Science.gov

Sample records for advanced undergraduate physics

  1. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  2. Strategies for Advancing Women in Physics and other Sciences in an Undergraduate Hispanic Institution (abstract)

    NASA Astrophysics Data System (ADS)

    Ramos, Idalia

    2009-04-01

    For the past 15 years, University of Puerto Rico at Humacao (UPRH) has implemented various efforts to increase participation and promote advancement of women in physics and other sciences. The strategies used include mentoring, collaborating, forming women's organizations, and offering training workshops. The physics program at UPRH is the largest in Puerto Rico with approximately 95 undergraduates. Since 1995, female students in the program have increased from 17% to 32%. Efforts to integrate women in undergraduate research as early as possible in their studies show promising results, with the percentage of women in research increasing from 13% to 60% in the last 13 years. The Faculty in Training (FIT) program, begun in 2003, has supported talented women students interested in academic careers. The first FIT physics student will obtain her PhD in 2009. At the faculty level, UPRH received a first-round US National Science Foundation ADVANCE Institutional Transformation Award in 2001. The ADVANCE legacy at UPRH is evident at levels ranging from changes in individual behaviors to the adoption of institutional policies. A strong network of women in science and their supporters continues to advance this legacy.

  3. COMPRES Mineral Physics Educational Modules for Advanced Undergraduates and Graduate Students

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Thomas, S.

    2012-12-01

    The Consortium for Materials Properties Research in Earth Sciences (COMPRES) is a community-based consortium whose goal is to advance and facilitate experimental high pressure research in the Earth Sciences. An important aspect of this goal is sharing our knowledge with the next generation of researchers. To facilitate this, we have created a group of web-based educational modules on mineral physics topics. The modules reside in the On Cutting Edge, Teaching Mineralogy collection on the Science Education Resource Center (SERC) website. Although the modules are designed to function as part of a full semester course, each module can also stand alone. Potential users of the modules include mineral physics faculty teaching "bricks and mortar" classes at their own institutions, or in distance education setting, mineralogy teachers interested in including supplementary material in their mineralogy class, undergraduates doing independent study projects and graduate students and colleagues in other sub-disciplines who wish to brush up on a mineral physics topic. We used the modules to teach an on-line course entitled "Introduction to Mineral Physics" during the spring 2012 semester. More than 20 students and postdocs as well as 15 faculty and senior scientists participated in the course which met twice weekly as a webinar. Recordings of faculty lectures and student-led discussions of journal articles are now available upon request and edited versions of the lectures will be incorporated into the educational modules. Our experience in creating the modules and the course indicates that the use of 1) community-generated internet-based resources and 2) webinars to enable shared teaching between faculty at different universities, has the potential to both enrich graduate education and create efficiencies for university faculty.;

  4. Using Recent Planetary Science Data to Develop Advanced Undergraduate Physics and Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Lindell, Rebecca

    2016-10-01

    Teaching science by having students manipulate real data is a popular trend in astronomy and planetary science education. However, many existing activities simply couple this data with traditional "cookbook" style verification labs. As with most topics within science, this instructional technique does not enhance the average students' understanding of the phenomena being studied. Here we present a methodology for developing "science by doing" activities that incorporate the latest discoveries in planetary science with up-to-date constructivist pedagogy to teach advanced concepts in Physics and Astronomy. In our methodology, students are first guided to understand, analyze, and plot real raw scientific data; develop and test physical and computational models to understand and interpret the data; finally use their models to make predictions about the topic being studied and test it with real data.To date, two activities have been developed according to this methodology: Understanding Asteroids through their Light Curves (hereafter "Asteroid Activity"), and Understanding Exoplanetary Systems through Simple Harmonic Motion (hereafter "Exoplanet Activity"). The Asteroid Activity allows students to explore light curves available on the Asteroid Light Curve Database (ALCDB) to discover general properties of asteroids, including their internal structure, strength, and mechanism of asteroid moon formation. The Exoplanet Activity allows students to investigate the masses and semi-major axes of exoplanets in a system by comparing the radial velocity motion of their host star to that of a coupled simple harmonic oscillator. Students then explore how noncircular orbits lead to deviations from simple harmonic motion. These activities will be field tested during the Fall 2016 semester in an advanced undergraduate mechanics and astronomy courses at a large Midwestern STEM-focused university. We will present the development methodologies for these activities, description of the

  5. Repackaging undergraduate physics programs

    NASA Astrophysics Data System (ADS)

    Garner, James

    1997-03-01

    During the nineties the undergraduate physics major has experienced a number of problems that are not especially new. However, the severity of these problems may be at an all time high. The problems concern such matters as the difficulty of recruiting majors, the retention of majors and non-majors in our physics courses, and a poor employment picture for the B.S. physics graduates. The seriousness of these problems has reached such a profound level that it may be time for the physics community to reexamine a disturbing but fundamental question, i.e., what should be the primary purpose of the undergraduate physics program in our universities? Indeed, this question seems to be one of the primary focuses of this physics education conference. In previous eras physics departments did not have to be greatly concerned about these issues. Traditionally, physics was considered one of the liberal arts and we could tell prospective majors that if they wanted to work in a physics-related job then they should enroll in physics graduate studies. We expected most of them, at least the "worthy" ones, to do just that. We often callously disregarded the low retention of students in our courses with flippant phrases like, "we are just weeding them out." There seemed to be plenty of students eager to enter our exciting discipline and industry was quick to snatch up these excellent problem solvers when they finished their degree. Many would agree that this picture changed in the post cold-war nineties and things may never be the way they used to be.

  6. Advanced Undergraduate and Early Graduate Physics Students' Misconception about Solar Wind Flow: Evidence of Students' Difficulties in Distinguishing Paradigms

    ERIC Educational Resources Information Center

    Gross, Nicholas A.; Lopez, Ramon E.

    2009-01-01

    Anecdotal evidence has suggested that advanced undergraduate students confuse the spiral structure of the interplanetary magnetic field with the flow of the solar wind. Though it is a small study, this paper documents this misconception and begins to investigate the underlying issues behind it. We present evidence that the traditional presentation…

  7. Rethinking Undergraduate Physical Chemistry Curricula

    ERIC Educational Resources Information Center

    Miller, Stephen R.

    2016-01-01

    A summary of fundamental changes made to the undergraduate physical chemistry curriculum in the Chemistry Department at Gustavus Adolphus College (beginning in the 2013-2014 academic year) is presented. The yearlong sequence now consists of an introductory semester covering both quantum mechanics and thermodynamics/kinetics, followed by a second…

  8. The conferences for undergraduate women in physics

    NASA Astrophysics Data System (ADS)

    Blessing, Susan K.

    2015-12-01

    The American Physical Society Conferences for Undergraduate Women in Physics are the continuation of a grassroots collaborative effort that began in 2006. The goals of the conferences are to increase retention and improve career outcomes of undergraduate women in physics. I describe the conferences, including organization and participant response, and encourage other countries to host similar programs for their undergraduate women.

  9. Training Undergraduate Physics Peer Tutors

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Jacob, A. T.

    2004-05-01

    The University of Wisconsin's Physics Peer Mentor Tutor Program matches upper level undergraduate physics students in small study groups with students studying introductory algebra-based physics. We work with students who are potentially at-risk for having academic trouble with the course. They include students with a low exam score, learning disabilities, no high school physics, weak math backgrounds, and/or on academic probation. We also work with students from groups under represented in the sciences and who may be feeling isolated or marginal on campus such as minority, returning adult, and international students. The tutors provide a supportive learning environment, extra practice problems, and an overview of key concepts. In so doing, they help our students to build confidence and problem solving skills applicable to physics and other areas of their academic careers. The Physics Peer Mentor Tutor Program is modeled after a similar program for chemistry created by the University of Wisconsin's Chemistry Learning Center. Both programs are now run in collaboration. The tutors are chosen for their academic strength and excellent communication skills. Our tutors are majoring in physics, math, and secondary-level science education. The tutors receive ongoing training and supervision throughout the year. They attend weekly discipline-specific meetings to discuss strategies for teaching the content currently being discussed in the physics course. They also participate in a weekly teaching seminar with science tutors from chemistry and biochemistry to discuss teaching methods, mentoring, and general information relating to the students with whom we work. We will describe an overview of the Physics Peer Mentor Tutor Program with a focus on the teacher training program for our undergraduate tutors.

  10. Undergraduates' Views about Biology and Physics

    ERIC Educational Resources Information Center

    Spall, Katie; Barrett, Stephanie; Stanisstreet, Martin; Dickson, Dominic; Boyes, Edward

    2003-01-01

    There is continuing concern about the low enrolment of students on to some undergraduate science courses, especially physics. Here we explore some of the reasons that might underpin this. The views about physics and biology of Year 1 undergraduate students on English, physics and biology programmes of study were compared using a closed-form…

  11. Overhauling the Undergraduate Physics Laboratory in India.

    ERIC Educational Resources Information Center

    Khandelwal, D. P.

    1993-01-01

    Highlights the need to make the undergraduate physics laboratory more exciting and commensurate with the time assigned for it in the curriculum. Suggests establishing a model undergraduate physics laboratory at one place then reproducing it in five places for a massive reorientation program for teachers. Contains brief outlines of 30 experiments…

  12. Joint Task Force on Undergraduate Physics Programs

    NASA Astrophysics Data System (ADS)

    This session will focus on the guidelines and recommendations being developed by the APS/AAPT Joint Task Force on Undergraduate Physics Programs. J-TUPP is studying how undergraduate physics programs might better prepare physics majors for diverse careers. The guidelines and recommendations will focus on curricular content, flexible tracks, pedagogical methods, research experiences and internships, the development of professional skills, and enhanced advising and mentoring for all physics majors.

  13. Interactive Digital Computing in Undergraduate Physical Chemistry

    ERIC Educational Resources Information Center

    Herber, R. H.; Hazony, Y.

    1974-01-01

    Presents the results of educational experiments aimed at incorporating APL programming techniques in an undergraduate physical-analytical laboratory course. Included are a list of first year experiments and some examples of operations. (CC)

  14. Advanced interdisciplinary undergraduate program: light engineering

    NASA Astrophysics Data System (ADS)

    Bakholdin, Alexey; Bougrov, Vladislav; Voznesenskaya, Anna; Ezhova, Kseniia

    2016-09-01

    The undergraduate educational program "Light Engineering" of an advanced level of studies is focused on development of scientific learning outcomes and training of professionals, whose activities are in the interdisciplinary fields of Optical engineering and Technical physics. The program gives practical experience in transmission, reception, storage, processing and displaying information using opto-electronic devices, automation of optical systems design, computer image modeling, automated quality control and characterization of optical devices. The program is implemented in accordance with Educational standards of the ITMO University. The specific features of the Program is practice- and problem-based learning implemented by engaging students to perform research and projects, internships at the enterprises and in leading Russian and international research educational centers. The modular structure of the Program and a significant proportion of variable disciplines provide the concept of individual learning for each student. Learning outcomes of the program's graduates include theoretical knowledge and skills in natural science and core professional disciplines, deep knowledge of modern computer technologies, research expertise, design skills, optical and optoelectronic systems and devices.

  15. Macromolecules in Undergraduate Physical Chemistry.

    ERIC Educational Resources Information Center

    Mattice, Wayne L.

    1981-01-01

    Suggests the topic of macromolecules and synthetic polymers be included in undergraduate courses. Two macromolecular systems (polyethylene in a state unperturbated by long-range interactions and a polypeptide undergoing a helix-coil transition) are described which are suitable for inclusion in the statistical mechanics section of physical…

  16. Development of an advanced undergraduate course in acoustics

    NASA Astrophysics Data System (ADS)

    Gee, Kent L.; Neilsen, Tracianne B.; Sommerfeldt, Scott D.

    2016-03-01

    Within many physics undergraduate programs, acoustics is given only a cursory treatment, usually within an introductory course. Because acoustics is a natural vehicle for students to develop intuition about wave phenomena, an advanced undergraduate acoustics course has been developed at Brigham Young University. Although it remains an elective course, enrollment has increased steadily since its inception. The course has been taken by students in physics, applied physics, physics teaching, and mechanical and electrical engineering. In addition to providing training for students motivated by interest in undergraduate research, internship, employment, and graduate schooling opportunities in acoustics, the course facilitates connections between various areas of physics. Explicit connections are made to mechanics, electricity and magnetism, thermodynamics, optics, quantum mechanics, and experimental and computational laboratory courses. Active learning is emphasized through Just-in-Time-Teaching and course structure. Homework exercises are both theoretical and practical and often require making and interpreting of graphs. For example, students may model traffic noise as a series of uncorrelated monopoles or examine highway barrier effectiveness using Fresnel diffraction techniques. Additionally, students participate in resumé-building measurements and learn to report their results in the form of technical memoranda. Course evaluations and post-graduation student surveys rate it among the most valuable undergraduate student courses offered.

  17. Involving Undergraduates in Solar Physics Research

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Jenkins, Nancy

    1996-05-01

    Via a combination of local funding, Cottrell Research Corporation and a pending NSF proposal, I am actively involved in including undergraduates in solar physics research. Severl undergraduates, about 2-3 per academic year over the past several years have participated in a combination of activities. This project has been ongoing since November of 1992. Student involvement includes; 1)acquiring image and other data via the INTERNET, 2) reducing dat via inhouse programs and image processing, 3) traveling to Kitt Peak to obtain solar spectral index data.

  18. A Final Year Physics Undergraduate Experiment on Ultrasound Propagation in Liquids.

    ERIC Educational Resources Information Center

    van der Sluijs, M. J.; van der Sluijs, J. C. A.

    1980-01-01

    Describes an advanced undergraduate physics experiment which permits the measurement of ultrasound velocity and absorption in liquid systems. A description of the tasks the student is expected to perform is also included. (HM)

  19. Plasma Physics Research at an Undergraduate Institution

    NASA Astrophysics Data System (ADS)

    Padalino, Stephen

    2007-11-01

    Undergraduate research experiences have motivated many physics majors to continue their studies at the graduate level. The Department of Physics and Astronomy at SUNY Geneseo, a primarily undergraduate institution, recognizes this simple reality and is committed to ensuring research opportunities are available to interested majors beginning as early as their freshman year. Every year for more than a decade, as many as two dozen students and 8 faculty members have worked on projects related to high energy density physics and inertial confinement fusion during the summer months and the academic year. By working with their research sponsors, it has been possible to identify an impressive number of projects suitable for an institution such as Geneseo. These projects tend to be hands-on and require teamwork and innovation to be successful. They also take advantage of in-house capabilities such as the 2 MV tandem pelletron accelerator, a scanning electron microscope, a duoplasmatron ion deposition system and a 64 processor computing cluster. The end products of their efforts are utilized at the sponsoring facilities in support of nationally recognized programs. In this talk, I will discuss a number of these projects and point out what made them attractive and appropriate for an institution like Geneseo, the direct and indirect benefits of the research opportunities for the students and faculty, and how the national programs benefited from the cost-effective use of undergraduate research. In addition, I will discuss the importance of exposure for both students and faculty mentors to the larger scientific community through posters presentations at annual meetings such as the DPP and DNP. Finally, I will address the need for even greater research opportunities for undergraduate students in the future and the importance of establishing longer ``educational pipelines'' to satisfy the ever growing need for top-tier scientists and engineers in industry, academia and the

  20. General Relativity in the Undergraduate Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Hartle, James

    2005-04-01

    Einstein's theory of gravitation --- general relativity--- will shortly be a century old. At is core is one of the most beautiful and revolutionary conceptions of modern science --- the idea that gravity is the geometry of four-dimensional curved spacetime. Together with quantum theory, general relativity is one of the two most profound developments of twentieth century physics. General relativity underlies our understanding of the universe on the largest distance scales, and is central to the the explanation of such frontier astrophysical phenomena gravitational collapse,black holes, X-ray sources, neutron stars, active galactic nuclei, gravitational waves, and the big bang. General relativity is the intellectual origin of many ideas in contemporary elementary particle physics such as string theory. This talk will make the case that an introduction to general relativity is naturally a part education of every undergraduate physics major, and describe a `physics first' approach to teaching at that level. The simplest physically relevant solutions of the Einstein equation, such as those representing black holes, simple cosmologies, and gravitational waves, are presented first without derivation. Their observational consequences are explored by the study of the motion of test particles and light rays in them.This brings the student to the physical phenomena as quickly aspossible. It is the part of the subject most directly connectedto classical mechanics, and requires the minimum of new mathematical ideas. The Einstein equation is introduced later to show where these geometries originate. A course for junior or senior level physics students based on theseprinciples has been part of the undergraduate curriculum at the University of California, Santa Barbara for several decades. It works.

  1. Conference for Undergraduate Women in Physics

    SciTech Connect

    Bonnie Fleming

    2009-04-01

    The Yale Conference for Undergraduate Women in Physics was held on January 18th and 19th, 2008. The conference, targeted toward undergraduates in the Northeast, was a huge success. It was well attended by both a slate of impressive speakers including Janet Conrad, Mildred Dresselhaus, Elsa Garmire, Howard Georgi, Liz Rhodes, Meg Urry and Wendy Zhang, and many interested attendees. Talks were on current research, about issues for women in physics, and on the application process for graduate school. There was also a career panel, student talks, and a student poster session. The conference ran concurrently with the third annual conference at USC, as well as a first annual conference at the University of Michigan. Our purpose in creating this conference was to provide a supportive atmosphere for young physicists to connect with peers and with successful women in the field. We hope that from this conference, attendees have become confident and knowledgeable about applying to graduate school and be further inspired to pursue a career in physics. The following describes the conference program, participation and impact, logistics of running the conference and plans for the future.

  2. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  3. Building Undergraduate Physics Programs for the 21st Century

    NASA Astrophysics Data System (ADS)

    Hilborn, Robert

    2001-04-01

    Undergraduate physics programs in the United States are under stress because of changes in the scientific and educational environment in which they operate. The number of undergraduate physics majors is declining nationwide; there is some evidence that the "best" undergraduate students are choosing majors other than physics, and funding agencies seem to be emphasizing K-12 education. How can physics departments respond creatively and constructively to these changes? After describing some of the details of the current environment, I will discuss the activities of the National Task Force on Undergraduate Physics, supported by the American Institute of Physics, the America Physical Society, the American Association of Physics Teachers and the ExxonMobil Foundation. I will also present some analysis of Task Force site visits to departments that have thriving undergraduate physics programs, pointing out the key features that seem to be necessary for success. Among these features are department-wide recruitment and retention efforts that are the theme of this session.

  4. A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chang Ji; Peters, Dennis G.

    2006-01-01

    Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…

  5. Berkeley's Advanced Labs for Undergraduate Astronomy Majors

    NASA Astrophysics Data System (ADS)

    Heiles, C.

    1998-12-01

    We currently offer three advanced laboratory courses for undergraduate majors: optical, IR, and radio. These courses contain both intellectual and practical content; in this talk we focus on the radio lab as a representative example. The first half of the semester concentrates on fundamentals of microwave electronics and radio astronomy techniques in four formal laboratory exercises which emphasize hands-on use of microwave devices, laboratory instruments, and computer-controlled data taking. The second half of the course emphasizes astronomy, using a horn with ~ 1 m(2) aperture to map the HI in the Galaxy and a two-element interferometer composed of ~ 1 m diameter dishes on a ~ 10 m baseline to measure accurate positions of radio sources and accurate diameters for the Sun and Moon. These experiments and observations offer ideal opportunities for teaching coordinates, time, rotation matrices, data reduction techniques, least squares, signal processing, image processing, Fourier transforms, and laboratory and astronomical instrumentation. The students can't get along without using computers as actually used by astronomers. We stay away from packaged software such as IRAF, which are ``black boxes''; rather, students learn far more by writing their own software, usually for the first time. They use the IDL language to take and reduce data and prepare them for the lab reports. We insist on quality reports---including tables, postscript graphs and images, correct grammar, spelling, and all the rest---and we strongly urge (successfully!) the students to use LATEX. The other two lab courses have the same emphasis: the guiding spirit is to place the students in a real-life research-like situation. There is too much to do, so students perform the work in small groups of 3 or 4 and groups are encouraged to share their knowledge. Lab reports are written individually. These courses are very demanding, requiring an average of 20 hours per week from the students (and probably

  6. CiSE and Computational Physics: Undergraduate Physics Challenge

    NASA Astrophysics Data System (ADS)

    Donnelly, Denis

    2008-04-01

    The role of Computing in Science and Engineering (CiSE) in support of computational physics is discussed with emphasis on CiSE's computational physics challenge. Winners awards are 1500, 1000, and 500. Each winner also receives a copy of Mathematica plus modest travel support. The challenge was for undergraduates at any accredited educational institution. Applicants were to select a physically and computationally interesting problem of their own choosing. Awards are presented at this session. Student winners discuss their work in papers that follow. First prize winner is Yevgeny Binder, of Loyola University in Chicago -``PartonKit: A C Program for Fast Parton Evolution with the Rossi Method.'' Second prize winner is John Barrett, of the University of Massachusetts, Amherst - ``Analysis of Photon Transport in 3 Polarized Scintillating Target Proto-types.'' Third prize winner is Steven Anton, of the University of Delaware - ``Electron Wave Packet Propagation in Graphene Nanoribbons.''

  7. Advanced Undergraduate-Laboratory Experiment on Electron Spin Resonance in Single-Crystal Ruby

    ERIC Educational Resources Information Center

    Collins, Lee A.; And Others

    1974-01-01

    An electron-spin-resonance experiment which has been successfully performed in an advanced undergraduate physics laboratory is described. A discussion of that part of the theory of magnetic resonance necessary for the understanding of the experiment is also provided in this article. (DT)

  8. Multidisciplinary Field Training in Undergraduate Physical Geography: Russian Experience

    ERIC Educational Resources Information Center

    Kasimov, Nikolay S.; Chalov, Sergey R.; Panin, Andrey V.

    2013-01-01

    Field training is seen as a central component of the discipline of Physical Geography and an essential part of the undergraduate curriculum. This paper explores the structure and relationships between fieldwork and theoretical courses and the abundant experiences of field training in the undergraduate curriculum of 37 Russian universities. It…

  9. Future of Physics Days Undergraduate Awards Brunch

    NASA Astrophysics Data System (ADS)

    2016-03-01

    Winning presenters from undergraduate oral and poster sessions will be recognized and given special awards, and all students will receive a token of recognition for their achievements. Light refreshments and beverages will be served.

  10. Going to work with an undergraduate physics degree

    NASA Astrophysics Data System (ADS)

    Sauncy, Toni; Redmond, Kendra; Czujko, Roman

    2014-03-01

    With an average 40% of all physics baccalaureate degree recipients opting not to enter graduate school, it is imperative that departments build robust programs that prepare students for a broad range of career paths. However, the default focus of many departments is on preparing students for entry into advanced physics degree programs. Based on the statistical evidence and need for attention on students entering the workforce, the American Institute of Physics (AIP) has undertaken an NSF-funded research effort to understand, compile and disseminate effective practices for preparing undergraduate physics students to enter the STEM workforce upon graduation. The project entailed site visits to eight schools with strong records of students entering STEM fields, in order to discern effective practices in recruitment and preparation of students for those opportunities. We have developed targeted information to engage the students themselves, the faculty advisors, mentors and career professionals who have direct contact with the students, and the administrative ``decision-makers.'' Each of these groups requires information that addresses their particular roles in the collaborative process that will lead to not only an increase in the numbers of students who enter the STEM workforce, but in the quality preparation of those students. The tools for each of these groups will be discussed, with special emphasis on a set of career tools for students and their mentors. This project is funded by NSF Grant #1011829.

  11. Improving Advanced High School Physics

    NASA Astrophysics Data System (ADS)

    Spital, Robin David

    2003-04-01

    A National Research Council study committee recently commissioned a "Physics Panel" to evaluate and make recommendations for improving advanced physics education in American high schools [1]. The Physics Panel recommends the creation of a nationally standardized Newtonian Mechanics Unit that would form the foundation of all advanced physics programs. In a one-year program, the Panel recommends that advanced physics students study at most one other major area of physics, so that sufficient time is available to develop the deep conceptual understanding that is the primary goal of advanced study. The Panel emphasizes that final assessments must be improved to focus on depth of understanding, rather than technical problem-solving skill. The Physics Panel strongly endorses the inclusion of meaningful real-world experiences in advanced physics programs, but believes that traditional "cook-book" laboratory exercises are not worth the enormous amount of time and effort spent on them. The Physics Panel believes that the talent and preparation of teachers are the most important ingredients in effective physics instruction; it therefore calls for a concerted effort by all parts of the physics community to remedy the desperate shortage of highly qualified teachers. [1] Jerry P. Gollub and Robin Spital, "Advanced Physics in the High Schools", Physics Today, May 2002.

  12. Survey on Undergraduate Education in Physics. Higher Education Surveys Report, Survey Number 15--Physics.

    ERIC Educational Resources Information Center

    White, Patricia E.; Lewis, Laurie L.

