessing (SSP) is shown in light of the present results to process A-scans in a way that allows its incorporation into artificial neural networks and other AI methods, as well as into feature-analysis techniques. SSP is consistently nonlinear in A-scan processing. Attention is given to the results obtained from the use of the magnitude spectra of the SSP-processed A-scans as inputs to a back-propagation artificial neural network.

  19. Measurements of dynamic Young's modulus in short specimens with the PUCOT. [Piezoelectric Ultrasonic Composite Oscillator Technique

    NASA Technical Reports Server (NTRS)

    Wickstrom, S. N.; Wolfenden, A.

    1990-01-01

    The piezoelectric ultrasonic composite oscillator technique (PUCOT) was used at frequencies in the range 40 to 150 kHz to measure dynamic Young's modulus for short-length single crystals of copper at temperatures in the range 25 to 650 C and for polycrystalline copper at room temperature. Corrections to the modulus for variations in length/diameter resulted in no loss of precision due to wave velocity dispersion.

  20. Application of ultrasonic techniques to chemical coal cleaning processes. Final report, April 15, 1980-August 15, 1981. [Ultrasonic augmentation

    SciTech Connect

    Tarpley, W.B. Jr.; Twesme, E.N.; Howard, P.L.; Moulder, G.R.

    1981-08-01

    Ultrasonic activation was applied to several coal cleaning processes, including chlorinolysis, oxydesulfurization, and sodium hypochlorite leaching, in small-scale batch treatment processing of Illinois No. 6, Lower Kittanning, and Western Kentucky No. 11 coals. In all cases, ultrasonic energy application demonstrated effects that would translate in production to processing efficiencies and/or capital equipment savings. Specifically, in the chlorinolysis reaction, pyritic sulfur was removed 23 times faster with ultrasonics than without it. (Organic sulfur could not be removed from the coal examined with or without ultrasonics in the chlorinolysis process). In sodium hypochlorite leaching, the total sulfur extraction rate was 3 times faster with ultrasonics. Two separate benefits were seen with oxydesulfurization: ultrasonics doubled the reaction rate and at slightly accelerated rates allowed a pressure reduction from 960 to 500 psi, which would be a significant cost efficiency in production. With these results, it was recommended that ultrasonic processing be investigated with a process involving interactions similarly amenable to ultrasonic enhancement, i.e., molten salt leaching, which is reported to have the potential not only for more extensive sulfur extraction than the other experimental processes, but for ash removal as well.

  1. Laser ultrasonic techniques for assessment of tooth structure

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Baldwin, Kevin C.

    2000-06-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. For example, there is a need to image the margins of a restoration for the detection of poor bonding or voids between the restorative material and the dentin. With conventional x-ray techniques, it is difficult to detect cracks and to visualize interfaces between hard media. This due to the x-ray providing only a 2 dimensional projection of the internal structure (i.e. a silhouette). In addition, a high resolution imaging modality is needed to detect tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated which can help the tooth to re-mineralize itself. Currently employed x-ray imaging is incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration with a synthetic material. Other clinical applications include the visualization of periodontal defects, the localization of intraosseous lesions, and determining the degree of osseointegration between a dental implant and the surrounding bone. A means of assessing the internal structure of the tooth based upon use of high frequency, highly localized ultrasound (acoustic waves) generated by a laser pulse is discussed. Optical interferometric detection of ultrasound provides a complementary technique with a very small detection footprint. Initial results using laser-based ultrasound for assessment of dental structures are presented. Discussion will center on the adaptability of this technique to clinical applications.

  2. On the use of ultrasonic fatigue testing technique--variable amplitude loadings and crack growth monitoring.

    PubMed

    Müller, T; Sander, M

    2013-12-01

    In the very high cycle fatigue regime high-frequency testing techniques are required. Using the ultrasonic fatigue technique, testing time could be reduced significantly in comparison to conventional servo-hydraulic machines. An ultrasonic fatigue testing system developed by the BOKU Vienna with load frequencies of about 20kHz is used for variable amplitude loading investigations in the VHCF regime. Therefore, the amplitude level during fatigue tests is controlled by a PC using an own developed software. Additionally, an in situ reconstruction of a damage equivalent load spectrum based on a load time history is introduced schematically. To optimize the experimental procedure a temperature-controlled pulse-pause adaption has been developed and implemented into the software. For quantifying the influence of variable amplitude loadings on the fatigue life, e.g. load interaction effects, the crack growth is measured by using the potential drop technique that is adapted to the ultrasonic fatigue testing system. Finally, the results of two-step-block loading tests are presented. PMID:23597637

  3. An improved DPSM technique for modelling ultrasonic fields in cracked solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique

    2007-04-01

    In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.

  4. Advanced Ultrasonic Diagnosis of Extremity Trauma: The Faster Exam

    NASA Technical Reports Server (NTRS)

    Dulchavsky, S. A.; Henry, S. E.; Moed, B. R.; Diebel, L. N.; Marshburn, T.; Hamilton, D. R.; Logan, J.; Kirkpatrick, A. W.; Williams, D. R.

    2002-01-01

    Ultrasound is of prO)len accuracy in abdominal and thoracic trauma and may be useful to diagnose extremity injury in situations where radiography is not available such as military and space applications. We prospectively evaluated the utility of extremity , ultrasound performed by trained, non-physician personnel in patients with extremity trauma, to simulate remote aerospace or military applications . Methods: Patients with extremity trauma were identified by history, physical examination, and radiographic studies. Ultrasound examination was performed bilaterally by nonphysician personnel with a portable ultrasound device using a 10-5 MHz linear probe, Images were video-recorded for later analysis against radiography by Fisher's exact test. The average time of examination was 4 minutes. Ultrasound accurately diagnosed extremity, injury in 94% of patients with no false positive exams; accuracy was greater in mid-shaft locations and least in the metacarpa/metatarsals. Soft tissue/tendon injury was readily visualized . Extremity ultrasound can be performed quickly and accurately by nonphysician personnel with excellent accuracy. Blinded verification of the utility of ultrasound in patients with extremity injury should be done to determine if Extremity and Respiratory evaluation should be added to the FAST examination (the FASTER exam) and verify the technique in remote locations such as military and aerospace applications.

  5. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres.

    PubMed

    Bittner, B; Kissel, T

    1999-01-01

    Bovine serum albumin (BDA) loaded microspheres with a spherical shape and smooth surface structure were successfully prepared from poly(lactide-co-glycolide) using an ultrasonic nozzle installed in a Niro laboratory spray dryer. Process and formulation parameters were investigated with respect to their influence on microsphere characteristics, such as particle size, loading capacity, and release properties. Preparation of microspheres in yields of more than 50% was achieved using an ultrasonic atomizer connected to a stream of carrier air. Microsphere characteristics could be modified by changing several technological parameters. An increased polymer concentration of the feed generated larger particles with a significantly reduced initial release of the protein. Moreover, microspheres with a smooth surface structure were obtained from the organic polymer solution with the highest viscosity. Microparticles with a low BSA loading showed a large central cavity surrounded by a thin polymer layer in scanning electron microspheres. A high protein loading led to an enlargement of the shell layer, or even to dense particles without any cavities. A continuous in vitro release pattern of BSA was obtained from the particles with low protein loading. Glass transition temperatures (Tg) of the microspheres before and after lyophilization did not differ from those of the BSA loaded particles prepared by spray drying with a rotary atomizer. Analysis of the polymer by gel permeation chromatography indicated that ultrasonication had no effect on polymer molecular weight. Molecular weight and polydispersity of the pure polymer, placebo microspheres prepared by spray drying, and placebo microspheres prepared using the ultrasonic nozzle were in the same range. In conclusion, ultrasonic atomization represents a versatile and reliable technique for the production of protein loaded biodegradable microspheres without inducing a degradation of the polymer matrix. Particle characteristics

  6. Advance in friction welding and ultrasonic welding of ceramics to metals

    SciTech Connect

    Greitmann, M.J.; Weib, R.

    1997-11-01

    The authors have joined four different ceramic materials (MgO-PSZ, Al{sub 2}O{sub 3}, SiC and Si{sub 3}N{sub 4} cylinders 10 mm in diameter and 50 mm in length) to the aluminum alloy Al-Si1MgMn by friction welding. Process parameters such as friction speed, axial force, burn-off and torque have been recorded continuously. For some specimens the authors recorded the temperature at the interface using thermocouples. The joints obtained were tested in tension. Fracture occurred either in the ceramic or at the interface. Heat conduction calculations to estimate the temperature distribution during welding have been conducted by the Finite Element Method (FEM), using experimental data for input. Afterwards, residual stresses introduced through thermal expansion mismatch and stresses introduced through a tensile test have been determined by FEM. Applying multiaxial Weibull statistics to the ceramic specimen, tensile strength for different geometries of the joint and different material combinations was estimated. Ultrasonic welded joints of MgO-PSZ and Steel X 4 CrNi 18-10 according to DIN EN (comparable to the US-steel AISI No. 304) could be realized using aluminum interlayers. In addition to a conventional ultrasonic welding equipment for metal welding a new molecular coldwelding technique (ultrasonic torsional welding system) was tested. In comparison to friction welding the ultrasonic welding technique results in limited deformation of the ceramic-metal joint parts and in a decreased welding time. Nevertheless a special solution must be found to the problem of tool wear and the vibration conditions.

  7. Advanced Test Reactor In-Canal Ultrasonic Scanner: Experiment Design and Initial Results on Irradiated Plates

    SciTech Connect

    D. M. Wachs; J. M. Wight; D. T. Clark; J. M. Williams; S. C. Taylor; D. J. Utterbeck; G. L. Hawkes; G. S. Chang; R. G. Ambrosek; N. C. Craft

    2008-09-01

    An irradiation test device has been developed to support testing of prototypic scale plate type fuels in the Advanced Test Reactor. The experiment hardware and operating conditions were optimized to provide the irradiation conditions necessary to conduct performance and qualification tests on research reactor type fuels for the RERTR program. The device was designed to allow disassembly and reassembly in the ATR spent fuel canal so that interim inspections could be performed on the fuel plates. An ultrasonic scanner was developed to perform dimensional and transmission inspections during these interim investigations. Example results from the AFIP-2 experiment are presented.

  8. Sono-bromination of aromatic compounds based on the ultrasonic advanced oxidation processes.

    PubMed

    Fujita, Mitsue; Lévêque, Jean-Marc; Komatsu, Naoki; Kimura, Takahide

    2015-11-01

    A novel, mild "sono-halogenation" of various aromatic compounds with potassium halide was investigated under ultrasound in a biphasic carbon tetrachloride/water medium. The feasibility study was first undertaken with the potassium bromide and then extended to chloride and iodide analogues. This methodology could be considered as a new expansion of the ultrasonic advanced oxidation processes (UAOPs) into a synthetic aspect as the developed methodology is linked to the sonolytic disappearance of carbon tetrachloride. Advantages of the present method are not only that the manipulation of the bromination is simple and green, but also that the halogenating agents used are readily available, inexpensive, and easy-handling. PMID:26186842

  9. Recent advancement of turbulent flow measurement techniques

    NASA Technical Reports Server (NTRS)

    Battle, T.; Wang, P.; Cheng, D. Y.

    1974-01-01

    Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.

  10. Stresses in ultrasonically assisted bone cutting

    NASA Astrophysics Data System (ADS)

    Alam, K.; Mitrofanov, A. V.; Bäker, M.; Silberschmidt, V. V.

    2009-08-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  11. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  12. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  13. Ultrasonic technique in determination of grid-generated turbulent flow characteristics

    NASA Astrophysics Data System (ADS)

    Andreeva, Tatiana A.

    The present study utilizes the ultrasonic travel-time technique to diagnose grid-generated turbulence. The statistics of the travel-time variations of ultrasonic wave propagation along a path are used to determine some metrics of the turbulence. The motivation for this work stems from the observation of substantial delta-t variation in ultrasonic measuring devices like flow meters and circulation meters. Typically, averaging can be used to extract mean values from such time series. The corollary is that the fluctuations contain information about the turbulence. Experimental data were obtained for ultrasonic wave propagation downstream of a heated grid in a wind tunnel. Such grid-generated turbulence is well characterized and features a mean flow with superimposed velocity and temperature fluctuations. The ultrasonic path could be perpendicular or oblique to the mean flow direction. Path lengths were of the order of 0.3 m and the transducers were of 100 kHz working frequency. The data acquisition and control system featured a very high-speed analog to digital conversion card that enabled excellent resolution of ultrasonic signals. Experimental data for the travel-time variance were validated using ray acoustic theory along with the Kolmogorov "2/3" law. It is demonstrated that the ultrasonic technique, together with theoretical models, provides a basis for turbulent flow diagnostics. As a result, the structure constant appearing in the Kolmogorov "2/3" law is determined based on the experimental data. The effect of turbulence on acoustic waves, in terms of the travel time, was studied for various mean velocities and for different angular orientations of the acoustic waves with respect to the mean flow. Average travel time in the presence of turbulence was shorter then in the undisturbed media. The effect of the time shift between the travel times in turbulent and undisturbed media is associated with Fermat's principle. The travel time and log-amplitude variance of

  14. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  15. Correlation of the deply technique with the ultrasonic imaging of impact damage in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Smith, B. T.; Heyman, J. S.; Moore, J. G.; Cucura, S. J.; Freeman, S. M.

    1986-01-01

    A quantitative ultrasonic technique for the nondestructive assessment of impact damage is described. The method, which involves digitizing the entire backscattered ultrasonic wave from a sample, was applied to two test panels removed from a 16-ply graphite/epoxy laminate and impacted with an aluminum ball fired at a velocity of 150 ft/sec. The results of the ultrasonic NDE were compared with the results obtained using the destructive deply technique of Freeman (1984). The NDE method provides through-the-thickness information on damage and only requires access to a single side of the material, while the deply technique gives exact information on the actual damage. Good quantitative agreement between the two techniques was obtained.

  16. Ultrasonic techniques for measuring physical properties of fluids in harsh environments

    NASA Astrophysics Data System (ADS)

    Pantea, Cristian

    Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.

  17. Ultrasonic Technique for Experimental Investigation of Statistical Characteristics of Grid Generated Turbulence.

    NASA Astrophysics Data System (ADS)

    Andreeva, Tatiana; Durgin, William

    2001-11-01

    This paper focuses on ultrasonic measurements of a grid-generated turbulent flow using the travel time technique. In the present work an attempt to describe a turbulent flow by means of statistics of ultrasound wave propagation time is undertaken in combination with Kolmogorov (2/3)-power law. There are two objectives in current research work. The first one is to demonstrate an application of the travel-time ultrasonic technique for data acquisition in the grid-generated turbulence produced in a wind tunnel. The second one is to use the experimental data to verify or refute the analytically obtained expression for travel time dispersion as a function of velocity fluctuation metrics. The theoretical analysis and derivations of that formula are based on Kolmogorov theory. The series of experiment was conducted at different values of wind speeds and distances from the grid giving rise to different values of the dimensional turbulence characteristic coefficient K. Theoretical analysis, based on the experimental data reveals strong dependence of the turbulent characteristic K on the mean wind velocity. Tabulated values of the turbulent characteristic coefficient may be used for further understanding of the effect of turbulence on sound propagation.

  18. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect

    Liu, Yang; Hu, Hui; Chen, Wen-Li; Bond, Leonard J.

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  19. NONDESTRUCTIVE DETECTION OF DELAMINATION IN THERMAL BARRIER COATINGS USING ULTRASONIC TECHNIQUE

    SciTech Connect

    Chen, Roger H. L.; Zhang, Binwei; Alvin, Mary Anne

    2009-06-12

    Nondestructive testing using an acousto-ultrasonic technique has been utilized to detect the change of material properties and provide early warning of failure of thermal barrier coating (TBC) systems. Testing was performed on René N5 and Haynes 230 coupons with an applied NETL-bond coat, as well as on coupons containing both an applied MCrAlY bond coat and 7-YSZ top coat. The coupons were subjected to either cyclic or isothermal testing at 1100ºC. Ultrasonic testing was performed before and after thermal testing using piezoelectric sensors with dry contact on the surface of the coatings. Proof-of-concept test results indicated that changes in the properties of the 40m bond coat can be detected using the proposed technique. Waveforms generated via Pitch/Catch indicated minor changes within the bond coat applied to René N5 substrate after 400500 hours of cyclic oxidation at 1100°C. In contrast, marked differences in waveforms and travel time reflected significant crack formation and spallation of the bond coat from the Haynes 230 substrate. Finite element analysis (FEA) simulation of the wave propagation on a simplified TBC system with nonlinear effects was conducted. FEA results clearly show detection of a small embedded void incorporated to simulate delamination. Comparisons between experimental measurements and finite element simulations were used to estimate the material properties of the coatings and the substrate.

  20. Experimental Evaluation of Quantitative Diagnosis Technique for Hepatic Fibrosis Using Ultrasonic Phantom

    NASA Astrophysics Data System (ADS)

    Koriyama, Atsushi; Yasuhara, Wataru; Hachiya, Hiroyuki

    2012-07-01

    Since clinical diagnosis using ultrasonic B-mode images depends on the skill of the doctor, the realization of a quantitative diagnosis method using an ultrasound echo signal is highly required. We have been investigating a quantitative diagnosis technique, mainly for hepatic disease. In this paper, we present the basic experimental evaluation results on the accuracy of the proposed quantitative diagnosis technique for hepatic fibrosis by using a simple ultrasonic phantom. As a region of interest crossed on the boundary between two scatterer areas with different densities in a phantom, we can simulate the change of the echo amplitude distribution from normal tissue to fibrotic tissue in liver disease. The probability density function is well approximated by our fibrosis distribution model that is a mixture of normal and fibrotic tissue. The fibrosis parameters of the amplitude distribution model can be estimated relatively well at a mixture rate from 0.2 to 0.6. In the inversion processing, the standard deviation of the estimated fibrosis results at mixture ratios of less than 0.2 and larger than 0.6 are relatively large. Although the probability density is not large at high amplitude, the estimated variance ratio and mixture rate of the model are strongly affected by higher amplitude data.

  1. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Wen-Li; Bond, Leonard J.; Hu, Hui

    2014-02-01

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost 300, heavy wet snow removal can cost 3,000 and removal of accumulated frozen/freezing rain can cost close to 10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  2. Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE

    SciTech Connect

    Davis, C.W.; Nath, S.; Fulton, J.P.; Namkung, M.

    1993-12-31

    Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.

  3. Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE

    NASA Technical Reports Server (NTRS)

    Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.

    1993-01-01

    Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.

  4. Microleakage Evaluation Around Retrograde Filling Materials Prepared Using Conventional and Ultrasonic Techniques

    PubMed Central

    Bolla, Nagesh; Thumu, Jayaprakash; Vemuri, Sayesh; Chukka, Sunil

    2015-01-01

    Introduction: The importance of the retrograde cavity preparation and the material used to restore is of utmost importance to achieve successful surgical endodontics. Aim: The aim of the present study is to evaluate the apical micro-leakage of root end cavities filled with Mineral trioxide aggregate, Biodentine and light cure GIC using two different cavity preparation techniques that is conventional bur preparation and ultrasonic tip preparation. Materials and Methods: Eighty extracted single rooted human teeth (except mandibular incisors) with one canal, fully developed apices and without any major carious lesion are collected for the study. The teeth were sectioned at CEJ to standardize the length. Roots are instrumented upto master apical file 40 K size and obturated with gutta percha and AH plus sealer in lateral condensation technique. The teeth were then resected apically at 90° angle axis to the long axis of the root removing 3 mm of the apex. The teeth were divided in to four groups of 20 each- • Group I- samples restored with MTA. • Group II- samples restored with Biodentine. • Group III- (Positive control group)- samples restored with Light activated GIC. • Group IV - (negative control group)- no filling material. Each group is divided into two subgroups (a, b) of ten teeth each 1. Retropreparation done with ultrasonic retrotip. 2. Retropreparation done with conventional bur. The teeth were then immersed in 0.5% Rhodamine B dye for 48 h. The teeth were split longitudinally and the interface between the restored material and the canal wall is observed under Confocal laser scanning microscope. Depth of dye penetration was examined under stereomicroscope. Results: The statistical analysis was performed by One way ANOVA, t test. Pair wise comparision was done by Newman – Keuls multiple post hoc test. The mean values of Dye penetration for Group Ia (321.23), Group Ib (490.11), Group IIa (1065.14), Group IIb (1170.96), Group IIIa (1888.90), Group

  5. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  6. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    PubMed Central

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  7. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  8. Phased array ultrasonic testing of dissimilar metal welds using geometric based referencing delay law technique

    NASA Astrophysics Data System (ADS)

    Han, Taeyoung; Schubert, Frank; Hillmann, Susanne; Meyendorf, Norbert

    2015-03-01

    Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).

  9. Intracranial pressure dynamics during simulated microgravity using a new noninvasive ultrasonic technique

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Yost, W. T.; Cantrell, J. H.; Hargens, A. R.

    1998-01-01

    It is believed that intracranial pressure (ICP) may be elevated in microgravity because a fluid shift toward the head occurs due to loss of gravitational blood pressures. Elevated ICP may contribute to space adaptation syndrome, because as widely observed in clinical settings, elevated ICP causes headache, nausea, and projectile vomiting, which are similar to symptoms of space adaptation syndrome. However, the hypothesis that ICP is altered in microgravity is difficult to test because of the invasiveness of currently-available techniques. We have developed a new ultrasonic technique, which allows us to record ICP waveforms noninvasively. The present study was designed to understand postural effects on ICP and assess the feasibility of our new device in future flight experiments.

  10. NONINVASIVE, NONCONTACT FLUID DETECTION IN SUBMERGED CONTAINERS USING SWEPT FREQUENCY ULTRASONIC TECHNIQUE.

    SciTech Connect

    Los Alamos National Laboratory

    2001-01-01

    A noncontact technique has been developed for the remote interrogation of submerged and limited access metal containers for determining the presence of fluid inside, The technique is based on the damping effect of water on the thickness mode resonance of the container wall. A transmitter-receiver pair of piezoelectric transducers is placed at a standoff distance of 5 mm from the container wall with the water outside the container providing ultrasonic coupling medium. The excitation frequency applied to the transmitter is swept between 0.8-4.0M Hz and the receiver transducer detects the signal, in the form of a frequency spectrum, returned from the wall. By analyzing the variation in the observed spectrum, it is straightforward to determine whether the container is fluid or air backed thereby detecting if the container has leaked.

  11. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  12. Automatic ultrasonic imaging system with adaptive-learning-network signal-processing techniques

    SciTech Connect

    O'Brien, L.J.; Aravanis, N.A.; Gouge, J.R. Jr.; Mucciardi, A.N.; Lemon, D.K.; Skorpik, J.R.

    1982-04-01

    A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concert with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.

  13. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1992-01-01

    The development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of composite materials requires a better understanding of the physics underlying the interaction of ultrasound with the material. The purpose of this investigation is to identify and characterize the features of complex, three dimensional materials that limit the ability of ultrasound to detect flaws in this broad class of emerging materials. In order to explore the interaction of ultrasound with such complex media, we investigate the characteristics of ultrasonic fields which have propagated through samples with complex geometries and/or internal architecture. We focus on the physics that underlies the detection of flaws in such materials.

  14. Program for field validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)

    NASA Astrophysics Data System (ADS)

    Hamlin, D. R.