    In 1991, a survey questionnaire concerning undergraduate education in physics was sent to a nationally representative sample of 597 four-year colleges and universities. Of these, 475 had an undergraduate physics department or a department with a physics program, and met the criteria for inclusion in the study. Responses were received from 450 of…

  13. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  14. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Flores-Olmedo, E.; Báez, G.; Gandarilla-Carrillo, O.; Méndez-Sánchez, R. A.

    2012-11-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results.

  15. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  16. The Partnership for Integration of Computation into Undergraduate Physics (PICUP): A Community-Building Prototype for Positively Affecting the Undergraduate Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Roos, Kelly

    2017-01-01

    Computation in the undergraduate curriculum is gaining significant traction in physics departments across the country, including a burgeoning effort to integrate computation into individual physics courses, both introductory and advanced, in such a way that it plays a role that is as important as non-computational mathematics in two important educational areas: (i) providing a deeper conceptual understanding of physical principles, and (ii) problem-solving. The Partnership for Integration of Computation into Undergraduate Physics (PICUP), an informal group of physics faculty from around the country, is committed to building a community of STEM educators dedicated to integrating computation into the undergraduate curriculum. One of the cornerstones of the PICUP community-building efforts is a significant online component. In this presentation, I shall describe the PICUP community-building framework, and the unique educational materials development effort that has already attracted much interest amongst physics faculty at all levels of computational physics education experience. Support for the PICUP project in the form of a grant from the National Science Foundation is gratefully acknowledged.

  17. Social Cognitive Perspective of Gender Disparities in Undergraduate Physics

    ERIC Educational Resources Information Center

    Kelly, Angela M.

    2016-01-01

    This article synthesizes sociopsychological theories and empirical research to establish a framework for exploring causal pathways and targeted interventions for the low representation of women in post-secondary physics. The rationale for this article is based upon disproportionate representation among undergraduate physics majors in the United…

  18. Nationwide Survey of the Undergraduate Physical Chemistry Course

    ERIC Educational Resources Information Center

    Fox, Laura J.; Roehrig, Gillian H.

    2015-01-01

    A nationwide survey of the undergraduate physical chemistry course was conducted to investigate the depth and breadth of content that is covered, how content is delivered, how student understanding is assessed, and the experiences and beliefs of instructors. The survey was administered to instructors of physical chemistry (N = 331) at American…

  19. Open Innovation Labs for Physics Undergraduate Independent Research

    NASA Astrophysics Data System (ADS)

    Carlsmith, Duncan

    2014-03-01

    The open undergraduate laboratory Garage Physics at the University of Wisconsin-Madison is home to a variety of independent physics and multidisciplinary research projects. Its maker-style environment encourages innovation and entrepreneurship. Experience establishing and staffing the laboratory will be described.

  20. Undergraduate computational physics education: uneven history and promising future

    NASA Astrophysics Data System (ADS)

    Martin, Richard F.

    2016-10-01

    While some physics educators have included computing in courses or have developed specialized courses for over 50 years, computational physics education has only slowly made inroads into the broader physics education community. Even now, when computation is arguably more important than ever in physics research and applications, it is rare that a physics department offers more than a single course in the topic to its undergraduate students. There have been several times over the years when interest in a more global approach to computational physics education has surged, only to subside without attaining the goal that computing finally take an essential role in the education of undergraduate physicists. In this presentation I will review some of the history of computational physics education, briefly discuss our experience with the program at Illinois State University, and suggest some direction for the future.

  1. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  2. Nuclear physics award for faculty in undergraduate institutions

    SciTech Connect

    Zeidman, B.

    1995-08-01

    The goal of the {open_quotes}Faculty Program{close_quotes} is to enhance undergraduate science education through faculty awards for minority and historically black colleges and universities (HBCU) faculty that will allow them to participate directly in the ANL Physics Division research program and increase the number of undergraduates involved in research. Although the program was approved late in FY 1994, the Physics Division, with the cooperation of DEP, began the program during the Summer with the appointment of a Hispanic theorist. Undergraduate students are already working with the faculty member who is in the process of preparing an independent funding proposal for continuing research collaboration. It is anticipated that several minority faculty members and their students will be involved in research collaborations in the Physics Division during FY 1995 summer and beyond. In order to extend the limited resources of this program, participants are placed through existing educational programs whenever possible, thereby obtaining supplemental support.

  3. Student's Guide to Undergraduate Physics Major Departments.

    ERIC Educational Resources Information Center

    Llano, Margaret T.

    Provided are data on the physics programs of 622 institutions which offer the baccalaureate degree in physics. The guide is intended for students who aim to become physics majors in college, students interested in science, transfer students, school and community college counselors, and physics faculty. For each institution, information is supplied…

  4. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    NASA Technical Reports Server (NTRS)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  5. Time and space: undergraduate Mexican physics in motion

    NASA Astrophysics Data System (ADS)

    Candela, Antonia

    2010-09-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in undergraduate physics and management. Routledge Farmer, London, 1994). The potential of this socio-cultural perspective allows an analysis of how students are connected through extended spaces and times with an international core discipline as well as with cultural features related to local networks of power and construction. Through an example, I show that, from an actor-network-theory (Latour in Science in action. Harvard University Press, Cambridge, 1987), that in order to understand the complexities of undergraduate physics processes of learning you have to break classroom walls and take into account students' movements through complex spatial and temporal traces of the discipline of physics. Mexican professors do not give classes following one textbook but in a moment-to-moment open dynamism tending to include undergraduate students as actors in classroom events extending the teaching space-time of the classroom to the disciplinary research work of physics. I also find that Mexican undergraduate students show initiative and display some autonomy and power in the construction of their itineraries as they are encouraged to examine a variety of sources including contemporary research articles, unsolved physics problems, and even to participate in several physicists' spaces, as for example being speakers at the national congresses of physics. Their itineraries also open up new spaces of cultural and social practices, creating more extensive networks beyond those associated with a discipline. Some economic, historical and cultural contextual features of this school of sciences are analyzed in order to help understanding the particular

  6. Computers in Undergraduate Education: Mathematics, Physics, Statistics, and Chemistry.

    ERIC Educational Resources Information Center

    Lockard, J. David

    This is the report of a conference which was initiated by the National Science Foundation's Office of Computing Activities and which explored and summarized current thinking about the role of the computer for undergraduate curricula in the physical and mathematical sciences. The conference focused on deciding which goals of the existing…

  7. Time and Space: Undergraduate Mexican Physics in Motion

    ERIC Educational Resources Information Center

    Candela, Antonia

    2010-01-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in…

  8. Greek Undergraduate Physical Education Students' Basic Computer Skills

    ERIC Educational Resources Information Center

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  9. Environmental Topics in an Undergraduate Physics Curriculum

    ERIC Educational Resources Information Center

    Cowan, David J.

    1972-01-01

    Reducing the decline in the number of bachelor's degrees in physics conferred annually may be accomplished by increasing the versatility of the degree. One method is to apply physical principles to the following areas of environmental change in the curriculum: air pollution, energy conversion and resources, environmental radiation, noise, thermal…

  10. Advancing Information and Communication Technology Knowledge for Undergraduate Nursing Students

    PubMed Central

    Procter, Paula M

    2012-01-01

    Nursing is a dynamic profession; for registered nurses their role is increasingly requiring greater information process understanding and the effective management of information to ensure high quality safe patient care. This paper outlines the design and implementation of Systems of eCare. This is a course which advances information and communication technology knowledge for undergraduate nursing students within a Faculty of Health and Wellbeing appropriately preparing nurses for their professional careers. Systems of eCare entwines throughout the three year programme mapping to the curriculum giving meaning to learning for the student. In conclusion comments from students convey their appreciation of the provision of this element of the undergraduate programme. PMID:24199114

  11. An IYPT-based undergraduate physics tournament in China

    NASA Astrophysics Data System (ADS)

    Li, Chuanyong; Song, Feng; Liu, Yubin; Sun, Qian

    2013-03-01

    International Young Physicists' Tournament (IYPT) is a team-oriented scientific competition of secondary school students. The participants present their solutions to scientific problems they have prepared over several months and discuss their solutions with other teams. It can also be implemented in university level as its physics problems are all open questions and have no standard answers, especially suitable for undergraduates' ability training in China. The annual tournament of physics learning of undergraduates in our school of physics was started in 2008. Each year, there are 15-18 teams, 20 more student volunteers and 30 more faculty jurors involved. The students benefited in different ways. It is project-based, requiring students to solve the problems in a research way. Team work is developed in both experimenting and discussing stages. The knowledge learned in classrooms can be used to solve these practical and life-related problems, raising their interest and initiative in physics learning. Finally, they are building up their skills in scientific presentation and communication. An IYPT-based program called CUPT (China undergraduate physics tournament) was launched in 2010 and annually attracts about 40 universities to attend. It gains its important role in physics education. National Fund for Talent Training in Basic Sciences (J1103208)

  12. Preface: Advances in solar physics

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Nakariakov, Valery M.

    2015-12-01

    The idea for this special issue of Advances in Space Research (ASR) was formulated during the 14th European Solar Physics Meeting (ESPM-14) that took place in Dublin, Ireland in September 2014. Since ASR does not publish conference proceedings, it was decided to extend a general call to the international solar-physics community for manuscripts pertinent to the following thematic areas: New and upcoming heliospheric observational and data assimilation facilities.

  13. Undergraduate Physical Education Programs: Issues and Approaches.

    ERIC Educational Resources Information Center

    Lawson, Hal A., Ed.

    Papers presented at the National Professional Preparation Conference in Physical Education were revised and expanded for publication in this monograph. In part I, two papers, "Professional Preparation Conferences: One More Time" (W. G. Anderson) and "Current Context and Future Curriculum" (M. J. Ellis), set the stage for a presentation of…

  14. Social cognitive perspective of gender disparities in undergraduate physics

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] This article synthesizes sociopsychological theories and empirical research to establish a framework for exploring causal pathways and targeted interventions for the low representation of women in post-secondary physics. The rationale for this article is based upon disproportionate representation among undergraduate physics majors in the United States; women earned only 19.7% of physics undergraduate degrees in 2012. This disparity has been attributed to a variety of factors, including unwelcoming classroom atmospheres, low confidence and self-efficacy, and few female role models in physics academic communities. Recent empirical studies have suggested gender disparities in physics and related STEM fields may be more amenable to social cognitive interventions than previously thought. Social psychologists have found that women improved physics self-concept when adopting a malleable view of intelligence, when they received support and encouragement from family and teachers, and when they experienced interactive learning techniques in communal environments. By exploring research-based evidence for strategies to support women in physics, precollege and university faculty and administrators may apply social cognitive constructs to improve the representation of women in the field.

  15. Engaging the community through an undergraduate biomedical physics course

    NASA Astrophysics Data System (ADS)

    Van Ness, G. R.; Widenhorn, Ralf

    2012-12-01

    We report on the development of an undergraduate biomedical physics course at Portland State University, motivated by both student interest and the desire of the university's Physics Department to provide an interdisciplinary intermediate-level physics course. The course was developed through the community engagement of physicians, clinical researchers, and basic science researchers. Class meetings were a combination of regular and guest lectures, hands-on exercises, web-based activities, class discussions, and a student poster information session for patrons at a local science museum. The course inspired students to engage in research projects in biomedical physics that enhance their understanding of science and education as well as benefit the learning of future students. Furthermore, this course offers an opportunity for traditionally underrepresented groups in physics courses, such as women, to gain additional exposure to physics.

  16. Recent advances in medical physics.

    PubMed

    Kalender, Willi A; Quick, Harald H

    2011-03-01

    Some of the major interests in medical physics over the last few years have concerned the technical advances in Computed Tomography and high field Magnetic Resonance Imaging. This review discusses the introduction of Dual Source CT and explains how it can not only offer faster data acquisition but also operate with lower radiation doses. This provides enormous benefits for all patients, but for cardiac and pediatric examinations in particular. The advances in MRI at 7 T esla are also impressive, with better signal to noise; cardiac and musculoskeletal applications are discussed; technical improvements are work-in-progress for other applications.

  17. Hands-on physics displays for undergraduates

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl W.

    2014-07-01

    Initiated by Frank Oppenheimer in 1969, the Exploratorium in San Francisco has been the model for hands-on science museums throughout the world. The key idea has been to bring people with all levels of scientific background in contact with interesting and attractive exhibits that require the active participation of the visitor. Unfortunately, many science museums are now forced to cater primarily to very young audiences, often 8 years old or less, with predictable constraints on the intellectual depth of their exhibits. To counter this trend, the author has constructed several hands-on displays for the University of Michigan Physics Department that demonstrate: (1) magnetic levitation of pyrolytic graphite, (2) the varied magnetic induction effects in aluminum, copper and air, (3) chaotic motion of a double pendulum, (4) conservation of energy and momentum in a steel ball magnetic accelerator, (5) the diffraction pattern of red and green laser pointer beams created by CDs and DVDs, (6) a magnetic analog of the refraction of light at a dielectric boundary and (7) optical rotation of light in an aqueous fructose solution. Each of these exhibits can be constructed for something like $1000 or less and are robust enough to withstand unsupervised public use. The dynamic behavior of these exhibits will be shown in accompanying video sequences. The following story has a history that goes back quite a few years. In the late 70's, I was spending time at the Stanford Linear Accelerator Center accompanied by my family that included our two grade school children. Needless to say, we much enjoyed weekend excursions to all sorts of interesting sites in the Bay Area, especially the Exploratorium, an unusual science museum created by Frank Oppenheimer that opened in 1969. The notion that exhibits would be designed specifically for "hands-on" interactions was at that time quite revolutionary. This idea captivated a number of people everywhere including a friend in Ann Arbor, Cynthia

  18. Success Stories of Undergraduate Retention: A Pathways Study of Graduate Students in Solar and Space Physics

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Stoll, W.; Moldwin, M.; Gross, N. A.

    2012-12-01

    This presentation describes results from an NSF-funded study of the pathways students in solar and space physics have taken to arrive in graduate school. Our Pathways study has documented results from structured interviews conducted with graduate students attending two, week-long, NSF-sponsored scientific workshops during the summer of 2011. Our research team interviewed 48 solar and space physics students (29 males and 19 females currently in graduate programs at US institutions,) in small group settings regarding what attracted and retained them along their pathways leading to grad school. This presentation addresses what these students revealed about the attributes and influences that supported completion of their undergraduate experience and focused their aspirations toward graduate school. In advance of the interview process, we collected 125 on-line survey responses from students at the two workshops. This 20-item survey included questions about high school and undergraduate education, as well as about research and graduate experience. A subset of the 125 students who completed this on-line survey volunteered to be interviewed. Two types of interview data were collected from the 48 interviewees: 1) written answers to a pre-interview questionnaire; and 2) detailed notes taken by researchers during group interviews. On the pre-interview questionnaire, we posed the question: "How did you come to be a graduate student in your field?" Our findings to date are based on an analysis of responses to this question, cross correlated with the corresponding on-line survey data. Our analysis reveals the importance of early research experiences. About 80% of the students participating in the Pathways study cited formative undergraduate research experiences. Moreover, about 50% of participants reported undergraduate research experiences that were in the field of their current graduate studies. Graduate students interviewed frequently cited a childhood interest in science

  19. Undergraduate physics course innovations and their impact on student learning

    NASA Astrophysics Data System (ADS)

    Iverson, Heidi Louise

    Over the last several decades, the efficacy of the traditional lecture-based instructional model for undergraduate physics courses has been challenged. As a result, a large number of reform-oriented instructional innovations have been developed, enacted, and studied in undergraduate physics courses around the globe---all with the intended purpose of improving student learning. This thesis satisfies the need for a comprehensive synthesis of the effectiveness of these course innovations by analyzing: (1) the types of innovations that have been enacted, (2) the impact of these innovations on student learning, and (3) the common features of effective innovations. An exhaustive literature search for studies published after 1990 on undergraduate physics course innovations yielded 432 articles which were then coded with respect to the characteristics of the innovations used as well as the methodological characteristics of the studies. These codes facilitated a descriptive analysis which characterized the features of the pool of studies. These studies were then meta-analyzed in order to evaluate the effect of innovations on student learning. Finally, a case-study analysis was conducted in order to identify the critical characteristics of effective innovations. Results indicate that most innovations focus on introductory mechanics and use some combination of conceptually oriented tasks, collaborative learning, and technology. The overall effect of course innovations has been positive, but with the caveat that a large number of studies suffer from poor methodological designs and potential threats to validity. In addition, over half of the studies had to be eliminated from the meta-analysis because they did not report the data necessary for an effect size to be calculated. Despite these limitations the results of the meta-analysis indicated that there was one innovation which had particularly high effect sizes---Workshop/Studio Physics---an innovation which involves an

  20. ALPhA: The Advanced Laboratory Physics Association

    NASA Astrophysics Data System (ADS)

    Black, Eric; McCann, Lowell; Reichert, Jonathan; Spalding, Gabe; Essick, John; van Baak, David; Wonnell, Steve

    2011-03-01

    The Advanced Laboratory Physics Association (ALPhA) is a group of people with a shared interest in teaching physics labs at the advanced undergraduate or graduate level. ALPhA works closely with the American Physical Society (APS), the Optical Society of America (OSA), and the American Association of Physics Teachers (AAPT) to develop new methods for teaching modern experimental physics. In the summer of 2010 we initiated the ALPhA Immersion Program, a three-day short course where instructors visit a lab, do one or more of the local experiments (home-built or commercial) with the local instructor, and learn the experiments well enough to incorporate them into their own programs. These immersions were very well received, with attendees filling up all available slots. In this talk I will describe ALPhA and the Immersions Program and solicit input from the broader community.

  1. Project Kaleidoscope: Advancing What Works in Undergraduate STEM Education

    NASA Astrophysics Data System (ADS)

    Elrod, S.

    2011-12-01

    In 1989, Project Kaleidoscope (PKAL) published its first report, What Works: Building Natural Science Communities, on reforming undergraduate STEM (science, technology, engineering and mathematics) education. Since then, PKAL has grown into a national organization comprised of a diverse group of over 6500 STEM educators who are committed to advancing "what works." The PKAL mission is to be a national leader in catalyzing the efforts of people, institutions, organizations and networks to move from analysis to action in significantly improving undergraduate student learning and achievement in STEM (science, technology, engineering and mathematics). Specifically, PKAL's strategic goals are to: 1) Promote the development and wider use of evidence-based teaching, learning and assessment approaches, 2) Build individual and organizational capacity to lead change in STEM education, and 3) Engage the broader community of external stakeholders - professional and disciplinary societies, business and industry groups, accreditation organizations, educational associations, governmental agencies, philanthropic organizations - in achieving our mission. PKAL achieves these goals by serving as the nexus of an interconnected and multidisciplinary web of people, ideas, strategies, evidence and resources focused on systemic change in undergraduate STEM education. PKAL also provides resources on critical issues, such as teaching using pedagogies of engagement, and engages interested faculty, campuses and professional societies in national projects and programs focused on cutting edge issues in STEM education. One of these projects - Mobilizing Disciplinary Societies for a Sustainable Future - is engaging eleven disciplinary societies, including the National Association of Geoscience Teachers, in defining specific resources, faculty development programs and goals focused on promoting undergraduate STEM courses that: 1) provide more knowledge about real-world issues; 2) connect these real

  2. Advanced Computation in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Tang, William

    2001-10-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract

  3. Advanced computations in plasma physics

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2002-05-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  4. Building an undergraduate physics program with Learning Assistants

    NASA Astrophysics Data System (ADS)

    Price, Edward

    2013-04-01

    In 2007, the CSUSM Physics Department began offering a B.S. in Applied Physics, its first physics bachelors degree program. The program has grown from 11 majors in 2008 to over 80 in 2012, due in part to recruiting students from local high schools and community colleges. More broadly, because most CSUSM students come from the local region, the longer-term health of the Department is coupled with the vitality and strength of local high school physics education. In addition, establishing a new physics degree required curriculum development and offered the opportunity to incorporate recent innovations in physics education when developing courses. A Learning Assistants (LA) Program, established by the Department in 2008, has been a critical component in these efforts to recruit students, build local educational networks, and implement innovative curricula. In an LA Program, undergraduate Learning Assistants assist faculty in class, meet regularly with the course instructor, and participate in a weekly seminar on teaching and learning, which provides guidance on effective instruction and an opportunity to reflect on their experiences in the classroom. The LA program promotes course transformation, improved student learning, and teacher recruitment. This talk will describe the CSUSM LA Program and its role in support of our growing applied physics degree program.

  5. A Thriving and Innovative Undergraduate Experiential Physics Program

    NASA Astrophysics Data System (ADS)

    Roughani, Bahram

    2013-03-01

    The thriving physics program at Kettering University has experienced a three-fold increase in the number of physics majors since 2002. Our unique physics program requires students alternate between on-campus academic terms and off-campus co-op work terms on a three months rotation format to complete their degree in 4.5 years that includes summer as either school or co-op term. Students complete a minimum of five terms (~15 months) of cooperative work terms, and two terms (~6 months) of senior thesis work. The IP of the thesis work done at a co-op site belongs to the company. This has attracted co-op sponsors for our program by removing the IP concerns. The cooperative and experiential education part of our program is required for graduation, without any credits assigned to it. At the end of every co-op term students' work performance is evaluated by their co-op supervisor, which should match expected performance standards. In addition to co-op and thesis, our programs include a senior capstone design project course, concentrations within physics (Acoustics, Optics, and Materials), a required technical sequence outside physics, as well as entrepreneurship across curriculum. The success of our student securing the highest paid jobs for undergraduate physics majors in the nation plus their success in graduate studies are the main ``Pull Factors'' that has lead to three fold increase the physics majors since 2002.

  6. Assessing Program Learning Objectives to Improve Undergraduate Physics Education

    NASA Astrophysics Data System (ADS)

    Menke, Carrie

    2014-03-01

    Our physics undergraduate program has five program learning objectives (PLOs) focusing on (1) physical principles, (2) mathematical expertise, (3) experimental technique, (4) communication and teamwork, and (5) research proficiency. One PLO is assessed each year, with the results guiding modifications in our curriculum and future assessment practices; we have just completed our first cycle of assessing all PLOs. Our approach strives to maximize the ease and applicability of our assessment practices while maintaining faculty's flexibility in course design and delivery. Objectives are mapped onto our core curriculum with identified coursework collected as direct evidence. We've utilized mostly descriptive rubrics, applying them at the course and program levels as well as sharing them with the students. This has resulted in more efficient assessment that is also applicable to reaccreditation efforts, higher inter-rater reliability than with other rubric types, and higher quality capstone projects. We've also found that the varied quality of student writing can interfere with our assessment of other objectives. This poster outlines our processes, resources, and how we have used PLO assessment to strengthen our undergraduate program.

  7. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  8. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    ERIC Educational Resources Information Center

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  9. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  10. Academic performance and student engagement in level 1 physics undergraduates

    NASA Astrophysics Data System (ADS)

    Casey, M. M.; McVitie, S.

    2009-09-01

    At the beginning of academic year 2007-08, staff in the Department of Physics and Astronomy at the University of Glasgow started to implement a number of substantial changes to the administration of the level 1 physics undergraduate class. The main aims were to improve the academic performance and progression statistics. With this in mind, a comprehensive system of learning support was introduced, the main remit being the provision of an improved personal contact and academic monitoring and support strategy for all students at level 1. The effects of low engagement with compulsory continuous assessment components had already been observed to have a significant effect on students sitting in the middle of the grade curve. Analysis of data from the 2007-08 class showed that even some nominally high-achieving students achieved lowered grades due to the effects of low engagement. Nonetheless, academic and other support measures put in place during 2007-08 played a part in raising the passrate for the level 1 physics class by approximately 8% as well as raising the progression rate by approximately 10%.

  11. What is the purpose of undergraduate physics labs?

    NASA Astrophysics Data System (ADS)

    Sams, William; Paesler, Michael; Chafin, Cliff

    2011-10-01

    In recent years, enrollment in undergraduate physics courses at NC State has grown significantly, especially in introductory physics. Since most of these courses involve a laboratory component, the increased enrollment is leading to a shortage of laboratory space. Starting this spring NC State will implement kit labs in calculus-based mechanics labs. These kits will make it possible for students to have laboratory experiences outside of the standard lab rooms, decreasing space demands. During the implementation the kit labs will be evaluated with an instrument developed for this purpose. This paper discusses the first step of designing this instrument, determining what the specific goals and purposes of the labs are. Literature reviews have led to focus on three primary areas where students should make gains during lab: content knowledge, scientific process, and affect. Physics faculty members were surveyed to identify specific areas considered important for our labs. Using results from our survey and published literature we have developed a specific set of goals for our labs, and we are using this to guide the development of our assessment instrument.