    1985-11-01

    This final report describes work performed by Southwest Research Institute for the Nuclear Regulatory Commission (NRC) in fulfillment of NRC Contract No. NRC-04-77-145; "Program for Field Validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)." The purpose was to validate the effectiveness of SAFT UT as a nondestructive examination technique for nuclear power and other related industries. SAFT UT is an ultrasonic imaging method for accurate measurement of the spatial location and extent of acoustically reflective surfaces (flaws) contained in objects such as structural components and weldments in nuclear power reactor systems. The increased measurement accuracy offered by SAFT, when compared with that provided by measurement methods now in use, will improve the reliability of flaw severity assessment with resultant safety and economic benefits to the nuclear power industry. This report presents a comprehensive discussion of the work accomplished in evaluating the performance capabilities of the developed SAFT UT inspection system. Inspection results obtained using both 0-degree longitudinal and angle-beam operating modes are presented. These results include laboratory and nuclear power plant field site examinations on a variety of defect types contained within carbon and stainless steel flat plate and cylindrical test specimens or components. The SAFT UT processed data flaw images are evaluated by comparing them to results obtained from destructive sectioning or by using flaw fabrication data which predicted actual flaw depth, orientation and size. On the basis of these evaluations, conclusions are presented which summarize the performance capabilities of the SAFT UT inspection technique.

  15. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  16. Determination of internal friction using ultrasonic diffuse field and resonance techniques

    NASA Astrophysics Data System (ADS)

    Panetta, P. D.; Johnson, Ward

    2000-05-01

    Attempts to nondestructively determine mechanical properties of metals and alloys have traditionally focused on empirical correlations or relied on models using static microstructural parameters, such as grain size. Since mechanical properties are dynamic, a more direct approach is to use measurements of defect dynamics coupled with quantitative models to predict mechanical properties. One such measurement is the ultrasonic internal friction as determined by resonance techniques. However, such techniques have limited applicability for testing structural materials, because the techniques require specimens to have free boundaries and, generally, regular geometry. In recent years, diffuse field ultrasound has been used to measure internal friction and shows promise for practical nondestructive materials characterization of irregularly shaped specimens. In this paper, the connection between the resonance and diffuse field techniques will be explored. In addition, measurements performed using these techniques will be compared to traditional pulse echo measurements of attenuation and back scattered grain noise to study the relative contributions of internal friction and scattering in copper and aluminum alloys.—This research was conducted while P. D. Panetta held a National Research Council Research Associateship.

  17. Enhanced ultrasonic characterization of assemblies, TLL_19

    SciTech Connect

    Chinn, D; Thomas, G

    1998-09-01

    Bonded joints, such as the autoclave bond, are critical to the performance of weapon systems. A nondestructive method to assess the integrity of these bonds is needed to certify the weapon for extended life. This project is developing ultrasonic technologies for bond quality assessment. Existing ultrasonic technology easily maps totally unbonded areas in a bond line but does not measure the quality of the bond. We are extracting information from the ultrasonic signals to quantify the mechanical. properties and assess the durability of the bond. Our approach is based on advanced signal processing and artificial intelligence techniques that process information from the ultrasonic signal after it interacts with the bondline. Computer algorithms recognize variations in bond quality from the acoustic signals. The ultrasonic signal processing and bond classification software will be installed on ultrasonic scanners at the appropriate sites.

  18. Enhanced ultrasonic characterization of assemblies, TLL 19

    SciTech Connect

    Chinn, D; Thomas, G.

    1998-09-01

    Bonded joints, such as the autoclave bond, are critical to the performance of weapon systems. A nondestructive method to assess the integrity of these bonds is needed to certify the weapon for extended life. This project is developing ultrasonic technologies for bond quality assessment. Existing ultrasonic technology easily maps totally unbonded areas in a bond line but does not measure the quality of the bond. We are extracting information from the ultrasonic signals to quantify the mechanical. properties and assess the durability of the bond. Our approach is based on advanced signal processing and artificial intelligence techniques that process information from the ultrasonic signal after it interacts with the bondline. Computer algorithms recognize variations in bond quality from the acoustic signals. The ultrasonic signal processing and bond classification software will be installed on ultrasonic scanners at the appropriate sites.

  19. Ultrasonic wave techniques and characterization of filled elastomers and biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Wu, Hsueh-Chang

    Ultrasonic wave technique is an excellent method for non-destructive testing and for the monitoring of polymer curing, fatigue damage and polymer transition. It is also a potentially effective tool to be applied in the characterization of high frequency viscoelastic properties of polymers. This research represents the effort to improve and further develop ultrasonic wave techniques and extend its applications to new material evaluation areas. The work is presented as followings: In chapter 1, the fundamental wave propagation theories and characterization of the viscoelastic properties of materials by acoustic parameters were briefly reviewed. In chapter 2, the effects of carbon black filler on the elastomers were studied by the longitudinal wave pulse-echo technique. It is found that the enhanced pulse-echo technique is able to characterize the effects of polymer base, filler loading level, type as well as temperature, on the acoustic properties of filled elastomers. In chapter 3, the application of longitudinal wave pulse-echo technique was extended to the monitoring of the degradation process of biodegradable polymers: poly (glycolic acid)(PGA), poly (lactic acid) (PLA) and their copolymer-poly(d,l-lactide-co-glycolide) (PDLLG). It shows that the pulse-echo technique is able to differentiate the effects of polymer structure and preparation method on the degradation behavior of biopolymers. In chapter 4, the Young's modulus, shear modulus, bulk modulus and Poisson ratio of carbon black filled elastomers were determined by the longitudinal wave pulse-echo method and the shear wave through-transmission method. The effects of polymer base, filler loading and dispersion on the elastomers were also studied by the calculated elastic constants. In chapter 5, the effects of carbon black filler on the elastomers were studied by an innovative calibrated longitudinal and shear wave surface impedance technique. The results show that the effects of polymer base, filler loading

  20. Designed strength identification of concrete by ultrasonic signal processing based on artificial intelligence techniques.

    PubMed

    Kim, Se-Dong; Shin, Dong-Hwan; Lim, Lea-Mook; Lee, Jin; Kim, Sung-Hwan

    2005-07-01

    This paper presents a pattern recognition method to identify the designed strength of concrete by evidence accumulation based on artificial intelligence techniques with multiple feature parameters. Concrete specimens in this experiment, which were designed to have the strengths of 180, 210, 240, 300, and 400 kg/cm2, respectively, have been considered. Variance, zero-crossing, mean frequency, autoregressive (AR) model coefficients, and linear cepstrum coefficients are extracted as feature parameters from ultrasonic signals of concretes. Pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy mapping function is introduced to transform the distance for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for concrete pattern identification. PMID:16212253

  1. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  2. Ultrasonic Interferometers Revisited

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2007-03-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers,2 and showed how ultrasonic transducers can be used for Fourier analysis.3 This time I became interested in trying the technique of using two detectors in acoustic interferometers instead of the usual one.

  3. An Enhanced Technique for Ultrasonic Flow Metering Featuring Very Low Jitter and Offset

    PubMed Central

    Hamouda, Assia; Manck, Otto; Hafiane, Mohamed Lamine; Bouguechal, Nour-Eddine

    2016-01-01

    This paper proposes a new, improved method for water flow metering. It applies to a transit time ultrasonic flow meter device. In principle, the flow of a given liquid in a pipe is obtained by measuring the transit times of an ultrasonic wave in the upstream and downstream directions. The difference between these times is, in theory, linearly proportional to the liquid flow velocity. However, the fainter the flow is, the smaller the transit time difference (TTD) is. This difference can be as low as a few picoseconds, which gives rise to many technical difficulties in measuring such a small time difference with a given accuracy. The proposed method relies on measuring the TTD indirectly by computing the phase difference between the steady-state parts of the received signals in the upstream and downstream directions and by using a least-square-sine-fitting technique. This reduces the effect of the jitter noise and the offset, which limit measurement precision at very low flow velocity. The obtained measurement results illustrate the robustness of the proposed method, as we measure the TTD at no-flow conditions, with a precision as low as 10 ps peak-to-peak and a TTD offset of zero, within a temperature range from room temperature to 80 °C. This allows us to reach a smaller minimum detectable flow when compared with previous techniques. The proposed method exhibits a better trade-off between measurement accuracy and system complexity. It can be completely integrated in an ASIC (application specific integrated circuit) or incorporated in a CPU- or micro-controller-based system. PMID:27367701

  4. An Enhanced Technique for Ultrasonic Flow Metering Featuring Very Low Jitter and Offset.

    PubMed

    Hamouda, Assia; Manck, Otto; Hafiane, Mohamed Lamine; Bouguechal, Nour-Eddine

    2016-01-01

    This paper proposes a new, improved method for water flow metering. It applies to a transit time ultrasonic flow meter device. In principle, the flow of a given liquid in a pipe is obtained by measuring the transit times of an ultrasonic wave in the upstream and downstream directions. The difference between these times is, in theory, linearly proportional to the liquid flow velocity. However, the fainter the flow is, the smaller the transit time difference (TTD) is. This difference can be as low as a few picoseconds, which gives rise to many technical difficulties in measuring such a small time difference with a given accuracy. The proposed method relies on measuring the TTD indirectly by computing the phase difference between the steady-state parts of the received signals in the upstream and downstream directions and by using a least-square-sine-fitting technique. This reduces the effect of the jitter noise and the offset, which limit measurement precision at very low flow velocity. The obtained measurement results illustrate the robustness of the proposed method, as we measure the TTD at no-flow conditions, with a precision as low as 10 ps peak-to-peak and a TTD offset of zero, within a temperature range from room temperature to 80 °C. This allows us to reach a smaller minimum detectable flow when compared with previous techniques. The proposed method exhibits a better trade-off between measurement accuracy and system complexity. It can be completely integrated in an ASIC (application specific integrated circuit) or incorporated in a CPU- or micro-controller-based system. PMID:27367701

  5. Quantitative detection of cerebral arteriosclerosis by means of the Doppler ultrasonic technique.

    PubMed

    Miyazaki, M

    1986-01-01

    A correlation between the continuity of the cerebral blood flow pattern and the cerebral vascular resistance (namely, cerebral arteriosclerosis) was investigated by the Doppler ultrasonic technique. The following facts were observed. Examination of the brachial blood flow pattern in circulatory stress, i.e., hand-grasping, brachial-binding, cold- and warm-stimulating tests revealed that the more the peripheral vascular resistance was increased, the more was the discontinuity of brachial blood flow pattern increased. Investigation of the continuity of the cerebral blood flow pattern (internal carotid artery) in 18 young healthy persons and 46 elderly patients with cerebral vascular diseases revealed a continuous pattern in all of the young persons, while the discontinuous pattern was frequently observed in the elderly patients. These findings suggest that the cerebral vascular resistance is more increased in the elderly patients than in the young persons. The cerebral blood flow pattern was classified into the following three types according to the continuity of the cerebral blood flow pattern: continuous, intermediate and discontinuous type, and the relation to the Continuous Index (CI), which was devised as an objective parameter of the continuity, was examined. The following CI figures were obtained: 110-200% in the young persons; in the elderly patients: continuous type, 120-185%; intermediate type, 85-135%; discontinuous type, 50-85%. From the above findings it is postulated that the Doppler ultrasonic technique is useful for the quantitative detection of cerebral arteriosclerosis, i.e., anticipation of cerebral vascular accidents, and for the discrimination between arteriosclerotic dementia and Alzheimer's disease. PMID:3525327

  6. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    NASA Astrophysics Data System (ADS)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  7. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-2, Operation of Ultrasonic Test Equipment.

    ERIC Educational Resources Information Center

    Espy, John

    This second in a series of six modules for a course titled Nondestructive Examination (NDE) II describes specific ultrasonic test techniques and calibration principles. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  8. Advances in procedural techniques--antegrade.

    PubMed

    Wilson, William; Spratt, James C

    2014-05-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the "hybrid' approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited "interventional" collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  9. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    NASA Technical Reports Server (NTRS)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  10. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  11. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  12. Crystallographic Orientation Determination of Hexagonal Structure Crystals by Laser Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Li, W.; Coulson, J.; Marrow, P.; Smith, R. J.; Lainé, S. J.; Clark, M.; Sharples, S. D.

    2016-01-01

    Spatially resolved acoustic spectroscopy (SRAS) is a laser ultrasonic technique that shows qualitative contrast between grains of different orientation, illustrating the sensitivity of acoustic waves to the material structure. The technique has been improved significantly on determining the full orientation of multigrain cubic metals, by comparing the measured surface acoustic wave (SAW) velocity to a pre-calculated model. In this paper we demonstrate the ability of this technique to determine the orientation of hexagonal structure crystals, such as magnesium and titanium based alloys. Because of the isotropy of the SAW velocity on the basal plane (0001) of hexagonal crystals, the slowness surface is shown as a circle. As the plane moves from (0001) towards (112¯0) or towards (101¯0), the slowness surface gradually turns into an oval. These acoustic properties increase the difficulty in orientation determination. The orientation results of a grade 1 commercially pure titanium by SRAS is presented, with comparison with electron backscattered diffraction (EBSD) results. Due to the nature of SAWs on hexagonal structure crystals, only the results of Euler angles 1 and 2 are discussed. The error between SRAS and EBSD is also investigated.

  13. Application of ultrasonic surface wave techniques for concrete bridge deck condition assessment

    NASA Astrophysics Data System (ADS)

    Li, Mengxing; Anderson, Neil; Sneed, Lesley; Maerz, Norbert

    2016-03-01

    Ultrasonic surface wave (USW) is a well-established technique for the performance monitoring of concrete structures. In order to investigate the capability and reliability of this technique for concrete bridge deck condition assessment, a portable seismic property analyzer (PSPA) with USW capabilities was used to assess the condition of a reinforced concrete bridge deck exhibiting visible evidence of significant deterioration. After the investigation was completed, variable thicknesses of concrete were removed from upper surface of the concrete deck by milling and hydrodemolition, with greater thickness being removed where the concrete was more deteriorated. The thickness of removed concrete during the hydrodemolition process was mapped by Light Detection and Ranging (LiDAR). A comparison of the thickness of concrete removed and the USW data indicates that there is a qualitative correlation between the USW results at each test location and the thickness of concrete removed at those same test locations. Results suggest that the PSPA, and comparable USW techniques, could be potentially effective for estimating the thicknesses of concrete that would be removed during milling and hydrodemolition, although more work is needed to study the relationship between USW and removal thickness data in order to be used for quantity estimations.

  14. Noninvasive Measurement of Acoustic Properties of Fluids Using Ultrasonic Interferometry Technique

    SciTech Connect

    Han, W.; Sinha, D.N.; Springer, K.N.; Lizon, D.C.

    1997-06-15

    A swept-frequency ultrasonic interferometry technique is used for noninvasively determining acoustic properties of fluids inside containers. Measurements over a frequency range 1-15 MHz on six liquid chemicals are presented. Measurements were made with the liquid inside standard rectangular optical glass cells and stainless steel cylindrical shells. A theoretical model based on one-dimensional planar acoustic wave propagation through multi-layered media is employed for the interpretation of the observed resonance (interference) spectrum. Two analytical methods, derived from the transmission model are used for determination of sound speed, sound attenuation coefficient, and density of liquids from the relative amplitude and half-power peak width of the observed resonance peaks. Effects of the container material and geometrical properties, path-length, wall thickness are also studied. This study shows that the interferometry technique and the experimental method developed are capable of accurate determination of sound speed, sound attenuation, and density in fluids completely noninvasively. It is a capable and versatile fluid characterization technique and has many potential NDE applications.

  15. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    SciTech Connect

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  16. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  17. Fracture detection in crystalline rock using ultrasonic reflection techniques: Volume 1

    SciTech Connect

    Palmer, S.P. )

    1982-11-01

    This research was initiated to investigate using ultrasonic seismic reflection techniques to detect fracture discontinuities in a granitic rock. Initial compressional (P) and shear (SH) wave experiments were performed on a 0.9 {times} 0.9 {times} 0.3 meter granite slab in an attempt to detect seismic energy reflected from the opposite face of the slab. It was found that processing techniques such as deconvolution and array synthesis could improve the standout of the reflection event. During the summers of 1979 and 1980 SH reflection experiments were performed at a granite quarry near Knowles, California. The purpose of this study was to use SH reflection methods to detect an in situ fracture located one to three meters behind the quarry face. These SH data were later analyzed using methods similar to those applied in the laboratory. Interpretation of the later-arriving events observed in the SH field data as reflections from a steeply-dipping fracture was inconclusive. 41 refs., 43 figs., 7 tabs.

  18. Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique.

    PubMed

    Franco, Ediguer E; Adamowski, Julio C; Buiochi, Flávio

    2010-05-01

    Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient's magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method. PMID:20442023

  19. A novel technique for micro-hole forming on skull with the assistance of ultrasonic vibration.

    PubMed

    Li, Zhe; Yang, Daoguo; Hao, Weidong; Wu, Tiecheng; Wu, Song; Li, Xiaoping

    2016-04-01

    Micro-hole opening on skull is technically challenging and is hard to realize by micro-drilling. Low-stiffness of the drill bit is a serious drawback in micro-drilling. To deal with this problem, a novel ultrasonic vibration assisted micro-hole forming technique has been developed. Tip geometry and vibration amplitude are two key factors affecting the performance of this hole forming technique. To investigate their effects, experiment was carried out with 300μm diameter tools of three different tip geometries at three different vibration amplitudes. Hole forming performance was evaluated by the required thrust force, dimensional accuracy, exit burr and micro-structure of bone tissue around the generated hole. Based on the findings from current study, the 60° conically tipped tool helps generate a micro-hole of better quality at a smaller thrust force, and it is more suitable for hole forming than the 120° conically tipped tool and the blunt tipped tool. As for the vibration amplitude, when a larger amplitude is used, a micro-hole of better quality and higher dimensional accuracy can be formed at a smaller thrust force. Findings from this study would lay a technical foundation for accurately generating a high-quality micro-hole on skull, which enables minimally invasive insertion of a microelectrode into brain for neural activity measuring. PMID:26698192

  20. PREFACE: 3rd International Symposium on Laser Ultrasonics and Advanced Sensing

    NASA Astrophysics Data System (ADS)

    2014-06-01

    Based on the use of laser as a coherent and intense light source, the photo-acoustics originated from the discovery made by Alexander Graham Bell was extended to laser-ultrasonics (LU), and it has been applied to wide area of ultrasonics, optics, material characterization and nondestructive inspection. In 1996, a research group for LU was started in the Japanese Society for Nondestructive Inspection (JSNDI), and researches on LU and related topics such as noncontact measurements and elastic wave theories were discussed. Similar activities were pursued also in North America and in Europe. The international symposium on LU was started in Montreal, Canada in 2008 by Jean Pierre Monchalin in order to offer a forum for involved with basic researches and industrial applications of LU. In the second symposium in Bordeaux, France nearly 120 papers were presented. It is our honor to have organized the third symposium, LU2013 on 25-28 June in Yokohama, Japan. The articles published here provide a sample of achievements presented there. In LU2013, we focused on the laser generation and/or detection of acoustic waves, application to nondestructive testing, ultrafast-optoacoustics and innovative instruments. Research achievements in biomedical applications, advanced sensing including noncontact, micro/nanoscale or nonlinear measurements, as well as theory and simulation of ultrasound were also included, considering the interdisciplinary nature of this field. We enjoyed very excellent and informative 3 plenary talks, 11 invited talks, 81 oral and 41 poster presentations with 168 attendees. According to requests, we organized a post deadline poster session to give an opportunity to present recent achievements after the deadline. Contributions of the participants, the scientific and organizing committees are highly appreciated. The conference tour was a dinner cruise to the Tokyo bay, and we hope this experience will remain as a pleasant memory in attendees. As decided in the

  1. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    PubMed

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  2. Hydrodynamic ultrasonic maxillary sinus lift: Review of a new technique and presentation of a clinical case

    PubMed Central

    Romero-Ruiz, Manuel M.; Torres-Lagares, Daniel; Pérez-Dorao, Beatriz; Wainwright, Marcel; Abalos-Labruzzi, Camilo; Gutiérrez-Pérez, José L.

    2012-01-01

    Objectives: Placing implants in the posterior maxillary area has the drawback of working with scarce, poor quality bone in a significant percentage of cases. Numerous advanced surgical techniques have been developed to overcome the difficulties associated with these limitations. Subsequent to reports on the elevation of the maxillary sinus through the lateral approach, there were reports on the use of the crestal approach, which is less aggressive but requires a minimal amount of bone. Furthermore, it is more sensitive to operator technique, as the integrity of the sinus membrane is checked indirectly. The aim of this paper is to review the technical literature on minimally invasive sinus lift and compare the advantages of different techniques with Intralift™, a new technique. Study Design: The present study is a review of techniques used to perform minimally invasive sinus lift published in Cochrane, Embase and Medline over the past ten years and the description of the crestal sinus lift technique based on minimally invasive piezosurgery, with the example of a case report. Results: Only eight articles were found on minimally invasive techniques for sinus lift. The main advantage of this new technique, Intralift, is that it does not require a minimum amount of crestal bone (indeed, the smaller the width of the crestal bone, the better this technique is performed). The possibility of damage to the sinus membrane is minimised by using ultrasound based hydrodynamic pressure to lift it, while applying a very non-aggressive crestal approach. Conclusions: We believe that this technique is an advance in the search for less traumatic and aggressive techniques, which is the hallmark of current surgery. Key words: Sinus lift, surgical technique, minimally invasive surgery, ultrasound surgery. PMID:22143696

  3. Lamb Wave Helical Ultrasonic Tomography

    NASA Astrophysics Data System (ADS)

    Leonard, K. R.; Hinders, M. K.

    2004-02-01

    Ultrasonic guided waves have been used for a wide variety of ultrasonic inspection techniques. We describe here a new variation called helical ultrasound tomography (HUT). This new technique, among other things, has direct application to advanced pipe inspection. HUT uses guided ultrasonic waves along with an adaptation of the tomographic reconstruction algorithms developed by seismologists for what they call "cross borehole" tomography. In HUT, the Lamb-like guided waves travel in various helical crisscross paths between two parallel circumferential transducer arrays instead of the planar crisscross seismic paths between two boreholes. Although the measurement itself is fairly complicated, the output of the tomographic reconstruction is a readily interpretable map of a quantity of interest such as pipe wall thickness. We demonstrate the feasibility of the HUT technique via laboratory scans on steel pipe segments into which controlled thinnings have been introduced.

  4. Advanced Numerical Modeling of the Dispersion of Ceramic Nanoparticles during Ultrasonic Cavitation Processing and Solidification of 6061-based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Nastac, L.

    2015-06-01

    The metal-matrix-nano-composites (MMNCs) in this study consist of a 6061 alloy matrix reinforced with 1.0 wt.% SiC 50 nm diameter nanoparticles that are dispersed uniformly within the matrix in large volume using an ultrasonic cavitation dispersion technique (UCDS) available in the Solidification Laboratory at UA. The required ultrasonic parameters to achieve the required cavitation for adequate degassing and refining of the aluminium alloy as well as the fluid flow characteristics for uniform dispersion of the nanoparticles into the 6061 matrix are being investigated in this study by using an in-house developed CFD ultrasonic cavitation model. The multiphase CFD model accounts for turbulent fluid flow, heat transfer and solidification as well as the complex interaction between the solidifying alloy and nanoparticles by using the Ansys's Fluent Dense Discrete Phase Model (DDPM) and a particle engulfment and pushing (PEP) model. The PEP model accounts for the Brownian motion. SEM analysis was performed on the as-cast MMNC coupons processed via UCDS and confirmed the distribution of the nanoparticles predicted by the current CFD model. A parametric study was performed using the validated CFD model. The study includes the effects of magnitude of the fluid flow and ultrasonic probe location (gravity direction).

  5. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  6. Determination of correlation functions of turbulent velocity and sound speed fluctuations by means of ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Andreeva, Tatiana A.; Durgin, William W.

    2011-12-01

    An experimental study of the propagation of high-frequency acoustic waves through grid-generated turbulence by means of an ultrasound technique is discussed. Experimental data were obtained for ultrasonic wave propagation downstream of heated and non-heated grids in a wind tunnel. A semi-analytical acoustic propagation model that allows the determination of the spatial correlation functions of the flow field is developed based on the classical flowmeter equation and the statistics of the travel time of acoustic waves traveling through the kinematic and thermal turbulence. The basic flowmeter equation is reconsidered in order to take into account sound speed fluctuations and turbulent velocity fluctuations. It allows deriving an integral equation that relates the correlation functions of travel time, sound speed fluctuations and turbulent velocity fluctuations. Experimentally measured travel time statistics of data with and without grid heating are approximated by an exponential function and used to analytically solve the integral equation. The reconstructed correlation functions of the turbulent velocity and sound speed fluctuations are presented. The power spectral density of the turbulent velocity and sound speed fluctuations are calculated.

  7. Recent Advances in Beam Diagnostic Techniques

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  8. Dystocia in late labor: determining fetal position by clinical and ultrasonic techniques.

    PubMed

    Rayburn, W F; Siemers, K H; Legino, L J; Nabity, M R; Anderson, J C; Patil, K D

    1989-07-01

    A failure of adequate progression during late labor occurs often and may prohibit an accurate determination of the fetal head position from scalp edema or caput formation. This investigation was undertaken to determine whether ultrasonic evaluation could confirm or correct the digital examination impressions of the fetal head position. Eighty-six attempted vaginal deliveries had recent evidence for arrested cervical dilation after 7 cm or more. An occiput transverse position in 24 (28%) cases was diagnosed accurately, with the need for additional ultrasonic information only in the presence of scalp edema. Distinguishing between a persistent occiput posterior (15 cases, 17%) or anterior (47 cases, 55%) position was often inexact by palpation alone. Combined clinical and ultrasonic impressions allowed for a significantly more precise diagnosis. Ultrasonic imaging allowed for more security while waiting, more confidence with midforceps application, or a prompter decision for cesarean section, depending on the head position. PMID:2659012

  9. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Technical Reports Server (NTRS)

    Tiwari, Anil

    1995-01-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model

  10. Advances in laparoscopic urologic surgery techniques

    PubMed Central

    Abdul-Muhsin, Haidar M.; Humphreys, Mitchell R.

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  11. Advances in laparoscopic urologic surgery techniques.

    PubMed

    Abdul-Muhsin, Haidar M; Humphreys, Mitchell R

    2016-01-01

    The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology. PMID:27134743

  12. Ultrasonic technology improves drill cuttings disposal

    SciTech Connect

    Avern, N.; Copercini, A.

    1997-07-01

    Advancements are being made by employing ultrasonics for onsite cuttings size reduction for slurrification prior to disposal. The size reduction proficiency of this new ultrasonics slurrification system as a medium to reduce the particle size of drill cuttings presents operators with a system that can enhance existing disposal techniques. This article presents results from a recent field trial, where ultrasonic processors were used to Agip (UK) Limited to reduce the particle size of drill cuttings prior to disposal into the water column and natural dispersement.

  13. Micromachining Techniques in Developing High-Frequency Piezoelectric Composite Ultrasonic Array Transducers

    PubMed Central

    Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  14. Advance crew procedures development techniques: Procedures generation program requirements document

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.

    1974-01-01

    The Procedures Generation Program (PGP) is described as an automated crew procedures generation and performance monitoring system. Computer software requirements to be implemented in PGP for the Advanced Crew Procedures Development Techniques are outlined.

  15. Advanced airfoil design empirically based transonic aircraft drag buildup technique

    NASA Technical Reports Server (NTRS)

    Morrison, W. D., Jr.

    1976-01-01

    To systematically investigate the potential of advanced airfoils in advance preliminary design studies, empirical relationships were derived, based on available wind tunnel test data, through which total drag is determined recognizing all major aircraft geometric variables. This technique recognizes a single design lift coefficient and Mach number for each aircraft. Using this technique drag polars are derived for all Mach numbers up to MDesign + 0.05 and lift coefficients -0.40 to +0.20 from CLDesign.

  16. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  17. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Bendjedidi, H.; Attaf, A.; Saidi, H.; Aida, M. S.; Semmari, S.; Bouhdjar, A.; Benkhetta, Y.

    2015-12-01

    Transparent conducting n-type SnO2 semiconductor films were fabricated by employing an inexpensive, simplified spray ultrasonic technique using an ultrasonic generator at deferent substrate temperatures (300, 350, 400, 450 and 500 °C). The structural studies reveal that the SnO2 films are polycrystalline at 350, 400, 450, 500 °C with preferential orientation along the (200) and (101) planes, and amorphous at 300 °C. The crystallite size of the films was found to be in the range of 20.9-72.2 nm. The optical transmittance in the visible range and the optical band gap are 80% and 3.9 eV respectively. The films thicknesses were varied between 466 and 1840 nm. The resistivity was found between 1.6 and 4 × 10-2 Ω·cm. This simplified ultrasonic spray technique may be considered as a promising alternative to a conventional spray for the massive production of economic SnO2 films for solar cells, sensors and opto-electronic applications.

  18. Advanced analysis techniques for uranium assay

    SciTech Connect

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.; Beard, C. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  19. Nondestructive Evaluation of Adhesively Bonded Joints by Acousto-Ultrasonic Technique and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    Reliable applications of adhesively bonded joints require an effective nondestructive evaluation technique for their bond strength prediction. To properly evaluate factors affecting bond strength, effects of defects such as voids and disbonds on stress distribution in the overlap region must be understood. At the same time, in order to use acousto-ultrasonic (AU) technique to evaluate bond quality, the effect of these defects on dynamic response of single lap joints must be clear. The stress distribution in a single lap joint with and without defects (void or disbond) is analyzed. A bar-Theta parameter which contains adherend and adhesive thickness and properties is introduced. It is shown for bonded joints with bar-Theta greater than 10, that a symmetric void or disbond in the middle of overlap up to the 70 percent of overlap length has negligible effect on bond strength. In contrast frequency response analyses by a finite element technique showed that the dynamic response is affected significantly by the presence of voids or disbonds. These results have direct implication in the interpretations of AU results. Through transmission attenuation and a number of AU parameters for various specimens with and without defects are evaluated. It is found that although void and disbond have similar effects on bond strength (stress distribution), they have completely different effects on wave propagation characteristics. For steel-adhesive-steel specimens with voids, the attenuation changes are related to the bond strength. However, the attenuation changes for specimens with disbond are fairly constant over a disbond range. In order to incorporate the location of defects in AU parameters, a weighting function is introduced. Using an immersion system with focused transducers, a number of AU parameters are evaluated. It is found that by incorporating weighting functions in these parameters better sensitivities (AU parameters vs. bond strength) are achieved. Acoustic emission

  20. Real-time measurement of ice growth during simulated and natural icing conditions using ultrasonic pulse-echo techniques

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.; Kirby, M. S.

    1986-01-01

    Results of tests to measure ice accretion in real-time using ultrasonic pulse-echo techniques are presented. Tests conducted on a 10.2 cm diameter cylinder exposed to simulated icing conditions in the NASA Lewis Icing Research Tunnel and on an 11.4 cm diameter cylinder exposed to natural icing conditions in flight are described. An accuracy of + or - 0.5 mm is achieved for real-time ice thickness measurements. Ice accretion rate is determined by differentiating ice thickness with respect to time. Icing rates measured during simulated and natural icing conditions are compared and related to icing cloud parameters. The ultrasonic signal characteristics are used to detect the presence of surface water on the accreting ice shape and thus to distinguish between dry ice growth and wet growth. The surface roughness of the accreted ice is shown to be related to the width of the echo signal received from the ice surface.

  1. Recent advances in DNA sequencing techniques

    NASA Astrophysics Data System (ADS)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  2. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  3. Implementation and validation of an ultrasonic tissue characterization technique for quantitative assessment of normal-tissue toxicity in radiation therapy

    SciTech Connect

    Zhou Jun; Zhang Pengpeng; Osterman, K. Sunshine; Woodhouse, Shermian A.; Schiff, Peter B.; Yoshida, Emi J.; Lu Zheng Feng; Pile-Spellman, Eliza R.; Kutcher, Gerald J.; Liu Tian

    2009-05-15

    The goal of this study was to implement and validate a noninvasive, quantitative ultrasonic technique for accurate and reproducible measurement of normal-tissue toxicity in radiation therapy. The authors adapted an existing ultrasonic tissue characterization (UTC) technique that used a calibrated 1D spectrum based on region-of-interest analysis. They modified the calibration procedure by using a reference phantom instead of a planar reflector. This UTC method utilized ultrasonic radio-frequency echo signals to generate spectral parameters related to the physical properties (e.g., size, shape, and relative acoustic impedance) of tissue microstructures. Three spectral parameters were investigated for quantification of normal-tissue injury: Spectral slope, intercept, and midband fit. They conducted a tissue-mimicking phantom study to verify the reproducibility of UTC measurements and initiated a clinical study of radiation-induced breast-tissue toxicity. Spectral parameter values from measurements on two phantoms were reproducible within 1% of each other. Eleven postradiation breast-cancer patients were studied and significant differences between the irradiated and untreated (contralateral) breasts were observed for spectral intercept (p=0.003) and midband fit (p<0.001) but not for slope (p=0.14). In comparison to the untreated breast, the average difference in the spectral intercept was 2.99{+-}0.75 dB and the average difference in the midband fit was 3.99{+-}0.65 dB. The preliminary clinical study demonstrated the feasibility of using the quantitative ultrasonic method to evaluate normal-tissue toxicity in radiation therapy.

  4. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.

    PubMed

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen

    2016-05-01

    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. PMID:26921559

  5. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  6. Evaluation of Advanced Retrieval Techniques in an Experimental Online Catalog.

    ERIC Educational Resources Information Center

    Larson, Ray R.

    1992-01-01

    Discusses subject searching problems in online library catalogs; explains advanced information retrieval (IR) techniques; and describes experiments conducted on a test collection database, CHESHIRE (California Hybrid Extended SMART for Hypertext and Information Retrieval Experimentation), which was created to evaluate IR techniques in online…

  7. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  8. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.

    PubMed

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Escolà, Alexandre

    2011-01-01

    Canopy characterization is a key factor to improve pesticide application methods in tree crops and vineyards. Development of quick, easy and efficient methods to determine the fundamental parameters used to characterize canopy structure is thus an important need. In this research the use of ultrasonic and LIDAR sensors have been compared with the traditional manual and destructive canopy measurement procedure. For both methods the values of key parameters such as crop height, crop width, crop volume or leaf area have been compared. Obtained results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy. Good correlations have been obtained between crop volume (C(VU)) values measured with ultrasonic sensors and leaf area index, LAI (R(2) = 0.51). A good correlation has also been obtained between the canopy volume measured with ultrasonic and LIDAR sensors (R(2) = 0.52). Laser measurements of crop height (C(HL)) allow one to accurately predict the canopy volume. The proposed new technologies seems very appropriate as complementary tools to improve the efficiency of pesticide applications, although further improvements are still needed. PMID:22319405

  9. Ultrasonic and LIDAR Sensors for Electronic Canopy Characterization in Vineyards: Advances to Improve Pesticide Application Methods

    PubMed Central

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Escolà, Alexandre

    2011-01-01

    Canopy characterization is a key factor to improve pesticide application methods in tree crops and vineyards. Development of quick, easy and efficient methods to determine the fundamental parameters used to characterize canopy structure is thus an important need. In this research the use of ultrasonic and LIDAR sensors have been compared with the traditional manual and destructive canopy measurement procedure. For both methods the values of key parameters such as crop height, crop width, crop volume or leaf area have been compared. Obtained results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy. Good correlations have been obtained between crop volume (CVU) values measured with ultrasonic sensors and leaf area index, LAI (R2 = 0.51). A good correlation has also been obtained between the canopy volume measured with ultrasonic and LIDAR sensors (R2 = 0.52). Laser measurements of crop height (CHL) allow one to accurately predict the canopy volume. The proposed new technologies seems very appropriate as complementary tools to improve the efficiency of pesticide applications, although further improvements are still needed. PMID:22319405

  10. Detection of porosity in glass ceramic matrix composites using an ultrasonic multiple-gate C-scan technique

    SciTech Connect

    Stubbs, D.A.; Zawada, L.P.

    1996-07-01

    Ceramic matrix composite (CMC) plates consisting of silicon carbide fibers in a barium magnesium aluminosilicate matrix (SiC/BMAS) were obtained for mechanical and thermal properties characterization. Each plate had dimensions of 150 x 150 x 3 mm (6 x 6 x 0.12 in.) from which mechanical test specimens, each 150 mm (6 in.) long, were to be cut. To ensure that the material was properly consolidated and free of porosity, the plates were inspected using an ultrasonic multiple-gate C-scan technique previously developed for graphite epoxy composites. This technique allowed the placement of multiple peak-detection gates between the front and back surface echoes on the A-scan signal. Because each gate recorded the amplitude variation for a very narrow time-of-flight range, the frequent fluctuations in signal amplitude due to the inhomogeneity of the material affected one or two gates at times, while the other gates remained sensitive to small amplitude signals from defects. The increased sensitivity allowed the detection of very small material defects such as porosity. Using this technique for each plate revealed an isolated area of manufacturing abnormalities, presumed to be porosity, near the center of one plate. Based on the C-scan information, the pattern for cutting out the mechanical test specimens was altered and the region containing the abnormalities was sectioned, polished, and optically inspected. Optical microscopy clearly showed extensive porosity and a region of poor consolidation in the matrix material at the depth indicated by the C-scans. Details of the multiple-gate ultrasonic C-scan technique, results of the ultrasonic evaluation, and destructive analysis are discussed.

  11. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S.

    2005-04-12

    A system for determining a property of a fluid based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum including a diffraction order equal to zero exhibits a peak whose location is used to determine speed of sound in the fluid. A separate measurement of the acoustic impedance is combined with the determined speed of sound to yield a measure of fluid density. A system for determining acoustic impedance includes an ultrasonic transducer on a first surface of a solid member, and an opposed second surface of the member is in contact with a fluid to be monitored. A longitudinal ultrasonic pulse is delivered through the solid member, and a multiplicity of pulse echoes caused by reflections of the ultrasonic pulse between the solid-fluid interface and the transducer-solid interface are detected. The decay rate of the detected echo amplitude as a function of echo number is used to determine acoustic impedance.

  12. Investigating Ultrasonic Diffraction Grating Spectroscopy and Reflection Techniques for Characterizing Slurry Properties

    SciTech Connect

    Burgess, L.W.; Brodsky, A.M.

    2005-12-15

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks. This waste, in the form of slurries, must be transferred and processed to a final form, such as glass logs. On-line instrumentation to measure the properties of these slurries in real-time during transport is needed in order to prevent plugging and reduce excessive dilution. The results, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington to develop a completely new method for using ultrasonics to measure the particle size and viscosity of a slurry. The concepts are based on work in optics on grating-light-reflection spectroscopy (GLRS) at the University of Washington and work on ultrasonic diffraction grating spectroscopy (UDGS) carried out at PNNL. The objective of the research was to extend the GLRS theory for optics to ultrasonics, and to demonstrate its capabilities of UDGS. The proposed ultrasonic method could result in an instrument that would be simple, rugged, and very compact, allowing it to be implemented as part of a pipeline wall at facilities across the DOE complex

  13. Advances in gamma titanium aluminides and their manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal; Radhakrishnan, Ramachandran; Wereley, Norman M.

    2012-11-01

    Gamma titanium aluminides display attractive properties for high temperature applications. For over a decade in the 1990s, the attractive properties of titanium aluminides were outweighed by difficulties encountered in processing and machining at room temperature. But advances in manufacturing technologies, deeper understanding of titanium aluminides microstructure, deformation mechanisms, and advances in micro-alloying, has led to the production of gamma titanium aluminide sheets. An in-depth review of key advances in gamma titanium aluminides is presented, including microstructure, deformation mechanisms, and alloy development. Traditional manufacturing techniques such as ingot metallurgy and investment casting are reviewed and advances via powder metallurgy based manufacturing techniques are discussed. Finally, manufacturing challenges facing gamma titanium aluminides, as well as avenues to overcome them, are discussed.

  14. The precision of bacterial quantification techniques on different kinds of environmental samples and the effect of ultrasonic treatment.

    PubMed

    Böllmann, Jörg; Rathsack, Kristina; Martienssen, Marion

    2016-07-01

    The precision of cell number quantification in environmental samples depends on the complexity of the sample and on the applied technique. We compared fluorescence microscopy after filtration, quantification of gene copies and the cultivation based most probable number technique for their precision. We further analyzed the effect of increasing complexity of the sample material on the precision of the different methods by using pure cultures of Pseudomonas aeruginosa, fresh water samples and sediment slurries with and without ultrasonic treatment for analyses. Microscopy reached the highest precision, which was similar between pure cultures and water samples, but lower for sediment samples due to a higher percentage of cells in clusters and flocks. The PCR based quantification was most precise for pure cultures. Water and sediment samples were similar but less precise, which might be caused by the applied DNA extraction techniques. MPN measurements were equally precise for pure cultures and water samples. For sediment slurries the precision was slightly lower. The applied ultrasonic treatment of the slurries dispersed the cell clusters and flocks, increased the precision of microscopical and MPN measurements and also increased the number of potential colony forming units. However, the culturable cell number decreased by half. For MPN quantification of viable cells in samples with a high proportion of clustered cells we therefore recommend an optimization of ultrasonic treatment and a confirmation by microscopy and cultivation to reach highest possible dispersion of the cells with a minimum of inactivation. As a result of these observations we suggest a correction factor for MPN measurements to consider the effect of sonication on complex samples. The results are most likely applicable to other complex samples such as soil or biofilms. PMID:27184085

  15. The application of advanced analytical techniques to direct coal liquefaction

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1991-12-31

    Consol is coordinating a program designed to bridge the gap between the advanced, modern techniques of the analytical chemist and the application of those techniques by the direct coal liquefaction process developer, and to advance our knowledge of the process chemistry of direct coal liquefaction. The program is designed to provide well-documented samples to researchers who are utilizing techniques potentially useful for the analysis of coal derived samples. The choice of samples and techniques was based on an extensive survey made by Consol of the present status of analytical methodology associated with direct coal liquefaction technology. Sources of information included process developers and analytical chemists. Identified in the survey are a number of broadly characterizable needs. These categories include a need for: A better understanding of the nature of the high molecular weight, non-distillable residual materials (both soluble and insoluble) in the process streams; improved techniques for molecular characterization, heteroatom and hydrogen speciation and a knowledge of the hydrocarbon structural changes across coal liquefaction systems; better methods for sample separation; application of advanced data analysis methods; the use of more advanced predictive models; on-line analytical techniques; and better methods for catalyst monitoring.

  16. Nondestructive evaluation of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Kautz, Harold E.

    1988-01-01

    A review is presented of Lewis Research Center efforts to develop nondestructive evaluation techniques for characterizing advanced ceramic materials. Various approaches involved the use of analytical ultrasonics to characterize monolythic ceramic microstructures, acousto-ultrasonics for characterizing ceramic matrix composites, damage monitoring in impact specimens by microfocus X-ray radiography and scanning ultrasonics, and high resolution computed X-ray tomography to identify structural features in fiber reinforced ceramics.

  17. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  18. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines. PMID:18357673

  19. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  20. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel. [PWR

    SciTech Connect

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed.

  1. Characterization of the syneresis and the firmness of the milk gel using an ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Taifi, N.; Bakkali, F.; Faiz, B.; Moudden, A.; Maze, G.; Décultot, D.

    2006-02-01

    A non-invasive ultrasonic method was used to control the change in physical properties of milk gel and the syneresis, which is an essential step in the manufacture of cheese. The velocity and the attenuation were recorded for ten hours. They provide a good indicator of syneresis occurring. The firmness of the milk gel increases with the variation in velocity (ΔV). The effects of the temperature, calcium chloride and rennet concentration on the syneresis were studied.

  2. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement.

    PubMed

    Rajzer, Izabella; Piekarczyk, Wojciech; Castaño, Oscar

    2016-10-01

    An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.e. the Young's modulus (E), the Poisson ratio (ν) and the shear modulus (G)), and to determine the degree of anisotropy of wave velocity in the samples. A strong advantage of the proposed method is that it is non-destructive, and the same sample can be used to monitor the whole process of the cement setting. The testing was performed on premixed and injectable calcium phosphate (CPC)/chitosan blend, where glycerol was used as a liquid phase. Comparisons between ultrasonic velocity and empirical tests such as compressive strength, porosity measurement, FTIR, SEM and XRD analysis at different days of immersion in Ringer's solutions showed that the ultrasonic velocity can be very useful to provide in situ information about changes occurring within the cement. PMID:27287094

  3. Ultrasonic Technique in Characterization of the Grid-Generated Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Andreeva, Tatiana; Durgin, William

    2002-11-01

    Ultrasonic time-of-flight method using dual transducers is utilized to determine some characteristics of grid-generated turbulent flow produced in a wind tunnel. The ultrasonic flowmeter equation is reconsidered, where the effects of turbulent velocity and sound speed fluctuations are included. The result is an integral equation for the corresponding correlation functions. The influence of temperature inhomogeneous on ultrasonic wave propagation is investigated using a set of experiments with a heated grid. In this paper experimentally measured travel time data are used to solve integral equation analytically in terms of correlation functions of turbulent velocity and sound speed fluctuations, and demonstrate qualitatively and quantitatively effect of turbulence on ultrasound wave propagation. First, the auto-correlation function of the travel time is constructed experimentally and is an integral of the unknown auto-correlation function of turbulent velocity. Such a relationship is known as the 2D Volterra integral equation and can be solved numerically to find the unknown auto-correlation functions of turbulent velocity and sound speed fluctuations. This leads to a new method of finding a spectral density of turbulent velocity from the flowmeter equation.

  4. Ultrasonic ablation as a novel technique for producing pure aluminium nanoparticles dispersed in different liquids for different applications

    NASA Astrophysics Data System (ADS)

    Ismail, Yasser A. M.; Kishi, Naoki; Soga, Tetsuo

    2015-07-01

    In this paper, we introduce a novel physical method for producing surfactant-free aluminium nanoparticles (Al NPs) by irradiating ultrasonic waves on Al thin films immersed in different liquids used for different applications. We suggest naming this techniqueultrasonic ablation”. Our method has many advantages compared with other chemical and physical methods such as (1) fabrication of Al NPs using low-cost and easy procedures, (2) fabrication of pure Al NPs without any chemical additives, (3) fabrication of Al NPs dispersed in different liquids used for different applications, and (4) fabrication of individual Al NPs without aggregations. We have prepared Al NPs in 1,2-dichlorobenzene, which is used as a solvent for preparing active layer solutions of organic solar cells (OSCs), poly(3,4-ethylenedioxythiophene)-blend-poly(styrene sulfonate) (PEDOT:PSS), which is a representative aqueous solution used as a buffer layer in OSCs, and ethanol, which is a representative polar solvent used for different applications. Scanning electron microscopy (SEM) and optical absorption techniques have verified the fabrication of individual and surfactant-free Al NPs dispersed in different liquids that can be safely used in different applications.