  12. Integration of physics and biology: synergistic undergraduate education for the 21st century.

    PubMed

    Woodin, Terry; Vasaly, Helen; McBride, Duncan; White, Gary

    2013-06-01

    This is an exciting time to be a biologist. The advances in our field and the many opportunities to expand our horizons through interaction with other disciplines are intellectually stimulating. This is as true for people tasked with helping the field move forward through support of research and education projects that serve the nation's needs as for those carrying out that research and educating the next generation of biologists. So, it is a pleasure to contribute to this edition of CBE-Life Sciences Education. This column will cover three aspects of the interactions of physics and biology as seen from the viewpoint of four members of the Division of Undergraduate Education of the National Science Foundation. The first section places the material to follow in context. The second reviews some of the many interdisciplinary physics-biology projects we support. The third highlights mechanisms available for supporting new physics-biology undergraduate education projects based on ideas that arise, focusing on those needing and warranting outside support to come to fruition.

  13. Why I think Computational Physics has been the most valuable part of my undergraduate physics education

    NASA Astrophysics Data System (ADS)

    Parsons, Matthew

    2015-04-01

    Computational physics is a rich and vibrant field in its own right, but often not given the attention that it should receive in the typical undergraduate physics curriculum. It appears that the partisan theorist vs. experimentalist view is still pervasive in academia, or at least still portrayed to students, while in fact there is a continuous spectrum of opportunities in between these two extremes. As a case study, I'll give my perspective as a graduating physics student with examples of computational coursework at Drexel University and research opportunities that this experience has led to.

  14. Is Nuclear Physics Interesting? Nuclear Physics for Undergraduates -- Strategies and Topics for Teaching the Underprepared

    NASA Astrophysics Data System (ADS)

    Holbrow, Charles H.

    2004-05-01

    Admit it or not, you face hard questions when you teach nuclear physics to undergraduates. How can you engage the interest of novice students? Of non-science students? Of physics students with limited preparation? Will you teach them the physics of the nucleus or will it be taxonomy and poetry? How much time will you spend on pre-quantum nuclear physics, e.g., radioactivity and α, β, and γ radiations? On crucial experiments? On atomic beams, detectors, particle spectrographs, reactors and accelerators? On nuclear levels, angular momentum, and parity? On models of the nucleus? On muons, pions or kaons? Will you teach new nuclear physics from RHIC and Jefferson Lab? What can you teach when your best prepared students have only rudimentary quantum mechanics and no idea of quantum field theory? What text will you use? How will you know if your course succeeds? I will give several different, sometimes inconsistent answers to these questions. I will present some syllabi, assess some texts, and describe strategies for organizing the intellectual content of the course and for engaging students in it. I will also describe ways to embed nuclear physics in the undergraduate curriculum in places other than those explicitly labeled nuclear physics.'

  15. What does a physics undergraduate education give you? A perspective from Australian physics

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Pollard, Judith; Mendez, Alberto; Mills, David; O'Byrne, John; Scott, Dale; Hagon, Sue; Gribble, Joan; Kirkup, Les; Livett, Michelle; Low, David; Merchant, Alex; Rayner, Anton; Swan, Geoff; Zadnik, Marjan; Zealey, Willam

    2008-01-01

    In a study to assess how effectively undergraduate physics studies have prepared students for the workplace, we attempted to locate and interview traditional 3-year or 4-year physics students who had graduated in the past five years (2000 to 2004), and the employers of these graduates. The study was limited to recent graduates who have majored in physics and not obtained further or concurrent degrees. Overseas studies of the destinations of physics graduates referred to in this paper have not isolated the group we interviewed as a distinct group. A major finding was that the number of these graduates was unexpectedly low. Indeed, most physics graduates have two degrees. Interviews with graduates and employers suggest that physics graduates have particular strengths in problem solving and are good at applying their skills at the workplace.

  16. SPIN-UP and Preparing Undergraduate Physics Majors for Careers in Industry

    NASA Astrophysics Data System (ADS)

    Howes, Ruth

    2011-03-01

    Seven years ago, the Strategic Programs for Innovations in Undergraduate Physics (SPIN-UP) Report produced by the National Task Force on Undergraduate Physics identified several key characteristics of thriving undergraduate physics departments including steps these departments had taken to prepare students better for careers in industry. Today statistical data from AIP shows that almost 40% of students graduating with a degree in physics seek employment as soon as they graduate. Successful undergraduate physics programs have taken steps to adapt their rigorous physics programs to ensure that graduating seniors have the skills they need to enter the industrial workplace as well as to go on to graduate school in physics. Typical strategies noted during a series of SPIN-UP workshops funded by a grant from NSF to APS, AAPT, and AIP include flexible curricula, early introduction of undergraduates to research techniques, revised laboratory experiences that provide students with skills they need to move directly into jobs, and increased emphasis on ``soft'' skills such as communication and team work. Despite significant success, undergraduate programs face continuing challenges in preparing students to work in industry, most significantly the fact that there is no job called ``physicist'' at the undergraduate level. supported by grant NSF DUE-0741560.

  17. Conceptualization, Development and Validation of an Instrument for Investigating Elements of Undergraduate Physics Laboratory Learning Environments: The UPLLES (Undergraduate Physics Laboratory Learning Environment Survey)

    ERIC Educational Resources Information Center

    Thomas, Gregory P; Meldrum, Al; Beamish, John

    2013-01-01

    First-year undergraduate physics laboratories are important physics learning environments. However, there is a lack of empirically informed literature regarding how students perceive their overall laboratory learning experiences. Recipe formats persist as the dominant form of instructional design in these sites, and these formats do not adequately…

  18. Methods of teaching the physics of climate change in undergraduate physics courses

    NASA Astrophysics Data System (ADS)

    Sadler, Michael

    2015-04-01

    Although anthropogenic climate change is generally accepted in the scientific community, there is considerable skepticism among the general population and, therefore, in undergraduate students of all majors. Students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). I will present my experiences and recommendations for teaching the physics of climate change to both physics and non-science majors. For non-science majors, the basic approach is to try to develop an appreciation for the scientific method (particularly peer-reviewed research) in a course on energy and the environment. For physics majors, the pertinent material is normally covered in their undergraduate courses in modern physics and thermodynamics. Nevertheless, it helps to review the basics, e.g. introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, and blackbody radiation. I have done this in a separate elective topics course, titled ``Physics of Climate Change,'' to help the students see how their knowledge gives them insight into a topic that is very volatile (socially and politically).

  19. The Associations of Physical and Sexual Assault with Suicide Risk in Nonclinical Military and Undergraduate Samples

    ERIC Educational Resources Information Center

    Bryan, Craig J.; McNaugton-Cassill, Mary; Osman, Augustine; Hernandez, Ann Marie

    2013-01-01

    The associations of various forms of sexual and physical assault with a history of suicide attempts and recent suicide ideation were studied in two distinct samples: active duty military and undergraduate students. A total of 273 active duty Air Force personnel and 309 undergraduate students anonymously completed self-report surveys of assault…

  20. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  1. Enhancing Interdisciplinary, Mathematics, and Physical Science in an Undergraduate Life Science Program through Physical Chemistry

    PubMed Central

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect. PMID:19255133

  2. NSF Support for Physics at the Undergraduate Level: A View from Inside

    NASA Astrophysics Data System (ADS)

    McBride, Duncan

    2015-03-01

    NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF

  3. Predicting Performance in an Advanced Undergraduate Geological Field Camp Experience

    ERIC Educational Resources Information Center

    Dykas, Matthew J.; Valentino, David W.

    2016-01-01

    This study examined the factors that contribute to students' success in conducting geological field work. Undergraduate students (n = 49; 51% female; mean age = 22 y) who were enrolled in the 5-wk State University of New York at Oswego (SUNY Oswego) geology field program volunteered to participate in this study. At the beginning of the field…

  4. Advancing STEM Undergraduate Learning: Preparing the Nation's Future Faculty

    ERIC Educational Resources Information Center

    Pfund, Christine; Mathieu, Robert; Austin, Ann; Connolly, Mark; Manske, Brian; Moore, Katie

    2012-01-01

    Graduate students and post-doctoral scholars at research universities will shape the future of undergraduate education in the natural and social sciences, technology, engineering, and mathematics (the STEM disciplines) in the United States. In 2009 alone, more than 41,000 doctorates were awarded in STEM fields, and if employment trends hold,…

  5. Big Physics at Small Places: The Mongol Horde Model of Undergraduate Research

    ERIC Educational Resources Information Center

    Voss, Philip J.; Finck, Joseph E.; Howes, Ruth H.; Brown, James; Baumann, Thomas; Schiller, Andreas; Thoennessen, Michael; DeYoung, Paul A.; Peaslee, Graham F.; Hinnefeld, Jerry; Luther, Bryan; Pancella, Paul V.; Rogers, Warren F.

    2008-01-01

    A model for engaging undergraduates in cutting-edge experimental nuclear physics research at a national user facility is discussed. Methods to involve students and examples of their success are presented. (Contains 2 figures and 3 tables.)

  6. Advancements in Solar Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino; Antonelli, Vito

    2013-03-01

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  7. Joint Task Force on Undergraduate Physics Programs: Implications for physics programs and why you should care

    NASA Astrophysics Data System (ADS)

    Hodapp, Theodore

    2016-03-01

    The content of undergraduate physics programs has not changed appreciably in 50 years, however, the jobs our students take have changed dramatically. Preparing students for careers they are likely to encounter requires physics programs to rethink and in some cases retool to provide an education that will not only educate an individual in the habits of mind and keen sense of how to solve complex technical problems, but also what related skills they will need to be effective in those careers. Do you teach your student how to read or create a budget? How about dealing with a low-performing member of an R&D team? This talk will explore driving forces behind this report, potential implications for physics departments, and practical steps faculty members can take to continue to consider improvements in experiences for our students. This work is supported in part by the National Science Foundation (NSF-1540570).

  8. Physics in advanced GNVQ Science

    NASA Astrophysics Data System (ADS)

    Sang, D.

    1995-07-01

    GNVQ Science is a vocational qualification for students in England, with a demand equivalent to traditional GCE A-levels. This article looks at the approach adopted by GNVQ to physics, and discusses the way in which appropriate teaching resources have been developed by the Nuffield Science in Practice project.

  9. Adapting to a Changing World--Challenges and Opportunities in Undergraduate Physics Education

    ERIC Educational Resources Information Center

    National Academies Press, 2013

    2013-01-01

    "Adapting to a Changing World" was commissioned by the National Science Foundation to examine the present status of undergraduate physics education, including the state of physics education research, and, most importantly, to develop a series of recommendations for improving physics education that draws from the knowledge we have about…

  10. Undergraduates Talk about Their Choice to Study Physics at University: What was Key to their Participation?

    ERIC Educational Resources Information Center

    Rodd, Melissa; Reiss, Michael; Mujtaba, Tamjid

    2013-01-01

    Background: The research on which this article is based was commissioned because of concerns about perceived shortages of willing and able young people choosing to study physics at university. Purpose: This article reports on first year physics undergraduates' narratives of why they are studying physics and uses these narratives to identify…

  11. Instructors' Application of the Theory of Planned Behavior in Teaching Undergraduate Physical Education Courses

    ERIC Educational Resources Information Center

    Filho, Paulo Jose Barbosa Gutierres; Monteiro, Maria Dolores Alves Ferreira; da Silva, Rudney; Hodge, Samuel R.

    2013-01-01

    The purpose of this study was to analyze adapted physical education instructors' views about the application of the theory of planned behavior (TpB) in teaching physical education undergraduate courses. Participants ("n" = 17) were instructors of adapted physical activity courses from twelve randomly selected institutions of higher…

  12. Advanced Physics Lab at TCU

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.

    2009-04-01

    The one semester, one credit hour Modern Physics Lab is viewed as a transition between the structured Physics 1 and 2 labs and junior/senior research. The labs focus on a variety of experiments built around a multichannel analyzer, various alpha, beta and gamma ray detectors and weak radioactive sources. Experiments include radiation safety and detection with a Geiger counter and NaI detector, gamma ray spectroscopy with a germanium detector, beta spectrum, alpha energy loss, gamma ray absorption, Compton effect, nuclear and positron annihilation lifetime, speed of gamma rays. Other experiments include using the analog oscilloscope, x-ray diffraction of diamond and using an SEM/EDX. Error analysis is emphasized throughout. The semester ends with an individual project, often an extension of one of the earlier experiments, and students present their results as a paper and an APS style presentation to the department.

  13. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  14. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  15. [Rehabilitation in undergraduate education and advanced professional training of the participating professional groups].

    PubMed

    Mau, Wilfried; Bengel, Jürgen; Pfeifer, Klaus

    2017-02-14

    In the German health care system, multiprofessional and coordinated rehabilitation care provides support for successful disease management. Against a background of the conditions and strong dynamics of the provision, this article gives an overview of some of the pertinent developments in rehabilitation-related undergraduate education and advanced professional training of physicians, psychologists, and exercise therapy professions in Germany. Frequently, there are few provisions and great variation between different locations. New conditions, such as the National Competence-Based Learning Objectives for Undergraduate Medical Education, the National Guidelines for Graduate Medical Education, and the ongoing reform of the psychotherapists' law emphasizing training in psychotherapy at university, allow the expectation of a positive effect on the competence of rehabilitation professionals. Education in physiotherapy is developing according to international standards aimed at improved evidence-based care. For the widely evidence-based undergraduate education and advanced professional training in sports and exercise therapy better profiling and professionalization should be sought.

  16. Biological Physics major as a means to stimulate an undergraduate physics program

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert; Eid, Khalid; Yarrison-Rice, Jan

    2013-03-01

    In an effort to stress the cross-disciplinary nature of modern physics we added a Biological Physics major. Drawing from coursework in physics, biology, chemistry, mathematics, and related disciplines, it combines a broad curriculum with physical and mathematical rigor in preparation for careers in biophysics, medical physics, and biomedical engineering. Biological Physics offers a new path of studies to a large pool of life science students. We hope to grow our physics majors from 70-80 to more than 100 students and boost our graduation rate from the mid-teens to the mid-twenties. The new major brought about a revision of our sophomore curriculum to make room for modern topics without sidelining fundamentals. As a result, we split our 1-semester long Contemporary Physics course (4 cr hrs) into a year-long sequence Contemporary Physics Foundations and Contemporary Physics Frontiers (both 3 cr hrs). Foundations starts with relativity, then focuses on 4 quantum mechanics topics: wells, spin 1/2, oscillators, and hydrogen. Throughout the course applications are woven in whenever the opportunity arises, e.g. magnetism and NMR with spin 1/2. The following semester Frontiers explores scientific principles and technological advances that make quantum science and resulting technologies different from the large scale. Frontiers covers enabling techniques from atomic, molecular, condensed matter, and particle physics, as well as advances in nanotechnology, quantum optics, and biophysics.

  17. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2016-07-12

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  18. Educating Scientifically: Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  19. Educating Scientifically - Advances in Physics Education Research

    SciTech Connect

    Finkelstein, Noah

    2007-05-16

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  20. A May American Economic Review Papers Seminar and an Analytic Project for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Elliott, Catherine S.

    2004-01-01

    The author describes two learning activities for teaching economics at the advanced undergraduate level: a May American Economic Review (AER) papers seminar and an analytic project. Both activities help students learn to "do economics." The May AER papers seminar promotes in-depth synthesis and interpretation on the basis of printed session papers…

  1. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  2. Use of IBM's Advanced Control System in Undergraduate Process Control Education.

    ERIC Educational Resources Information Center

    Koppel, Lowell B.; Sullivan, Gerald R.

    1986-01-01

    This article: (1) traces some of the history behind the International Business Machines (IBM) and academic arrangement; (2) describes the Advanced Control System and how it is used in undergraduate process control courses; (3) discusses benefits to students and teachers; and (4) summarizes future plans. (JN)

  3. Curriculum for the Twenty-First Century: Recent Advances in Economic Theory and Undergraduate Economics

    ERIC Educational Resources Information Center

    Ferguson, William D.

    2011-01-01

    Undergraduate economics lags behind cutting-edge economic theory. The author briefly reviews six related advances that profoundly extend and deepen economic analysis: game-theoretic modeling, collective-action problems, information economics and contracting, social preference theory, conceptualizing rationality, and institutional theory. He offers…

  4. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  5. "The Physics of Life," an Undergraduate General Education Biophysics Course

    ERIC Educational Resources Information Center

    Parthasarathy, Raghuveer

    2015-01-01

    Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses--i.e. courses for students not majoring…

  6. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  7. Report on the American Association of Medical Physics Undergraduate Fellowship Programs.

    PubMed

    Smilowitz, Jennifer B; Avery, Stephen; Gueye, Paul; Sandison, George A

    2013-01-07

    The American Association of Physicists in Medicine (AAPM) sponsors two summer undergraduate research programs to attract top performing undergraduate students into graduate studies in medical physics: the Summer Undergraduate Fellowship Program (SUFP) and the Minority Undergraduate Summer Experience (MUSE). Undergraduate research experience (URE) is an effective tool to encourage students to pursue graduate degrees. The SUFP and MUSE are the only medical physics URE programs. From 2001 to 2012, 148 fellowships have been awarded and a total of $608,000 has been dispersed to fellows. This paper reports on the history, participation, and status of the programs. A review of surveys of past fellows is presented. Overall, the fellows and mentors are very satisfied with the program. The efficacy of the programs is assessed by four metrics: entry into a medical physics graduate program, board certification, publications, and AAPM involvement. Sixty-five percent of past fellow respondents decided to pursue a graduate degree in medical physics as a result of their participation in the program. Seventy percent of respondents are currently involved in some educational or professional aspect of medical physics. Suggestions for future enhancements to better track and maintain contact with past fellows, expand funding sources, and potentially combine the programs are presented.

  8. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    ERIC Educational Resources Information Center

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  9. Physical Education Undergraduate Students' Colorblind Racial Ideology and Multicultural Teaching Competence

    ERIC Educational Resources Information Center

    Burden, Joe W., Jr.; Hodge, Samuel R.; Harrison, Louis, Jr.

    2015-01-01

    The purpose of this study was to analyze links between racial ideology and multicultural teaching competencies as perceived by undergraduate students in physical education teacher education (PETE) programs. Data were collected from physical education students (N = 239) across five PETE programs in the Northeastern region of the United States via a…

  10. A Multi-Dimensional Cognitive Analysis of Undergraduate Physics Students' Understanding of Heat Conduction

    ERIC Educational Resources Information Center

    Chiou, Guo-Li; Anderson, O. Roger

    2010-01-01

    This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…

  11. Throw Away Your Mathematical Handbook! Undergraduate Physics with Wolfram|Alpha, a FREE(!) Internet-Based Mathematical Engine

    NASA Astrophysics Data System (ADS)

    Looney, Craig W.

    2009-10-01

    Wolfram|Alpha (http://www.wolframalpha.com/), a free internet-based mathematical engine released earlier this year, represents an orders-of magnitude advance in mathematical power freely available - without money, passwords, or downloads - on the web. Wolfram|Alpha is based on Mathematica, so it can plot functions, take derivatives, solve systems of equations, perform symbolic and numerical integration, and more. These capabilities (especially plotting and integration) will be explored in the context of topics covered in upper level undergraduate physics courses.

  12. Developing Components and Curricula for a Research-Rich Undergraduate Degree in Computational Physics

    NASA Astrophysics Data System (ADS)

    Landau, Rubin

    2001-06-01

    A four-year undergraduate curriculum leading to a Bachelor's degree in Computational Physics is described. The courses, texts, and seminars are research- and Web-rich, and culminate in an Advanced Computational Science Laboratory derived from graduate theses and research from NPACI centers and national laboratories. There are important places for Maple, Java, MathML, MatLab, C and Fortran in the curriculum. The curriculum will be rich with web materials that are used and, at times, developed by the students. This reflects developments in our department and research groups over the last eight years in web-enhanced education, and our view that the web and computer-mediated instruction will play an increasing role in future scientific computing and education. The curriculum concludes with a completely new, advanced computational laboratory in which senior and graduate students will experiment with computer simulations taken from previous M.S. and Ph.D. research projects, as well as from research projects at national laboratories.

  13. Physics challenges for advanced fuel cycle assessment

    SciTech Connect

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  14. Advanced Fencing; Physical Education: 5551.54.

    ERIC Educational Resources Information Center

    McInerney, Marjorie

    GRADES OR AGES: Grades 8-12. SUBJECT MATTER: Strategy, tactics, principles, and fundamentals of advanced fencing skills. ORGANIZATION AND PHYSICAL APPEARANCE: The contents are divided into seven areas, which are Course Guidelines, Course Description and Broad Goal, Course of Study Behavioral Objectives, Course Content, Learning Activities and…

  15. Teacher's Handbook for Advanced Physical Science 2.

    ERIC Educational Resources Information Center

    Chaffee, Everett

    This handbook is an adjunct to the "Laboratory Manual for Advanced Physical Science 2," and is intended to assist teachers in organizing laboratory experiences. Information for each experiment includes (1) Introduction, (2) Scheduling, (3) Time required, (4) Materials needed , (5) Precautions, (6) Laboratory hints, (7) Sample data, and…

  16. Motion tracking in undergraduate physics laboratories with the Wii remote

    NASA Astrophysics Data System (ADS)

    Tomarken, Spencer L.; Simons, Dallas R.; Helms, Richard W.; Johns, Will E.; Schriver, Kenneth E.; Webster, Medford S.

    2012-04-01

    We report the incorporation of the Wiimote, a light-tracking remote control device, into two undergraduate-level experiments. We provide an overview of the Wiimote's basic functions and a systematic analysis of its motion tracking capabilities. We describe the Wiimote's use in measuring conservation of linear and angular momentum on an air table, and measuring the gravitational constant with the classic Cavendish torsion pendulum. Our results show that Wiimote is a simple and affordable way to streamline the data acquisition process and produce results that are generally superior to those obtained with conventional techniques.

  17. Impact of the Joint Task Force on Undergraduate Physics Programs for Innovation and Entrepreneurship Education in Physics

    NASA Astrophysics Data System (ADS)

    Arion, Douglas

    The Joint Task Force on Undergraduate Physics Programs has worked diligently to develop recommendations for what physics programs could and should be doing to prepare graduates for 21st century careers. While the `traditional' physics curriculum has served for many years, the demands of the new workforce, and the recognition that only a few percent of physics students actually become faculty - the vast majority entering the workforce and applying their skills to a very diverse range of problems, projects, and products - implies that a review of the education undergraduates receives is in order. The outcomes of this study point to the need to provide greater connection between the education process and the actual skills, knowledge, and abilities that the workplace demands. This presentation will summarize these considerations, and show how entrepreneurship and innovation programs and curricula are a particularly effective means of bringing these elements to physics students.

  18. Effects of Online Games on Student Performance in Undergraduate Physics

    ERIC Educational Resources Information Center

    Sadiq, Irfan

    2010-01-01

    The present state of physics teaching and learning is a reflection of the difficulty of the subject matter which has resulted in students' low motivation toward physics as well as lack of meaningful and deeper learning experiences. In light of an overall decline in interest in physics, an investigation of alternate teaching and learning methods…

  19. Federal Support for Undergraduate Laboratory Work in Physics. A Statement by the American Association of Physics Teachers.

    ERIC Educational Resources Information Center

    American Association of Physics Teachers, College Park, MD.

    The teaching laboratory in physics departments in colleges and universities is a source of great potential strength in undergraduate education. Recent surveys and conferences, have identified inadequate teaching equipment and laboratory development. This report reviews these problems and offers suggestions for an enhanced federal effort to solve…

  20. Relationships between Undergraduates' Argumentation Skills, Conceptual Quality of Problem Solutions, and Problem Solving Strategies in Introductory Physics

    ERIC Educational Resources Information Center

    Rebello, Carina M.

    2012-01-01

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…

  1. Undergraduates talk about their choice to study physics at university: what was key to their participation?

    NASA Astrophysics Data System (ADS)

    Rodd, Melissa; Reiss, Michael; Mujtaba, Tamjid

    2013-07-01

    Background . The research on which this article is based was commissioned because of concerns about perceived shortages of willing and able young people choosing to study physics at university. Purpose This article reports on first year physics undergraduates' narratives of why they are studying physics and uses these narratives to identify reasons for their choice. Design and method Narrative-style interviewing with a purposive sample of first year undergraduates yielded data that revealed complexities around decision making, including choice of university course. Analysis of the texts was informed by psychoanalytical notions rooted in the work of Sigmund Freud. These psychoanalytical notions were used both in generating the interview data - the undergraduate volunteer interviewees were conceptualised as 'defended subjects' - and in analysing these interviews in order to conjecture how unconscious forces might figure in young people's decision making. Results After analysing the interviews with physics undergraduates, with respect to the question 'why are they reading physics?', the claim is that identification with a key adult is an important element in an individual's participation. On the other hand, we discerned no evidence that experience of the sorts of innovation typically designed to increase physics uptake - for example 'fun projects' or competitions - had been key with respect to a desire to read physics. Conclusion Attempts to recruit more students to university to study physics should note that a young person who identifies with a significant adult associated with physics, typically a teacher or family member, is in a good position to believe that physics is a subject that is worth studying.