  5. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  6. Development of the elastic wave velocity measurement technique by the ultrasonic method to lower mantle condition

    NASA Astrophysics Data System (ADS)

    Higo, Y.; Funakoshi, K.; Irifune, T.

    2012-12-01

    Elastic property of the major constituent minerals (e.g. Mg-perovskite, (Mg,Fe)O, Ca-perovskite) under high pressure and temperature is important for the fundamental study of geochemical and geophysical behavior of the lower mantle. However, the measurement of the elastic wave velocity has been limited to relatively low pressure and temperature conditions, because the observed signal from the small sample is too weak to determine the precise ultrasonic velocity. In this study, we improved the ultrasonic measurement system to obtain the elastic wave velocity in the lower mantle region, installing the high frequency waveform generator, the post amplifier and the semiconductor with a high-speed relay in the Kawai-type multi-anvil apparatus (SPEED-1500) at SPring-8. A pure polycrystalline alumina (alpha-Al2O3) rod was used as the test sample, because alumina is a very hard and stable material under high pressure and temperature conditions. We successfully obtained the elastic wave velocities of alumina up to 30 GPa and 1873 K, corresponding to the lower mantle P-T conditions. A linear fitting for the obtained elastic data yielded the following parameters: K0S = 254.6 GPa,∂KS/∂P = 4.07, ∂KS/∂T =-0.018 GPaK-1, G= 162.1 GPa, ∂G/∂P = 1.67, and ∂G/∂T =-0.020 GPaK-1, which were in good agreement with the previous studies (Kung et al. 2000: 10 GPa & 300 K, Goto et al. 1989: 0 GPa & 1800 K). More recently, higher pressure ultrasonic measurements of Mg-perovskite have been started, combined with the sintered diamond anvils. In this presentation, the elastic property of Mg-perovskite in the lower mantle region will also be discussed.

  7. Compatibility and thermal studies of blends of PMMA 350000 in 1,4-dioxane by ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Padmanaban, R.; Girivel, S.; Venkatramanan, K.

    2016-05-01

    The scientific and commercial progress in the area of polymer blends during the past two decades has been tremendous and was driven by the realization that new molecules are not always required to meet the needs of new materials and that blending can usually be implemented to meet the needs of new materials more rapidly and economically than the development of new chemistry. In the present study, activation energy of Poly(methyl methacrylate) (molar mass 350000) in 1,4-Dioxane is determined using viscometry technique. PMMA 350000 is blended with PS 35000 and the miscibility nature of the blend is analysed by ultrasonic velocity, density, viscosity and refractive index techniques at 303K. Molecular interaction properties of the blend is also discussed.

  8. Altered Apical Morphology (Reverse Architecture): Use of Indirect Ultrasonic Technique for Orthograde MTA Placement in Maxillary Premolars

    PubMed Central

    Sonali, Kapoor; Suresh, Agrawal Vineet; Abhishek, Patel; Jenish, Patel

    2016-01-01

    Aim. To report the management and orthograde technique of MTA placement in case of reverse architecture maxillary premolars. Summary. Two cases of 17-year-old and 21-year-old female patients were referred to endodontic speciality for management of maxillary premolar having reverse architecture with wide immature open apex like a bell mouth. In both the cases, after control of intraradicular infection, it was decided to use MTA for apexification and obturation of canals. Orthograde placement of MTA is a challenging procedure in terms of length control and condensation especially in divergent irregular reverse architecture wide open apex. A novel technique with the help of finger plugger, sterilized paper point, and ultrasonic agitation for 3D compaction of MTA at apical reverse architecture was used. Thickening of the canal wall and complete apical closure were confirmed one year after the treatment. PMID:27313910

  9. An Efficient Algorithm Embedded in an Ultrasonic Visualization Technique for Damage Inspection Using the AE Sensor Excitation Method

    PubMed Central

    Liu, Yaolu; Goda, Riu; Samata, Kiyoshi; Kanda, Atsushi; Hu, Ning; Zhang, Jianyu; Ning, Huiming; Wu, Liangke

    2014-01-01

    To improve the reliability of a Lamb wave visualization technique and to obtain more information about structural damages (e.g., size and shape), we put forward a new signal processing algorithm to identify damage more clearly in an inspection region. Since the kinetic energy of material particles in a damaged area would suddenly change when ultrasonic waves encounter the damage, the new algorithm embedded in the wave visualization technique is aimed at monitoring the kinetic energy variations of all points in an inspection region to construct a damage diagnostic image. To validate the new algorithm, three kinds of surface damages on the center of aluminum plates, including two non-penetrative slits with different depths and a circular dent, were experimentally inspected. From the experimental results, it can be found that the new algorithm can remarkably enhance the quality of the diagnostic image, especially for some minor defects. PMID:25356647

  10. Ultrasonic propagation: a technique to reveal field induced structures in magnetic nanofluids.

    PubMed

    Parekh, Kinnari; Patel, Jaykumar; Upadhyay, R V

    2015-07-01

    The paper reports the study of magnetic field induced structures in magnetic nanofluid investigated through ultrasonic wave propagation. Modified Tarapov's theory is used to study variation in velocity anisotropy with magnetic field. The types of field induced structures depend upon the chemical structure of the carrier in which magnetic nanoparticles are dispersed. Our study indicates formation of fractals and chain respectively, in transformer oil and kerosene based fluid. This difference is explained on the basis of particle-particle interaction and particle-medium interaction. PMID:25791205

  11. Advanced signal processing technique for damage detection in steel tubes

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel Kumar; Dao, Cac Minh; Dao, Kiet; Kundu, Tribikram

    2016-04-01

    In recent years, ultrasonic guided waves gained attention for reliable testing and characterization of metals and composites. Guided wave modes are excited and detected by PZT (Lead Zirconate Titanate) transducers either in transmission or reflection mode. In this study guided waves are excited and detected in the transmission mode and the phase change of the propagating wave modes are recorded. In most of the other studies reported in the literature, the change in the received signal strength (amplitude) is investigated with varying degrees of damage while in this study the change in phase is correlated with the extent of damage. Feature extraction techniques are used for extracting phase and time-frequency information. The main advantage of this approach is that the bonding condition between the transducer and the specimen does not affect the phase while it can affect the strength of recorded signal. Therefore, if the specimen is not damaged but the transducer-specimen bonding is deteriorated then the received signal strength is altered but the phase remains same and thus false positive predictions for damage can be avoided.

  12. X-radiography, XRD and Ultrasonic Data Transfer Function Technique - Simultaneous Measurements Under Simulated Mantle Conditions in a Multi-Anvil Device

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lathe, C.

    2004-05-01

    The interpretation of seismic data from the Earth's deep interior requires measurements of the physical properties of Earth materials under experimental simulated mantle conditions. Elastic wave velocity measurement is an important tool for the determination of the elastic properties. Ultrasonic interferometry allows the highly precise travel time measurement at a sample enclosed in a high-pressure multi-anvil device. But the calculation of wave velocities requires the exact sample length under in situ conditions. There are two options - scanning the interfaces of the sample by XRD (Mueller et al., 2003) and X-radiography (Li et al., 2001). The multi-anvil apparatus MAX80 is equipped for both methods. Only the X-radiography is fast enough for transient measurements. Contrary to XRD measurements, imaging the sample by X-rays requires a beam diameter larger than the sample length. Therefore the fixed primary slits of Max80 were exchanged by 4-blade high precision slits of Advanced Design Consulting, Inc. A Ce-YAG-crystal converts the X-ray image to an optical one, redirected by a mirror and captured by a CCD-camera. To derive the sample length, the different brightness of sample, buffer rod and reflector at the electronic image is evaluated. Classical ultrasonic interferometry is very time consuming, because the ultrasonic waves of the frequency range under study are generated and detected one after another with a given step rate. A 60 MHz frequency sweep with 100 kHz steps lasts for more than 30 minutes. This is a serious limitation for all transient measurements, but also limits the data collection at elevated temperatures to prevent the pressure transmitting boron epoxy cubes and the anvils from overheating. The ultrasonic transfer function technique (UTF), first described by Li et al. (2002), generates all the frequencies simultaneously. Related to the results and experiences of Li the UTF-technique was developed independently at GFZ. This version allows to

  13. Voigt, Reuss, Hill, and self-consistent techniques for modeling ultrasonic scattering

    NASA Astrophysics Data System (ADS)

    Kube, Christopher M.; Turner, Joseph A.

    2015-03-01

    An elastic wave propagating in a metal loses a portion of its energy from scattering caused by acoustic impedance differences existing at the boundaries of anisotropic grains. Theoretical scattering models capture this phenomena by assuming the incoming wave is described by an average elastic moduli tensor Cijkl0(x) that is perturbed by a grain with elasticity Cijkl(x') where the scattering event occurs when x = x'. Previous models have assumed that Cijkl0(x) is the Voigt average of the single-crystal elastic moduli tensor. However, this assumption may be incorrect because the Voigt average overestimates the wave's phase velocity. Thus, the use of alternate definitions of Cijkl0(x) to describe the incoming wave is posed. Voigt, Reuss, Hill, and self-consistent definitions of Cijkl0(x) are derived in the context of ultrasonic scattering models. The scattering-based models describing ultrasonic backscatter, attenuation, and diffusion are shown to be highly dependent on the definition of Cijkl0(x) .

  14. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.

    PubMed

    Chen, Qiang; Li, Weihua; Wu, Jiangtao

    2014-01-01

    A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. PMID:23809902

  15. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  16. Two-Surgeon Technique for Hepatic Parenchymal Transection of the Noncirrhotic Liver Using Saline-Linked Cautery and Ultrasonic Dissection

    PubMed Central

    Aloia, Thomas A.; Zorzi, Daria; Abdalla, Eddie K.; Vauthey, Jean-Nicolas

    2005-01-01

    Objective: The purpose of this study was to analyze our experience with saline-linked cautery in hepatic surgery. Summary Background Data: Safe and efficient hepatic parenchymal transection is predicated on the ability to simultaneously address 2 tasks: parenchymal dissection and hemostasis. To date, no single instrument has been designed that addresses both of these tasks. Saline-linked cautery is now widely used in liver surgery and is reported to decrease blood loss during liver transection, but data on its exact benefits are lacking. Methods: From a single institution, prospective liver surgery database, we identified 32 consecutive patients with noncirrhotic livers who underwent resection for primary or metastatic disease using a 2-surgeon technique with saline-linked cautery and ultrasonic dissection (SLC+UD) from December 2002 to January 2004. From the same database, we identified a contemporary and matched set of 32 patients who underwent liver resection with similar indications using ultrasonic dissection alone (UD alone). Operative and anesthetic variables were retrospectively analyzed to identify differences between the 2 groups. Results: The 2 groups were equivalent in terms of age, gender, tumor histology, tumor number, and tumor size. The UD+SLC group had a decreased duration of inflow occlusion (20 minutes versus 30 minutes, P = 0.01), blood loss (150 mL versus 250 mL, P = 0.034), and operative time (187 minutes versus 211 minutes, P = 0.027). Postoperative liver function and complication rates were similar in each group. Conclusions: The 2-surgeon technique for liver parenchymal transection using SLC and UD in noncirrhotic livers is safe and may provide advantages over other techniques. PMID:16041206

  17. Advancing Techniques of Radiation Therapy for Rectal Cancer.

    PubMed

    Patel, Sagar A; Wo, Jennifer Y; Hong, Theodore S

    2016-07-01

    Since the advent of radiation therapy for rectal cancer, there has been continual investigation of advancing technologies and techniques that allow for improved dose conformality to target structures while limiting irradiation of surrounding normal tissue. For locally advanced disease, intensity modulated and proton beam radiation therapy both provide more highly conformal treatment volumes that reduce dose to organs at risk, though the clinical benefit in terms of toxicity reduction is unclear. For early stage disease, endorectal contact therapy and high-dose rate brachytherapy may be a definitive treatment option for patients who are poor operative candidates or those with low-lying tumors that desire sphincter-preservation. Finally, there has been growing evidence that supports stereotactic body radiotherapy as a safe and effective salvage treatment for the minority of patients that locally recur following trimodality therapy for locally advanced disease. This review addresses these topics that remain areas of active clinical investigation. PMID:27238474

  18. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  19. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  20. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  1. Ultrasonic characterization of materials hardness

    PubMed

    Badidi Bouda A; Benchaala; Alem

    2000-03-01

    In this paper, an experimental technique has been developed to measure velocities and attenuation of ultrasonic waves through a steel with a variable hardness. A correlation between ultrasonic measurements and steel hardness was investigated. PMID:10829663

  2. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  3. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  4. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  5. The Advanced Space Plant Culture Device with Live Imaging Technique

    NASA Astrophysics Data System (ADS)

    Zheng, Weibo; Zhang, Tao; Tong, Guanghui

    The live imaging techniques, including the color and fluorescent imags, are very important and useful for space life science. The advanced space plant culture Device (ASPCD) with live imaging Technique, developed for Chinese Spacecraft, would be introduced in this paper. The ASPCD had two plant experimental chambers. Three cameras (two color cameras and one fluorescent camera) were installed in the two chambers. The fluorescent camera could observe flowering genes, which were labeled by GFP. The lighting, nutrient, temperature controling and water recycling were all independent in each chamber. The ASPCD would beed applied to investigate for the growth and development of the high plant under microgravity conditions on board the Chinese Spacecraft.

  6. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  7. Direct writing the selective emitter of solar cell with lateral ultrasonic spray laser doping technique

    NASA Astrophysics Data System (ADS)

    Song, Jingwei; Wang, Xuemeng; Gong, Li; Lin, Yanghuan; Gao, Xiaodong; Huang, Jiapei; Shen, Hui

    2015-10-01

    In recent years, laser doping of selective emitters has offered an attractive method to improve the performance of silicon solar cell. A simple laser process is presented for the local doping of crystalline silicon solar cells. Here, the doped line has been direct-written by a 532 nm wavelength laser combined with lateral ultrasonic spray using phosphoric acid. The laser doping selective emitter was quantitatively and spatially measured using Kelvin probe force microscopy under external light illumination. By using the exploited system, we could pattern the dielectric layer while simultaneously doping the underlying silicon to easily achieve the selective emitter (n++) in one processing step. With argon as the conveyance gas, the local melted Si was surrounded by the air-argon gas mixture in the entire process, which caused a decrease in oxygen incorporation.

  8. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  9. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S.

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  10. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  11. Review and discussion of the development of synthetic aperture focusing technique for ultrasonic testing (SAFT-UT)

    SciTech Connect

    Busse, L J; Collins, H D; Doctor, S R

    1984-03-01

    The development and capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) are presented. The purpose of SAFT-UT is to produce high-resolution images of the interior of opaque objects. The goal of this work is to develop and implement methods which can be used to detect and to quantify the extent of defects and cracks in critical components of nuclear reactors (pressure vessels, primary piping systems, and nozzles). This report places particular emphasis upon the practical experimental results that have been obtained using SAFT-UT as well as the theoretical background that underlies synthetic aperture focusing. A discussion regarding high-speed and real-time implementations of two- and three-dimensional synthetic aperture focusing is also presented.

  12. Ultrasonic Defect Characterization in Heavy Rotor Forgings by Means of the Synthetic Aperture Focusing Technique and Optimization Methods.

    PubMed

    Fendt, Karl T; Mooshofer, Hubert; Rupitsch, Stefan J; Ermert, Helmut

    2016-06-01

    Ultrasonic nondestructive testing of steel forgings aims at the detection and classification of material inhomogeneities to ensure the components fitness for use. Due to the high price and safety critical nature of large forgings for turbomachinery, there is great interest in the application of imaging algorithms to inspection data. However, small flaw indications that cannot be sufficiently resolved have to be characterized using amplitude-based quantification. One such method is the distance gain size method, which converts the maximum echo amplitudes into the diameters of penny-shaped equivalent size reflectors. The approach presented in this contribution combines the synthetic aperture focusing technique (SAFT) with an iterative inversion scheme to locate and quantify small flaws in a more reliable way. Ultrasonic inspection data obtained in a pulse-echo configuration are reconstructed by means of an Synthetic Focusing Technique (SAFT). From the reconstructed data, the amount and approximate location of small flaws are extracted. These predetermined positions, along with the constrained defect model of a penny-shaped crack, provide the initial parametrization for an elastodynamic simulation based on the Kirchhoff approximation. The identification of the optimal parameter set is achieved through an iteratively regularized Gauss-Newton method. By testing the characterization method on a series of flat-bottom holes under laboratory conditions, we demonstrate that the procedure is applicable over a wide range of defect sizes. To show suitability for large forging inspection, we additionally evaluate the inspection data of a large generator shaft forging of 0.6-m diameter. PMID:27116736

  13. Usefulness of ultrasonic strain measurement-based mechanical properties imaging technique: toward realization of short time diagnosis/treatment

    NASA Astrophysics Data System (ADS)

    Sumi, Chikayoshi; Kubota, Mitsuhiro; Wakabayashi, Gou; Tanabe, Minoru

    2003-06-01

    For various soft tissues (e.g., liver, breast, etc.), we are developing the ultrasonic strain measurement-based mechanical properties (shear modulus, visco-shear modulus, etc.) reconstruction/imaging technique. To clarify the limitation of our quantitative reconstruction/imaging technique as a diagnostic tool for differentiating malignancies, together with improving the spatial resolution and the dynamic range we are collecting the clinical reconstruction image data. Furthermore, we are applying our technique as a monitoring technique for the effectiveness of chemical therapy (e.g., anticancer drug, ethanol, etc.), thermal therapy (e.g., micro, and rf electromagnetic wave, HIFU, LASER, etc.), and cryotherapy. As soft tissues are deformed in 3-D space due to externally situated quasi-static and/or low frequency mechanical sources, multidimensional signal processing improves strain measurement accuracy and reduces inhomogeneity-dependent modulus reconstruction artifacts. These have been verified by us through simulations and phantom/animal in vitro experiments. Briefly, here we discuss the limitations of low dimensional signal processing. Moreover, we exhibit the superiority both on differential diagnosis for these human in vivo malignancies and monitoring for these therapies of our quasi-real time imaging (using conventional US equipment) to conventional B-mode imaging. Our technique is available as a clinical visualization technique both for diagnosis and treatment, and monitored mechanical properties data can also be effectively utilized as the measure for controlling the therapy, i.e., the exposure energy, the foci, the exposure interval, etc. In the near future, suitable combination of various simple and low-invasive therapy techniques with our imaging technique will open up a new clinical style allowing diagnosis and the subsequently immediate treatment. This must substantially reduce the total medical expenses.

  14. Full Endoscopic Spinal Surgery Techniques: Advancements, Indications, and Outcomes

    PubMed Central

    Yue, James J.; Long, William

    2015-01-01

    Advancements in both surgical instrumentation and full endoscopic spine techniques have resulted in positive clinical outcomes in the treatment of cervical, thoracic, and lumbar spine pathologies. Endoscopic techniques impart minimal approach related disruption of non-pathologic spinal anatomy and function while concurrently maximizing functional visualization and correction of pathological tissues. An advanced understanding of the applicable functional neuroanatomy, in particular the neuroforamen, is essential for successful outcomes. Additionally, an understanding of the varying types of disc prolapse pathology in relation to the neuroforamen will result in more optimal surgical outcomes. Indications for lumbar endoscopic spine surgery include disc herniations, spinal stenosis, infections, medial branch rhizotomy, and interbody fusion. Limitations are based on both non spine and spine related findings. A high riding iliac wing, a more posteriorly located retroperitoneal cavity, an overly distal or proximally migrated herniated disc are all relative contra-indications to lumbar endoscopic spinal surgery techniques. Modifications in scope size and visual field of view angulation have enabled both anterior and posterior cervical decompression. Endoscopic burrs, electrocautery, and focused laser technology allow for the least invasive spinal surgical techniques in all age groups and across varying body habitus. Complications include among others, dural tears, dysesthsia, nerve injury, and infection. PMID:26114086

  15. Quality Evaluation By Acousto-Ultrasonic Testing Of Composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1989-01-01

    Promising nondestructive-testing method based on ultrasonic simulation of stress waves. Report reviews acousto-ultrasonic technology for nondestructive testing. Discusses principles, suggests advanced signal-analysis schemes for development, and presents potential applications. Acousto-ultrasonics applied principally to assess defects in laminated and filament-wound fiber-reinforced composite materials. Technique used to determine variations in such properties as tensile, shear, and flexural strengths and reductions in strength and toughness caused by defects. Also used to evaluate states of cure, porosities, orientation of fibers, volume fractions of fibers, bonding between fibers and matrices, and qualities of interlaminar bonds.

  16. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    SciTech Connect

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F. Jr.; Franca, F.A.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  17. Techniques and software tools for estimating ultrasonic signal-to-noise ratios

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; McKillip, Matthew; Engle, Brady J.; Roberts, Ronald A.

    2016-02-01

    At Iowa State University's Center for Nondestructive Evaluation (ISU CNDE), the use of models to simulate ultrasonic inspections has played a key role in R&D efforts for over 30 years. To this end a series of wave propagation models, flaw response models, and microstructural backscatter models have been developed to address inspection problems of interest. One use of the combined models is the estimation of signal-to-noise ratios (S/N) in circumstances where backscatter from the microstructure (grain noise) acts to mask sonic echoes from internal defects. Such S/N models have been used in the past to address questions of inspection optimization and reliability. Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was recently initiated to improve existing research-grade software by adding graphical user interface (GUI) to become user friendly tools for the rapid estimation of S/N for ultrasonic inspections of metals. The software combines: (1) a Python-based GUI for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signal and backscattered grain noise characteristics. The latter makes use of several models including: the Multi-Gaussian Beam Model for computing sonic fields radiated by commercial transducers; the Thompson-Gray Model for the response from an internal defect; the Independent Scatterer Model for backscattered grain noise; and the Stanke-Kino Unified Model for attenuation. The initial emphasis was on reformulating the research-grade code into a suitable modular form, adding the graphical user interface and performing computations rapidly and robustly. Thus the initial inspection problem being addressed is relatively simple. A normal-incidence pulse/echo immersion inspection is simulated for a curved metal component having a non-uniform microstructure, specifically an equiaxed, untextured microstructure in which the average

  18. The mean grain size determination of boron carbide (B{sub 4}C)-aluminium (Al) and boron carbide (B{sub 4}C)-nickel (Ni) composites by ultrasonic velocity technique

    SciTech Connect

    Unal, Ridvan . E-mail: runal@aku.edu.tr; Sarpuen, Ismail H.; Yalim, H. Ali; Erol, Ayhan; Ozdemir, Tuba; Tuncel, Sabri

    2006-04-15

    In this study, the mean grain size of ceramic-metal composites, made from boron carbide (B{sub 4}C)-aluminium (Al)-nickel (Ni) powders, has been determined with ultrasonic velocity technique by using a 2 MHz transducer. An ultrasonic velocity-grain size master graph was plotted using a 4 MHz ultrasonic transducer. The results were compared to the mean grain size obtained from SEM (Scanning Electron Microscopy) images.

  19. Nondestructive evaluation (NDE) of composite-to-metal bond interface of a wind turbine blade using an acousto-ultrasonic technique

    SciTech Connect

    Gieske, J.H.; Rumsey, M.A.

    1996-12-31

    An acousto-ultrasonic inspection technique was developed to evaluate the structural integrity of the epoxy bond interface between a metal insert and the fiber glass epoxy composite of a wind turbine blade. Data was generated manually as well as with a PC based data acquisition and display system. C-scan imaging using a portable ultrasonic scanning system provided an area mapping of the delamination or disbond due to fatigue testing and normal field operation conditions of the turbine blade. Comparison of the inspection data with a destructive visual examination of the bond interface to determine the extent of the disbond showed good agreement between the acousto-ultrasonic inspection data and the visual data.

  20. Advanced computer modeling techniques expand belt conveyor technology

    SciTech Connect

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  1. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  2. Pressure Calibration to 20 GPa by use of Simultaneous Ultrasonic and X-ray Techniques

    SciTech Connect

    Li,B.; Kung, J.; Uchida, T.; Wang, Y.

    2005-01-01

    Simultaneous measurements of elastic P- and S-wave travel times, density (specific volume), and sample length using a multianvil apparatus interfaced with ultrasonic interferometry and x-ray diffraction and radiography have enabled simultaneous determination of elastic properties and absolute pressure at high pressures and high temperatures. Experimental procedures and data analyses are demonstrated using data collected on polycrystalline samples of ferropericalse (MgFe) and wadsleyite Mg{sub 2}SiO{sub 4} under quasihydrostatic conditions up to 20 GPa. Compared with those derived from the internal pressure standard in the same experiments based on equations of state of NaCl, the directly determined pressure at 20 GPa is {approx}8% and {approx}12% higher than those inferred from the Brown and Decker pressure scales, respectively. The discrepancy cannot be reconciled by uncertainties in the NaCl pressure scale and current experimental data. Until further results are available, the pressure determined in this study is believed to be a more accurate measurement of the effective pressure imposed on the sample than that inferred from NaCl based on previous pressure scales.

  3. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    The time-reversed ultrasonically encoded (TRUE) optical focusing technique is a method that is capable of focusing light deep within a scattering medium. This theoretical study aims to explore the depth limits of the TRUE technique for biological tissues in the context of two primary constraints – the safety limit of the incident light fluence and a limited TRUE’s recording time (assumed to be 1 ms), as dynamic scatterer movements in a living sample can break the time-reversal scattering symmetry. Our numerical simulation indicates that TRUE has the potential to render an optical focus with a peak-to-background ratio of ~2 at a depth of ~103 mm at wavelength of 800 nm in a phantom with tissue scattering characteristics. This study sheds light on the allocation of photon budget in each step of the TRUE technique, the impact of low signal on the phase measurement error, and the eventual impact of the phase measurement error on the strength of the TRUE optical focus. PMID:24663917

  4. The usability and preliminary effectiveness of ultrasonic nanocrystalline surface modification technique on surface properties of silicon carbide

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Pyun, Young-Sik; Kim, Jun-Hyong; Sasaki, Shinya

    2014-08-01

    This study reports the change in microstructural, mechanical and tribological characteristics of sintered silicon carbide (SiC) ceramic subjected to ultrasonic nanocrystalline surface modification (UNSM) technique. The surface microstructure of the untreated and UNSM-treated specimens was examined by SEM, EDS and XRD. The mechanical properties of the specimens were measured by nanoindentation. The tribological properties of the specimens were assessed using a ball-on-disk tribometer against a bearing steel (SAE52100) ball at two different temperatures under dry reciprocating conditions. It was confirmed by SEM that the UNSM-treated specimens had much denser microstructure than those of the untreated specimens. The EDS results revealed that the UNSM technique has no effect on the chemical composition of sintered SiC ceramic. The average surface roughness obtained by AFM was found to be about 83.6 nm and 60.1 nm for the untreated and UNSM-treated specimens, respectively. The tribological results showed that the UNSM-treated specimens exhibited a lower friction coefficient and higher wear resistance compared to those of the untreated specimens. In addition, it was found that the UNSM technique was able to decrease the quantity of pores. The results of this study are expected to make sintered SiC ceramic more attractive for numerous applications in various industries.

  5. Microleakage in Sub-Gingival Class II Preparations Restored Using Two Different Liners for Open Sandwich Technique Supplemented With or Without Ultrasonic Agitation: An In Vitro Study

    PubMed Central

    Chhabra, Naveen; Shah, Nimisha Chinmay; Jais, Pratik Subash

    2016-01-01

    Introduction Probability of bond failure at sub-gingival cavosurface margin is high in class II cavity designs especially when margins are located in cementum or dentin. Previous researches have proved ultrasonics to be a beneficial tool in improving the marginal adaptation of the restorative material. Therefore, the effect of ultrasonic activation of the lining material at the gingival cavosurface margin was tested in the present research. Aim The study aimed to evaluate the cervical micro-leakage in class II preparations with gingival margin located below cemento enamel junction and restored using open sandwich technique using two different liners and supplemented with or without ultrasonic agitation. Materials and Methods Forty recently extracted human molars were collected, disinfected and stored in 0.9% saline solution. Standar dized class II cavities were prepared with gingival margin located 1mm below the cemento-enamel junction. Teeth were randomly divided into four groups (n=10) and restored using open sandwich technique as follows - Group A: Resin Modified Glass Ionomer Cement as liner and Beautifil II as coronal restoration; Group B: Same as group A supplemented with ultrasonic agitation; Group C: Beautifil Flow Plus as liner and Beautifil II as coronal restoration; Group D: Same as Group C supplemented with ultrasonic agitation. Prepared samples were subjected to thermo cycling, followed by immersing in 0.5% methylene blue dye solution. After 24 hours they were cleaned and sectioned in mesio-distal direction using diamond disc and evaluated for microleakage. Obtained scores were statistically analysed using one way ANOVA test and Post Hoc test. Results Group B showed least microleakage amongst all groups but the results were statistically insignificant (p value > 0.05). Conclusion Marginal adaptation of liner with ultrasonic activation was somewhat better however, the results were statistically insignificant. PMID:27135006

  6. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  7. [The role of electronic techniques for advanced neuroelectrophysiology].

    PubMed

    Wang, Min; Zhang, Lijun; Cao, Maoyong

    2008-12-01

    The rapid development in the fields of electroscience, computer science, and biomedical engineering are propelling the electrophysiologyical techniques. Recent technological advances have made it possible to simultaneously record the activity of large numbers of neurons in awake and behaving animals using implanted extracellular electrodes. Several laboratories use chronically implanted electrode arrays in freely moving animals because they allow stable recordings of discriminated single neurons and/or field potentials from up to hundreds of electrodes over long time periods. In this review, we focus on the new technologies for neuroelectrophysiology. PMID:19166233

  8. The Inter-Mammary Sticky Roll: A Novel Technique for Securing a Doppler Ultrasonic Probe to the Precordium for Venous Air Embolism Detection

    PubMed Central

    Wali, Arvin R; Gabel, Brandon C; Khalessi, Alexander A; Sang U, Hoi; Drummond, John C

    2016-01-01

    Venous air embolism is a devastating and potentially life-threatening complication that can occur during neurosurgical procedures. We report the development and use of the “inter-mammary sticky roll,” a technique to reliably secure a precordial Doppler ultrasonic probe to the chest wall during neurosurgical cases that require lateral decubitus positioning. We have found that this noninvasive technique is safe, and effectively facilitates a constant Doppler signal with no additional risk to the patient. PMID:27625905

  9. Enhanced Ultrasonic Characterization of Assemblies,TLL{_}9

    SciTech Connect

    Thomas, G.; Chinn, D.

    2000-02-22

    The solid state bonded joint between two components; called an autoclave bond, is critical to the performance of a weapon system. A nondestructive method to assess the integrity of these joints is needed to certify the weapon for extended life. This project is developing ultrasonic technologies for bond quality assessment. Existing ultrasonic technology easily maps totally unbonded areas in a bond line. As an example, Figure 1 is an ultrasonic image of the bondline in a tensile specimen that was taken from a surrogate autoclave bond. We enhanced this technology to quantify the mechanical properties of a bond. There are situations when a bond interface appears intact by existing inspection methods, but fails under minimal loading. We developed an ultrasonic technique to eliminate this problem and assess the durability of the bond. Our approach is based on advanced signal processing and artificial intelligence techniques that extract information from the ultrasonic signal after it interacts with the bondline. We successfully demonstrated this technique on surrogate samples. We also designed and began assembly of an ultrasonic system to evaluate weapon components. Our next step is to acquire ultrasonic data on real parts and tailor the bond classification algorithm to detect and image defective bond regions.

  10. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.

    PubMed

    Harb, M S; Yuan, F G

    2016-01-01

    A fully non-contact single-sided air-coupled and laser ultrasonic non-destructive system based on the generation and detection of Lamb waves is implemented for the characterization of A0 Lamb wave mode dispersion in a composite plate. An air-coupled transducer (ACT) radiates acoustic pressure on the surface of the composite and generates Lamb waves within the structure. The out-of-plane velocity of the propagating wave is measured using a laser Doppler vibrometer (LDV). In this study, the non-contact automated system focuses on measuring A0 mode frequency-wavenumber, phase velocity dispersion curves using Snell's law and group velocity dispersion curves using Morlet wavelet transform (MWT) based on time-of-flight along different wave propagation directions. It is theoretically demonstrated that Snell's law represents a direct link between the phase velocity of the generated Lamb wave mode and the coincidence angle of the ACT. Using Snell's law and MWT, the former three dispersion curves of the A0 mode are easily and promptly generated from a set of measurements obtained from a rapid ACT angle scan experiment. In addition, the phase velocity and group velocity polar characteristic wave curves are also computed to analyze experimentally the angular dependency of Lamb wave propagation. In comparison with the results from the theory, it is confirmed that using the ACT/LDV system and implementing simple Snell's law method is highly sensitive and effective in characterizing the dispersion curves of Lamb waves in composite structures as well as its angular dependency. PMID:26385842

  11. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.

    PubMed

    Bazán, I; Vazquez, M; Ramos, A; Vera, A; Leija, L

    2009-03-01

    Optimization of efficiency in hyperthermia requires a precise and non-invasive estimation of internal distribution of temperature. Although there are several research trends for ultrasonic temperature estimation, efficient equipments for its use in the clinical practice are not still available. The main objective of this work was to research about the limitations and potential improvements of previously reported signal processing options in order to identify research efforts to facilitate their future clinical use as a thermal estimator. In this document, we have a critical analysis of potential performance of previous ultrasonic research trends for temperature estimation inside materials, using different processing techniques proposed in frequency, time and phase domains. It was carried out in phantom with scatterers, assessing at their specific applicability, linearity and limitations in hyperthermia range. Three complementary evaluation indexes: technique robustness, Mat-lab processing time and temperature resolution, with specific application protocols, were defined and employed for a comparative quantification of the behavior of the techniques. The average increment per degrees C and mm was identified for each technique (3 KHz/ degrees C in the frequency analysis, 0.02 rad/ degrees C in the phase domain, while increments in the time domain of only 1.6 ns/ degrees C were found). Their linearity with temperature rising was measured using linear and quadratic regressions and they were correlated with the obtained data. New improvements in time and frequency signal processing in order to reveal the potential thermal and spatial resolutions of these techniques are proposed and their subsequent improved estimation results are shown for simulated and measured A-scans registers. As an example of these processing novelties, an excellent potential resolution of 0.12 degrees C into hyperthermia range, with near-to-linear frequency dependence, could be achieved

  12. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  13. Surgical techniques for advanced stage pelvic organ prolapse.

    PubMed

    Brown, Douglas N; Strauchon, Christopher; Gonzalez, Hector; Gruber, Daniel

    2016-02-01

    Pelvic organ prolapse is an extremely common condition, with approximately 12% of women requiring surgical correction over their lifetime. This manuscript reviews the most recent literature regarding the comparative efficacy of various surgical repair techniques in the treatment of advanced stage pelvic organ prolapse. Uterosacral ligament suspension has similar anatomic and subjective outcomes when compared to sacrospinous ligament fixation at 12 months and is considered to be equally effective. The use of transvaginal mesh has been shown to be superior to native tissue vaginal repairs with respect to anatomic outcomes but at the cost of a higher complication rate. Minimally invasive sacrocolpopexy appears to be equivalent to abdominal sacrocolpopexy (ASC). Robot-assisted sacrocolpopexy (RSC) and laparoscopic sacrocolpopexy (LSC) appear as effective as abdominal sacrocolpopexy, however, prospective studies of comparing long-term outcomes of ASC, LSC, and RSC in relation to health care costs is paramount in the near future. Surgical correction of advanced pelvic organ prolapse can be accomplished via a variety of proven techniques. Selection of the correct surgical approach is a complex decision process and involves a multitude of factors. When deciding on the most suitable surgical intervention, the chosen route must be individualized for each patient taking into account the specific risks and benefits of each procedure. PMID:26448444

  14. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  15. Noncontact, nondestructive elasticity evaluation of sound and demineralized human dental enamel using a laser ultrasonic surface wave dispersion technique

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Law, Susan; Swain, Michael; Xue, Jing

    2009-09-01

    Laser ultrasonic nondestructive evaluation (NDE) methods have been proposed to replace conventional in vivo dental clinical diagnosis tools that are either destructive or incapable of quantifying the elasticity of human dental enamel. In this work, a laser NDE system that can perform remote measurements on samples of small dimensions is presented. A focused laser line source is used to generate broadband surface acoustic wave impulses that are detected with a simplified optical fiber interferometer. The measured surface wave velocity dispersion spectrum is in turn used to characterize the elasticity of the specimen. The NDE system and the analysis technique are validated with measurements of different metal structures and then applied to evaluate human dental enamel. Artificial lesions are prepared on the samples to simulate different states of enamel elasticity. Measurement results for both sound and lesioned regions, as well as lesions of different severity, are clearly distinguishable from each other and fit well with physical expectations and theoretical value. This is the first time, to the best of our knowledge, that a laser-based surface wave velocity dispersion technique is successfully applied on human dental enamel, demonstrating the potential for noncontact, nondestructive in vivo detection of the development of carious lesions.

  16. In-die ultrasonic and off-line air-coupled monitoring and characterization techniques for drug tablets

    NASA Astrophysics Data System (ADS)

    Stephens, J. D.; Kowalczyk, B. R.; Hancock, B. C.; Kaul, G.; Akseli, I.; Cetinkaya, C.

    2012-05-01

    Mechanical integrity and properties of drug tablets may adversely affect their therapeutic and structural functions. An embedded ultrasound monitoring system for tablet mechanical property monitoring during compaction and a non-contact/non-destructive off-line air-coupled technique for determining the mechanical properties of coated drug tablets are presented. In the compaction monitoring system, the change of ToF and the reflection coefficient for the upper-punch surface interface as a function of compaction pressure has been studied. In the air-coupled measurement approach, air-coupled excitation and laser interferometric detection are utilized and their effectiveness in characterizing the mechanical properties of a drug tablet by examining its vibrational resonance frequencies is demonstrated. An iterative computational procedure based on the finite element method and Newton's method is developed to extract the mechanical properties of the coated tablet from a subset of its measured resonance frequencies. The mechanical properties characterized by this technique are compared to those obtained by a contact ultrasonic method.

  17. Mechanism of action of the ultrasonic tissue resectors disclosed using high-speed and thermal imaging techniques

    NASA Astrophysics Data System (ADS)

    Verdaasdonck, Rudolf M.; Balgobind, Dennis; van Swol, Christiaan F. P.; Grimbergen, Matthijs C. M.

    1999-05-01

    During surgery, selective resection of soft and hard tissue is obtained using devices based on ultrasound induced cavitation bubbles. Building upon the experience of an earlier study, real-time high speed and thermal imaging techniques were applied to expand the understanding of the mechanism of action in relation to irrigation and aspiration and driving frequency. The Cavitational Ultrasonic Surgical Aspirator (CUSA, Valleylab, Boulder, CO) and the Selector (NMT Neurosciences, UK) equipped with a 2.3 mm hollow titanium needle (frequencies 24 and 35 kHz) were investigated. Close-up photography (1 microsecond(s) ) showed a ring of imploding cavitation bubbles around the rim of the tip which fragmented tissue within a well defined radius. Using Schlieren techniques (10 ns resolution), multiple shock waves generated by imploding cavitation bubbles were observed up to 5 mm inside the transparent tissue without leaving damage. The combined irrigation and aspiration is essential for effective tissue removal. The irrigation provides cooling of the tip and enables cavitation formation. The aspiration draws soft tissue into the area of fragmentation and removes debris. Without irrigation, friction and thermal conduction will result in undesired thermal damage and inefficient tissue removal. The impact of the shock waves and difference in driving frequency are expected to be minimal.

  18. Reconstruction of wave features in wind-driven water film flow using ultrasonic pulse-echo technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bond, Leonard J.; Hu, Hui

    2016-02-01

    Aircraft operating in weather conditions that can cause glaze icing face the risk of performance degradation, and increased costs in de-icing procedures. The water run-back in glaze ice accretion can redistribute the impinging water mass and disturb the local flow field, and hence, affect the morphology of ice accretion. Understanding the mechanism of the surface water film transportation is important and challenging, and critical to enabling improvement in the modeling of glaze icing. In this study, an ultrasonic multi-transducer (sparse array) pulse-echo (UMTPE) technique was developed to measure thin film thickness fluctuation. The technical basis for UMTPE technique and the factors that influence the measurements are described. The UMTPE technique was configured to provide time-resolved multi-point thickness measurements. Quantitative measurements of the wind-driven water film flow are achieved by using the UMTPE technique. Point-wise thickness variations can be obtained from each individual channel in the UMTPE system. Span-wise thickness profile can be derived by interpolating the point-wise measurements. The span-wise thickness profiles can be expanded in time domain, which shows the overall flow structures. The velocity of surface wave features is derived by performing a cross-correlation of the upstream and downstream thickness variations, which is then used to transform the temporal thickness fluctuation into the spatial wave structures. The time-resolved spatial flow structures are obtained by applying the transformation along time axis, which present more details of wave structures and the evolution of wave features.

  19. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  20. Ultrasonic scanning of multilayer ceramic chip capacitors

    NASA Technical Reports Server (NTRS)

    Bradley, F. N.

    1981-01-01

    Ultrasonic scanning is compared to neutron radiography and scanning laser acoustic microscopy (SLAM). Data show that SLAM and ultrasonic scanning evaluations are in good agreement. There is poor agreement between N-ray and both ultrasonic techniques because N-ray is insensitive to all but the grossest delaminations. Statistical analysis show a good correlation between ultrasonic scanning and destructive physical analysis.

  1. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    SciTech Connect

    Iliescu, Bogdan; Haskal, Ziv J.

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  2. Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz

    PubMed Central

    Umchid, S.; Gopinath, R.; Srinivasan, K.; Lewin, P. A.; Daryoush, A. S.; Bansal, L.; El-Sherif, M.

    2009-01-01

    The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth. PMID:19110289

  3. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads. Final report

    SciTech Connect

    Tiwari, ANIL

    1995-08-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models.

  4. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing

  5. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  6. Techniques for developing approximate optimal advanced launch system guidance

    NASA Technical Reports Server (NTRS)

    Feeley, Timothy S.; Speyer, Jason L.

    1991-01-01

    An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

  7. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  8. Application of ultrasonic technique in nondestructive food quality analysis: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality control and safe storage is important in food processing and storage. Composition of food has more effect on quality in terms of nutritional values, functional properties, commercial values and storage conditions of the food products. Traditional analytical techniques that are used for compo...

  9. Advanced imaging techniques for the detection of breast cancer.

    PubMed

    Jochelson, Maxine

    2012-01-01

    Mammography is the only breast imaging examination that has been shown to reduce breast cancer mortality. Population-based sensitivity is 75% to 80%, but sensitivity in high-risk women with dense breasts is only in the range of 50%. Breast ultrasound and contrast-enhanced breast magnetic resonance imaging (MRI) have become additional standard modalities used in the diagnosis of breast cancer. In high-risk women, ultrasound is known to detect approximately four additional cancers per 1,000 women. MRI is exquisitely sensitive for the detection of breast cancer. In high-risk women, it finds an additional four to five cancers per 100 women. However, both ultrasound and MRI are also known to lead to a large number of additional benign biopsies and short-term follow-up examinations. Many new breast imaging tools have improved and are being developed to improve on our current ability to diagnose early-stage breast cancer. These can be divided into two groups. The first group is those that are advances in current techniques, which include digital breast tomosynthesis and contrast-enhanced mammography and ultrasound with elastography or microbubbles. The other group includes new breast imaging platforms such as breast computed tomography (CT) scanning and radionuclide breast imaging. These are exciting advances. However, in this era of cost and radiation containment, it is imperative to look at all of them objectively to see which will provide clinically relevant additional information. PMID:24451711

  10. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  11. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    SciTech Connect

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  12. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  13. Alternative technique in atypical spinal decompression: the use of the ultrasonic scalpel in paediatric achondroplasia.

    PubMed

    Woodacre, Timothy; Sewell, Matthew; Clarke, Andrew J; Hutton, Mike

    2016-01-01

    Spinal stenosis can be a very disabling condition. Surgical decompression carries a risk of dural tear and neural injury, which is increased in patients with severe stenosis or an atypical anatomy. We present an unusual case of symptomatic stenosis secondary to achondroplasia presenting in a paediatric patient, and highlight a new surgical technique used to minimise the risk of dural and neural injury during decompression. PMID:27288205

  14. Saft-reconstruction in ultrasonic immersion technique using phased array transducers

    NASA Astrophysics Data System (ADS)

    Kitze, J.; Prager, J.; Boehm, R.; Völz, U.; Montag, H.-J.

    2012-05-01

    The two main preconditions for the application of the Synthetic Aperture Focusing Technique (SAFT) are: (i) a large divergence of the sound beam of the transducer and (ii) an exact knowledge about the sound propagation path. These requirements are easily fulfilled for point sources directly mounted on the surface of the specimen. In many cases, however, the transducer is wedge mounted and/or coupled using a water delay line, e.g. in immersion technique. These delay lines change the beam index and the propagation path has to be evaluated for each pixel separately considering Fermat's principle. Using phased array transducers, a sector scan can improve the divergence of the sound beam. The introduced method combines the advantages of using a phased array transducer in immersion technique to improve SAFT reconstruction. An algorithm is presented accounting the influence of the delay line on the reconstruction method. The applicability of the algorithm is shown by validation with simulated echo responses and with experimental results collected from a specimen with artificial flaws.

  15. Ultrasonic Monitor

    NASA Technical Reports Server (NTRS)

    1983-01-01

    MicroUltrasonics PLR-1000 is a refined microprocessor-controlled version (usable on bolts, plates, liquids and gases) of the P2L2 developed by Langley Research Center. New technique is for nondestructive measurement of residual stress in various types of structures, for example, nuclear pressure vessels, pipes in nuclear reactors, offshore platforms, bridges, railroad tracks and wheels, aircraft wings, and engines. The instrument produces sound tone pulses that travel through a test specimen. PLR-1000 precisely measures speeds as stress increases speed of sound, tone changes, making precise measurements possible.

  16. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  17. Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.