  2. Multimedia as a Means to Enhance Teaching Technical Vocabulary to Physics Undergraduates in Rwanda

    ERIC Educational Resources Information Center

    Rusanganwa, Joseph

    2013-01-01

    This study investigates whether the integration of ICT in education can facilitate teaching and learning. An example of such integration is computer assisted language learning (CALL) of English technical vocabulary by undergraduate physics students in Rwanda. The study draws on theories of cognitive load and multimedia learning to explore learning…

  3. A Practical and Convenient Diffusion Apparatus: An Undergraduate Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Clifford, Ben; Ochiai, E. I.

    1980-01-01

    Described is a diffusion apparatus to be used in an undergraduate physical chemistry laboratory experiment to determine the diffusion coefficients of aqueous solutions of sucrose and potassium dichromate. Included is the principle of the method, apparatus design and description, and experimental procedure. (Author/DS)

  4. A Perspective of Gender Differences in Chemistry and Physics Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Harsh, Joseph A.; Maltese, Adam V.; Tai, Robert H.

    2012-01-01

    The loss of talented women from the science, technology, engineering, and mathematics (STEM) pipeline has been widely recognized within science education as a pressing issue, particularly in the physical sciences. To provide a gender-based perspective of a popular educational device, the present study evaluated undergraduate research experiences…

  5. Guidelines for an Introductory Undergraduate Course in Physical Education Teacher Education. Guidance Document

    ERIC Educational Resources Information Center

    Castelli, Darla M.; Woods, Amelia M.; Lambdin, Dolly; Hall, Tina; Webster, Colin

    2010-01-01

    The intent of teacher education is to develop a person's skill, knowledge and ability to foster learning in pre-K-12 education settings. Preparation in this field of education carries added complexities, in that physical educators must address psychomotor, cognitive and affective goals. An introductory course for undergraduates should overview the…

  6. Faculty Beliefs about the Purposes for Teaching Undergraduate Physical Chemistry Courses

    ERIC Educational Resources Information Center

    Mack, Michael R.; Towns, Marcy H.

    2016-01-01

    We report the results of a phenomenographic analysis of faculty beliefs about the purposes for teaching upper-division physical chemistry courses in the undergraduate curriculum. A purposeful sampling strategy was used to recruit a diverse group of faculty for interviews. Collectively, the participating faculty regularly teach or have taught…

  7. Physical Activity and the Common Cold in Undergraduate University Students: Implications for Health Professionals

    ERIC Educational Resources Information Center

    Vossen, Deborah P.; McArel, Heather; Vossen, Jeffery F.; Thompson, Angela M.

    2004-01-01

    Objective: The common cold, known as upper respiratory tract infection (URTI), is the world's most prevalent illness. The purpose of this study was to determine if physical activity is linked to the incidence and/or duration of the common cold. Method: Undergraduate university students (n=200) were asked to complete two questionnaires. The…

  8. Guidelines for Undergraduate Exercise Physiology in a Physical Education Teacher Education Program. Guidance Document

    ERIC Educational Resources Information Center

    National Association for Sport and Physical Education, 2006

    2006-01-01

    A course in Exercise Physiology is a common requirement among undergraduate students preparing for a career in physical education, adult fitness, or athletic training. Often, such courses are taught to an assortment of students from a variety of disciplines (Van Donselaar & Leslie, 1990) with an emphasis on physiological principles applied to…

  9. Investigation of the Reasons of Negative Perceptions of Undergraduate Students Regarding the Modern Physics Course

    ERIC Educational Resources Information Center

    Aksakalli, Ayhan; Salar, Riza; Turgut, Umit

    2016-01-01

    In this research, the negative perceptions of undergraduate students regarding modern physics course and the causes of their negative perceptions have been investigated. For this investigation, a qualitative and quantitative method (mix method) was chosen for data collection and analysis. The study group of the research consists of a total of 169…

  10. Abstract Applets: A Method for Integrating Numerical Problem Solving into the Undergraduate Physics Curriculum

    SciTech Connect

    Peskin, Michael E

    2003-02-13

    In upper-division undergraduate physics courses, it is desirable to give numerical problem-solving exercises integrated naturally into weekly problem sets. I explain a method for doing this that makes use of the built-in class structure of the Java programming language. I also supply a Java class library that can assist instructors in writing programs of this type.

  11. Joint Task Force on Undergraduate Physics Programs (J-TUPP): Overview and Major Findings

    NASA Astrophysics Data System (ADS)

    Heron, Paula

    2016-03-01

    The Joint Task Force on Undergraduate Physics Programs (JTUPP) was formed in response to growing awareness in the physics community that physics majors pursue a wide range of careers after graduation, with very few ending up in academia. The task force is charged with identifying the skills and knowledge that undergraduate physics degree holders should possess to be well prepared for a diverse set of careers, and providing guidance for physicists considering revising the undergraduate curriculum to improve the education of a diverse student population. Task force members represent large and small universities, professional societies, and industry, and have expertise in a broad range of areas including entrepreneurship, physics education research and systemic change in education. We reviewed employment data, surveys of employers, and reports generated by other disciplines. We also met with physicists in selected industries to get their views on the strengths and weaknesses of physics graduates, commissioned a series of interviews with recent physics graduates employed in the private sector, and identified exemplary programs that ensure that all of their students are well prepared to pursue a wide range of career paths. The findings and recommendations will be summarized.

  12. Using mathematics to make sense in undergraduate physics

    NASA Astrophysics Data System (ADS)

    Brahmia, Suzanne

    2012-02-01

    Physics courses involve the study of physical quantities constructed to facilitate the characterization of nature, and the study of the connections between these quantities. These connections are often ratios or products of more familiar quantities. Learning to use the predictive power these relationships provide is an important part of learning to make sense of the physical world. Mathematically inspired reasoning is foundational to the way physicists make sense of the natural world and math is often referred to as the language of physics. Students rarely understand the relationships between the physical quantities in the way their instructors hope they will. There is often a disconnect between the specialized way we use mathematics in physics and the broad spectrum of processes that students learn to master as they progress through the pre-college mathematics curriculum. We are often surprised by how little math our students are able to use in physics, despite successful performance in their previous math classes. Much of the reasoning used in introductory physics is borrowed from mathematics that is taught in middle school and early high school (facility and practice with integers, fractions and ratios, multiplication and division using symbolic representations, manipulation of linear equations, analyzing right triangles.) But physics is a very different context, with confounding factors that often render the mathematics opaque to the learner. In this talk, I will discuss the specific ways in which physicists' use of mathematics differs from what many students acquired in their math classes. I will discuss how a weak mastery of conceptualizing fundamental mathematical operations interferes with students' ability to make sense in physics, and can carry over into difficulties with subsequently more abstract reasoning at higher levels. I will also offer suggestions for ways in which instructors can be more cognizant of (and transparent about) their specialized use

  13. Undergraduate Physical Activity and Depressive Symptoms: A National Study

    ERIC Educational Resources Information Center

    Elliot, Catherine A.; Kennedy, Catherine; Morgan, George; Anderson, Sharon K.; Morris, Debra

    2012-01-01

    Objective: To study the effects of college students' physical activity and gender on depressive and suicidal symptoms. Method: The National College Health Assessment survey was administered to college students nationwide. Data were analyzed with 4x2 ANOVAs and Games-Howell post hoc tests when appropriate. Results: More frequent physical activity…

  14. Undergraduate Students' Perceptions of an Inquiry-Based Physics Course

    ERIC Educational Resources Information Center

    Duran, Lena Ballone; McArthur, Julia; Van Hook, Stephen

    2004-01-01

    The purpose of this study was to examine middle childhood students' perceptions of the learning environment in a reform-based physics course. A lecture-style, introductory physics course was modified into an inquiry-based course designed for preservice middle childhood teachers through the collaborative efforts of faculty in the Colleges of…

  15. Teaching Introductory Undergraduate Physics Using Commercial Video Games

    ERIC Educational Resources Information Center

    Mohanty, Soumya D.; Cantu, Sergio

    2011-01-01

    Commercial video games are increasingly using sophisticated physics simulations to create a more immersive experience for players. This also makes them a powerful tool for engaging students in learning physics. We provide some examples to show how commercial off-the-shelf games can be used to teach specific topics in introductory undergraduate…

  16. Her Physics, His Physics: Gender Issues in Israeli Advanced Placement Physics Classes.

    ERIC Educational Resources Information Center

    Zohar, Anat; Sela, David

    2003-01-01

    Investigates gender issues in Israeli advanced placement physics classes. Analyzes matriculation exam scores from approximately 400 high schools over 12 years. Conducts semi-constructed interviews with 50 advanced placement physics students (25 girls and 25 boys). Discusses changes in the ratio of girls, performance, and factors that are…

  17. Promoting and assessing creativity and innovation in physics undergraduates

    NASA Astrophysics Data System (ADS)

    Kohl, Patrick B.; Kuo, H. Vincent; Kowalski, Susan; Kowalski, Frank

    2012-02-01

    Creative thought and the ability to innovate are critical skills in industrial and academic careers alike. There exist attempts to foster creative skills in the business world, but little such work has been documented in a physics context. In particular, there are few tools available for those who want to assess the creativity of their physics students, making it difficult to tell whether instruction is having any effect. In this paper, we outline a new elective course at the Colorado School of Mines in the physics department designed to develop creativity and innovation in physics majors. We present our efforts to assess this course formatively, using tablet PCs and InkSurvey software, and summatively using the discipline-independent Torrance Tests of Creative Thinking. We also describe early work towards developing a physics-specific instrument for measuring creativity.

  18. Advanced Electron Microscopy in Materials Physics

    SciTech Connect

    Zhu, Y.; Jarausch, K.

    2009-06-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together {approx}100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  19. Bridging the Knowledge-Practice Gap in Undergraduate Physics Education

    NASA Astrophysics Data System (ADS)

    Henderson, Charles

    2015-04-01

    The Physics Education Research (PER) community has shown that there are many aspects of teaching that can be systematically studied and improved using scientific methods. PER has also shown that a wide variety of instructors in a wide variety of institutions can consistently improve student learning by using research-based teaching practices. Like most fields, though, there is a substantial gap between the research-based knowledge that PER has developed about effective teaching and the actual practices of physics instructors. In this talk I will discuss this current state of research related to this grand challenge in Physics Education Research.

  20. The associations of physical and sexual assault with suicide risk in nonclinical military and undergraduate samples.

    PubMed

    Bryan, Craig J; McNaugton-Cassill, Mary; Osman, Augustine; Hernandez, Ann Marie

    2013-04-01

    The associations of various forms of sexual and physical assault with a history of suicide attempts and recent suicide ideation were studied in two distinct samples: active duty military and undergraduate students. A total of 273 active duty Air Force personnel and 309 undergraduate students anonymously completed self-report surveys of assault victimization, emotional distress, belongingness, recent suicide ideation, and previous suicide attempts. Among military personnel, rape, robbery, or violent assault was associated with a nonsignificant trend toward increased risk for suicide attempts, whereas physical abuse or battering as an adult was significantly associated with recent suicide ideation. Among undergraduates, unwanted sexual experiences as an adult and physical or sexual abuse as a child were significantly associated with increased risk for suicide attempt, but only unwanted experiences as an adult was significantly associated with increased risk for suicide ideation. Experiencing multiple forms of assault increased risk for suicide attempts and ideation in both groups. Results suggest that different types of assault contribute differentially to suicide risk in military versus undergraduate populations, but experiencing multiple types of assault is associated with increased risk in both groups.

  1. How to double the number of undergraduate physics majors

    NASA Astrophysics Data System (ADS)

    Kopp, Sacha

    2015-03-01

    Many colleges and universities around the country have a solid physics program that prepares students bound for graduate physics study. For a variety of reasons, the number of students choosing to major in physics may be small, typically <1% of the student body. When compared to other majors, this population is experiencing negligible growth. I will describe a campaign launched while at the University of Texas at Austin aimed at recruiting and retention of majors. This campaign includes actual programmatic changes in the curriculum and instruction of majors. Additionally, it includes a direct marketing campaign that attempted to change student attitudes about physics and its relation to their current major. Finally, it includes a program to reach out to local high schools and engage students in a discussion about their career choices before they apply for college. I will share some numerical and attitudinal data that suggests positive changes in the student population.

  2. From Start to Finish: Retention of Physics Undergraduates

    NASA Astrophysics Data System (ADS)

    Hammer, Donna; Uher, Tim

    The University of Maryland Physics Department's NSF Scholarships in Science Technology, Engineering and Mathematics (S-STEM) project is a unique program that aims to reduce the attrition of students that occurs in the ``pre-major-to-major'' gap - i.e., students who begin at the university intending to study physics, but do not graduate with a physics degree. To increase the retention of admitted students, the UMD S-STEM program is designed to provide student with financial assistance, a strong sense of community, academic support, and career planning. We will discuss how the program has been integrated into the curriculum and culture of the physics department, and focus on developing key components of the program: a nurturing environment, dedicated mentorship, early research experience, and professional development.

  3. Identifying and addressing specific student difficulties in advanced thermal physics

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.

    As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the

  4. An evidence based approach to undergraduate physical assessment practicum course development.

    PubMed

    Anderson, Brenda; Nix, Elizabeth; Norman, Bilinda; McPike, H Dawn

    2014-05-01

    Physical assessment is an important component of professional nursing practice. New nurse graduates experience difficulty transitioning the traditional head to toe physical assessment into real world nursing practice. This study was conducted to provide current data concerning physical assessment competencies utilized consistently by registered nurses. This quantitative study used a 126 item survey mailed to 900 Registered Nurses. Participants used a Likert-type scale to report frequency of use for physical assessment competencies. Thirty seven competencies were determined to be essential components of the physical assessment, 18 were determined supplemental, and 71 were determined to be non-essential. Transition of the new graduate nurse into professional practice can be enhanced by focusing content in physical assessment practicum courses on the essential competencies of physical assessment. Faculty for the university has analyzed data from this study to support evidence based changes to the undergraduate nursing program physical assessment practicum course.

  5. BIO2010 and beyond: What undergraduate physics does the next generation of molecular biology researchers need?

    NASA Astrophysics Data System (ADS)

    Howard, Jonathon

    2004-03-01

    What fundamental skills in mathematics, chemistry, physics, computer science and engineering are required at the undergraduate level to prepare the next generation of biology majors who will become research scientists? To address this question, Bruce Alberts, President of the National Academy of Sciences, established BIO2010, a committee of the National Research Council (USA), chaired by Lubert Stryer. The report of the committee was published in 2003 as BIO2010: Transforming Undergraduate Education for Future Research Biologists (National Academies Press, Washington DC, www.national-academies.com). I will summarize the recommendations of the Physics and Engineering Panel that was chaired by John Hopfield and give my own views of what physics is essential for researchers in cell and molecular biology.

  6. Understanding Space Weather and the Physics Behind It: A Textbook for Undergraduates

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.

    2005-05-01

    The emerging science of space weather has its roots in the fundamental physics taught at the undergraduate level. However most of the textbook support for this new discipline is either at or near the graduate level. The Air Force Research Laboratory and the Air Force Academy are partnering to produce a new introductory undergraduate level textbook. The text is aimed at students with knowledge of core physics: sophomore-level Newtonian mechanics and electricity and magnetism. We anticipate this book will be appropriate for students who are not physics majors but have a technology interest, be they engineers, meteorologists or space professionals. We are including special focus sections to compare and contrast space and terrestrial weather. In this paper we will discuss the organization and contents of the text and the types of problems and examples to be included. We will also discuss the material being developed for instructor support.

  7. Polymer Principles in the Undergraduate Physical Chemistry Course. Part 2.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Part l (SE 538 305) covered application of classical thermodynamics, polymer crystallinity, and phase diagrams to teaching physical chemistry. This part covers statistical thermodynamics, conformation, molecular weights, rubber elasticity and viscoelasticity, and kinetics of polymerization. Eight polymer-oriented, multiple-choice test questions…

  8. Reactions of Nonhandicapped Undergraduates to Legislation, Their Physically Handicapped Counterparts.

    ERIC Educational Resources Information Center

    Babbitt, Charles E.; Thompson, Myron A., III

    1981-01-01

    Examined 326 nonhandicapped college students' (NHCS) impressions of social changes occurring as a result of legislation and special college programs for the physically handicapped. Results indicated NHCS perceived certain limited, positive changes on the personal level as well as on the part of the administration, faculty, and student body.…

  9. Implementing Title IX: Concerns of Undergraduate Physical Education Majors.

    ERIC Educational Resources Information Center

    Bain, Linda L.

    A survey of an equal number of male and female students in the University of Houston's secondary school physical education course articulates prospective teacher concerns regarding the implementation of the nondiscriminatory principles set forth in the Title IX ruling. In general, male students evidence greater overall concern about the ruling's…

  10. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  11. Sexual Harassment Reported Among a Sample of Undergraduate Women in Physics

    NASA Astrophysics Data System (ADS)

    Aycock, Lauren M.; Brewe, Eric; Clancy, Kathryn B. H.; Goertzen, Renee Michelle; Hazari, Zarha; Hodapp, Theodore

    2016-05-01

    The field of physics lags behind most other scientific fields in gender parity of students earning bachelor's degrees. The transition from enrollment in high school physics to graduating with physics degree represents the biggest decrease in the proportion of female students for any step in physics educational attainment. Sexual harassment contributes to an unwelcome climate. It is unknown how prevalent sexual harassment is in the field of physics and whether it's a contributing factor to the field's inability to recruit and retain female students. Our goal was to measure a quantitative baseline for sexual harassment--associated with physics--observed and experienced by a sample of female undergraduate students. As part of a larger conference evaluation survey, we conducted an internet-based survey (n = 632) of attendees of the APS Conference for Undergraduate Women in Physics to measure the extent to which they personally experienced or observed sexual harassment in a context associated with physics. We will present results from this survey. Opinions, findings, or conclusions expressed in this work do not necessarily reflect the views of the NSF, DOE, or APS. This work was supported in part by the National Science Foundation (PHY-1346627) and by the Department of Energy (DE-SC0011076).

  12. Expressive writing promotes self-reported physical, social and psychological health among Chinese undergraduates.

    PubMed

    Yang, Zhihan; Tang, Xiaoqing; Duan, Wenjie; Zhang, Yonghong

    2015-03-01

    The present study examines the efficacy of expressive writing among Chinese undergraduates. The sample comprised of 74 undergraduates enrolled in a 9-week intervention (35 in experimental class vs. 39 in control class). The writing exercises were well-embedded in an elective course for the two classes. The 46-item simplified Chinese Self-Rated Health Measurement Scale, which assesses psychological, physical and social health, was adopted to measure the outcome of this study. Baseline (second week) and post-test (ninth week) scores were obtained during the classes. After the intervention on the eighth week, the self-reported psychological, social and physical health of the experimental class improved. Psychological health obtained the maximum degree of improvement, followed by social and physical health. Furthermore, female participants gained more psychological improvement than males. These results demonstrated that the expressive writing approach could improve the physical, social and psychological health of Chinese undergraduates, and the method can be applied in university psychological consulting settings in Mainland China.

  13. Physics and Advanced Technologies 2001 Annual Report

    SciTech Connect

    Jacobs, R

    2002-05-09

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leader in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the highlights

  14. Insights for undergraduates seeking an advanced degree in wildlife and fisheries sciences

    USGS Publications Warehouse

    Kaemingk, Mark A.; Dembkowski, Daniel J.; Meyer, Hilary A.; Gigliotti, Larry M.

    2013-01-01

    In today's job market, having a successful career in the fisheries and wildlife sciences is becoming more dependent on obtaining an advanced degree. As a result, competition for getting accepted into a graduate program is fierce. Our objective for this study was to provide prospective graduate students some insights as to what qualifications or attributes would best prepare them for obtaining a graduate position (M.S.) and to excel once they are enrolled in a graduate program. A survey was sent to 50 universities within the National Association of University Fisheries and Wildlife Programs (NAUFWP) where both faculty and undergraduate students were asked questions relating to graduate school. Faculty rated the importance of various criteria and attributes of graduate school, and students answered the questions according to how they believed faculty members would respond. Overall, undergraduate students shared many of the same graduate school viewpoints as those held by faculty members. However, viewpoints differed on some topics related to admittance and the most important accomplishment of a graduate student while enrolled in a graduate program. These results indicate that undergraduate students may be better prepared for graduate school—and they may understand how to be successful once they are enrolled in a program—than was initially thought.

  15. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  16. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    NASA Astrophysics Data System (ADS)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  17. An ultrafast optics undergraduate advanced laboratory with a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Schaffer, Andrew; Fredrick, Connor; Hoyt, Chad; Jones, Jason

    2015-05-01

    We describe an ultrafast optics undergraduate advanced laboratory comprising a mode-locked erbium fiber laser, auto-correlation measurements, and an external, free-space parallel grating dispersion compensation apparatus. The simple design of the stretched pulse laser uses nonlinear polarization rotation mode-locking to produce pulses at a repetition rate of 55 MHz and average power of 5.5 mW. Interferometric and intensity auto-correlation measurements are made using a Michelson interferometer that takes advantage of the two-photon nonlinear response of a common silicon photodiode for the second order correlation between 1550 nm laser pulses. After a pre-amplifier and compression, pulse widths as narrow as 108 fs are measured at 17 mW average power. A detailed parts list includes previously owned and common components used by the telecommunications industry, which may decrease the cost of the lab to within reach of many undergraduate and graduate departments. We also describe progress toward a relatively low-cost optical frequency comb advanced laboratory. NSF EIR #1208930.

  18. Study of Polymer Glasses by Modulated Differential Scanning Calorimetry in the Undergraduate Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Folmer, J. C. W.; Franzen, Stefan

    2003-07-01

    Recent technological advances in thermal analysis present educational opportunities. In particular, modulated differential scanning calorimetry (MDSC) can be used to contrast reversing and nonreversing processes in practical laboratory experiments. The introduction of these concepts elucidates the relationship between experimental timescales and reversibility. The latter is a key concept of undergraduate thermodynamics theory that deserves reinforcement. In this paper, the theory and application of MDSC to problems of current interest is outlined with special emphasis on the contrast between crystallization and vitrification. Glass formation deserves greater emphasis in the undergraduate curriculum. Glass transitions are increasingly recognized as an important aspect of materials properties and dynamics in fields ranging from polymer science to protein folding. The example chosen for study is a comparison of polyethylene glycol and atactic polypropylene glycol. The experiment is easily performed in a typical three-hour lab session.

  19. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    NASA Astrophysics Data System (ADS)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  20. Quality of Undergraduate Physics Students' Written Scientific Arguments: How to Promote Students' Appropriation of Scientific Discourse in Physics Laboratory Reports?

    NASA Astrophysics Data System (ADS)

    Aydeniz, Mehmet; Yeter-Aydeniz, Kubra

    2015-03-01

    In this study we challenged 18 undergraduate physics students to develop four written scientific arguments across four physics labs: 1) gravity-driven acceleration, 2) conservation of mechanical energy, 3) conservation of linear momentum and 4) boyle's law, in a mechanics and thermodynamics laboratory course. We evaluated quality of the written scientific arguments developed by the participants using the Claim, Evidence, Reasoning and Rebuttal (CERR) rubric. The results indicate that while students developed adequate scientific explanations that summarized the findings of their experiments, they experienced unique difficulties in using a persuasive and critical discourse in their written arguments. Students experienced the most difficulty in considering alternative explanations in formulating their written scientific arguments. We elaborate on the implications of these findings for teaching physics laboratories and assessing students' learning in physics laboratories. We especially focus on the importance of framing in helping students to appropriate the epistemic norms of science in writing scientific arguments.

  1. Health Perceptions, Self and Body Image, Physical Activity and Nutrition among Undergraduate Students in Israel

    PubMed Central

    Korn, Liat; Gonen, Ester; Shaked, Yael; Golan, Moria

    2013-01-01

    Purpose This study examines health perceptions, self and body image, physical exercise and nutrition among undergraduate students. Methods A structured, self-reported questionnaire was administered to more than 1500 students at a large academic institute in Israel. The study population was heterogenic in both gender and fields of academic study. Results High correlations between health perceptions, appropriate nutrition, and positive self and body image were found. The relationships between these variables differed between the subpopulation in the sample and the different genders. Engagement in physical exercise contributed to positive body image and positive health perceptions more than engagement in healthy nutrition. Nutrition students reported higher frequencies of positive health perceptions, positive self and body image and higher engagement in physical exercise in comparison to all other students in the sample. Conclusions This study suggests, as have many before, that successful health promotion policy should reflect a collectivist rather than an individualist ethos by providing health prerequisites through a public policy of health-promotion, where the academic settings support a healthy lifestyle policy, by increasing availability of a healthy, nutritious and varied menu in the cafeterias, and offering students various activities that enhance healthy eating and exercise. Implications and contribution This study examined health perceptions, self-image, physical exercise and nutrition among undergraduate students and found high correlations between these topics. Nutrition students reported higher frequencies of positive health perceptions, and positive self and body image and engaged more in physical exercise when compared with all other students in the sample. PMID:23516503

  2. Interdisciplinary Undergraduate Research Experiences in Geosciences for Physical Science and Engineering Students

    NASA Astrophysics Data System (ADS)

    Bililign, S.; Schimmel, K.; Lin, Y. L.; Germuth, A.

    2014-12-01

    The recruitment of undergraduate students, especially minorities, into geoscience career paths continues to be a challenge. One approach for addressing this issue involves providing geoscience research experiences. Therefore, the outcomes of an undergraduate research program (REU) focused on recruiting science (physics, mathematics, chemistry) and engineering (electrical) students for an interdisciplinary research experience in geosciences will be presented. The program design has several unique features that include: (1) projects with clear societal implications, (2) projects involve multiple faculty members (at least two) and expose students to interdisciplinary approaches and thinking, (3) partnerships between national labs and universities to provide cutting-edge research, educational, and professional development opportunities for students, (4) student engagement in the creation of personalized professional development plans, (5) combined summer and academic year research experiences. Pre- and post-assessment results, successes, and challenges will be presented.

  3. Prospective Elementary Teachers' Analysis of Children's Science Talk in an Undergraduate Physics Course

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle B.; Swanson, Lauren H.; Otero, Valerie K.

    2014-02-01

    We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students' science ideas and restate these ideas in scientific terms. Based on this research, we inferred that analyzing children's ideas through videos provides a meaningful context for applying conceptual physics knowledge in physics courses. Activities that are embedded within a disciplinary curriculum, such as those studied here, may help prospective teachers learn to use disciplinary knowledge in exactly the type of activity in which their content knowledge will be most useful: listening to and interpreting children's science ideas.

  4. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  5. Gamification: using elements of video games to improve engagement in an undergraduate physics class

    NASA Astrophysics Data System (ADS)

    Rose, J. A.; O'Meara, J. M.; Gerhardt, T. C.; Williams, M.

    2016-09-01

    Gamification has been extensively implemented and studied in corporate settings and has proven to be more effective than traditional employee-training programs, however, few classroom studies of gamification have been reported in the literature. Our study explored the potential of gamified on-line undergraduate physics content as a mechanism to enhance student learning and motivation. Specifically, the main objective of this work was to determine whether extrinsic motivation indicators commonly used in video games could increase student engagement with course content outside of the classroom. Life Science students taking an introductory physics course were provided access to gamified multiple choice quizzes as part of their course assessment. The quizzes incorporated common gaming elements such as points, streaks, leaderboards and achievements, as well as some gamified graphical enhancements and feedback. Student attitudes and performance among those using the gamified quizzes were examined and compared to non-gamified control groups within the same course. Student engagement was quantified through examining student participation above and beyond the minimum course requirements. The results showed that gaming techniques are significantly correlated with increased engagement with course material outside of the classroom. These results may assist instructors in engaging and motivating students outside the classroom through carefully designed online and distance-delivered undergraduate physics content. Furthermore, the gaming elements incorporated in this study were not specifically tied to the physics content and can be easily translated to any educational setting.

  6. Advanced physical fine coal cleaning: Final report

    SciTech Connect

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination of Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.

  7. Design Of Instructional Objectives Of Undergraduate Solid State Physics Course: A First Step To Physics Education Research

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sastri, O.; Ahluwalia, P. K.

    2010-07-01

    It is well known that most of the undergraduate study in India is conducted through the affiliate system in which affiliated colleges run the courses prescribed by a Board of Studies of the affiliating University in the form of a syllabus, which happens to be the only academic link between the students, teachers and the examiners. This document is limited only to defining the contents of the course without any hint about the instructional/learning objectives. Given these limitations of the existing course structure an attempt has been made to define the instructional/learning objectives for an undergraduate course of study in Solid State Physics prescribed in B. Sc. (Honours and Pass Course) in Physics of Himachal Pradesh University, India. It is not only the first step to enhance learning but to make teaching research based as well, as has been practiced in US and West as a foundation of Physics Education Research. The instructional objectives/learning objectives are written using Mager's approach and classified using Bloom's taxonomy. An effort has also been made to make it ready for adoption in the classroom.

  8. Content of Curriculum in Physical Education Teacher Education: Expectations of Undergraduate Physical Education Students

    ERIC Educational Resources Information Center

    Spittle, Michael; Spittle, Sharna

    2016-01-01

    This study explored the perceptions of university physical education students of the importance of physical education curriculum content areas and how those perceptions related to the reasons for course choice and motivation. Physical education degree students (n = 188) completed measures of their perceptions of physical education content areas,…

  9. Optics and communication technology major of physics undergraduate degree at King Mongkut's Institute of Technology Ladkrabang

    NASA Astrophysics Data System (ADS)

    Buranasiri, Prathan

    2014-09-01

    A physics undergraduate degree major in optics and communication technology has been offered at King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand. There are nine required three credit hour courses including two laboratory courses plus a number of selections in optics and communication based technology courses. For independent thinking and industrial working skills, nine credit hours of research project, practical training or overseas studies are included for selection in the final semester. Students are encouraged to participate in international conferences and professional organizations. Recently the program, with support from SPIE and OSA, has organized its first international conference on photonic solutions 2013 (ICPS 2013).

  10. Advanced Dark Energy Physics Telescope (ADEPT)

    SciTech Connect

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan

  11. Physics and Advanced Technologies 2003 Annual Report

    SciTech Connect

    Hazi, A; Sketchley, J

    2005-01-20

    The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the best science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as

  12. One-dimensional light localization with classical scatterers: An advanced undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kemp, K. J.; Barker, S.; Guthrie, J.; Hagood, B.; Havey, M. D.

    2016-10-01

    The phenomenon of electronic wave localization through disorder remains an important area of fundamental and applied research. Localization of all wave phenomena, including light, is thought to exist in a restricted one-dimensional geometry. We present here a series of experiments to illustrate, using a straightforward experimental arrangement and approach, the localization of light in a quasi-one-dimensional physical system. In the experiments, reflected and transmitted light from a stack of glass slides of varying thickness reveals an Ohm's law type behavior for small thicknesses, and evolution to exponential decay of the transmitted power for larger thicknesses. For larger stacks of slides, a weak departure from one-dimensional behavior is also observed. The experiment and analysis of the results, showing many of the essential features of wave localization, is relatively straightforward, economical, and suitable for laboratory experiments at an undergraduate level.

  13. Prospective Elementary Teachers' Analysis of Children's Science Talk in an Undergraduate Physics Course

    ERIC Educational Resources Information Center

    Harlow, Danielle B.; Swanson, Lauren H.; Otero, Valerie K.

    2014-01-01

    We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students'…

  14. [Development of advanced educational programs, including research programs, for undergraduate students in National Universities: the facts in 2010].

    PubMed

    Kurosaki, Yuji; Tomioka, Yoshihisa; Santa, Tomofumi; Kitamura, Yoshihisa

    2012-01-01

    This article summarizes detailed facts obtained from the questionnaire conducted in 2010 at about 14 National Universities on the topic of "Research programs and advanced educational programs for undergraduate students". The contents of the questionnaire included: (1) Research programs based on the coalition of university and hospital and/or community pharmacy, other Graduate Schools, such as School of Medicine etc., and the University Hospital, (2) Educational systems for the achievement of research programs and their research outcomes, (3) Research programs based on pharmacist practices, (4) Ongoing advanced educational programs for undergraduate students, taking advantage of the coalition with Graduate School, School of Medicine (and Dentistry), and University Hospital. Some of the advanced educational programs outlined in this questionnaire will be carried out by our group in the coming years and the educational benefits together with associated problems shall as well be clarified. This approach will be informative for the development of the leader-oriented pharmacist programs for the college of Pharmacy.

  15. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  16. Use of the Berkeley Physics Laboratory to Teach an Advanced Physics Course

    ERIC Educational Resources Information Center

    Logan, James David

    1973-01-01

    Discusses a course, centered around 32 experiments taught for advanced students, designed to develop a laboratory strongly suggestive of contemporary research using relatively sophisticated apparatus. Its unique advantage lies in enriching advanced physics curriculum. (DF)

  17. Who Wants to Be a Physical Education Teacher? A Case Study of a Non-Traditional Undergraduate Student in a Physical Education Teacher Education Program

    ERIC Educational Resources Information Center

    Ronspies, Scott

    2011-01-01

    Forty percent of undergraduate students are non-traditional students. The purpose of this study was to identify what attracted the participant to physical education, identify what situational/social factors facilitated the career choice, and the beliefs of the participant about what it meant to be a physical educator. The study consisted of one…

  18. NEW APPROACHES: Reading in Advanced level physics

    NASA Astrophysics Data System (ADS)

    Fagan, Dorothy

    1997-11-01

    Teachers often report that their A-level pupils are unwilling to read physics-related material. What is it about physics texts that deters pupils from reading them? Are they just too difficult for 16 - 18 year olds, or is it that pupils lack specific reading skills? This article describes some of the results from my research into pupils' reading of physics-related texts and tries to clarify the situation.

  19. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    PubMed

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  20. 6th Annual Midwest Conference for Undergraduate Women in Physics, January 18-20, 2013, Urbana, Illinois

    SciTech Connect

    Pitts, Kevin T.

    2016-04-28

    This document is the program for the 6th Annual Midwest Conference for Undergraduate Women in Physics, which was held at the University of Illinois at Urbana-Champaign on January 18-20, 2013. The goals of the conference were to foster a culture in which undergraduate women are encouraged and supported to pursue, and also to succeed in, higher education in physics; to provide career information to students in physics and related fields; to give women the resources, motivation, and confidence to apply to graduate school and successfully complete a Ph.D. program in Physics; to provide information and dispel misconceptions about the application process for graduate school and the diverse employment opportunities in physics and related fields, enabling women to make more informed decisions about their goals and attain them; and to connect female physics students with successful female physicists to whom they can relate and who can act as inspirational role models and mentors.

  1. The Physics of Life: A Biophysics Course for Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2014-03-01

    Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.

  2. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    PubMed Central

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  3. Competency-Based Reforms of the Undergraduate Biology Curriculum: Integrating the Physical and Biological Sciences

    PubMed Central

    Thompson, Katerina V.; Chmielewski, Jean; Gaines, Michael S.; Hrycyna, Christine A.; LaCourse, William R.

    2013-01-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students’ conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination. PMID:23737624

  4. The Role of Humor in Learning Physics: a Study of Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Berge, Maria

    2016-02-01

    We all know that they do it, but what do students laugh about when learning science together? Although research has shown that students do use humor when they learn science, the role of humor in science education has received little attention. In this study, undergraduate students' laughter during collaborative work in physics has been investigated. In order to do this, a framework inspired by conversation analysis has been used. Empirical data was drawn from two video-recorded sessions in which first-year engineering students solved physics problems together. The analysis revealed that the students' use of humor was almost exclusively related to physics. Five themes identified summarize the role of humor in the group discussions: Something is obvious, Something is difficult, Something said might be wrong, Something is absurd, and Something said is not within informal norms. This study shows that humor may contribute not only to a good working atmosphere and thereby to the students' learning but also how humor interrelates with both disciplinary culture of physics and its epistemology. The students do not only create and re-create humor that facilitates their social interactions, but through humor they constitute local norms of science and engage with the disciplinary discourse.

  5. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    PubMed

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  6. Experience revising an advanced-undergraduate/beginning-graduate fluid mechanics textbook

    NASA Astrophysics Data System (ADS)

    Dowling, David

    2012-11-01

    In the fall of 2009, Elsevier Inc. approached me about taking over as the lead author of the fluid mechanics textbook by P. K. Kundu and I. M. Cohen. I subsequently agreed and this presentation provides the story of the process and the approach taken to revising this fluid mechanics textbook which has been in print for approximately 15 years. The goal of the revision was to produce an excellent textbook for second courses in fluid mechanics taken by advanced undergraduate and beginning graduate students while maintaining the book's appeal to instructors who used prior editions. Thus, I sought to maintain or expand the text's fluid mechanics content, while adjusting the text's tone so that this content might be more readily reached by students who may have had only one prior course in fluid mechanics, or who may not specialize in fluid mechanics but do possess appropriate mathematical skills. The entire revision process involved seven steps: (i) formulating a revision plan that was independently reviewed, (ii) agreeing to a formal contract with deadlines, (iii) revising the text, figures, and front matter, (iv) proof reading and correcting copy-edited text, (v) correcting page proofs, (vi) generating the solutions manual, and (vii) tabulating errata. Formulating and executing the

  7. The Impact of a Required Undergraduate Health and Wellness Course on Students' Awareness and Knowledge of Physical Activity and Chronic Disease

    ERIC Educational Resources Information Center

    Kuruganti, Usha

    2014-01-01

    As part of the undergraduate curriculum, the Faculty of Kinesiology at the University of New Brunswick (UNB) requires all students to take an undergraduate course in physical activity, health and wellness in their third year of study. This capstone course allows students to integrate concepts from their program regarding physical activity,…

  8. Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using Matlab

    NASA Astrophysics Data System (ADS)

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-05-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate students about computer interfacing and instrument control techniques. We also discuss the motivation for converting the interfacing language that is used in the laboratory from LabView to Matlab. We describe an example of a typical experiment the students are required to complete and we conclude by briefly assessing how the recent curriculum changes have affected both student performance and compliance.

  9. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  10. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  11. The Research Experience for Undergraduates Program in Solar and Space Physics at the University of Colorado

    NASA Astrophysics Data System (ADS)

    Snow, M.; Wood, E.; Cobabe-Amman, E.; Baker, D.; Renfrow, S.

    2011-09-01

    The Research Experience for Undergraduates (REU) program in Solar and Space Physics is a collaboration between the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP), the National Center for Atmospheric Research's High Altitude Observatory (HAO), the National Oceanic and Atmospheric Administration's Space Weather Prediction Center (SWPC), the Southwest Research Institute (SwRI), and Northwest Research Associates' Colorado Research Associates (CoRA). The goal of the program is to give students real-world, hands-on experience doing research with scientist mentors and to further their intended careers. Our program began in 2007 and is entering its fourth year. Mentors from the member institutions have supervised over fifty research projects dealing with all aspects of Solar and Space Physics. The students begin their eight-week visit to Boulder with a week of classes on the Sun-Earth system as well as practical courses on data analysis and the IDL programming language. The students give a 30 minute oral presentation of their project as well as a poster in a student symposium at the end of the program. Throughout the summer, the students give progress reports at weekly brown-bag lunch meetings. In addition to their own research projects at their host institution, the students tour and meet scientists from the partner institutions as the weekly lunches rotate from site to site. There are also opportunities for students to network with scientists in an informal way at the excursions we organize which include barbecues and weekend outings.

  12. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  13. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  14. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  15. Project for the Institution of an Advanced Course in Physics

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  16. Advanced Software Methods for Physics Analysis

    NASA Astrophysics Data System (ADS)

    Lista, L.

    2006-01-01

    Unprecedented data analysis complexity is experienced in modern High Energy Physics experiments. The complexity arises from the growing size of recorded data samples, the large number of data analyses performed by different users in each single experiment, and the level of complexity of each single analysis. For this reason, the requirements on software for data analysis impose a very high level of reliability. We present two concrete examples: the former from BaBar experience with the migration to a new Analysis Model with the definition of a new model for the Event Data Store, the latter about a toolkit for multivariate statistical and parametric Monte Carlo analysis developed using generic programming.

  17. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  18. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  19. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  20. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  1. Advanced Physical Chemistry of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jun; Pandey, Gaind P.

    2015-04-01

    The past decade has seen a surge of exciting research and applications of carbon nanotubes (CNTs) stimulated by deeper understanding of their fundamental properties and increasing production capability. The intrinsic properties of various CNTs were found to strongly depend on their internal microstructures. This review summarizes the fundamental structure-property relations of seamless tube-like single- and multiwalled CNTs and conically stacked carbon nanofibers, as well as the organized architectures of these CNTs (including randomly stacked thin films, parallel aligned thin films, and vertically aligned arrays). It highlights the recent development of CNTs as key components in selected applications, including nanoelectronics, filtration membranes, transparent conductive electrodes, fuel cells, electrical energy storage devices, and solar cells. Particular emphasis is placed on the link between the basic physical chemical properties of CNTs and the organized CNT architectures with their functions and performance in each application.

  2. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  3. Chapter 1: Recent Advances in Solar Physics

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2008-10-01

    For millennia, the Sun (and the universe) has been viewed in the visual light. As the bestower of light and life, the ancients made God out of the Sun. With the Babylonians, or with the multiple origins with the Chinese, Egyptians and Indians, quoting the Rig Veda:"All that exists was born from Sūrya, the God of gods.", we have come a long way to understanding the Sun. In the early seventeenth century, however, Galileo showed that the Sun was not an immaculate object. Thus began our scientific interests in our nearest stellar neighbour, the Sun (cf., Figure 1.1.), with its sunspots and the related solar activity. The observations of the Sun and their interpretations are of universal importance for at least two reasons: First, the Sun is the source of energy for the entire planetary system and all aspects of our life have direct impact on what happens on the Sun; and second, the Sun's proximity makes it unique among the billions of stars in the sky of which we can resolve its surface features and study physical processes at work...

  4. Advances of Yemeni women in physics: Climbing toward a better status

    NASA Astrophysics Data System (ADS)

    Fakhraddin, S.; Alsowidi, N. A.

    2013-03-01

    In the three years since the last IUPAP Women in Physics Conference in 2008, the overall status of women in physics in Yemen has improved. The enrollment of women in the Department of Physics at Sana'a University has increased at both the undergraduate and graduate levels. At the graduate level, female enrollment has been equal to (50%) or greater than (57%) male enrollment in recent years. In addition, four of the leading state universities already have female faculty members with a PhD in physics who hold the title of assistant professor or better. These women in academia have made remarkable progress by publishing their work in distinctive journals as well as by winning national and regional scientific awards. We can be rather satisfied with the overall advances of Yemeni women in physics, as well, at every step up the academic ladder, but we simultaneously acknowledge their significant underrepresentation in the highest scientific positions as well as in decision-making positions at the faculty or administrative level of universities.

  5. BOOK REVIEW: Astrophysics (Advanced Physics Readers)

    NASA Astrophysics Data System (ADS)

    Kibble, Bob

    2000-07-01

    Here is a handy and attractive reader to support students on post-16 courses. It covers the astrophysics, astronomy and cosmology that are demanded at A-level and offers anyone interested in these fields an interesting and engaging reference book. The author and the production team deserve credit for producing such an attractive book. The content, in ten chapters, covers what one would expect at this level but it is how it is presented that struck me as the book's most powerful asset. Each chapter ends with a summary of key ideas. Line drawings are clear and convey enough information to make them more than illustrations - they are as valuable as the text in conveying information. Full colour is used throughout to enhance illustrations and tables and to lift key sections of the text. A number of colour photographs complement the material and serve to maintain interest and remind readers that astrophysics is about real observable phenomena. Included towards the end is a set of tables offering information on physical and astronomical data, mathematical techniques and constellation names and abbreviations. This last table puzzled me as to its value. There is a helpful bibliography which includes society contacts and a website related to the text. Perhaps my one regret is that there is no section where students are encouraged to actually do some real astronomy. Astrophysics is in danger of becoming an armchair and calculator interest. There are practical projects that students could undertake either for school assessment or for personal interest. Simple astrophotography to capture star trails, observe star colours and estimate apparent magnitudes is an example, as is a simple double-star search. There are dozens more. However, the author's style is friendly and collaborative. He befriends the reader as they journey together through the ideas. There are progress questions at the end of each chapter. Their style tends to be rather closed and they emphasize factual recall

  6. Demonstrating Successful Undergraduate Research Experiences across the Disciplines: The Physical Education Teacher Education Perspective

    ERIC Educational Resources Information Center

    Culp, Brian; Urtel, Mark

    2013-01-01

    This article describes the faculty-sponsored approach to undergraduate research (UGR) at Indiana University Purdue University Indianapolis. In this approach, individual or small groups of faculty organize or sponsor the research and recruit undergraduate students to get involved. This approach to UGR is opportunistic in that university faculty…

  7. Conducting Reflective, Hands-On Research with Advanced Characterization Instruments: A High-Level Undergraduate Practical Exploring Solid-State Polymorphism

    ERIC Educational Resources Information Center

    Coles, S. J.; Mapp, L. K.

    2016-01-01

    An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…

  8. The Research Experience for Undergraduates Program in Solar and Space Physics at the University of Colorado

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Wood, E. L.; Cobabe-Ammann, E. A.; Baker, D. N.; Renfrow, S.

    2010-12-01

    The Research Experience for Undergraduates (REU) program in Solar and Space Physicsis a collaboration between the University of Colorado's Laboratory for Atmospheric and Space Physics (CU/LASP), the National Center for Atmospheric Research's High Altitude Observatory (NCAR/HAO), The National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA/SWPC), Southwest Research Institute (SwRI), and Northwest Research Associates' Colorado Research Associates (NWR/CoRA). The goal of the program is to give students real-world, hands-on experience doing research with scientist mentors and to further their intended careers. Our program began in 2007 and is entering its fourth year. Mentors from the member institutions have supervised over fifty research projects dealing with all aspects of Solar and Space Physics. The students begin their 8-week visit to Boulder with a week of classes on the Sun-Earth system as well as practical courses on data analysis and the IDL programming language. The students give a 30 minute oral presentation of their project as well as a poster in a student symposium at the end of the program. Throughout the summer, the students give progress reports at weekly brown-bag lunch meetings. In addition to their own research projects at their host institution, the students tour and meet scientists from the partner institutions as the weekly lunches rotate from site to site. There are also opportunities for students to network with scientists in an informal way at the excursions we organize which include barbecues and weekend outings.

  9. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  10. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    NASA Astrophysics Data System (ADS)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  11. 2004 Physics and Advanced Technologies In the News

    SciTech Connect

    Hazi, A

    2005-11-01

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  12. 2005 Physics and Advanced Technologies in the News

    SciTech Connect

    Hazi, A U

    2006-12-19

    Several outstanding research activities in the Physics and Advanced Technologies Directorate in 2005 were featured in ''Science and Technology Review'', the monthly publication of Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2005. As part of the World Year of Physics commemorating the 100th anniversary of Einstein's ''miraculous year'', we also highlight ongoing physics research that would not be possible without Einstein's pioneering accomplishments.

  13. Argumentation skills and conceptual knowledge of undergraduate students in a physics by inquiry class

    NASA Astrophysics Data System (ADS)

    Acar, Omer

    Teaching argumentation skills has been the focus of science education research which views argumentation instruction as a way to improve scientific reasoning skills in science classrooms. Argumentation research has mostly focused on examining the quality of classroom discourse in science classes, scaffolding student argumentation process, and in-service science teacher development of pedagogical skills related to argumentation. Yet, there is paucity of studies exist in the literature which has examined prospective science teacher development of argumentation skills. This study aims to reduce this gap in the argumentation literature. This study investigated prospective science teacher development of argumentation skills and conceptual knowledge, relationship between argumentation skills and conceptual knowledge, and the relation of argumentation and conceptual knowledge gains to prospective science teacher initial conceptual knowledge level in an undergraduate course where argumentation skills were incorporated to the science curriculum. Initially, data were collected from 125 students who were involved in an inquiry-based physics course at a midwestern university. Argumentation skills for the concepts of balancing and sinking and floating were assessed by the use of argumentation tests which were constructed for this study and administered four times during the course. In addition to written argumentation tests, argumentation discourse of one small group of students was audio-taped two times during the course. Physics conceptual knowledge was administered at the beginning and at the end of the instruction by a conceptual test which was constructed for this study. A total of 36 students who responded to all the data collection activities comprised the analysis sample. It was found that the prospective science teacher argumentation skills regarding balancing and sinking and floating concepts improved during the course. More specifically, their counter-argument and

  14. Just-in-Time Teaching in undergraduate physics courses: Implementation, learning, and perceptions

    NASA Astrophysics Data System (ADS)

    Dwyer, Jessica Hewitt

    Regardless of discipline, a decades-long battle has ensued within nearly every classroom in higher education: instructors getting students to come to class prepared to learn. In response to this clash between teacher expectations and frequent student neglect, a group of four physics education researchers developed a reformed instructional strategy called Just-in-Time Teaching (JiTT). This dissertation investigates the following three areas: 1) the fidelity with which undergraduate physics instructors implement JiTT, 2) whether student performance predicts student perception of their instructor's fidelity of JiTT implementation, and 3) whether student perception of their instructor's fidelity of JiTT implementation correlates with student views of their physics course. A blend of quantitative data (e.g., students grades, inventory scores, and questionnaire responses) are integrated with qualitative data (e.g., individual faculty interviews, student focus group discussions, and classroom observations). This study revealed no statistically significant relationship between instructors who spent time on a predefined JiTT critical component and their designation as a JiTT user or non-user. While JiTT users implemented the pedagogy in accordance with the creators' intended ideal vision, many also had trouble reconciling personal concerns about their role as a JiTT adopter and the anticipated demand of the innovation. I recommend that this population of faculty members can serve as a JiTT model for other courses, disciplines, and/or institutions. Student performance was not a predictor of student perception instructor fidelity of JiTT implementation. Additionally, the majority of students in this study reported they read their textbook prior to class and that JiTT assignments helped them prepare for in-class learning. I found evidence that exposure to the JiTT strategy may correlate with a more favorable student view of their physics course. Finally, according to students

  15. The design, development, and assessment of advanced modeling based projects in introductory physics

    NASA Astrophysics Data System (ADS)

    Ramsdell, Michael W.