  18. Evaluation of Ultrasonic Fiber Structure Extraction Technique Using Autopsy Specimens of Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hirai, Kazuki; Yamada, Hiroyuki; Ebara, Masaaki; Hachiya, Hiroyuki

    2005-06-01

    It is very important to diagnose liver cirrhosis noninvasively and correctly. In our previous studies, we proposed a processing technique to detect changes in liver tissue in vivo. In this paper, we propose the evaluation of the relationship between liver disease and echo information using autopsy specimens of a human liver in vitro. It is possible to verify the function of a processing parameter clearly and to compare the processing result and the actual human liver tissue structure by in vitro experiment. In the results of our processing technique, information that did not obey a Rayleigh distribution from the echo signal of the autopsy liver specimens was extracted depending on changes in a particular processing parameter. The fiber tissue structure of the same specimen was extracted from a number of histological images of stained tissue. We constructed 3D structures using the information extracted from the echo signal and the fiber structure of the stained tissue and compared the two. By comparing the 3D structures, it is possible to evaluate the relationship between the information that does not obey a Rayleigh distribution of the echo signal and the fibrosis structure.

  19. Confocal laser scanning microscopic investigation of ultrasonic, sonic, and rotary sealer placement techniques

    PubMed Central

    Nikhil, Vineeta; Singh, Renuka

    2013-01-01

    Background: Sealers are used to attain an impervious seal between the core material and root canal walls. Aim: To compare the depth and percentage of sealer penetration with three different placement techniques using confocal laser scanning microscopy as the evaluative tool. Materials and Methods: Root canals of 30 single-rooted teeth were prepared to a size of F3 and AH plus sealer with Rhodamine B was applied with Ultlrasonic file (Gr-1), lentulospiral (Gr-2), and Endoactivator (Gr-3). Canals were obturated with gutta-percha. The roots were sectioned at the 3 and 6-mm levels from the apical foramen and were examined on a confocal microscope. Results: A statistical significant differences among Gr-1, Gr-2, and Gr-3 were found at the 3 and 6-mm level (P < 0.05; ANOVA-Tukey tests) for the depth and percentage of sealer penetration except for Gr-1 and Gr-2 at 3-mm level. Gr-1 showed maximum mean depth of penetration (810 μm) and maximum mean percentage of sealer penetration (64.5) while Gr-3 showed minimum mean depth of penetration (112.7 μm) and minimum mean percentage of sealer penetration (26.7). Conclusion: Depth and percentage of penetration of sealer is influenced by the type of placement technique and by the root canal level with penetration decreasing apically. PMID:23956528

  20. Experimental characterization of creep damage in a welded steel pipe section using a nonlinear ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Ehrlich, C.; Kim, J.-Y.; Jacobs, L. J.; Qu, J.; Wall, J.

    2012-05-01

    To ensure the long and safe operation of power plants, structural parts must be monitored for damage. In the case of welded steel pipes that maintain high pressures in high temperature environments, a common cause of failure is creep damage. Severe creep damage often occurs in the heat affected zone (HAZ). Previous research has shown that nonlinear acoustic techniques are sensitive to creep damage. This research develops a procedure using longitudinal waves to obtain the nonlinearity parameter on a welded steel pipe in order to detect creep damage. These experiments show higher levels of nonlinearity in the HAZ. Additional measurements on an undamaged, welded sample suggest that the high nonlinearity is due to creep (stresses at a high temperature for extended time) damage and not welding (high temperature only for a short time).

  1. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    SciTech Connect

    Wang, Zhihua; Zou, Qingze; Tan, Jun; Jiang, Wei

    2013-11-15

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the “writing” (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the “writing” speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be

  2. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Tan, Jun; Zou, Qingze; Jiang, Wei

    2013-11-01

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the "writing" (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the "writing" speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be

  3. An ultrasonic technique to measure the depth of burn wounds in humans

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Hanna, Pamela D.

    1991-01-01

    Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.

  4. The Assessment of Damage Around Critical Engineering Structures Using Induced Seismicity and Ultrasonic Techniques

    NASA Astrophysics Data System (ADS)

    Pettitt, . S.; Baker, C.; Young, R. P.; Dahlström, L.-O.; Ramqvist, G.

    - Two large-diameter boreholes have been excavated vertically from the floor of a tunnel at the Äspö Hard Rock Laboratory, Sweden. The two deposition holes will have simulated high-level radioactive waste canisters installed in them in an experiment undertaken to test the retrievability of waste from a proposed repository. Induced seismicity and other acoustic monitoring techniques have been used to investigate the Excavation Damaged Zone (EDZ) around the two holes. High-frequency acoustic emission (AE) monitoring has been used to delineate regions of stress-induced microfracturing on the millimetre scale. This has been shown to locate in clusters around the perimeter of the deposition hole at azimuths orthogonal to the far-field maximum principal stress. Three-dimensional velocity surveys have been conducted along ray paths that pass through the damaged region and through a stress-disturbed zone around the excavation. Induced microfracturing and stress disturbance have been observed as sharp decreases in velocity as the excavation proceeds through the rock mass. The combination of the high-resolution velocity measurements and the AE source locations has allowed the linking of the velocity measurements to a volume of excavation damaged rock. This has provided a quantitative estimate of the effect of the EDZ on the rock mass.

  5. Advances in Poly(4-aminodiphenylaniline) Nanofibers Preparation by Electrospinning Technique.

    PubMed

    Della Pina, C; Busacca, C; Frontera, P; Antonucci, P L; Scarpino, L A; Sironi, A; Falletta, E

    2016-05-01

    Polyaniline (PANI) nanofibers are drawing a great deal of interest from academia and industry due to their multiple applications, especially in biomedical field. PANI nanofibers were successfully electrospun for the first time by MacDiarmid and co-workers at the beginning of the millennium and since then many efforts have been addressed to improve their quality. However, traditional PANI prepared from aniline monomer shows some drawbacks, such as presence of toxic (i.e., benzidine) and inorganic (salts and metals) co-products, that complicate polymer post-treatment, and low solubility in common organic solvents, making hard its processing by electrospinning technique. Some industrial sectors, such as medical and biomedical, need to employ materials free from toxic and polluting species. In this regard, the oxidative polymerization of N-(4-aminophenyl)aniline, aniline dimer, to produce poly(4-aminodiphenylaniline), P4ADA, a kind of PANI, represents an innovative alternative to the traditional synthesis because the obtained polymer results free from carcinogenic and/or polluting co-products, and, moreover, more soluble than traditional PANI. This latter feature can be exploited to obtain P4ADA nanofibers by electrospinning technique. In this paper we report the advances obtained in the P4ADA nanofibers electrospinnig. A comparison among polyethylene oxide (PEO), polymethyl methacrylate (PMMA) and polystyrene (PS), as the second polymer to facilitate the electrospinning process, is shown. In order to increase the conductivity of P4ADA nanofibers, two strategies were adopted and compared: selective insulating binder removal from electrospun nanofibers by a rinsing tratment, afterwards optimizing the minimum amount of binder necessary for the electrospinning process. Moreover, the effect of PEO/P4ADA weight ratio on the fibers morphology and conductivity was highlighted. PMID:27483933

  6. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  7. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    PubMed

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  8. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  9. Pediatric Cardiopulmonary Resuscitation: Advances in Science, Techniques, and Outcomes

    PubMed Central

    Topjian, Alexis A.; Berg, Robert A.; Nadkarni, Vinay M.

    2009-01-01

    More than 25% of children survive to hospital discharge after in-hospital cardiac arrests, and 5% to 10% survive after out-of-hospital cardiac arrests. This review of pediatric cardiopulmonary resuscitation addresses the epidemiology of pediatric cardiac arrests, mechanisms of coronary blood flow during cardiopulmonary resuscitation, the 4 phases of cardiac arrest resuscitation, appropriate interventions during each phase, special resuscitation circumstances, extracorporeal membrane oxygenation cardiopulmonary resuscitation, and quality of cardiopulmonary resuscitation. The key elements of pathophysiology that impact and match the timing, intensity, duration, and variability of the hypoxic-ischemic insult to evidence-based interventions are reviewed. Exciting discoveries in basic and applied-science laboratories are now relevant for specific subpopulations of pediatric cardiac arrest victims and circumstances (eg, ventricular fibrillation, neonates, congenital heart disease, extracorporeal cardiopulmonary resuscitation). Improving the quality of interventions is increasingly recognized as a key factor for improving outcomes. Evolving training strategies include simulation training, just-in-time and just-in-place training, and crisis-team training. The difficult issue of when to discontinue resuscitative efforts is addressed. Outcomes from pediatric cardiac arrests are improving. Advances in resuscitation science and state-of-the-art implementation techniques provide the opportunity for further improvement in outcomes among children after cardiac arrest. PMID:18977991

  10. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  11. Hybrid inverse lithography techniques for advanced hierarchical memories

    NASA Astrophysics Data System (ADS)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  12. A qualitative and quantitative investigation of the uncracked and cracked condition of concrete beams using impulse excitation, acoustic emission, and ultrasonic pulse velocity techniques

    NASA Astrophysics Data System (ADS)

    Iliopoulos, S.; Iliopoulos, A.; Pyl, L.; Sol, H.; Aggelis, D. G.

    2014-04-01

    The Impulse Excitation Technique (IET) is a useful tool for characterizing the structural condition of concrete. Processing the obtained dynamic parameters (damping ratio, response frequency) as a function of response amplitude, clear and systematic differences appear between intact and cracked specimens, while factors like age and sustained load are also influential. Simultaneously, Acoustic Emission (AE) and Ultrasonic Pulse Velocity (UPV) techniques are used during the three point bending test of the beams in order to supply additional information on the level of damage accumulation which resulted in the specific dynamic behavior revealed by the IET test.

  13. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  14. Weldability and joining techniques for advanced fossil energy system alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M.

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  15. Ultrasonic destruction of kidney stones.

    PubMed

    Brannen, G E; Bush, W H

    1984-02-01

    Kidney stones may be removed without using a surgical incision by a combination of techniques and skills recently developed in the fields of urology and radiology. Percutaneous access to the kidney is established under fluoroscopic control. A guide wire placed into the renal pelvis allows a nephroscope to be inserted and the collecting system visualized. A long hollow metal probe is advanced through the nephroscope and placed in contact with the stone. This probe conducts the ultrasonic energy. The stone absorbs the energy and breaks into fine granules, which are evacuated by suction.Twenty-three consecutively seen patients presenting with 27 upper urinary tract calculi for which removal was indicated underwent successful percutaneous ultrasonic lithotripsy. Fifteen stones were located in the renal pelvis, eight in a calix, three at the ureteropelvic junction and one in the upper ureter. One infected staghorn calculus was removed. Two complications resulted in extended hospital stays, but in no patients were surgical incisions required. Of the 23 patients, 9 had previously had a surgical lithotomy. The authors believe that most renal and upper ureteral calculi for which removal is indicated may be extracted percutaneously with the aid of the ultrasonic lithotriptor. The patients may expect a rapid convalescence with diminished pain. PMID:6730470

  16. Prototype instrument for noninvasive ultrasonic inspection and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  17. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  18. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Astrophysics Data System (ADS)

    Miller, James G.

    1995-03-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  19. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  20. Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application

    NASA Astrophysics Data System (ADS)

    Das, Harinarayan; Sakamoto, Naonori; Aono, Hiromichi; Shinozaki, Kazuo; Suzuki, Hisao; Wakiya, Naoki

    2015-10-01

    In this paper, we present the synthesized of magnesium ferrite (MgFe2O4) nano-spheres by a single-step ultrasonic spray pyrolysis (USP) technique from the aqueous metal nitrate precursor solution without any organic additives or post-annealing processes. The effects of different pyrolysis temperatures on the particles size, morphology and their superparamagnetic behavior have been investigated to evaluate the heat generation efficiency in an AC magnetic field. The X-ray powder diffraction spectra of MgFe2O4 nano-spheres synthesized at the pyrolysis temperatures of 600, 700, 800 and 900 °C exhibited single phase cubic structure and obtained mean crystallite size (primary particles) of 4.05, 9.6, 15.97 and 31.48 nm, respectively. Transmission electron microscopy (TEM) confirms that the particles consisted of aggregates of the primary crystallite had densely congested spherical morphology with extremely smooth surface appearance. Field emission electron microscopy (FESEM) reveals that the shape and size of the nano-spheres (secondary particles) does not change significantly but the degree of agglomeration between the secondary particles was reduced with increasing the pyrolysis temperature. The average size and size distribution of nano-spheres measured using electrophoretic scattering photometer have found very low polydispersity index (PDI) for all samples. The field dependent magnetization studies indicated superparamagnetic nature for the particles having crystallite size i.e. 4.05 and 9.6 nm and exhibited ferromagnetic nature for 15.97 and 31.48 nm. It is also demonstrated that, as the pyrolysis temperature increases, the saturation magnetization of the MgFe2O4 nanopowders increases due to enhancement of crystallites. The shift in Curie temperature is well described by the finite-size scaling formula. The magnetically loss heating values of selected samples in crystallite size of 9.6 and 15.97 nm were investigated by measuring the time dependent temperature

  1. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    NASA Astrophysics Data System (ADS)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  2. Ultrasonic Study of Crack Under a Dynamic Thermal Load

    SciTech Connect

    Pitkaenen, J.; Kemppainen, M.; Virkkunen, I.

    2004-02-26

    In piping the defects play a key role for determining the life of component. Also the risk for pipe failure combined to the defects has to be taken into account. In this study thermal dynamic load has been applied to austenitic material (AISI 304) in order to introduce dynamic behaviour into the crack. The studied crack ({approx}20 mm x 7 mm) has been produced by thermal fatigue in advance. Different ultrasonic techniques were used to reveal information from interaction of ultrasonic waves from dynamic behaviour of a crack face in the sonified volume. The ultrasonic probes in the study are typical probes for defect detection and sizing on site inspections This information helps us to understand some effects in nuclear piping such as detection of cracks with special techniques and difficulties in sizing of the cracks in real situations. In this case the material is loaded to exceed the yield strength. The thermal cycles used caused high variations in the temperature scale from 20 deg. C (68 F) to 600 deg. C (1112 F) in the crack volume especially on the crack surface area. These factors cause large stress variations in the vicinity of the crack. Effects which have been detected during analysis from the measurements explain well difficulties in ultrasonic inspections of those materials on site. Experimental work explains reasons why some defects are missed in the real piping. Ultrasonic techniques used are described in details and conclusion for applicability of those techniques has been drawn.

  3. Ultrasonic Study of Crack Under a Dynamic Thermal Load

    NASA Astrophysics Data System (ADS)

    Pitkänen, J.; Kemppainen, M.; Virkkunen, I.

    2004-02-01

    In piping the defects play a key role for determining the life of component. Also the risk for pipe failure combined to the defects has to be taken into account. In this study thermal dynamic load has been applied to austenitic material (AISI 304) in order to introduce dynamic behaviour into the crack. The studied crack (˜20 mm × 7 mm) has been produced by thermal fatigue in advance. Different ultrasonic techniques were used to reveal information from interaction of ultrasonic waves from dynamic behaviour of a crack face in the sonified volume. The ultrasonic probes in the study are typical probes for defect detection and sizing on site inspections This information helps us to understand some effects in nuclear piping such as detection of cracks with special techniques and difficulties in sizing of the cracks in real situations. In this case the material is loaded to exceed the yield strength. The thermal cycles used caused high variations in the temperature scale from 20°C (68 F) to 600°C (1112 F) in the crack volume especially on the crack surface area. These factors cause large stress variations in the vicinity of the crack. Effects which have been detected during analysis from the measurements explain well difficulties in ultrasonic inspections of those materials on site. Experimental work explains reasons why some defects are missed in the real piping. Ultrasonic techniques used are described in details and conclusion for applicability of those techniques has been drawn.

  4. Advanced combination of laser and synchrotron techniques to study minerals at extreme conditions in the time-domain mode (Invited)

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Zinin, P.; Goncharov, A.; Zhuravlev, K. K.; Tkachev, S. N.

    2013-12-01

    Over the past two decades, high pressure research has made breakthrough progress in many fields of science mainly due to significant advances in development of both high pressure vessels (diamond anvil cell and large volume press) and high brilliance synchrotron based techniques, including high resolution x-ray micro-diffraction, x-ray spectroscopy (absorption, emission, resonance), micro-imaging, inelastic and nuclear resonance scattering. Combination of double-sided laser heating with synchrotron x-ray radiation has stimulated synthesis and investigation of new materials with unique composition and properties in-situ at high temperatures and high pressures in the diamond anvil cell. Equation of state, structure, phase transformations, element partitioning, electronic and optical properties of various minerals (single crystal, powder, nano-crystalline, amorphous solid and fluids) have been successfully studied at extreme conditions with help of the lasers and x-ray beams. Recent developments in pulse laser heating technique, including application of fiber lasers and flat top laser beam shaping optics, result in significant improvement in synthesis of new metastable materials with tuneable composition and properties controlled in-situ with high resolution x-ray and optical techniques in time-domain mode. To study elastic properties of opaque minerals in situ at high pressure and temperature we have combined laser ultrasonic with laser heating techniques. The shear and longitudinal wave velocities were measured for iron at pressures up to 60 GPa in the diamond anvil cell. The details and application of the synchrotron and optical techniques for studies unique physical and chemical properties of minerals in-situ at extreme conditions will be discussed on example of iron-bearing materials.

  5. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  6. Recent advances in sample preparation techniques for effective bioanalytical methods.

    PubMed

    Kole, Prashant Laxman; Venkatesh, Gantala; Kotecha, Jignesh; Sheshala, Ravi

    2011-01-01

    This paper reviews the recent developments in bioanalysis sample preparation techniques and gives an update on basic principles, theory, applications and possibilities for automation, and a comparative discussion on the advantages and limitation of each technique. Conventional liquid-liquid extraction (LLE), protein precipitation (PP) and solid-phase extraction (SPE) techniques are now been considered as methods of the past. The last decade has witnessed a rapid development of novel sample preparation techniques in bioanalysis. Developments in SPE techniques such as selective sorbents and in the overall approach to SPE, such as hybrid SPE and molecularly imprinted polymer SPE, have been addressed. Considerable literature has been published in the area of solid-phase micro-extraction and its different versions, e.g. stir bar sorptive extraction, and their application in the development of selective and sensitive bioanalytical methods. Techniques such as dispersive solid-phase extraction, disposable pipette extraction and micro-extraction by packed sorbent offer a variety of extraction phases and provide unique advantages to bioanalytical methods. On-line SPE utilizing column-switching techniques is rapidly gaining acceptance in bioanalytical applications. PP sample preparation techniques such as PP filter plates/tubes offer many advantages like removal of phospholipids and proteins in plasma/serum. Newer approaches to conventional LLE techniques (salting-out LLE) are also covered in this review article. PMID:21154887

  7. Ultrasonic evaluation of high voltage circuit boards

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Riley, T. J.

    1976-01-01

    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite.

  8. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  9. Recent advances in microscopic techniques for visualizing leukocytes in vivo

    PubMed Central

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  10. Recent advances in microscopic techniques for visualizing leukocytes in vivo.

    PubMed

    Jain, Rohit; Tikoo, Shweta; Weninger, Wolfgang

    2016-01-01

    Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo. PMID:27239292

  11. Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

  12. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  13. Localisation and direction of mitral regurgitant flow in mitral orifice studied with combined use of ultrasonic pulsed Doppler technique and two dimensional echocardiography.

    PubMed Central

    Miyatake, K; Nimura, Y; Sakakibara, H; Kinoshita, N; Okamoto, M; Nagata, S; Kawazoe, K; Fujita, T

    1982-01-01

    Regurgitant flow was analysed in 40 cases of mitral regurgitation, using combined ultrasonic pulsed Doppler technique and two dimensional echocardiography. Abnormal Doppler signals indicative of mitral regurgitant flow were detected in reference to the two dimensional image of the long axis view of the heart and the short axis view at the level of the mitral orifice. The overall direction of regurgitant flow into the left atrium was clearly seen in 28 of 40 cases, and the localisation of regurgitant flow in the mitral orifice in 38 cases. In cases with mitral valve prolapse of the anterior leaflet or posterior leaflet the regurgitant flow was directed posteriorly or anteriorly, respectively. The prolapse occurred at the anterolateral commissure or posteromedial commissure and resulted in regurgitant flow located near the anterolateral commissure or posteromedial commissure of the mitral orifice, respectively. In cases with rheumatic mitral regurgitation the regurgitant flow is usually towards the central portion of the left atrium and is sited in the mid-part of the orifice. The Doppler findings were consistent with left ventriculography and surgical findings. The ultrasonic pulsed Doppler technique combined with two dimensional echocardiography is useful for non-invasive analysis and preoperative assessment of mitral regurgitation. Images PMID:7138708

  14. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  15. Ultrasonic Bonding to Metalized Plastic

    NASA Technical Reports Server (NTRS)

    Conroy, B. L.; Cruzan, C. T.

    1986-01-01

    New technique makes it possible to bond wires ultrasonically to conductor patterns on such soft substrates as plain or ceramic-filled polytetrafluoroethylene. With ultrasonic bonding, unpackaged chips attached to soft circuit boards. Preferred because chips require substrate area and better matched electrically to circuit board at high frequencies.

  16. Ultrasonic Technology

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Kwan

    Ultrasonic has proven its merit as one of the most promising sensing methods for food quality evaluation due to its non-destructive, noninvasive, precise, rapid, and on-line potential. Ultrasonic is mechanical wave at frequencies above 20 kHz propagating by vibration of the particles in the medium and penetrating through optically opaque materials to provide internal or surface information of physical attributes, such as texture and structure. Ultrasonic non-destructive testing is a way of characterizing materials by transmitting ultrasonic waves into a material, and investigating the characteristics of the transmitted and/or reflected ultrasonic waves. For the purpose of quality measurement of materials, low-intensity ultrasonic with the power level of up to 1 W/cm2 has been used. The low-intensity ultrasonic doesn't cause physical or chemical changes in the properties of the specimen when it transmits through the material. However, high-intensity ultrasonic of the power range above 1 W/cm2 may produce physical/chemical disruption and alteration in the material through which the wave propagates. High-intensity ultrasonic is usually used in cleaning, promotion of chemical reactions, homogenization, etc

  17. Backscattered Electron Microscopy as an Advanced Technique in Petrography.

    ERIC Educational Resources Information Center

    Krinsley, David Henry; Manley, Curtis Robert

    1989-01-01

    Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

  18. A Secure Test Technique for Pipelined Advanced Encryption Standard

    NASA Astrophysics Data System (ADS)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  19. Coal and Coal Constituent Studies by Advanced EMR Techniques.

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.; Ceroke, P.J.

    1997-09-30

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on a high frequency EMR system particularly appropriate for such studies and on low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  20. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1998-09-30

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size on water nuclear spin relaxation, T2, were measured.

  1. COAL AND COAL CONSTITUENT STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson

    1997-03-28

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on setting up a separate high frequency EMR system particularly appropriate for such studies and exploring the use of low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  2. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1999-03-31

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size and type on water nuclear spin relaxation, T2, were measured and modeled.

  3. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  4. Advanced implementations of the iterative multi region technique

    NASA Astrophysics Data System (ADS)

    Kaburcuk, Fatih

    The integration of the finite-difference time-domain (FDTD) method into the iterative multi-region (IMR) technique, an iterative approach used to solve large-scale electromagnetic scattering and radiation problems, is presented in this dissertation. The idea of the IMR technique is to divide a large problem domain into smaller subregions, solve each subregion separately, and combine the solutions of subregions after introducing the effect of interaction to obtain solutions at multiple frequencies for the large domain. Solution of the subregions using the frequency domain solvers has been the preferred approach as such solutions using time domain solvers require computationally expensive bookkeeping of time signals between subregions. In this contribution we present an algorithm that makes it feasible to use the FDTD method, a time domain numerical technique, in the IMR technique to obtain solutions at a pre-specified number of frequencies in a single simulation. As a result, a considerable reduction in memory storage requirements and computation time is achieved. A hybrid method integrated into the IMR technique is also presented in this work. This hybrid method combines the desirable features of the method of moments (MoM) and the FDTD method to solve large-scale radiation problems more efficiently. The idea of this hybrid method based on the IMR technique is to divide an original problem domain into unconnected subregions and use the more appropriate method in each domain. The most prominent feature of this proposed method is to obtain solutions at multiple frequencies in a single IMR simulation by constructing time-limited waveforms. The performance of the proposed method is investigated numerically using different configurations composed of two, three, and four objects.

  5. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  6. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  7. Transcranial Doppler: Techniques and advanced applications: Part 2.

    PubMed

    Sharma, Arvind K; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  8. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  9. Advances in reduction techniques for tire contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

  10. Benefits of advanced software techniques for mission planning systems

    NASA Technical Reports Server (NTRS)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  11. Materials analysis by ultrasonics: Metals, ceramics, composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex (Editor)

    1987-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properties, and dynamic response.

  12. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  13. Ultrasonic evaluation of flood gate tendons

    SciTech Connect

    Thomas, G.; Brown, A.

    1997-10-01

    Our water resources infrastructure is susceptible to aging degradation just like the rest of this country`s infrastructure. A critical component of the water supply system is the flood gate that controls the outflow from dams.Long steel rods called tendons attach these radial gates to the concrete in the dam. The tendons are typically forty feet long and over one inch in diameter. Moisture may seep into the grout around the tendons and cause corrosion. Lawrence Livermore National Laboratory is working with the California Department of Water Resources to develop advanced ultrasonic techniques for nondestructively inspecting their tendons. A unique transducer was designed and fabricated to interrogate the entire tendon. A robust,portable unit was assembled that included a computer controlled data acquisition system and specialized data processing software to analyze the ultrasonic signals. This system was tested on laboratory specimens and is presently being fielded at two dam sites.

  14. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Xie, Hongtao; Liu, Jing; Lam, Matthew; Chaudhari, Abhijit J.; Zhou, Feifei; Bec, Julien; Yankelevich, Diego R.; Dobbie, Allison; Tinling, Steven L.; Gandour-Edwards, Regina F.; Monsky, Wayne L.; Gregory Farwell, D.; Marcu, Laura

    2012-11-01

    Tissue diagnostic features generated by a bimodal technique integrating scanning time-resolved fluorescence spectroscopy (TRFS) and ultrasonic backscatter microscopy (UBM) are investigated in an in vivo hamster oral carcinoma model. Tissue fluorescence is excited by a pulsed nitrogen laser and spectrally and temporally resolved using a set of filters/dichroic mirrors and a fast digitizer, respectively. A 41-MHz focused transducer (37-μm axial, 65-μm lateral resolution) is used for UBM scanning. Representative lesions of the different stages of carcinogenesis show that fluorescence characteristics complement ultrasonic features, and both correlate with histological findings. These results demonstrate that TRFS-UBM provide a wealth of co-registered, complementary data concerning tissue composition and structure as it relates to disease status. The direct co-registration of the TRFS data (sensitive to surface molecular changes) with the UBM data (sensitive to cross-sectional structural changes and depth of tumor invasion) is expected to play an important role in pre-operative diagnosis and intra-operative determination of tumor margins.

  15. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma.

    PubMed

    Sun, Yang; Xie, Hongtao; Liu, Jing; Lam, Matthew; Chaudhari, Abhijit J; Zhou, Feifei; Bec, Julien; Yankelevich, Diego R; Dobbie, Allison; Tinling, Steven L; Gandour-Edwards, Regina F; Monsky, Wayne L; Farwell, D Gregory; Marcu, Laura

    2012-11-01

    Tissue diagnostic features generated by a bimodal technique integrating scanning time-resolved fluorescence spectroscopy (TRFS) and ultrasonic backscatter microscopy (UBM) are investigated in an in vivo hamster oral carcinoma model. Tissue fluorescence is excited by a pulsed nitrogen laser and spectrally and temporally resolved using a set of filters/dichroic mirrors and a fast digitizer, respectively. A 41-MHz focused transducer (37-μm axial, 65-μm lateral resolution) is used for UBM scanning. Representative lesions of the different stages of carcinogenesis show that fluorescence characteristics complement ultrasonic features, and both correlate with histological findings. These results demonstrate that TRFS-UBM provide a wealth of co-registered, complementary data concerning tissue composition and structure as it relates to disease status. The direct co-registration of the TRFS data (sensitive to surface molecular changes) with the UBM data (sensitive to cross-sectional structural changes and depth of tumor invasion) is expected to play an important role in pre-operative diagnosis and intra-operative determination of tumor margins. PMID:23117798

  16. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  17. Some advanced testing techniques for concentrator photovoltaic cells and lenses

    SciTech Connect

    Wiczer, J.J.; Chaffin, R.J.; Hibray, R.E.

    1982-09-01

    The authors describe two separate test techniques for evaluating concentrator photovoltaic components. For convenient characterization of concentrator solar cells, they have developed a method for measuring the entire illuminated I-V curve of a photovoltaic cell with a single flash of intense simulated sunlight. This method reduces the heat input to the cell and the time required to test a cell, thus making possible quick indoor measurements of photovoltaic conversion efficiency at concentrated illumination levels without the use of elaborate cell mounting fixtures or heat sink attachments. The other test method provides a technique to analyze the spatially dependent, spectral distribution of intense sunlight collected and focused by lenses designed for use in photovoltaic concentrator systems. This information is important in the design of multijunction photovoltaic receivers, secondary concentrators, and in optimizing the performance of conventional silicon cell concentrator systems.

  18. Characterization of PTFE Using Advanced Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.

    2010-10-01

    Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

  19. Developments and advances concerning the hyperpolarisation technique SABRE.

    PubMed

    Mewis, Ryan E

    2015-10-01

    To overcome the inherent sensitivity issue in NMR and MRI, hyperpolarisation techniques are used. Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that utilises parahydrogen, a molecule that possesses a nuclear singlet state, as the source of polarisation. A metal complex is required to break the singlet order of parahydrogen and, by doing so, facilitates polarisation transfer to analyte molecules ligated to the same complex through the J-coupled network that exists. The increased signal intensities that the analyte molecules possess as a result of this process have led to investigations whereby their potential as MRI contrast agents has been probed and to understand the fundamental processes underpinning the polarisation transfer mechanism. As well as discussing literature relevant to both of these areas, the chemical structure of the complex, the physical constraints of the polarisation transfer process and the successes of implementing SABRE at low and high magnetic fields are discussed. PMID:26264565

  20. Advance techniques for monitoring human tolerance to +Gz accelerations.

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1972-01-01

    Standard techniques for monitoring the acceleration-stressed human subject have been augmented by measuring (1) temporal, brachial and/or radial arterial blood flow, and (2) indirect systolic and diastolic blood pressure at 60-sec intervals. Results show that the response of blood pressure to positive accelerations is complex and dependent on an interplay of hydrostatic forces, diminishing venous return, redistribution of blood, and other poorly defined compensatory reflexes.

  1. Added Value of Assessing Adnexal Masses with Advanced MRI Techniques

    PubMed Central

    Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.

    2015-01-01

    This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542

  2. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  3. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  4. Advanced techniques for characterization of ion beam modified materials

    DOE PAGESBeta

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  5. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  6. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  7. Advanced Techniques for Constrained Internal Coordinate Molecular Dynamics

    PubMed Central

    Wagner, Jeffrey R.; Balaraman, Gouthaman S.; Niesen, Michiel J. M.; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle and torsional coordinates instead of a Cartesian coordinate representation. Freezing high frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed in order to make the CICMD method robust and widely usable. In this paper we have designed a new framework for 1) initializing velocities for non-independent CICMD coordinates, 2) efficient computation of center of mass velocity during CICMD simulations, 3) using advanced integrators such as Runge-Kutta, Lobatto and adaptive CVODE for CICMD simulations, and 4) cancelling out the “flying ice cube effect” that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this paper, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided “freezing and thawing” of degrees of freedom in the molecule on the fly during MD simulations, and is shown to fold four proteins to their native topologies. With these advancements we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

  8. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  9. Advances in dental veneers: materials, applications, and techniques

    PubMed Central

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers. PMID:23674920

  10. Advances in dental local anesthesia techniques and devices: An update

    PubMed Central

    Saxena, Payal; Gupta, Saurabh K.; Newaskar, Vilas; Chandra, Anil

    2013-01-01

    Although local anesthesia remains the backbone of pain control in dentistry, researches are going to seek new and better means of managing the pain. Most of the researches are focused on improvement in the area of anesthetic agents, delivery devices and technique involved. Newer technologies have been developed that can assist the dentist in providing enhanced pain relief with reduced injection pain and fewer adverse effects. This overview will enlighten the practicing dentists regarding newer devices and methods of rendering pain control comparing these with the earlier used ones on the basis of research and clinical studies available. PMID:24163548

  11. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  12. Advanced terahertz techniques for quality control and counterfeit detection

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  13. Advanced coding techniques for few mode transmission systems.

    PubMed

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol. PMID:25835899

  14. Advanced Cell Culture Techniques for Cancer Drug Discovery

    PubMed Central

    Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

    2014-01-01

    Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

  15. Recent Advances in Spaceborne Precipitation Radar Measurement Techniques and Technology

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone

    2006-01-01

    NASA is currently developing advanced instrument concepts and technologies for future spaceborne atmospheric radars, with an over-arching objective of making such instruments more capable in supporting future science needs and more cost effective. Two such examples are the Second-Generation Precipitation Radar (PR-2) and the Nexrad-In-Space (NIS). PR-2 is a 14/35-GHz dual-frequency rain radar with a deployable 5-meter, wide-swath scanned membrane antenna, a dual-polarized/dual-frequency receiver, and a realtime digital signal processor. It is intended for Low Earth Orbit (LEO) operations to provide greatly enhanced rainfall profile retrieval accuracy while consuming only a fraction of the mass of the current TRMM Precipitation Radar (PR). NIS is designed to be a 35-GHz Geostationary Earth Orbiting (GEO) radar for providing hourly monitoring of the life cycle of hurricanes and tropical storms. It uses a 35-m, spherical, lightweight membrane antenna and Doppler processing to acquire 3-dimensional information on the intensity and vertical motion of hurricane rainfall.

  16. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  17. Techniques for laser welding polymeric devices.

    PubMed

    Jones, I A

    2003-04-01

    Recent advances in laser techniques mean that lasers are now being considered as an alternative to vibration, ultrasonic, dielectric, hot plate or hot bar welding, and adhesive bonding of plastics. The techniques required to put laser welding methods into practice are described for medical devices, tubular systems, films and synthetic fabrics. PMID:12789697

  18. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  19. Advanced experimental techniques for transonic wind tunnels - Final lecture

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.

  20. Further development of ultrasonic techniques for non-destructive evaluation based on Fourier analysis of signals from irregular and inhomogeneous structures

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1979-01-01

    To investigate the use of Fourier analysis techniques model systems had to be designed to test some of the general properties of the interaction of sound with an inhomogeneity. The first models investigated were suspensions of solid spheres in water. These systems allowed comparison between theoretical computation of the frequency dependence of the attenuation coefficient and measurement of the attenuation coefficient over a range of frequencies. Ultrasonic scattering processes in both suspensions of hard spheres in water, and suspensions of hard spheres in polyester resin were investigated. The second model system was constructed to test the applicability of partial wave analysis to the description of an inhomogeneity in a solid, and to test the range of material properties over which the measurement systems were valid.

  1. A Fundamental Study on Detection of Defects in the Web Gap Region of Steel Plate Girder Bridges by the Plate Wave Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Shirahata, H.; Greimann, L.; Wipf, T.; Phares, B.; Nakagawa, N.

    2004-02-01

    Applicability of the plate wave technique was investigated in this study to detect small defects in the web gap region of the steel plate girder. Torsion induced fatigue cracking is one of the most serious problems for steel bridges. As the conventional inspection method, visual inspection has been applied. However, this method is not always accurate. In addition, accessibility of the inspectors is also a serious problem. This study aims at the application of the plate wave ultrasonic testing to detect a fatigue crack in the web gap area and monitor its propagation. As the first step, the influence of a stiffener and detectability of one or more holes in the web gap were investigated.

  2. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  3. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  4. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  5. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  6. Advances in array detectors for X-ray diffraction techniques.

    PubMed

    Hanley, Quentin S; Denton, M Bonner

    2005-09-01

    Improved focal plane array detector systems are described which can provide improved readout speeds, random addressing and even be employed to simultaneously measure position, intensity and energy. This latter capability promises to rekindle interests in Laue techniques. Simulations of three varieties of foil mask spectrometer in both on- and off-axis configurations indicate that systems of stacked silicon detectors can provide energy measurements within 1% of the true value based on the use of single 'foils' and approximately 10000 photons. An eight-detector hybrid design can provide energy coverage from 4 to 60 keV. Energy resolution can be improved by increased integration time or higher flux experiments. An off-axis spectrometer design in which the angle between the incident beam and the detector system is 45 degrees results in a shift in the optimum energy response of the spectrometer system. In the case of a 200 microm-thick silicon absorber, the energy optimum shifts from 8.7 keV to 10.3 keV as the angle of incidence goes from 0 to 45 degrees. These new designs make better use of incident photons, lower the impact of source flicker through simultaneous rather than sequential collection of intensities, and improve the energy range relative to previously reported systems. PMID:16120985

  7. Recent advances in the surface forces apparatus (SFA) technique

    NASA Astrophysics Data System (ADS)

    Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H.

    2010-03-01

    The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

  8. Enhanced ultrasonically assisted turning of a β-titanium alloy.

    PubMed

    Maurotto, Agostino; Muhammad, Riaz; Roy, Anish; Silberschmidt, Vadim V

    2013-09-01

    Although titanium alloys have outstanding mechanical properties such as high hot hardness, a good strength-to-weight ratio and high corrosion resistance; their low thermal conductivity, high chemical affinity to tool materials severely impair their machinability. Ultrasonically assisted machining (UAM) is an advanced machining technique, which has been shown to improve machinability of a β-titanium alloy, namely, Ti-15-3-3-3, when compared to conventional turning processes. PMID:23587216

  9. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  10. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  11. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  12. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  13. Acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1990-01-01

    The theoretical development, methodology, and potential applications of acousto-ultrasonic nondestructive testing are set forth in an overview to assess the effectiveness of the technique. Stochastic wave propagation is utilized to isolate and describe defects in fiber-reinforced composites, particularly emphasizing the integrated effects of diffuse populations of subcritical flaws. The generation and nature of acousto-ultrasonic signals are described in detail, and stress-wave factor analysis of the signals is discussed. Applications of acousto-ultrasonics are listed including the prediction of failure sites, assessing fatique and impact damage, calculating ultimate tensile strength, and determining interlaminar bond strength. The method can identify subtle but important variations in fiber-reinforced composites, and development of the related instrumentation technology is emphasized.

  14. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  15. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  16. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  17. Automated ultrasonic inspection of turbine blade tenons results summary

    SciTech Connect

    Kotteakos, B.

    1996-12-31

    Cracks occurring in turbine blade tenons have the possibility of producing severe damage if not detected. Undetected cracks can propagate to a critical size, resulting in loss of shroud, excessive vibration and consequential unit shut down. Advances in the development of ultrasonic techniques have provided Southern California Edison Company (SCE) with an effective method of detecting tenon cracking prior to crack propagation to critical size. The ultrasonic system utilized by SCE incorporates focused array technology and automated scanning techniques and provides many advantages over the conventional manual scanning techniques. This paper addresses the system utilized by the company and the results of inspections since the introduction of the equipment to the power generation industry.

  18. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  19. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  20. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  1. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  2. In sodium tests of ultrasonic transducers

    SciTech Connect

    Lhuillier, C.; Descombin, O.; Baque, F.; Marchand, B.; Saillant, J. F.

    2011-07-01

    Ultrasonic techniques are seen as suitable candidates for the in-service inspection and for the continuous surveillance of sodium cooled reactors (SFR). These techniques need the development and the qualification of immersed ultrasonic transducers, and materials. This paper presents some developments performed by CEA (DTN and LIST) and AREVA (NDE Solutions), and some results. (authors)

  3. Proceedings of the IEEE 1986 ultrasonics symposium

    SciTech Connect

    Mc Avoy, B.R.

    1987-01-01

    This book presents the papers given at a conference on ultrasonic testing. Topics considered at the conference included the use of multiprocessors, the laser generation of acoustic waves, ultrasonic techniques in oil well logging, digital systems, piezoelectric devices, computerized tomography, Doppler tomography, pulse shaping techniques, blood flow, surface acoustic wave attenuation, sputtering, and microstructure.

  4. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  5. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  6. Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

  7. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  8. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  9. Ultrasonic neuromodulation.

    PubMed

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions. PMID:27153566

  10. Ultrasonic angioplasty

    NASA Astrophysics Data System (ADS)

    Siegel, Robert J.

    1990-08-01

    Over the past 3 years we have developed a percutaneous ultrasonic angioplasty device and recently applied it in human peripheral arteries. This paper describes some of the background preceding the development of intravascular ultrasound for arterial recanalization. The chronology of our development of ultrasonic angioplasty is discussed from in vitro studies on atherosclerotic plaque to in vivo studies in canine models with differing types of arterial occlusions (thrombotic fibrotic calcific-atherosclerotic) and to initial human application. SPIE Vol. 1321 Modern Technologies Applied to Medical Practice (1989) / 69

  11. Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Automation Industries Inc. has had more than $2 million in contracts to produce innovative equipment for the Apollo program. When Marshall Space Flight Center sought a fast nondestructive way to inspect butt welds in aluminum alloys for spacecraft, the company developed a reliable ultrasonic device using multiple transducers called "delta manipulators" which detect lack of weld penetration not readily seen in radiograph automation. Industry soon adapted the ultrasonic equipment to a unique rail inspection device that saves countless man hours. Device is contained in self propelled railroad cars produced and operated by the company to check old track welds for deterioration.

  12. Characterization techniques for semiconductors and nanostructures: a review of recent advances

    NASA Astrophysics Data System (ADS)

    Acher, Olivier

    2015-01-01

    Optical spectroscopy techniques are widely used for the characterization of semiconductors and nanostructures. Confocal Raman microscopy is useful to retrieve chemical and molecular information at the ultimate submicrometer resolution of optical microscopy. Fast imaging capabilities, 3D confocal ability, and multiple excitation wavelengths, have increased the power of the technique while making it simpler to use for material scientists. Recently, the development of the Tip Enhanced Raman Spectroscopy (TERS) has opened the way to the use of Raman information at nanoscale, by combining the resolution of scanning probe microscopy and chemical selectivity of Raman spectroscopy. Significant advances have been reported in the field of profiling the atomic composition of multilayers, using the Glow Discharge Optical Emission Spectroscopy technique, including real-time determination of etched depth by interferometry. This allows the construction of precise atomic profiles of sophisticated multilayers with a few nm resolution. Ellipsometry is another widely used technique to determine the profile of multilayers, and recent development have provided enhanced spatial resolution useful for the investigation of patterned materials. In addition to the advances of the different characterization techniques, the capability to observe the same regions at micrometer scale at different stages of material elaboration, or with different instrument, is becoming a critical issue. Several advances have been made to allow precise re-localization and co-localization of observation with different complementary characterization techniques.

  13. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... certain claims of U.S. Patent No. 6,042,998. 75 FR. 44,015 (July 27, 2010). The complaint named two... COMMISSION In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and... for ] importation, and sale within the United States after importation of certain...

  14. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  15. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  16. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  17. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  18. Ultrasonic Bonding of Solar-Cell Leads

    NASA Technical Reports Server (NTRS)

    Frasch, W.

    1984-01-01

    Rolling ultrasonic spot-bonding method successfully joins aluminum interconnect fingers to silicon solar cells with copper metalization. Technique combines best features of ultrasonic rotary seam welding and ultrasonic spot bonding: allows fast bond cycles and high indexing speeds without use of solder or flux. Achieves reliable bonds at production rates without damage to solar cells. Bonding system of interest for all solar-cell assemblies and other assemblies using flat leads (rather than round wires).

  19. A novel solvent-free method for the manufacture of biodegradable antibiotic-capsules for a long-term drug release using compression sintering and ultrasonic welding techniques.

    PubMed

    Liu, Shih-Jung; Tsai, Ying-E; Wen-Neng Ueng, Steve; Chan, Err-Cheng

    2005-08-01

    This report was to develop a novel solvent-free method for the manufacture of biodegradable capsules for a long-term drug delivery. To manufacture an antibiotic capsule, polylactide-polyglycolide copolymers were pre-mixed with vancomycin. The mixture was then injection compression molded to form a cylinder with a cover of 8mm in diameter. After the addition of gentamicin sulfate into the core, an ultrasonic welder was used to seal the capsule. An elution method and an high-performance liquid chromatography assay were employed to characterize the in vitro release rates of the antibiotics over a 30-day period. It was found that biodegradable capsules released high concentration of vancomycin and gentamicin (well above the minimum inhibition concentration) in vitro for the period of time needed to treat bone infection; i.e., 2-4 weeks. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The diameter of the sample inhibition zone ranged from 3 to 18 mm, which is equivalent to 16.7-100% of relative activity. By adopting this novel technique, we will be able to manufacture biodegradable capsules of various medicines for long-term drug delivery. PMID:15722136

  20. Ultrasonic test system

    NASA Astrophysics Data System (ADS)

    Smith, Anthony; Goff, Dan; Kruchowy, Roman; Rhoads, Carl

    1994-08-01

    An ultrasonic system for determining the quality of concrete under water without inaccuracies caused by electromagnetic interference from the ultrasonic generator. An ultrasonic generator applies pulses to the concrete. An ultrasonic detector detects the ultrasonic pulses and produces corresponding signals that are indicative of ultrasonic pulses that have passed through the material. Signal processing circuitry processes the signals to determine the transit time of the ultrasonic pulses through the material. The signal processing circuitry is disabled for a predetermined time after application of each ultrasonic pulse to the material to prevent noise produced by the means for applying ultrasonic pulses to the material from entering the signal processing circuitry and causing spurious measurements.