    The results of Physics Education Research (PER) have provided much insight into developing more effective learning environments in introductory physics courses. In this dissertation we discuss the design, development, and implementation of two advanced Modeling Based Projects (MBP) that have evolved through research-based criteria. The projects serve as an alternative to the traditional laboratory portion of the introductory calculus-based courses taught at Clarkson University for undergraduate science and engineering majors. Each project has gone through several research-redevelopment cycles, through which the experimental apparatuses and pedagogical approaches have been improved. Details of each projects' pedagogical structure and implementation are presented and discussed within the context of recommendations established through PER. We present a detailed assessment of their effectiveness in terms of students' conceptual learning via the Force Concepts Inventory (FCI) and the Conceptual Survey of Electricity and Magnetism (CSEM), course performance via exam scores, and attitudes via the Maryland Physics Expectations Survey (MPEX). The results show that students who participate in MBP at Clarkson University achieve significant gains over students taught elsewhere with a traditional approach and similar gains to those achieved by others using well tested, research motivated curricula reforms. An internal evaluation was performed to compare students participating in MBP with a control group of statistically comparable students who attended traditional laboratories. The results reveal that students who participated in MBP obtain statistically significant gains over similar students taught with the traditional approach for both courses within the introductory sequence.

  16. Barriers to Undergraduate Peer-Physical Examination of the Lower Limb in the Health Sciences and Strategies to Improve Inclusion: A Review

    ERIC Educational Resources Information Center

    Hendry, Gordon James

    2013-01-01

    Peer-physical examination is a widely adopted and an integral component of the undergraduate curriculum for many health science programs. Unwillingness or perceived inability to participate in peer-physical examination classes may have a negative impact upon students' abilities to competently conduct physical examinations of patients in…

  17. System studies for quasi-steady-state advanced physics tokamak

    SciTech Connect

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated.

  18. Advanced Swimming, Phase II--Advanced Swimmer; Physical Education: 5551.48.

    ERIC Educational Resources Information Center

    Gutting, Dick

    GRADES OR AGES: Grades 7-12. SUBJECT MATTER: Advanced swimming. ORGANIZATION AND PHYSICAL APPEARANCE: The first two sections of the guides are devoted to course guidelines, description, and broad goal statement. The next two sections list behavioral and skill objectives and course content. The fifth section presents learning activities and…

  19. Assessment of Student and Faculty Mentor Perceptions of an International Undergraduate Research Program in Physical Geography

    ERIC Educational Resources Information Center

    Houser, Chris; Cahill, Anthony; Lemmons, Kelly

    2014-01-01

    In this study, we assess whether students and their faculty mentors in a Research Experience for Undergraduates program have similar perceptions about the relative importance of different outcomes of their study abroad experience. Results of a Q-analysis reveal a significant difference of opinion between the students and the faculty mentors. It is…

  20. Academic Excellence: The Role of Research in the Physical Sciences at Undergraduate Institutions.

    ERIC Educational Resources Information Center

    Doyle, Michael P., Ed.

    Chapters of this collection show that students benefit from a research-based teaching environment, and that students who have the opportunity for research complete their science programs in greater numbers than those who do not. The chapters of section 1, "Achieving Excellence," are: (1) "The Role of Research at Undergraduate Institution: Why Is…

  1. Evaluation of the Undergraduate Physics Programme at Indira Gandhi National Open University: A Case Study

    ERIC Educational Resources Information Center

    Mishra, Arundhati; Vijayshri; Garg, Suresh

    2009-01-01

    The undergraduate science programme was launched at the Indira Gandhi National Open University (IGNOU) in 1991-92 with an enrolment of 1,210 students. The programme was well received, and enrolments increased over the years. However, the success rates have not kept pace with enrolment. In this paper, the authors report the results of an evaluation…

  2. Advanced Undergraduate Computer Based Astronomy Lab. The Astrometric Binary Kruger 60.

    NASA Astrophysics Data System (ADS)

    Slovak, M. H.

    2002-12-01

    A challenging computer based lab for astronomy undergraduate students has been developed to determine the masses of the components of the visual binary system Kruger 60 = HD 239960 = BD+56 2783 using archival astrometric observations. The data consist of separations and position angles from 1898 to 1949 (Lippincott 1953; Van de Kamp 1967) of Kruger 60B relative to Kruger 60A covering a complete orbit. After reviewing Kepler's 3rd or Harmonic Law and Newton's revision, they analyze the data using Microsoft Excel to calculate a best fitting elliptical orbit to the relative orbit of Kruger 60B. The importance of deriving stellar masses from such binaries is emphasized by discussing the significance of mass in the role of stellar evolution. This lab is one in a series being designed to provide astronomy majors practical experience in mathematically modeling astronomical data.This research was supported in part by NASA LaSPACE LURA Grant LSU 3115-30-5199.

  3. Resource Letter ANP-1: Advances in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Goodman, Maury C.

    2016-12-01

    Three of the twelve fundamental fermions in particle physics are neutrinos. It was long thought that neutrinos might be massless, but we now know through the phenomenon of neutrino oscillations that neutrinos have mass. This resource letter will cover the history of the growth in our knowledge about neutrinos since they were first proposed in the 1930s, and also covers some up the upcoming experiments which will further our understanding of neutrino properties. Results from experiments are described that use various sources of neutrinos including nuclear reactors, cosmic rays, accelerators, and supernovae. In this resource letter, the resources that can be used to trace the past, present, and anticipated future advances in neutrino physics are reviewed.

  4. Stereospecificity of NAD+/NADH Reactions: A Project Experiment for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Lowrey, Jonathan S.; And Others

    1981-01-01

    Presents background information, materials needed, and experimental procedures to study enzymes dependent on pyridine nucleotide coenzymes (NAD/NADH). The experiments, suitable for advanced organic or biochemistry courses, require approximately 10-15 hours to complete. (SK)

  5. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  6. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    PubMed Central

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  7. Looking from a CHAT-IT perspective to undergraduate Mexican physics: organizational trajectories or professors as agents of change?

    NASA Astrophysics Data System (ADS)

    Kahveci, Ajda

    2010-09-01

    Recent elaborations on cultural-historical activity theory (CHAT) (Engeström et al., eds., Perspectives on activity theory. New York: Cambridge University Press, 1999) and its relation to organizational theories have produced a theoretical amalgam of these earlier ideas, which allow for the exploration of learning in formal organizational contexts such as schools. In this paper I reflect on Candela's work situated in undergraduate Mexican physics by drawing attention to the CHAT-IT framework (Ogawa et al., Educational Researcher 37(2):83-95, 2008) as a viable lens. I suggest that it is important to understand the historical development of the Mexican university as an educational organization as well as the role of physics professors as agents of change whose practices contribute to not only breaking classroom walls but also to transforming the organization affecting future activity systems.

  8. In the foot steps of Madame Curie: A cross-case study of female undergraduate physics majors

    NASA Astrophysics Data System (ADS)

    Jaladanki, Vani Savithri

    Females are disproportionately underrepresented in STEM (science, technology, engineering, and mathematics) majors. Further, the number of females who take physics in college has declined. While female students make up 61% of graduates in biological sciences and 50% in chemistry, the proportion of women completing physics degrees is only 21% (Sawtelle, 2011). In order to improve women's access to science and engineering education, research must focus on personal and environmental factors that motivate them to select these fields (AAUW, 2010). The purpose of this study was to explore how the educational experiences of three female undergraduate physics majors contribute to their current dispositions toward, interest in, and pursuit of physics as a major at a large southern research university. This qualitative study employs symbolic interactionism (Blumer, 1969) as its methodological framework and social cognitive career theory (Lent, Brown, & Hackett, 2002) as its theoretical framework. Case study methods (Yin, 2006) were implemented to investigate the experiences of three participants. The primary sources of data included critical incident interviews (Flanagan, 1954), photographs, documents, object elicitations, and the researcher's reflections. Narrative and arts-based techniques were employed to analyze and represent data. Findings are presented as co-constructed narratives of the participants' journeys to becoming undergraduate physics majors. Three major themes emerged from the cross case analysis: carving new spaces, authoring an empowered self, and show me you care and so will I. The direct experiences of engaging with science at a young age and social persuasions of family members, teachers, and peers strongly influenced the participants' interest in and pursuit of physics. Their current dispositions to physics result from vicarious experiences with professors and peers in combination with the social persuasions of the latter. This study informs science

  9. Advanced physical assessment skills: implementation of a module.

    PubMed

    Aldridge-Bent, Sharon

    2011-02-01

    This article aims to explore and examine advanced physical assessment skills and the role of the district nurse. It will particularly highlight district nurses' perceptions of how they may implement skills learnt on a new module introduced into the Community Health Care Nursing degree at a university in London. Physical assessment skills have traditionally been viewed as part of a doctor's role; however, with the advancement of nursing roles, it is argued that it has become a key nursing skill. As Government policy continues to expect health professionals to keep patients in the community who have complex health and social care needs, the role of the district nurse presents as 'best placed' to take on this challenge (Department of Health (DH), 2005a; 2005b). Evaluation of the district nurses' perceptions of their practice is shared here, highlighting some of the challenges that they face. The article will address the complexity of developing a curriculum in response to the DH initiatives and the importance of listening to students on courses.

  10. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  11. The genetic drift inventory: a tool for measuring what advanced undergraduates have mastered about genetic drift.

    PubMed

    Price, Rebecca M; Andrews, Tessa C; McElhinny, Teresa L; Mead, Louise S; Abraham, Joel K; Thanukos, Anna; Perez, Kathryn E

    2014-01-01

    Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures upper-division students' understanding of this concept. We used an iterative approach that included extensive interviews and field tests involving 1723 students across five different undergraduate campuses. The GeDI consists of 22 agree-disagree statements that assess four key concepts and six misconceptions. Student scores ranged from 4/22 to 22/22. Statements ranged in mean difficulty from 0.29 to 0.80 and in discrimination from 0.09 to 0.46. The internal consistency, as measured with Cronbach's alpha, ranged from 0.58 to 0.88 across five iterations. Test-retest analysis resulted in a coefficient of stability of 0.82. The true-false format means that the GeDI can test how well students grasp key concepts central to understanding genetic drift, while simultaneously testing for the presence of misconceptions that indicate an incomplete understanding of genetic drift. The insights gained from this testing will, over time, allow us to improve instruction about this key component of evolution.

  12. Newton's Bridge Learning Community: Can Student Learning in Introductory Physics and Calculus be a Pathway to Undergraduate Research?

    NASA Astrophysics Data System (ADS)

    Li, Eugene

    2014-03-01

    A pathway to undergraduate research for freshman level physics through interdisciplinary pairings of physics and calculus courses is examined. Through ``pairing courses,'' active learning approaches, and jointly constructed inquiry-based course activities, students formulate and investigate a ``research problem.'' Some effects of a student-peer-mentor program is also examined. The use of technology incorporated into ``theme-focused'' activities is outlined. Some of the technological components include the iPad, Vernier sensors with related software, and introductory MATLAB. This presentation analyzes some of the outcomes of the learning community pairing of calculus-based Physics I (Mechanics and Heat) and Math (Calculus II), called a ``A Journey Across Newton's Bridge,'' and also the follow-up course pairing calculus-based Physics II (Electricity and Magnetism) and Multi-variable calculus called ``Multi-Dimensional Experiences'' which are being offered at Montgomery College. Acknowledge support of the Department of Physics, Engineering and Geoscience, Montgomery College, Noyce TPOD-STEM, and GT-STEP Grants.

  13. Climate Solutions based on advanced scientific discoveries of Allatra physics

    NASA Astrophysics Data System (ADS)

    Vershigora, Valery

    2016-01-01

    Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group), offers increased opportunities for advanced fundamental and applied research in climatic engineering.

  14. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  15. Corporate Mentors and Undergraduate Students: A Qualitative Study of the Advancing Women in Construction Mentorship Program

    ERIC Educational Resources Information Center

    Eicher, Matthew

    2013-01-01

    In a conscious effort to combat the low enrollment of women in construction management, a program was created to retain women through a mentorship program--Advancing Women in Construction. A qualitative analysis, facilitated through a grounded theory approach, sought to understand if the program was indeed successful, and what value did the…

  16. Undergraduate Performance of Advanced Level and Associate Degree Students: A Comparative Analysis

    ERIC Educational Resources Information Center

    St. Rose, Kieran Winnifred

    2013-01-01

    In the English-speaking Caribbean, the Advanced level qualification is the traditional and preferred route to accessing an education at the University of the West Indies (UWI). However, applicants with nontraditional qualifications--such as the associate degree qualification, teacher certificate, diploma, and mature student status (meaning one who…

  17. A Profile of the Introduction to Adapted Physical Education Course within Undergraduate Physical Education Teacher Education Programs

    ERIC Educational Resources Information Center

    Piletic, Cindy K.; Davis, Ron

    2010-01-01

    The purpose of this study was to describe the profile, content, delivery mechanism, and application of teaching standards, National Association of Sport and Physical Education (NASPE) and Adapted Physical Education National Standards (APENS), within the Introduction to Adapted Physical Education (APE) course for college/university PETE preparation…

  18. Suggested Guidelines for Teaching Undergraduate History of Physical Education and Sport in a Physical Education Teacher Education Program. Guidance Document

    ERIC Educational Resources Information Center

    Lawrence, Don; Lumpkin, Angela; Park, Roberta; Thomas, Robert; Morgenegg, Bruce

    2010-01-01

    Studying the historical antecedents of physical education and sport typically forms part of the curriculum of physical education teacher education (PETE) programs in U.S. colleges and universities. These courses commonly use a survey model, briefly examining the development of organized physical education and sport practices and programs from…

  19. Physical and Chemical Properties of the Copper-Alanine System: An Advanced Laboratory Project

    ERIC Educational Resources Information Center

    Farrell, John J.

    1977-01-01

    An integrated physical-analytical-inorganic chemistry laboratory procedure for use with undergraduate biology majors is described. The procedure requires five to six laboratory periods and includes acid-base standardizations, potentiometric determinations, computer usage, spectrophotometric determinations of crystal-field splitting…

  20. SU-E-E-07: An Adaptable Approach for Education On Medical Physics at Undergraduate and Postgraduate Levels

    SciTech Connect

    Miller-Clemente, R; Mendez-Perez, L

    2015-06-15

    Purpose: To contribute to the professional profile of future medical physicists, technologists and physicians, and implement an adaptable educational strategy at both undergraduate and postgraduate levels. Methods: The Medical Physics Block of Electives (MPBE) designed was adapted to the Program of B.S. in Physics. The conferences and practical activities were developed with participatory methods, with interdisciplinary collaboration from research institutions and hospitals engaged on projects of Research, Development and Innovation (RDI). The scientific education was implemented by means of critical analysis of scientific papers and seminars where students debated on solutions for real research problems faced by medical physicists. This approach included courses for graduates not associated to educational programs of Medical Physics (MP). Results: The implementation of the MPBE began in September 2014, with the electives of Radiation MP and Introduction to Nuclear Magnetic Resonance. The students of second year received an Introduction to MP. This initiative was validated by the departmental Methodological Workshop, which promoted the full implementation of the MPBE. Both postgraduated and undergraduate trainees participated in practices with our DICOM viewer system, a local prototype for photoplethysmography and a home-made interface for ROC analysis, built with MATLAB. All these tools were designed and constructed in previous RDI projects. The collaborative supervision of University’s researchers with clinical medical physicists will allow to overcome the limitations of residency in hospitals, to reduce the workload for clinical supervisors and develop appropriate educational activities. Conclusion: We demonstrated the feasibility of adaptable educational strategies, considering available resources. This provides an innovative way for prospective medical physicists, technologists and radiation oncologists. This strategy can be implemented in several regions

  1. ‘The physics of life,’ an undergraduate general education biophysics course

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2015-05-01

    Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses—i.e. courses for students not majoring in the sciences or engineering. Because it encompasses a variety of important scientific concepts, demonstrates connections between basic science and real-world applications and illustrates the creative ways in which scientific insights develop, biophysics is a useful subject with which to promote scientific literacy. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon (Eugene, OR, USA), noting its design, which spans both macroscopic and microscopic topics, and the specific content of a few of its modules. I also describe evidence-based pedagogical approaches adopted in teaching the course and aspects of course enrollment and evaluation.

  2. Reflection on problem solving in introductory and advanced physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  3. Research opportunities in atomic physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.; Robinson, A. L.

    1989-09-01

    The Advanced Light Source (ALS) now under construction at the Lawrence Berkeley Laboratory is being planned as a national user facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bending-magnet ports. High-brightness photon beams from less than 10 eV to more than 1 keV will be produced by undulators, thereby providing many research opportunities in atomic and molecular physics and chemistry. Wigglers and bending magnets will provide high-flux broad-band radiation at energies to 10 keV.

  4. XII Advanced Computing and Analysis Techniques in Physics Research

    NASA Astrophysics Data System (ADS)

    Speer, Thomas; Carminati, Federico; Werlen, Monique

    November 2008 will be a few months after the official start of LHC when the highest quantum energy ever produced by mankind will be observed by the most complex piece of scientific equipment ever built. LHC will open a new era in physics research and push further the frontier of Knowledge This achievement has been made possible by new technological developments in many fields, but computing is certainly the technology that has made possible this whole enterprise. Accelerator and detector design, construction management, data acquisition, detectors monitoring, data analysis, event simulation and theoretical interpretation are all computing based HEP activities but also occurring many other research fields. Computing is everywhere and forms the common link between all involved scientists and engineers. The ACAT workshop series, created back in 1990 as AIHENP (Artificial Intelligence in High Energy and Nuclear Research) has been covering the tremendous evolution of computing in its most advanced topics, trying to setup bridges between computer science, experimental and theoretical physics. Conference web-site: http://acat2008.cern.ch/ Programme and presentations: http://indico.cern.ch/conferenceDisplay.py?confId=34666

  5. The Effect of Problem-Based Learning on Undergraduate Students' Learning about Solutions and Their Physical Properties and Scientific Processing Skills

    ERIC Educational Resources Information Center

    Tosun, Cemal; Taskesenligil, Yavuz

    2013-01-01

    The aim of this study was to investigate the effect of Problem-Based Learning (PBL) on undergraduate students' learning about solutions and their physical properties, and on their scientific processing skills. The quasi experimental study was carried out through non-equivalent control and comparison groups pre-post test design. The data were…

  6. A Development of a Collaborative Blended Learning Model to Enhance Learning Achievement and Thinking Ability of Undergraduate Students at the Institute of Physical Education

    ERIC Educational Resources Information Center

    Kingpum, Peerasak; Ruangsuwan, Chaiyot; Chaicharoen, Sumalee

    2015-01-01

    This research aimed to develop a model of a collaborative blended learning (CoBl) to develop learning achievement and thinking ability of undergraduate students in the Institute of Physical Education. The research is divided into three phases using the blended learning model via collaborative learning with thinking abilities approach as follows:…

  7. Determining the Transference Number of H[superscript +](aq) by a Modified Moving Boundary Method: A Directed Study for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan

    2012-01-01

    A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…

  8. Evaluation of a Voluntary Tutoring Program in Chemistry, Physics and Mathematics for First-Year Undergraduates at Universidad Andres Bello, Chile

    ERIC Educational Resources Information Center

    Jiménez, Verónica A.; Acuña, Fabiola C.; Quiero, Felipe J.; López, Margarita; Zahn, Carmen I.

    2015-01-01

    This work describes the preliminary results of a tutoring program that provides personalized academic assistance to first-year undergraduates enrolled in introductory chemistry, physics and mathematics courses at Universidad Andres Bello (UNAB), in Concepción, Chile. Intervened courses have historically large enrolments, diverse student population…

  9. A Study of Undergraduate Physics Students' Understanding of Heat Conduction Based on Mental Model Theory and an Ontology-Process Analysis

    ERIC Educational Resources Information Center

    Chiou, Guo-Li; Anderson, O. Roger

    2010-01-01

    This study first used a new approach, combining students' ontological beliefs and process explanations, to represent students' mental models of heat conduction and then examined the relationships between their mental models and their predictions. Clinical interviews were conducted to probe 30 undergraduate physics students' mental models and their…

  10. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  11. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three

  12. PET/CT: underlying physics, instrumentation, and advances.

    PubMed

    Torres Espallardo, I

    2017-01-12

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  13. Using Robots and Contract Learning to Teach Cyber-Physical Systems to Undergraduates

    ERIC Educational Resources Information Center

    Crenshaw, T. L. A.

    2013-01-01

    Cyber-physical systems are a genre of networked real-time systems that monitor and control the physical world. Examples include unmanned aerial vehicles and industrial robotics. The experts who develop these complex systems are retiring much faster than universities are graduating engineering majors. As a result, it is important for undergraduates…

  14. Physics Undergraduate Degrees: Results from the 2008 Survey of Enrollments and Degrees. Focus On

    ERIC Educational Resources Information Center

    Mulvey, Patrick J.; Nicholson, Starr

    2011-01-01

    The Statistical Research Center of the American Institute of Physics conducts an annual census of all degree-granting physics departments in the United States and Puerto Rico. The survey, collecting data from the 754 departments that granted bachelor's degrees in the class of 2008, had a 97% response rate. Estimates were derived and included in…

  15. Prevalence and risk factors of low back pain among undergraduate students of a sports and physical education institute in Tunisia.

    PubMed

    Triki, Moez; Koubaa, Abdessalem; Masmoudi, Liwa; Fellmann, Nicole; Tabka, Zouhair

    2015-01-01

    Introduction : For obvious reasons, athletes are at greater risk of sustaining a lumber (lower) spine injury due to physical activity. To our knowledge, no previous studies have examined the prevalence of low back pain (LBP) in a Tunisian sports and physical education institute. Aim : To assess the prevalence of LBP in different sports among students studying in a sports and physical education institute in Tunisia, to determine the causes of the injuries, and to propose solutions. Methods : A total of 3,379 boys and 2,579 girls were studied. A retrospective cross-sectional survey was conducted on a group of students aged 18.5-24.5 years at the Higher Institute of Sport and Physical Education of Sfax to estimate the prevalence of LBP and its relation to the type of sports. Data on age, weight, height, smoking, and the sport in which the student was injured in the low back were collected from the institute health service records from 2005 until 2013. Results : LBP was reported by 879 of the 5,958 study participants (14.8%). The prevalence of LBP was significantly higher (p<0.001) in females (17.6%) than in males (12.5%). LBP prevalence did not differ by body mass index or smoking habit (p>0.05). The sports associated with the higher rates of LBP were gymnastics, judo, handball, and volleyball, followed by basketball and athletics. Conclusion : LBP is frequent among undergraduate students of a sports and physical education institute in Tunisia. It is strongly associated with fatigue after the long periods of training in different sports. Gymnastics, judo, handball, and volleyball were identified as high-risk sports for causing LBP.

  16. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  17. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  18. An Advanced Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Wise, John H.

    The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…

  19. Integration of Physics and Biology: Synergistic Undergraduate Education for the 21st Century

    ERIC Educational Resources Information Center

    Woodin, Terry; Vasaly, Helen; McBride, Duncan; White, Gary

    2013-01-01

    This is an exciting time to be a biologist. The advances in our field and the many opportunities to expand our horizons through interaction with other disciplines are intellectually stimulating. This is as true for people tasked with helping the field move forward through support of research and education projects that serve the nation's needs as…

  20. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that themore » alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  1. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  2. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. N.; Rensink, M. E.; Rognlien, T. D.; Snyder, P. B.; St. John, H.; Turnbull, A. D.

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized βN ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle magnetohydrodynamic stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×1020/m3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.

  3. Developing and supporting self-efficacy in physics undergraduates at California State University, Long Beach

    NASA Astrophysics Data System (ADS)

    Duitsman, Brooke Erin

    Self-efficacy is regarded as a significant predictor of academic success. This study examines the development of self-efficacy in upper-division physics majors within the Physics 310 - Analytic Mechanics course at California State University, Long Beach during the fall semester of 2015. The Sources of Self-Efficacy in Science Courses - Physics (SOSESC-P), as developed by Drs. Heidi Fencl and Karen Scheel in 2002, was administered to students enrolled in the class in a pre-test/post-test format to identify increases in self-efficacy during the course. Students demonstrated a statistically significant increase in self-efficacy on only one subscore of the SOSESC-P. The collaborative nature of the class is thought to have had an effect on the Social Persuasion (t (23) = 2.11, p = 0.023) aspect of self-efficacy development. Students also reported perceptions of departmental support and participation in department-sponsored activities.

  4. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    ERIC Educational Resources Information Center

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  5. The Use of Physical and Virtual Manipulatives in an Undergraduate Mechanical Engineering (Dynamics) Course

    ERIC Educational Resources Information Center

    Pan, Edward A.