  1. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  2. Ultrasonic Microtransport

    NASA Astrophysics Data System (ADS)

    Moroney, Richard Morgan, III

    We have observed numerous kinetic effects using ultrasonic flexural plate waves (FPWs) in 4mu -thick composite plates of low-stress silicon nitride, piezoelectric zinc oxide and aluminum. The wavelength is typically 100 mum, and the area 3 x 8 mm^2. A successful new surface micromachining fabrication process is presented here for the first time. FPWs have been used to move liquids and gasses with motion typically indicated by polysilicon blocks in air and polystyrene spheres in water; the velocity in air is 4.5 mm/s (with a zero-to-peak input of 3 V), and in water it is 100 mum/s (with an input of 7.8 V). Other observations include pumping of a liquid dye, and mixing near the FPW surface. All quantitative observations demonstrate that the kinetic effects of FPWs are proportional to the square of the wave amplitude. The amplitude for a typical device is 250 A at 9 V input; the power in a typical FPW is about 2 mW. The amplitude can be accurately measured using a laser diffraction technique. Experimental error is about +/-10%, and many of the results agree well with a simple theory to predict the FPW amplitude; extensions of the theory model the fluid loading of FPW devices, but experiment and theory disagree by about 15%. Pumping by flexural plate waves is an example of the phenomenon known as acoustic streaming. A common solution approach is the method of successive approximations, where the nonlinear equations are first linearized and solved. This "first-order" solution is then used to determine the inhomogeneous source terms in the linearized, "second -order" equations of motion. Theoretical predictions of streaming theory are in excellent agreement with experiment in the case where the FPW device contacts a half-space of fluid; predictions for flow in small channels encourage the development of integrated micropumps. Applications for microflow include thermal redistribution in integrated circuits and liquid movement in analytical instruments--particularly where

  3. Inferior Alveolar Nerve Mobilization Using Ultrasonic Surgery With Crestal Approach Technique, Followed by Immediate Implant Insertion: Evaluation of Neurosensory Disturbance.

    PubMed

    Mavriqi, Luan; Mortellaro, Carmen; Scarano, Antonio

    2016-07-01

    Many techniques are described for atrophied mandibles rehabilitation. This article reports on 12 clinical patients of severely atrophied posterior mandibles. In all the patients, a cone beam is performed before the crestal surgical approach to inferior alveolar nerve (IAN) mobilization. For the realization of this technique the piezosurgery device was used to minimize IAN injuries. With the help of this device the selective cutting of the bone has been possible until IAN exposure, in the implant placement site. At the same time, the authors performed the implant osteotomy and implant placement. After 4 months of healing, all implants were osseointegrated and the implant-supported bridges were done.Evaluation by means of neurosurgery function test over a 36-months period found that all patients had a return to normal sensation, after a brief period of neurosensory disturbance. PMID:27380570

  4. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  5. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  6. Reproducibility of a non-invasive ultrasonic technique of tendon force measurement, determined in vitro in equine superficial digital flexor tendons.

    PubMed

    Crevier-Denoix, Nathalie; Ravary-Plumioën, Bérangère; Evrard, Delphine; Pourcelot, Philippe

    2009-09-18

    A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100N, and of force values every 2m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo. PMID:19647261

  7. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

  8. Use Of Video In Microscopic And Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1994-01-01

    Two combinations of video and image-data-processing techniques, tone-pulse encoding and precision acoustic imaging, yield grain- and pore-size distributions. Knowledge of such and of fiber orientation important because these characteristics directly related to tensile strength, hardness, fracture toughness, fracture stress, and resistance to impact. One of these combinations of techniques used in nondestructive evaluation of composite parts; both play important roles in development of lightweight composites for use at high temperatures in advanced engines and aircraft. Video system provides easy access to information on diffraction and refraction like that described in article, "Ultrasonic Inspection With Angular-Power-Spectrum Scanning" (LEW-15386).

  9. Finite element analysis simulations for ultrasonic array NDE inspections

    NASA Astrophysics Data System (ADS)

    Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony

    2016-02-01

    Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.

  10. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  11. Ultrasonic study of adhesive bond quality at a steel-to-rubber interface by using quadrature phase detection techniques

    NASA Technical Reports Server (NTRS)

    Smith, A. C.; Yang, H.

    1989-01-01

    The quadrature phase detection technique was used to simultaneously monitor the phase and amplitude of a toneburst signal normally reflected from an adhesively bonded steel-to-rubber interface. The measured phase was found to show a positive shift for all bonded samples with respect to the disbonded state - the phase shift being larger for samples with weaker bonds, as manifested by smaller values of applied tensile loads at failure. A model calculation, which incorporates the concept of interfacial strength into the usual problem of wave propagation in multilayered media, was used to deduce a bond-quality parameter from an experimentally measured phase shift. This bond-quality parameter was found to be correlated with the tensile strength of the adhesive bonds at failure loads.

  12. Performance and operating results from the demonstration of advanced combustion techniques for wall-fired boilers

    SciTech Connect

    Sorge, J.N.; Baldwin, A.L.

    1993-11-01

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term performance of advanced overfire air and low NO{sub x} burners applied in a stepwise fashion to a 500 MW boiler. A 50 percent NO{sub x} reduction target has been established for the project. The focus of this paper is to present the effects of excess oxygen level and burner settings on NO{sub x} emissions and unburned carbon levels and recent results from the phase of the project when low NO{sub x} burners were used in conjunction with advanced overfire air.

  13. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  14. Unified Instrumentation: Examining the Simultaneous Application of Advanced Measurement Techniques for Increased Wind Tunnel Testing Capability

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A. (Editor); Bartram, Scott M.; Humphreys, William M., Jr.; Jenkins, Luther N.; Jordan, Jeffrey D.; Lee, Joseph W.; Leighty, Bradley D.; Meyers, James F.; South, Bruce W.; Cavone, Angelo A.; Ingram, JoAnne L.

    2002-01-01

    A Unified Instrumentation Test examining the combined application of Pressure Sensitive Paint, Projection Moire Interferometry, Digital Particle Image Velocimetry, Doppler Global Velocimetry, and Acoustic Microphone Array has been conducted at the NASA Langley Research Center. The fundamental purposes of conducting the test were to: (a) identify and solve compatibility issues among the techniques that would inhibit their simultaneous application in a wind tunnel, and (b) demonstrate that simultaneous use of advanced instrumentation techniques is feasible for increasing tunnel efficiency and identifying control surface actuation / aerodynamic reaction phenomena. This paper provides summary descriptions of each measurement technique used during the Unified Instrumentation Test, their implementation for testing in a unified fashion, and example results identifying areas of instrument compatibility and incompatibility. Conclusions are drawn regarding the conditions under which the measurement techniques can be operated simultaneously on a non-interference basis. Finally, areas requiring improvement for successfully applying unified instrumentation in future wind tunnel tests are addressed.

  15. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  16. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  17. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  18. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  19. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145

  20. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  1. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  2. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  3. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications.

    PubMed

    Gao, Zheng; Gui, Ping

    2012-07-01

    In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%. PMID:22828849

  4. Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast

    NASA Astrophysics Data System (ADS)

    Sugumar, Saranya; Singh, Sanjay; Mukherjee, Amitava; Chandrasekaran, N.

    2016-01-01

    In recent years, food industries have shown great interest in developing nanoemulsion (NE) using essential oils (EOs) to prevent food spoilage caused by microorganisms. The hydrophobic properties of EOs have lead to reduced solubilization effect of food, which in turn, created a negative impact on the quality of food and its antimicrobial efficacy. Focusing this issue, we attempted a unique NE preparation using orange oil, Tween 80 (organic phase) and water (aqueous phase) by sonication technique. Based on thermodynamic stability studies, the effective diameter was reported to be in the size range from 20 to 30 nm. Saccharomyces cerevisiae was used in testing the anti-yeast effect. Their activity was studied in both growth medium and apple juice. The minimum inhibitory concentration of this NE was determined using broth dilution method. At 2 μl/ml, orange oil NE demonstrated inhibition of tested microorganisms. The kinetics of killing curve, have shown that the NE treated cells had lost its viability within 30 min of interaction. Also, SEM image revealed that the treated cells became distorted in comparison to their control cells. NE treated apple juice showed complete loss of viability even on dilution as compared to their controls.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  6. Importance of integrated results of different non-destructive techniques in order to evaluate defects in panel paintings: the contribution of infrared, optical and ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Theodorakeas, P.; Ibarra-Castanedo, C.; Avdelidis, N. P.; Paoletti, A.; Paoletti, D.; Hrissagis, K.; Bendada, A.; Koui, M.; Maldague, X.

    2011-06-01

    The increasing deterioration of panel paintings can be due to physical processes that take place during exhibition or transit, or as a result of temperature and humidity fluctuations within a building, church or museum. In response to environmental alterations, a panel painting can expand or contract and a new equilibrium state is eventually reached. These adjustments though, are usually accompanied by a change in shape in order to accommodate to the new conditions. In this work, a holographic method for detecting detached regions and micro-cracks is described. Some of these defects are confirmed by Thermographic Signal Reconstruction (TSR) technique. In addition, Pulsed Phase Thermography (PPT) and Principal Component Thermography (PCT) allow to identify with greater contrast two artificial defects in Mylar which are crucial to understand the topic of interest: the discrimination between defect materials. Finally, traditional contact ultrasounds applications, are widely applied for the evaluation of the wood quality in several characterization procedures. Inspecting the specimen from the front side, the natural and artificial defects of the specimen are confirmed. Experimental results derived by the application of the integrated methods on an Italian panel painting reproduction, called The Angel specimen, are presented. The main advantages that these techniques can offer to the conservation and restoration of artworks are emphasized.

  7. Investigations on MgO-dielectric GaN/AlGaN/GaN MOS-HEMTs by using an ultrasonic spray pyrolysis deposition technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Sung; Hsu, Wei-Chou; Liu, Han-Yin; Wu, Ting-Ting; Sun, Wen-Ching; Wei, Sung-Yen; Yu, Sheng-Min

    2016-05-01

    This work investigates GaN/Al0.24Ga0.76N/GaN metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs) grown on a Si substrate with MgO gate dielectric by using the non-vacuum ultrasonic spray pyrolysis deposition (USPD) technique. The oxide layer thickness is tuned to be 30 nm with the dielectric constant of 8.8. Electron spectroscopy for chemical analysis (ESCA), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM), transmission electron microscopy (TEM), C-V, low-frequency noise spectra, and pulsed I-V measurements are performed to characterize the interface and oxide quality for the MOS-gate structure. Improved device performances have been successfully achieved for the present MOS-HEMT (Schottky-gate HEMT) design, consisting of a maximum drain-source current density (I DS, max) of 681 (500) mA/mm at V GS = 4 (2) V, I DS at V GS = 0 V (I DSS0) of 329 (289) mA/mm, gate-voltage swing (GVS) of 2.2 (1.6) V, two-terminal gate-drain breakdown voltage (BV GD) of -123 (-104) V, turn-on voltage (V on) of 1.7 (0.8) V, three-terminal off-state drain-source breakdown voltage (BV DS) of 119 (96) V, and on/off current ratio (I on/I off) of 2.5 × 108 (1.2 × 103) at 300 K. Improved high-frequency and power performances are also achieved in the present MOS-HEMT design.

  8. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  9. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.; Sushinsky, G. F.; Chwirut, D. J.; Bechtoldt, C. J.; Ruff, A. W.

    1976-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized.

  10. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  11. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  12. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  13. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic stainless steel based on EBSD analysis.

    PubMed

    Chen, Yao; Luo, Zhongbing; Zhou, Quan; Zou, Longjiang; Lin, Li

    2015-05-01

    The ultrasonic inspection of heavy-walled centrifugally cast austenitic stainless steel (CCASS) is challenging due to the complex metallurgical structure. Numerical modeling could provide quantitative information on ultrasonic propagation and plays an important role in developing advanced and reliable ultrasonic inspection techniques. But the fundamental obstacle is the accurate description of the complex metallurgical structure. To overcome this difficulty, a crystal orientation map of a CCASS specimen in the 96 mm × 12 mm radial-axial cross section was acquired based on the electron backscattered diffraction (EBSD) technique and it was used to describe the coarse-grained structure and grain orientation. A model of ultrasonic propagation for CCASS was built according to the EBSD map. The ultrasonic responses of the CCASS sample were also tested. Some experimental phenomena such as structural noise and signal distortion were reproduced. The simulated results showed a good consistence with the experiments. The modeling method is expected to be effective for the precise interpretation of ultrasonic propagation in the polycrystalline structures of CCASS. PMID:25670411

  14. Ultrasonic ash/pyrite liberation

    SciTech Connect

    Yungman, B.A.; Buban, K.S.; Stotts, W.F.

    1990-06-01

    The objective of this project was to develop a coal preparation concept which employed ultrasonics to precondition coal prior to conventional or advanced physical beneficiation processes such that ash and pyrite separation were enhanced with improved combustible recovery. Research activities involved a series of experiments that subjected three different test coals, Illinois No. 6, Pittsburgh No. 8, and Upper Freeport, ground to three different size fractions (28 mesh [times] 0, 200 mesh [times] 0, and 325 mesh [times] 0), to a fixed (20 kHz) frequency ultrasonic signal prior to processing by conventional and microbubble flotation. The samples were also processed by conventional and microbubble flotation without ultrasonic pretreatment to establish baseline conditions. Product ash, sulfur and combustible recovery data were determined for both beneficiation processes.

  15. Ultrasonic cleaning of fuel assemblies

    SciTech Connect

    Kondoh, Keisuke; Fujita, Chitoshi; Sakai, Hitoshi

    1994-12-31

    During fuel transportation, contamination of the transfer cask can lead to radiation dosage. That is radioactive crud becomes detached from the fuel surface and is deposited inside the cask. To avoid this at the Tsuruga Power Station Unit 1, crud was removed from fuel assemblies in advance of fuel transportation work. An ultrasonic cleaning process was adopted for this purpose; ultrasonic methods excel over other methods for this type of cleaning. Our process is also able to clean fuel assemblies without removing the channel box. Since this is the first time that the ultrasonic method was applied to fuel assemblies at the light water reactor in Japan on a large scale, the efficiency and the impact on plant instrumentation of the method were examined by performing preliminary test. Based on these tests, an optimum cleaning procedure was established.

  16. Pressure and temperature dependence of the elasticity of pyrope-majorite [Py 60Mj 40 and Py 50Mj 50] garnets solid solution measured by ultrasonic interferometry technique

    NASA Astrophysics Data System (ADS)

    Gwanmesia, Gabriel D.; Wang, Liping; Triplett, Richard; Liebermann, Robert C.

    2009-05-01

    Compressional (P) and shear (S) wave velocities have been measured for two synthetic polycrystalline specimens of pyrope-majorite garnets [Py 60Mj 40 and Py 50Mj 50] by ultrasonic interferometry to 8 GPa and 1000 K, in a DIA-type cubic anvil high pressure apparatus (SAM-85) interfaced with synchrotron X-radiation and X-ray imaging. Elastic bulk ( KS) and shear ( G) moduli data obtained at the end of the cooling cycles were fitted to functions of Eulerian strain to third order yielding pressure derivatives of the elastic moduli (∂ KS/∂ P) T = 4.3 (3); (∂ G/∂ P) T = 1.5 (1) for Py 60Mj 40 garnet and (∂ KS/∂ P) T = 4.4 (1); (∂ G/∂ P) T = 1.3 (1) for Py 50Mj 40 garnet. Both (∂ KS/∂ P) T and (∂ G/∂ P) T are identical for the two garnet compositions and are also consistent with Brillouin scattering data for polycrystalline Py 50Mj 50. Moreover, the new pressure derivatives of the elastic moduli are equal within experimental uncertainties to those of end-member pyrope garnet from ultrasonic studies [Gwanmesia, G.D., Zhang. J, Darling, K., Kung, J., Li, B., Wang, L., Neuville, D., Liebermann, R.C., 2006. Elasticity of polycrystalline pyrope (Mg 3Al 2Si 3O 12) to 9 GPa and 1000 °C. Phys. Earth Planet. Inter. 155, 179-190] and from Brillouin spectroscopic studies [Sinogeikin, S.V., Bass, J.D., 2002a. Elasticity of majorite and majorite-pyrope solid solution to high pressure: implications for the transition zone. Geophys. Res. 9(2), 1017], thereby demonstrating that the pressure derivatives of the elastic moduli are independent of the physical acoustics technique employed and unaffected by substitution of Si for Mg and Al within the Py-Mj solid solution in the range (Py 100-Py 50) of the present measurements. Temperature dependence of the elastic obtained from linear regression of entire P- T- K and P- T- G data are (∂ KS/∂ T) P = -14.6 (4) MPa/K; (∂ G/∂ T) P = -9.4 (4) MPa/K for Py 60Mj 40 garnet, and (∂ KS/∂ T) P = -14.6 (4) MPa/K; (

  17. Ultrasonic transducer

    SciTech Connect

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  18. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  19. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  20. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  1. Ultrasonic pipe assessment

    SciTech Connect

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  2. Modern ultrasonic flowmeters

    NASA Astrophysics Data System (ADS)

    Gurevich, V. M.; Truman, S. G.

    1986-01-01

    The current status of ultrasonic flowmeters were reviewed on the basis of materials published in the Soviet Union and elsewhere. The following advantages of ultrasonic flowmeters over earlier instruments are cited. A comparative analysis is made of the design methods employed in ultrasonic flowmeters. The evolution of ultrasonic flowmetering is traced from the first generation and trends in their development are analyzed.

  3. Computer Simulation for Air-coupled Ultrasonic Testing

    NASA Astrophysics Data System (ADS)

    Yamawaki, H.

    2014-06-01

    Air-coupled ultrasound is used as non-contact ultrasonic testing method. For wider application of air-coupled ultrasonic technique, it is required to know situation of ultrasonic propagation between air and solid. Transmittance of the ultrasonic waves from air to solids is extremely small with 10-5 however it was revealed that, by using computer simulation methods based on the two-stage elastic wave equation in which two independent variables of stress and particle velocity are used, visualization calculation of ultrasonic propagation between air and solid was possible. In this report, the calculation of air-coupled ultrasound using the new Improved-FDM for computer simulation of ultrasonic propagation in solids is shown. Waveforms obtained by 1-dimensional calculation are discussed for principle and performance of the calculation. Visualization of ultrasonic incidence to cylindrical steel pipe is demonstrated as an example to show availability for ultrasonic testing.

  4. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    SciTech Connect

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

  5. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  6. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.

    PubMed

    Tardif, Christine Lucas; Gauthier, Claudine Joëlle; Steele, Christopher John; Bazin, Pierre-Louis; Schäfer, Andreas; Schaefer, Alexander; Turner, Robert; Villringer, Arno

    2016-05-01

    Over the last two decades, numerous human MRI studies of neuroplasticity have shown compelling evidence for extensive and rapid experience-induced brain plasticity in vivo. To date, most of these studies have consisted of simply detecting a difference in structural or functional images with little concern for their lack of biological specificity. Recent reviews and public debates have stressed the need for advanced imaging techniques to gain a better understanding of the nature of these differences - characterizing their extent in time and space, their underlying biological and network dynamics. The purpose of this article is to give an overview of advanced imaging techniques for an audience of cognitive neuroscientists that can assist them in the design and interpretation of future MRI studies of neuroplasticity. The review encompasses MRI methods that probe the morphology, microstructure, function, and connectivity of the brain with improved specificity. We underline the possible physiological underpinnings of these techniques and their recent applications within the framework of learning- and experience-induced plasticity in healthy adults. Finally, we discuss the advantages of a multi-modal approach to gain a more nuanced and comprehensive description of the process of learning. PMID:26318050

  7. Ultrasonic hydrometer

    SciTech Connect

    Swoboda, C.A.

    1984-04-17

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time ''t'' between the initial and returning impulses. Considering the distance ''d'' between the spaced sonic surfaces and the measured time ''t'', the sonic velocity ''V'' is calculated with the equation ''V=2d/t''. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0/sup 0/ and 40/sup 0/ C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  8. Ultrasonic hydrometer

    DOEpatents

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  9. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  10. Determination of Electromagnetic Properties of Mesh Material Using Advanced Radiometer Techniques

    NASA Technical Reports Server (NTRS)

    Arrington, R. F.; Blume, H. J. C.

    1985-01-01

    The need for a large diameter deployable antenna to map soil moisture with a 10 kilometer or better resolution using a microwave radiometer is discussed. A 6 meter deployable antenna is also needed to map sea surface temperature on the Navy Remote Ocean Sensor System (NROSS). Both of these deployable antennas require a mesh membrane material as the reflecting surface. The determination of the electromagnetic properties of mesh materials is a difficult problem. The Antenna and Microwave Research Branch (AMRB) of Langley Research Center was asked to measure the material to be used on MROSS by NRL. A cooperative program was initiated to measure this mesh material using two advanced radiometer techniques.

  11. Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life

    PubMed Central

    Bunge, John; Gilbert, Jack A.; Moore, Jason H.

    2012-01-01

    This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

  12. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  13. [Recent advances in the techniques of protein-protein interaction study].

    PubMed

    Wang, Ming-Qiang; Wu, Jin-Xia; Zhang, Yu-Hong; Han, Ning; Bian, Hong-Wu; Zhu, Mu-Yuan

    2013-11-01

    Protein-protein interactions play key roles in the development of organisms and the response to biotic and abiotic stresses. Several wet-lab methods have been developed to study this challenging area,including yeast two-hybrid system, tandem affinity purification, Co-immunoprecipitation, GST Pull-down, bimolecular fluorescence complementation, fluorescence resonance energy transfer and surface plasmon resonance analysis. In this review, we discuss theoretical principles and relative advantages and disvantages of these techniques,with an emphasis on recent advances to compensate for limitations. PMID:24579310

  14. Ultrasonic flow imaging system: A feasibility study

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Chien, H.T.; Raptis, A.C.

    1991-09-01

    This report examines the feasibility and potential problems in developing a real-time ultrasonic flow imaging instrument for on-line monitoring of mixed-phased flows such as coal slurries. State-of-the-art ultrasonic imaging techniques are assessed for this application. Reflection and diffraction tomographies are proposed for further development, including image-reconstruction algorithms and parallel processing systems. A conventional ultrasonic C-scan technique is used to demonstrate the feasibility of imaging the particle motion in a solid/water flow. 13 refs., 11 figs.

  15. Ultrasonic aesthetic cranioplasty.

    PubMed

    Robiony, Massimo; Casadei, Matteo; Sbuelz, Massimo; Della Pietra, Lorenzo; Politi, Massimo

    2014-07-01

    The management of frontal bone injury is an important issue, and inappropriate management of such injuries may give rise to serious complications. Piezosurgery is a technique used to perform safe and effective osteotomies using piezoelectric ultrasonic vibrations. This instrument allows a safe method for osteotomy of the cranial vault in close proximity to extremely injury-sensitive tissue such as the brain. After a wide review of the literature, the authors present this technical report, introduce the use of piezosurgery to perform a safe "slim-osteotomies" for treatment of posttraumatic frontal bone deformities, and suggest the use of this instrument for aesthetic recontouring of the craniofacial skeleton. PMID:24914759

  16. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  17. Recent advances in coupling capillary electrophoresis based separation techniques to ESI and MALDI MS

    PubMed Central

    Zhong, Xuefei; Zhang, Zichuan; Jiang, Shan; Li, Lingjun

    2014-01-01

    Coupling capillary electrophoresis (CE) based separation techniques to mass spectrometry creates a powerful platform for analysis of a wide range of biomolecules from complex samples because it combines the high separation efficiency of CE and the sensitivity and selectivity of MS detection. ESI and MALDI, as the most common soft ionization techniques employed for CE and MS coupling, offer distinct advantages for biomolecular characterization. This review is focused primarily on technological advances in combining CE and chip-based CE with ESI and MALDI MS detection in the past five years. Selected applications in the analyses of metabolites, peptides, and proteins with the recently developed CE-MS platforms are also highlighted. PMID:24170529

  18. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  19. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  20. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.