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in…

  6. Computer Based Learning in an Undergraduate Physics Laboratory: Interfacing and Instrument Control Using Matlab

    ERIC Educational Resources Information Center

    Sharp, J. S.; Glover, P. M.; Moseley, W.

    2007-01-01

    In this paper we describe the recent changes to the curriculum of the second year practical laboratory course in the School of Physics and Astronomy at the University of Nottingham. In particular, we describe how Matlab has been implemented as a teaching tool and discuss both its pedagogical advantages and disadvantages in teaching undergraduate…

  7. Implementing Comprehensive Reform of Introductory Physics at a Primarily Undergraduate Institution: A Longitudinal Case Study

    ERIC Educational Resources Information Center

    Rogers, Michael; Keller, Luke D .; Price, Matthew F.; Crouse, Andrew

    2015-01-01

    Education research provides a range of curricular reform options that can lead to improved student course outcomes. These options can appear easy to implement with the hope of immediate increases in student learning. In 2006 the Ithaca College Physics Department went down this path by moving all of their 100-level courses out of lecture halls and…

  8. Using Student Peer Review of Experiment Reports in an Undergraduate Physics Class

    ERIC Educational Resources Information Center

    Moran, Timothy; Van Hook, Stephen J.

    2006-01-01

    A class centered on student design of experiments and peer review of the resulting reports is described. Thirteen students in an honors seminar section of an introductory physics class designed experiments to test various types of paranormal phenomena. Each experimental report was evaluated and ranked by several other students. To give them…

  9. Outdoor and Adventurous Activities in Undergraduate Physical Education Teacher Education at Chichester Institute.

    ERIC Educational Resources Information Center

    Boniface, Maggie; Bunyan, Peter

    The School of Physical Education at Chichester Institute (England) has developed an outdoor and adventurous activities (OAA) program that trains teachers to optimize the full potential of the outdoors as classroom. The philosophy underpinning the OAA program challenges the traditional view that exposure to adventure necessarily results in…

  10. Seeking Scholarships: Application Tips for Graduate and Undergraduate Studies in Health and Physical Education.

    ERIC Educational Resources Information Center

    Okeke, Maria U.; Geiger, Brian F.

    This collection of 31 presentation slides provides suggestions for students applying for health and physical education scholarships, offering guidelines and specific resource information. It focuses on myths (e.g., scholarships only go to the best students, obtaining a loan decreases the chances of receiving a scholarship, and paying for a…

  11. Why peer assessment helps to improve clinical performance in undergraduate physical therapy education: a mixed methods design

    PubMed Central

    2014-01-01

    Background Peer Assessment (PA) in health professions education encourages students to develop a critical attitude towards their own and their peers’ performance. We designed a PA task to assess students’ clinical skills (including reasoning, communication, physical examination and treatment skills) in a role-play that simulated physical therapy (PT) practice. Students alternately performed in the role of PT, assessor, and patient. Oral face-to-face feedback was provided as well as written feedback and scores. This study aims to explore the impact of PA on the improvement of clinical performance of undergraduate PT students. Methods The PA task was analyzed and decomposed into task elements. A qualitative approach was used to explore students’ perceptions of the task and the task elements. Semi-structured interviews with second year students were conducted to explore the perceived impact of these task elements on performance improvement. Students were asked to select the elements perceived valuable, to rank them from highest to lowest learning value, and to motivate their choices. Interviews were transcribed verbatim and analyzed, using a phenomenographical approach and following template analysis guidelines. A quantitative approach was used to describe the ranking results. Results Quantitative analyses showed that the perceived impact on learning varied widely. Performing the clinical task in the PT role, was assigned to the first place (1), followed by receiving expert feedback (2), and observing peer performance (3). Receiving peer feedback was not perceived the most powerful task element. Qualitative analyses resulted in three emerging themes: pre-performance, true-performance, and post-performance triggers for improvement. Each theme contained three categories: learning activities, outcomes, and conditions for learning. Intended learning activities were reported, such as transferring prior learning to a new application context and unintended learning

  12. A comparative cross-cultural study of the prevalence and nature of misconceptions in physics amongst English and Chinese undergraduate students

    NASA Astrophysics Data System (ADS)

    Abrahams, Ian; Homer, Matt; Sharpe, Rachael; Zhou, Mengyuan

    2015-01-01

    Background:Despite the large body of literature regarding student misconceptions, there has been relatively little cross-cultural research to directly compare the prevalence of common scientific misconceptions amongst students from different cultural backgrounds. Whilst previous research does suggest the international nature of many misconceptions, there is little evidence as to whether the prevalence of such common misconceptions varies from culture to culture. Purpose:To undertake a preliminary examination of the prevalence and reasons for some previously studied scientific misconceptions amongst English and Chinese undergraduate students so as to ascertain whether there is any evidence of cultural difference. Such a finding could help to identify teaching approaches in either country that are more effective in reducing the prevalence of common student misconceptions. Sample:The study involved a convenience sample of 40 undergraduate students - 20 English and 20 Chinese drawn equally from two universities in the North of England - whose formal science education ended at ages 16 and 15 respectively. Design and methods:The study employed semi-structured interview schedule containing eight questions. Results:Whilst similar misconceptions existed amongst both English and Chinese undergraduates, their prevalence was significantly higher amongst the English students (Overall mean score for scientifically correct answers amongst Chinese students was 27.7% higher, p < .01, r = .64). Often when English and Chinese undergraduates had similar misconceptions, they tended to explain these by drawing upon very similar erroneous analogies and these appear to be only nominally culturally independent in that they are based on globally shared everyday experiences. Conclusion:Differences in the prevalence of misconceptions amongst English and Chinese undergraduates appear to arise from differences in the way in which specific areas of physics are taught in both countries. It might

  13. Undergraduate Professional Education in Chemistry: Guidelines and Evaluation Procedures.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Provided are guidelines for evaluating undergraduate professional education in chemistry. The guidelines summarize an approved program as including: 400 hours of classroom work; 500 hours of laboratory work; a core curriculum covering principles of analytical, inorganic, organic, and physical chemistry; 1 year of advanced work in chemistry or…

  14. Research Experiences for Undergraduates.

    ERIC Educational Resources Information Center

    Rettig, Terrence W.; And Others

    1990-01-01

    Reviewed are six programs at different colleges and universities which provide research opportunities for undergraduate students in physics, astronomy, marine biology, meteorology, and anthropology. Background, features, and accomplishments of the programs are discussed. (CW)

  15. Combining research-enhanced and technology-enhanced teaching approaches in module design: A case study of an undergraduate course in Solar Physics

    NASA Astrophysics Data System (ADS)

    Tong, V.

    2011-12-01

    There is a growing emphasis on the research-teaching nexus, and there are many innovative ways to incorporate research materials and methods in undergraduate teaching. Solar Physics is a cross-disciplinary subject and offers the ideal opportunity for research-enhanced teaching (1). In this presentation, I outline i) how student-led teaching of research content and methods is introduced in an undergraduate module in Solar Physics, and ii) how electronic learning and teaching can be used to improve students' learning of mathematical concepts in Solar Physics. More specifically, I discuss how research literature reviewing and reporting methods can be embedded and developed systematically throughout the module with aligned assessments. Electronic feedback and feedforward (2) are given to the students in order to enhance their understanding of the subject and improve their research skills. Other technology-enhanced teaching approaches (3) are used to support students' learning of the more quantitative components of the module. This case study is particularly relevant to a wide range of pedagogical contexts (4) as the Solar Physics module is taught to students following undergraduate programs in Geology, Earth Sciences, Environmental Geology as well as Planetary Science with Astronomy in the host Department. Related references: (1) Tong, C. H., Let interdisciplinary research begin in undergraduate years, Nature (2010) v. 463, p. 157. (2) Tong, V. C. H., Linking summative assessments? Electronic feedback and feedforward in module design, British Journal of Educational Technology (2011), accepted for publication. (3) Tong, V. C. H., Using asynchronous electronic surveys to help in-class revision: A case study, British Journal of Educational Technology (2011), doi:10.1111/j.1467-8535.2011.01207.x (4) Tong, V. C. H. (ed.), Geoscience Research and Education, Springer, Dordrecht (2012)

  16. An Undergraduate Physical Chemistry Experiment on Surfactants: Electrochemical Study of a Commercial Soap

    NASA Astrophysics Data System (ADS)

    Schulz, Pablo C.; Clausse, Danièle

    2003-09-01

    A general and physical chemistry laboratory on the electrochemistry of soap solutions is proposed. It involves safe, nontoxic, nonpolluting materials, common laboratory apparatuses, and a combination of theoretical and practical concepts. The critical micelle concentration is measured in weight percent and the mean hydrocarbon chain length and soap mixture molar weight are determined. Conductivity data are also used to determine the micelle ionization degree, the micelle and monomer molar conductivity, and the micellar electrophoretic mobility. The existence of a critical micelle concentration range is also visualized. The hydrolysis degree, the fatty acid ionization constant and water solubility, the formation of acid soap, and the concentration at which the first submicellar aggregates form are determined by pH measurements. These results lead to a discussion of several characteristics of surfactant solutions.

  17. Why Don't More Women and Minorities Study Undergraduate Physics? A Case Study

    NASA Astrophysics Data System (ADS)

    Smith, Hillary; Weisel, Derek

    2008-04-01

    It has often been suggested that the lack of women and ethnic minorities studying physics in college can be traced back to the science and math education of students in high school and before. This talk presents data from a two-part survey of high school science students. First, students were asked what subjects they enjoy and their perceived level of competency in math and science. Second, students were asked their plans for secondary education and what factors contributed to this decision. The results been correlated to gender and ethnicity. Analysis of the results indicates trends along gender and ethnic lines in what students believe they are good at, what they enjoy studying, in what ways they plan to continue their education, and what they plan to study in college.

  18. A New Undergraduate Course on the Physics of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Jost, T.; Dearborn, M.; Chun, F.; McHarg, G.

    As documented in the National Defense Authorization Act for fiscal year 2010, space situational awareness (SSA) is a high priority for the DoD and intelligence community. A fundamental understanding of the technical issues involved with SSA requires knowledge in many different scientific areas. The mission of the United States Air Force Academy (USAFA) is to educate, train, and inspire men and women to become officers of character motivated to lead the United States Air Force in service to our Nation. The physics department is implementing the USAFA mission and the need for technically competent officers in SSA through a comprehensive SSA Initiative. As part of the Initiative, we are developing a course to provide junior or senior cadets with the scientific background necessary to understand the challenges associated with SSA missions and systems. This presentation introduces the planned course objectives and includes a discussion of topics to be covered. Examples of topics include, optically resolved imaging, radiometry and photometry, radar detection and tracking, orbital prediction, debris and collision avoidance, detection of proximity operations and modeling and simulation tools. Cadets will have hands-on opportunities to collect metrics of a designated object using Academy assets such as the 41 cm telescope. Cadets will convert telescope gimbal angles into an orbital data. Cadets will synthesize what they learned in the course by completing the semester with a final project where the collected data is merged with a notional scenario to present a mock decision briefing. This class will be open to cadets of any academic major, since the intent is to prepare officers with basic technical competence in SSA applications. This is critical since graduates of the Academy become commissioned officers in the military and serve in a large variety of leadership positions -- from the researcher to the warfighter. Since we are currently developing the course, the SSA

  19. Synthesis of a Partially Protected Azidodeoxy Sugar. A Project Suitable for the Advanced Undergraduate Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Norris, Peter; Freeze, Scott; Gabriel, Christopher J.

    2001-01-01

    The synthetic chemistry of carbohydrates provides a wealth of possible experiments for the undergraduate organic chemistry laboratory. However, few appropriate examples have been developed to date. With this simple two-step synthesis of a partially protected azidodeoxy sugar, we demonstrate several important concepts introduced in undergraduate chemistry (alcohol activation, steric hindrance, nucleophilic substitution) while offering products that are readily amenable to analysis by high field NMR. Students are exposed to techniques such as monitoring reactions by TLC, workup of reaction mixtures, and isolation by flash chromatography. Suitable methods for analysis of products include NMR, IR, MS, and polarimetry.

  20. CURRICULUM GUIDES IN PHYSICS--GENERAL ADVANCED PLACEMENT, COLLEGE LEVEL.

    ERIC Educational Resources Information Center

    WESNER, GORDON E.

    THE GENERAL PHYSICS CURRICULUM IS PLANNED FOR THOSE WHOSE GENERAL ABILITY IS BETTER THAN AVERAGE AND IS OFFERED IN GRADES 11 OR 12. GENERAL OBJECTIVES ARE, TO DEVELOP CRITICAL THINKING THROUGH THE SCIENTIFIC METHOD, TO UNDERSTAND BASIC PHYSICAL LAWS AND MAN'S PLACE IN THE UNIVERSE, AND TO DEVELOP A SCIENTIFIC ABILITY AND INTEREST. ELEVEN UNITS OF…

  1. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  2. Can the Tools of Activity Theory Help Us in Advancing Understanding and Organisational Change in Undergraduate Medical Education?

    ERIC Educational Resources Information Center

    Reid, Anne-Marie; Ledger, Alison; Kilminster, Sue; Fuller, Richard

    2015-01-01

    Continued changes to healthcare delivery in the UK, and an increasing focus on patient safety and quality improvement, require a radical rethink on how we enable graduates to begin work in challenging, complex environments. Professional regulatory bodies now require undergraduate medical schools to implement an "assistantship" period in…

  3. Teaching Thermodynamics and Kinetics to Advanced General Chemistry Students and to Upper-Level Undergraduate Students Using PV Diagrams

    ERIC Educational Resources Information Center

    Iyengar, Srinivasan S.; deSouza, Romualdo T.

    2014-01-01

    We describe how complex concepts in macroscopic chemistry, namely, thermodynamics and kinetics, can be taught at considerable depth both at the first-year undergraduate as well as upper levels. We begin with a careful treatment of PV diagrams, and by pictorially integrating the appropriate area in a PV diagram, we introduce work. This starting…

  4. Synthesis and Characterization of Europium(III) and Terbium(III) Complexes: An Advanced Undergraduate Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Swavey, Shawn

    2010-01-01

    Undergraduate laboratories rarely involve lanthanide coordination chemistry. This is unfortunate in light of the ease with which many of these complexes are made and the interesting and instructive photophysical properties they entail. The forbidden nature of the 4f transitions associated with the lanthanides is overcome by incorporation of…

  5. Introduction of structured physical examination skills to second year undergraduate medical students

    PubMed Central

    Piryani, Rano M

    2013-01-01

    Introduction: Effective learning of physical examination skills (PES) requires suitable teaching and learning techniques and assessment methods. The Tribhuvan University (Nepal) curriculum recommends involving the departments of Medicine and Surgery in PES training (PEST) for second year students as a part of early clinical exposure. The project was developed to make teaching/learning of PES structured, involving eight clinical sciences departments and using appropriate methods for teaching and assessment in KIST Medical College, Nepal. Methods: Irby’s three stages of clinical teaching model (Preparation, Teaching, Reflection), was applied for teaching. Skill acquisition was based on Millers’ learning pyramid at “show how level” and Dreyfus’ competency model at “competent level”. Teaching/learning was conducted in small groups. A tutorial, demonstration and practice (TDS) model was developed for teaching/learning techniques based on a simple five-step method for teaching clinical skills. Assessment of effectiveness of training was done at “reaction level” as per Kirkpatrick’s model based on students’ feedback, “shows how level” as per Miller’s pyramid of learning by OSCE and “competent level” as per Dreyfus’ model using retro-pre questionnaire. Results: The analysis of retro-pre questionnaire based on the Dreyfus model found the average skill score (max score 184), before the introduction of the project module as 15.9 (median = 13.5) and after as 116.5 (median = 116). A paired t-test showed the difference to be statistically significant (100.5±23 and 95% CI 95.45 – 105.59). The average overall feedback score for the students on PES training based on seven items on a five point Likert scale was found to be 4.30. The mean total objective structured clinical examination (OSCE) score was 3.77 (SD+/- 0.33) out of 5; 80% of students scored more than 70%. Conclusion: Students learned most of the skills with the implementation of the

  6. Teachers' Views about the Nuffield Advanced Physics Course.

    ERIC Educational Resources Information Center

    Tebbutt, M. J.

    1981-01-01

    Summarizes results of a survey on teachers' views of the Nuffield A-level physics course (NAP) including, among others, course content, philosophy, examinations, organization, and individual units. Suggests that most teachers surveyed were satisfied with their NAP course. (SK)

  7. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  8. Advances in the physics basis for the European DEMO design

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  9. Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics

    DTIC Science & Technology

    2011-07-28

    nonequilibrium. For example, the plasma transport may transition between rarefied and continuum flow , requiring appropriate models for each case through...AFRL-AFOSR-UK-TR-2011-0023 Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics...2010 4. TITLE AND SUBTITLE Advanced Physical Models and Numerical Methods for High Enthalpy and Plasma Flows Applied to Hypersonics 5a

  10. The Efficacy of Advance Organizers and Behavioral Objectives for Improving Achievement in Physics.

    ERIC Educational Resources Information Center

    Hershman, Kenneth Eugene

    This research investigates the utility of advance organizers and behavioral objectives in a traditional introductory physics class at the college level. The advance organizer was designed to compare and contrast content to be learned with content previously studied or with assumed common knowledge. Behavioral objectives listed the expected…

  11. Recent Advances in Indirect Drive ICF Target Physics

    SciTech Connect

    Hammel, B; Lindl, J; Amendt, P A; Bernat, G W; Collins, G W; Glenzer, S H; Koch, S H; Haan, S; Landen, O L; Suter, L J

    2002-10-08

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a lEnergie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization & fabrication.

  12. Recent advances in indirect drive ICF target physics at LLNL

    SciTech Connect

    Bernat, T P; Collins, G W; Haan, S; Hammel, B A; Landen, O L; MacGowan, B J; Sutter, L J

    1998-01-13

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a 1'Energie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization & fabrication.

  13. Working with Advanced Primary School Students in Physics

    NASA Astrophysics Data System (ADS)

    Jankovic, Ljiljana; Cucic, Dragoljub

    2010-01-01

    Working with students who have special needs is the type of work that requires special engagement and skills of those who perform it. Working with gifted children requires outstanding knowledge of a teacher and above all the teachers should be very well informed on the subject they teach, Physics in our case. This work also requires great pedagogical and psychological skills so that these talented students would be approached in a suitable way. In this paper we will present to you our methods of teaching Physics to these talented children (13 years old), in the Regional Center for Talents "Mihajlo Pupin" in Pancevo.

  14. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  15. Advanced Quantitative Measurement Methodology in Physics Education Research

    ERIC Educational Resources Information Center

    Wang, Jing

    2009-01-01

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and…

  16. Recent advances in understanding physical properties of metallurgical slags

    NASA Astrophysics Data System (ADS)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  17. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Industrial Physics.

    ERIC Educational Resources Information Center

    Whisenhunt, James E.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour introduction to industrial physics that explains and demonstrates to industrial maintenance mechanics the direct relationship of physics to machinery. Project TEAM is intended to upgrade basic technical competencies of…

  18. Integrating Advanced Physical Training Programs into the Marine Corps

    DTIC Science & Technology

    2009-02-20

    the CrossFit program and consequently a fee is required to participate in the CrossFit 3 P90X , Extreme Body Workout, (unknown... P90X , Extreme Body Workout n.d.) , P90X is a home based DVD workout program designed to achieve results in 90 days at a cost of $119.85. 4...PFT and is characterized by anaerobic (short burst) energy demands”.13 By coincidence, many of the advanced training programs, such as P90X , CrossFit

  19. Advances on modelling of ITER scenarios: physics and computational challenges

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Imbeaux, F.; Peysson, Y.; Schneider, M.

    2011-12-01

    Methods and tools for design and modelling of tokamak operation scenarios are discussed with particular application to ITER advanced scenarios. Simulations of hybrid and steady-state scenarios performed with the integrated tokamak modelling suite of codes CRONOS are presented. The advantages of a possible steady-state scenario based on cyclic operations, alternating phases of positive and negative loop voltage, with no magnetic flux consumption on average, are discussed. For regimes in which current alignment is an issue, a general method for scenario design is presented, based on the characteristics of the poloidal current density profile.

  20. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  1. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    PubMed

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  2. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  3. Advances in atomic physics: Four decades of contribution of the Cairo University - Atomic Physics Group.

    PubMed

    El-Sherbini, Tharwat M

    2015-09-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University - Atomic Physics Group. Starting from the late 1960s - when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  4. Advances in reactor physics education: Visualization of reactor parameters

    SciTech Connect

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-07-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  5. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  6. Science of health care delivery as a first step to advance undergraduate medical education: A multi-institutional collaboration.

    PubMed

    Starr, Stephanie R; Reed, Darcy A; Essary, Alison; Hueston, William; Johnson, C Daniel; Landman, Natalie; Meurer, John; Miller, Bonnie; Ogrinc, Greg; Petty, Elizabeth M; Raymond, John; Riley, William; Gabriel, Sherine; Maurana, Cheryl

    2017-03-22

    Physicians must possess knowledge and skills to address the gaps facing the US health care system. Educators advocate for reform in undergraduate medical education (UME) to align competencies with the Triple Aim. In 2014, five medical schools and one state university began collaborating on these curricular gaps. The authors report a framework for the Science of Health Care Delivery (SHCD) using six domains and highlight curricular examples from each school. They describe three challenges and strategies for success in implementing SHCD curricula. This collaboration highlights the importance of multi-institutional partnerships to accelerate innovation and adaptation of curricula.

  7. Design and development of physics simulations in the field of oscillations and waves suitable for k-12 and undergraduate instruction using video game technology

    NASA Astrophysics Data System (ADS)

    Tomesh, Trevor; Price, Colin

    2011-03-01

    Using the scripting language for the Unreal Tournament 2004 Engine, Unreal Script, demonstrations in the field of oscillations and waves were designed and developed. Variations on Euler's method and the Runge-Kutta method were used to numerically solve the equations of motion for seven different physical systems which were visually represented in the immersive environment of Unreal Tournament 2004. Data from each system was written to an output file, plotted and analyzed. The over-arching goal of this research is to successfully design and develop useful teaching tools for the k-12 and undergraduate classroom which, presented in the form of a video game, is immersive, engaging and educational.

  8. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  9. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  10. Advances in computed radiography systems and their physical imaging characteristics.

    PubMed

    Cowen, A R; Davies, A G; Kengyelics, S M

    2007-12-01

    Radiological imaging is progressing towards an all-digital future, across the spectrum of medical imaging techniques. Computed radiography (CR) has provided a ready pathway from screen film to digital radiography and a convenient entry point to PACS. This review briefly revisits the principles of modern CR systems and their physical imaging characteristics. Wide dynamic range and digital image enhancement are well-established benefits of CR, which lend themselves to improved image presentation and reduced rates of repeat exposures. However, in its original form CR offered limited scope for reducing the radiation dose per radiographic exposure, compared with screen film. Recent innovations in CR, including the use of dual-sided image readout and channelled storage phosphor have eased these concerns. For example, introduction of these technologies has improved detective quantum efficiency (DQE) by approximately 50 and 100%, respectively, compared with standard CR. As a result CR currently affords greater scope for reducing patient dose, and provides a more substantive challenge to the new solid-state, flat-panel, digital radiography detectors.

  11. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes

  12. Where the girls aren't: High school girls and advanced placement physics enrollment

    NASA Astrophysics Data System (ADS)

    Barton, Susan O'brien

    During the high school years, when many students first have some choice in course selection, research indicates that girls choose to enroll in more math and science courses, take more advanced placement courses, and take more honors courses in English, biology, chemistry, mathematics, and foreign languages than ever before. Yet, not only are boys more likely to take all of the three core science courses (biology, chemistry, and physics), boys enroll in advanced placement physics approximately three times as often as do girls. This study examines the perceptions, attitudes, and aspirations of thirty high school girls enrolled in senior-level science electives in an attempt to understand their high school science course choices, and what factors were influencing them. This is a qualitative investigation employing constructivist grounded theory methods. There are two main contributions of this study. First, it presents a new conceptual and analytical framework to investigate the problem of why some high school girls do not enroll in physics coursework. This framework is grounded in the data and is comprised of three existing feminist perspectives along the liberal/radical continuum of feminist thought. Second, this study illuminates a complex set of reasons why participants avoided high school physics (particularly advanced placement physics) coursework. These reasons emerged as three broad categories related to: (a) a lack of connectedness with physics curriculum and instruction; (b) prior negative experiences with physics and math classroom climates; and (c) future academic goals and career aspirations. Taken together, the findings of this study indicate that the problem of high school girls and physics enrollment---particularly advanced placement physics enrollment---is a problem that cannot be evaluated or considered from one perspective.

  13. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  14. An investigation into the impact of question structure on the performance of first year physics undergraduate students at the University of Cambridge

    NASA Astrophysics Data System (ADS)

    Gibson, Valerie; Jardine-Wright, Lisa; Bateman, Elizabeth

    2015-07-01

    We describe a study of the impact of exam question structure on the performance of first year Natural Sciences physics undergraduates from the University of Cambridge. The results show conclusively that a student’s performance improves when questions are scaffolded compared with university style questions. In a group of 77 female students we observe that the average exam mark increases by 13.4% for scaffolded questions, which corresponds to a 4.9 standard deviation effect. The equivalent observation for 236 male students is 9% (5.5 standard deviations). We also observe a correlation between exam performance and A2-level marks for UK students, and that students who receive their school education overseas, in a mixed gender environment, or at an independent school are more likely to receive a first class mark in the exam. These results suggest a mis-match between the problem-solving skills and assessment procedures between school and first year university and will provide key input into the future teaching and assessment of first year undergraduate physics students.

  15. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  16. Probing the scale of new physics by Advanced LIGO/VIRGO

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mazumdar, A.

    2016-05-01

    We show that if the new physics beyond the standard model is associated with a first-order phase transition around 107- 108 GeV , the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.

  17. Recent advances in the link between physical activity, sedentary behavior, physical fitness, and colorectal cancer

    PubMed Central

    Namasivayam, Vikneswaran; Lim, Sam

    2017-01-01

    Physical inactivity is a well-established risk factor for colorectal cancer (CRC). Recent studies have characterized physical activity (PA), sedentary behavior, and cardiorespiratory fitness as distinct, interrelated constructs that influence the risk of CRC and related outcomes. PA levels required to confer protection against CRC may be higher than previously thought. Sedentary behavior, defined as time spent sitting, increases CRC risk independent of PA and may require novel interventions distinct from those targeting PA. Finally, cardiorespiratory fitness is inversely associated with CRC risk and mortality and may provide a potential tool for risk stratification and intervention. PMID:28344777

  18. Barriers to undergraduate peer-physical examination of the lower limb in the health sciences and strategies to improve inclusion: a review.

    PubMed

    Hendry, Gordon James

    2013-10-01

    Peer-physical examination is a widely adopted and an integral component of the undergraduate curriculum for many health science programs. Unwillingness or perceived inability to participate in peer-physical examination classes may have a negative impact upon students' abilities to competently conduct physical examinations of patients in future as registered health professionals. A literature review on the perceptions and attitudes of peer-physical examination of the lower limb amongst medical and health science students was conducted to identify potential barriers to participation, and to review strategies to improve participation in classes designed to develop clinical examination skills. A pragmatic search strategy of the literature from PubMed and Google Scholar published prior to June 2012 yielded 23 relevant articles. All articles were concerned with the views of medical students' education and there were no articles explicitly addressing the role of peer-physical examination in health science disciplines. Several ethical issues were identified including feelings of coercion, embarrassment, and perceptions of a lack of consideration for cultural and religious beliefs. The available evidence suggests that barriers to participation may be overcome by implementing standard protocols concerned with obtaining informed written consent, adequate choice of peer-examiner, changing facilities and garment advice, and possible alternative learning methods.

  19. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    ERIC Educational Resources Information Center

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  20. Joint Task Force on Undergraduate Physics Programs (J-TUPP): What skills and knowledge are needed for a diverse set of careers and what's the basis for these recommendations?

    NASA Astrophysics Data System (ADS)

    Woolf, Lawrence

    2016-03-01

    A wide variety of reports have been issued recently concerning the skills, knowledge, and attitudes needed by employees to be successful. This talk will review findings from reports from the major science and engineering disciplines, from surveys of employers, and from interviews with recent undergraduate physics graduates. Also to be discussed is the correlation between these findings and the detailed J-TUPP recommendations for the skills and knowledge needed by the next generation of undergraduate physics degree holders to be prepared for a diverse set of careers.

  1. Short Animation Movies as Advance Organizers in Physics Teaching: A Preliminary Study

    ERIC Educational Resources Information Center

    Koscianski, Andre; Ribeiro, Rafael Joao; da Silva, Sani Carvalho Rutz

    2012-01-01

    Background: Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose: The study aimed to determine guidelines for the…

  2. Advanced Swimming, Phase One--Swimmer; Physical Education: 5551.48.

    ERIC Educational Resources Information Center

    Gutting, Dick

    GRADES OR AGES: Grades 7-12. SUBJECT MATTER: Advanced swimming. ORGANIZATION AND PHYSICAL APPEARANCE: The first five sections of the guide list course guidelines, course description, broad goal statement, behavioral objectives, course content, learning activities, and teaching procedures. The guide also contains evaluation forms and a five-item…

  3. Physical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they…

  4. Can the tools of activity theory help us in advancing understanding and organisational change in undergraduate medical education?

    PubMed

    Reid, Anne-Marie; Ledger, Alison; Kilminster, Sue; Fuller, Richard

    2015-08-01

    Continued changes to healthcare delivery in the UK, and an increasing focus on patient safety and quality improvement, require a radical rethink on how we enable graduates to begin work in challenging, complex environments. Professional regulatory bodies now require undergraduate medical schools to implement an 'assistantship' period in the final year of study, where senior medical students 'shadow' the work of junior doctors, with an expectation that they will be better 'prepared' for work. However, there is little guidance about what an 'assistantship' entails and the current emphasis on preparedness of students arguably underplays the importance of contextualised learning within the workplace environment. This paper will describe a modified Development Work Research (DWR) (Engeström in Developmental work research: activity theory in practice. Lehmanns Media, Berlin, 2005) approach to organisational change, enabling academic, clinical and administrative partners to develop assistantship placements in different hospitals. Our findings indicate that a modified DWR approach can reveal factors indicating organisational readiness to support change within a locally contextualised framework. The process has significant practical applications across a range of healthcare disciplines, as all professions seek to engage with the challenge of enabling successful transitions of graduates to the workplace.

  5. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    SciTech Connect

    Not Available

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  6. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  7. Physical activity in patients with advanced-stage cancer: a systematic review of the literature.

    PubMed

    Albrecht, Tara A; Taylor, Ann Gill

    2012-06-01

    The importance of physical activity for chronic disease prevention and management has become generally well accepted. The number of research interventions and publications examining the benefits of physical activity for patients with cancer has been rising steadily. However, much of that research has focused on the impact of physical activity either prior to or early in the cancer diagnosis, treatment, and survivorship process. Research focusing on the effects of physical activity, specifically for patients with advanced-stage cancer and poorer prognostic outcomes, has been addressed only recently. The purpose of this article is to examine the state of the science for physical activity in the advanced-stage disease subset of the cancer population. Exercise in a variety of intensities and forms, including yoga, walking, biking, and swimming, has many health benefits for people, including those diagnosed with cancer. Research has shown that, for people with cancer (including advanced-stage cancer), exercise can decrease anxiety, stress, and depression while improving levels of pain, fatigue, shortness of breath, constipation, and insomnia. People diagnosed with cancer should discuss with their oncologist safe, easy ways they can incorporate exercise into their daily lives.

  8. Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Caradonna, John P.; Foley, Kathleen M.; Kwiecien, Daniel J.; Lisi, George P.; Martinez, Anthony M.

    2011-01-01

    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl[subscript 2](PPh[subscript 3])[subscript 3]. During the second and third weeks, the students characterize the formed coordination…

  9. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  10. Undergraduate Teaching of Ideal and Real Fluid Flows: The Value of Real-World Experimental Projects

    ERIC Educational Resources Information Center

    Baldock, Tom E.; Chanson, Hubert

    2006-01-01

    This paper describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate fluid mechanics subject at an Australian university. The projects have been organized to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection…

  11. The Use of DC Glow Discharges as Undergraduate Educational Tools

    SciTech Connect

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  12. Organization of an undergraduate research group

    SciTech Connect

    Hill, J.; Noteboom, E.

    1995-04-01

    Traditionally, research groups consist of senior physicists, staff members, and graduate students. The physics department at Creighton University has formed a Relativistic Heavy Ion physics research group consisting primarily of undergraduate students. Although senior staff and graduate students are actively involved, undergraduate research and the education of undergraduates is the focus of the group. The presentation, given by two undergraduate members of the group, will outline progress made in the group`s organization, discuss the benefits to the undergraduate group members, and speak to the balance which must be struck between education concerns and research goals.

  13. How Gender and Reformed Introductory Physics Impacts Student Success in Advanced Physics Courses and Continuation in the Physics Major

    ERIC Educational Resources Information Center

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-01-01

    Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., "Proc. Natl. Acad. Sci. U.S.A. 111," 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of…

  14. Construction of a scattering chamber for ion-beam analysis of environmental materials in undergraduate physics research

    SciTech Connect

    LaBrake, Scott M.; Vineyard, Michael F.; Turley, Colin F.; Moore, Robert D.; Johnson, Christopher

    2013-04-19

    We have developed a new scattering chamber for ion-beam analysis of environmental materials with the 1.1-MV Pelletron accelerator at the Union College Ion-Beam Analysis Laboratory. The chamber was constructed from a ten-inch, Conflat, multi-port cross and includes a three-axis target manipulator and target ladder assembly, an eight-inch turbo pump, an Amptek X-ray detector, and multiple charged particle detectors. Recent projects performed by our undergraduate research team include proton induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses of atmospheric aerosols collected with a nine-stage cascade impactor in Upstate New York. We will describe the construction of the chamber and discuss the results of some commissioning experiments.

  15. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  16. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  17. Innovative experimental particle physics through technological advances: Past, present and future

    SciTech Connect

    Cheung, Harry W.K.; /Fermilab

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  18. Undergraduate experiments on statistical optics

    NASA Astrophysics Data System (ADS)

    Scholz, Ruediger; Friege, Gunnar; Weber, Kim-Alessandro

    2016-09-01

    Since the pioneering experiments of Forrester et al (1955 Phys. Rev. 99 1691) and Hanbury Brown and Twiss (1956 Nature 177 27; Nature 178 1046), along with the introduction of the laser in the 1960s, the systematic analysis of random fluctuations of optical fields has developed to become an indispensible part of physical optics for gaining insight into features of the fields. In 1985 Joseph W Goodman prefaced his textbook on statistical optics with a strong commitment to the ‘tools of probability and statistics’ (Goodman 2000 Statistical Optics (New York: John Wiley & Sons Inc.)) in the education of advanced optics. Since then a wide range of novel undergraduate optical counting experiments and corresponding pedagogical approaches have been introduced to underpin the rapid growth of the interest in coherence and photon statistics. We propose low cost experimental steps that are a fair way off ‘real’ quantum optics, but that give deep insight into random optical fluctuation phenomena: (1) the introduction of statistical methods into undergraduate university optical lab work, and (2) the connection between the photoelectrical signal and the characteristics of the light source. We describe three experiments and theoretical approaches which may be used to pave the way for a well balanced growth of knowledge, providing students with an opportunity to enhance their abilities to adapt the ‘tools of probability and statistics’.

  19. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  20. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  1. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  2. Exploration of Factors that Affect the Comparative Effectiveness of Physical and Virtual Manipulatives in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Chini, Jacquelyn J.; Madsen, Adrian; Gire, Elizabeth; Rebello, N. Sanjay; Puntambekar, Sadhana

    2012-01-01

    Recent research results have failed to support the conventionally held belief that students learn physics best from hands-on experiences with physical equipment. Rather, studies have found that students who perform similar experiments with computer simulations perform as well or better on measures of conceptual understanding than their peers who…

  3. Detection of the "cp4 epsps" Gene in Maize Line NK603 and Comparison of Related Protein Structures: An Advanced Undergraduate Experiment

    ERIC Educational Resources Information Center

    Swope, Nicole K.; Fryfogle, Patrick J.; Sivy, Tami L.

    2015-01-01

    A flexible, rigorous laboratory experiment for upper-level biochemistry undergraduates is described that focuses on the Roundup Ready maize line. The work is appropriate for undergraduate laboratory courses that integrate biochemistry, molecular biology, or bioinformatics. In this experiment, DNA is extracted and purified from maize kernel and…

  4. Heterocycles and Reactive Intermediates in the Undergraduate Organic Lab.

    ERIC Educational Resources Information Center

    Bowles, K. Dean; And Others

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for experiments involving the nitrile oxide cycloaddition with enamines. The experiment is suitable for advanced undergraduate organic laboratories or beginning undergraduate research. (JN)

  5. Undergraduate Syllabi.

    ERIC Educational Resources Information Center

    Journal of Teaching in the Addictions, 2003

    2003-01-01

    Presents sample undergraduate syllabi for seven addiction counseling courses. Courses include: Group Interventions in Substance Abuse and Addiction; Recovery and Relapse Prevention Methods; Group Counseling I and II; and Co-Occurring Disorders. (GCP)

  6. SOFTWARE REVIEW: The Advanced Physics Virtual Laboratory Series: CD-ROM Thermodynamics and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    1998-09-01

    The program installed easily although the inexperienced might be as terrified as I was by the statements threatening to delete various files it had found on my machine. However, I ignored these and all went well. The user is faced with a menu of 14 simulations covering molecular topics such as the Kinetic Model of an Ideal Gas, Diffusion (through a variable diameter aperture) and a Semi-permeable Membrane, the Maxwell Distribution and Brownian Motion. Thermodynamics is covered by simulations of ideal-gas behaviour at constant pressure, volume and temperature. This is extended to deal with adiabatic changes, the work done by and on a gas, specific heats, work cycles, and to the behaviour of real gases in evaporation and condensation. Finally there are short video-clips of actual experiments showing gas and vapour behaviour. Each simulation is displayed in a `picture window' which gives a qualitative display of how molecules are moving in a container, or how a parameter changes as conditions are varied, as appropriate. Attached (somewhat loosely as it turned out) to these are relevant graphs showing how the important variables such as temperature, volume and pressure change as conditions are changed. The simulations are dynamic and set off by clicking on a RUN button. The simulation can be stopped at any stage and reset to change parameters. It is easy to change the conditions of the simulation by moving sliders along a scale. I particularly liked the simulations of molecular behaviour and the isotherms of a real gas - an ideal case for animation. Each simulation has a short spoken commentary which you can switch in, a brief drop-down text describing the simulation, and a single question. This is where, I felt, things started to go wrong. The simulation displays are informative and give a good visual impression of a part of physics that students find abstract and difficult. But the supporting commentary and text are much too thin for, say, `supported self

  7. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    NASA Astrophysics Data System (ADS)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-12-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an alternative or supplement to these traditional hands-on labs. However, physics professors may be very hesitant to give up the hands-on labs, which have been such a central part of their courses, for a more cost and time-saving virtual alternative. Thus, it is important to investigate how the learning from these virtual experiences compares to that acquired through a hands-on experience. This study evaluated a comprehensive set of virtual labs for introductory level college physics courses and compared them to a hands-on physics lab experience. Each of the virtual labs contains everything a student needs to conduct a physics laboratory experiment, including: objectives, background theory, 3D simulation, brief video, data collection tools, pre- and postlab questions, and postlab quiz. This research was conducted with 224 students from two large universities and investigated the learning that occurred with students using the virtual labs either in a lab setting or as a supplement to hands-on labs versus a control group of students using the traditional hands-on labs only. Findings from both university settings showed the virtual labs to be as effective as the traditional hands-on physics labs.

  8. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    NASA Astrophysics Data System (ADS)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  9. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  10. Short animation movies as advance organizers in physics teaching: a preliminary study

    NASA Astrophysics Data System (ADS)

    Koscianski, André; João Ribeiro, Rafael; Carvalho Rutz da Silva, Sani

    2012-11-01

    Background : Advance organizers are instructional materials that help students use previous knowledge to make links with new information. Short animation movies are a possible format and are well suited for physics, as they can portray dynamic phenomena and represent abstract concepts. Purpose : The study aimed to determine guidelines for the construction of an instructional short animation movie, with the role of an advance organizer. A film was created in order to evaluate the effectiveness of the approach, making part of a physics lesson and concerning the subject 'moment of a force'. Sample : The study took place in a Brazilian school in the city of Arapoti, in the south region of the country. Thirty-eight students participated, having an average age of 16 and following the third year of high school. Design and methods : Criteria drawn from a literature review directed the construction of the movie and the lesson. Data were collected using pre- and post-tests; registers of oral comments were also done during the class. The post-test included open-ended questions, allowing students to write remarks concerning the lesson and the animation. Conclusions : The article describes steps and guidelines to orient the process of designing an animation movie with the role of advance organizer. Data indicated that the movie facilitated the construction of links between pre-existent knowledge and the new information presented in the lesson. The proposed methodology can be considered a valid framework to derive similar approaches.

  11. Reducing anxiety and enhancing physical performance by using an advanced version of EMDR: a pilot study

    PubMed Central

    Rathschlag, Marco; Memmert, Daniel

    2014-01-01

    Background The main aim of this pilot study was to investigate an advanced version of eye movement desensitization and reprocessing (EMDR) for reducing anxiety. Methods Fifty participants were asked at two times of measurement (T1 and T2 with a rest of 4 weeks) to generate anxiety via the recall of autobiographical memories according to their anxiety. Furthermore, the participants were randomly assigned to an experimental group and a control group, and the experimental group received an intervention of 1–2 h with the advanced version of EMDR in order to their anxiety 2 weeks after T1. At T1 as well as T2, we measured the intensity of participants' anxiety with a Likert scale (LS) and collected participants' state (temporary) and trait (chronic) anxiety with the State-Trait Anxiety Inventory (STAI). In addition, we measured participants' physical performance in a test for the finger musculature under the induction of their anxiety. Results The results showed that participant's ratings of their perceived intensity of anxiety (measured by a 9-point LS) and the state and trait anxiety decreased significantly in the experimental group but not in the control group from T1 to T2. Moreover, the physical performance under the induction of participants' anxiety increased significantly in the experimental group from T1 to T2 and there were no significant changes in the control group. Conclusions The study could show that the advanced version of EMDR is an appropriate method to reduce anxiety. PMID:24944864

  12. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.; Poore III, Willis P.; Muhlheim, Michael David

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  13. Knowledge, Engagement, and Perceptions of the American College of Sports Medicine Guidelines for Cardiovascular Physical Activity: A University Undergraduate Comparison

    ERIC Educational Resources Information Center

    Brown, George Milton

    2010-01-01

    Background: The early onset of chronic disease is a major health concern facing the nation. Leading health indicators support physical activity to reduce the mortality and morbidity rates among individuals. The college years represent a time of transition and potential for improved adherence to positive health behaviors. As institutions of higher…

  14. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  15. On-line integration of computer controlled diagnostic devices and medical information systems in undergraduate medical physics education for physicians.

    PubMed

    Hanus, Josef; Nosek, Tomas; Zahora, Jiri; Bezrouk, Ales; Masin, Vladimir

    2013-01-01

    We designed and evaluated an innovative computer-aided-learning environment based on the on-line integration of computer controlled medical diagnostic devices and a medical information system for use in the preclinical medical physics education of medical students. Our learning system simulates the actual clinical environment in a hospital or primary care unit. It uses a commercial medical information system for on-line storage and processing of clinical type data acquired during physics laboratory classes. Every student adopts two roles, the role of 'patient' and the role of 'physician'. As a 'physician' the student operates the medical devices to clinically assess 'patient' colleagues and records all results in an electronic 'patient' record. We also introduced an innovative approach to the use of supportive education materials, based on the methods of adaptive e-learning. A survey of student feedback is included and statistically evaluated. The results from the student feedback confirm the positive response of the latter to this novel implementation of medical physics and informatics in preclinical education. This approach not only significantly improves learning of medical physics and informatics skills but has the added advantage that it facilitates students' transition from preclinical to clinical subjects.

  16. Introduction of Vertical Integration and Case-Based Learning in Anatomy for Undergraduate Physical Therapy and Occupational Therapy Students

    ERIC Educational Resources Information Center

    Parmar, Suresh K.; Rathinam, Bertha A. D.

    2011-01-01

    The purpose of the present pilot study was to evaluate the benefits of innovative teaching methodologies introduced to final year occupational and physical therapy students in Christian Medical College in India. Students' satisfactions along the long-term retention of knowledge and clinical application of the respiratory anatomy have been…

  17. Comparing Levels of Anti-Fat Bias between American and Mexican Athletes and Undergraduate Physical Education and Exercise Science Students

    ERIC Educational Resources Information Center

    Alameda, Miriam Wood; Whitehead, James R.

    2015-01-01

    Stigmatization consequent to anti-fat bias (AFB) may affect the services people who are obese receive from health professionals, including physical education and exercise science (PEX) professionals. In this study, we compared AFB levels of American and Mexican PEX students and Mexican athletes. We also investigated if socially desirable (SD)…

  18. Epistemic Views of the Relationship between Physics and Mathematics: Its Influence on the Approach of Undergraduate Students to Problem Solving

    ERIC Educational Resources Information Center

    Pereira de Ataide, Ana Raquel; Greca, Ileana Maria

    2013-01-01

    The relationship between physics and mathematics is hardly ever presented with sufficient clarity to satisfy either physicists or mathematicians. It is a situation that often leads to misunderstandings that may spread quickly from teacher to student, such as the idea that mathematics is a mere instrument for the physicist. In this paper, we…

  19. An Examination of Variables Which Influence High School Students to Enroll in an Undergraduate Engineering or Physical Science Major

    ERIC Educational Resources Information Center

    Porter, Christopher H.

    2011-01-01

    The purpose of this study was to examine the variables which influence a high school student to enroll in an engineering discipline versus a physical science discipline. Data was collected utilizing the High School Activities, Characteristics, and Influences Survey, which was administered to students who were freshmen in an engineering or physical…

  20. Recent Advances in Free-Living Physical Activity Monitoring: A Review

    PubMed Central

    Andre, David; Wolf, Donna L.

    2007-01-01

    It has become clear recently that the epidemic of type 2 diabetes sweeping the globe is associated with decreased levels of physical activity and an increase in obesity. Incorporating appropriate and sufficient physical activity into one's life is an essential component of achieving and maintaining a healthy weight and overall health, especially for those with type II diabetes mellitus. Regular physical activity can have a positive impact by lowering blood glucose, helping the body to be more efficient at using insulin. There are other substantial benefits for patients with diabetes, including prevention of cardiovascular disease, hyperlipidemia, hypertension, and obesity. Several complications of utilizing a self-care treatment methodology involving exercise include (1) patients may not know how much activity that they engage in and (2) health-care providers do not have objective measurements of how much activity their patients perform. However, several technological advances have brought a variety of activity monitoring devices to the market that can address these concerns. Ranging from simple pedometers to multisensor devices, the different technologies offer varying levels of accuracy, comfort, and reliability. The key notion is that by providing feedback to the patient, motivation can be increased and targets can be set and aimed toward. Although these devices are not specific to the treatment of diabetes, the importance of physical activity in treating the disease makes an understanding of these devices important. This article reviews these physical activity monitors and describes the advantages and disadvantages of each. PMID:19885145

  1. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  2. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  3. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    PubMed Central

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155

  4. The Advanced Light Source: A new tool for research in atomic and molecular physics

    NASA Astrophysics Data System (ADS)

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters.

  5. The case for advanced physics topics in oral and maxillofacial surgery.

    PubMed

    Tandon, Rahul; Herford, Alan S

    2014-10-01

    Research in oral and maxillofacial surgery has focused mainly on principles founded in the biological and chemical sciences, which have provided excellent answers to many questions. However, recent technologic advances have begun to gain prominence in many of the medical sciences, providing clinicians with more effective tools for diagnosis and treatment. The era of modern physics has led to the development of diagnostic techniques that could provide information at a more basic level than many of the current biochemical methods used. The goal of this report is to introduce 2 of these methods and describe how they can be applied to oral and maxillofacial surgery.

  6. Advanced Physics-Based Modeling of Discrete Clutter and Diffuse Reverberation in the Littoral Environment

    DTIC Science & Technology

    2005-12-01

    2 9 0 V I L L A G E P A R K D R V I E • L E B A N O N , O H • 4 5 0 3 6 - 7 8 8 5 P H O N E : ( 5 1 3 ) 2 2 8 - 0 0 7 3 December 8...DEC 2005 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Advanced Physics- Based Modeling of Discrete Clutter and Diffuse...2400 and 3600 Hz using path a (see Figure 3) shown by the solid blue line, using path e shown by the solid red line and path d shown by the dashed

  7. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  8. Opportunities for Regenerative Rehabilitation and Advanced Technologies in Physical Therapy: Perspective From Academia.

    PubMed

    Norland, Ryan; Muchnick, Matthew; Harmon, Zachary; Chin, Tiffany; Kakar, Rumit Singh

    2016-04-01

    As rehabilitation specialists, physical therapists must continue to stay current with advances in technologies to provide appropriate rehabilitation protocols, improve patient outcomes, and be the preferred clinician of choice. To accomplish this vision, the physical therapy profession must begin to develop a culture of lifelong learning at the early stages of education and clinical training in order to embrace cutting-edge advancements such as stem cell therapies, tissue engineering, and robotics, to name a few. The purposes of this article are: (1) to provide a current perspective on faculty and graduate student awareness of regenerative rehabilitation concepts and (2) to advocate for increased integration of these emerging technologies within the doctor of physical therapy (DPT) curriculum. An online survey was designed to gauge awareness of principles in regenerative rehabilitation and to determine whether the topic was included and assessed in doctoral curricula. The survey yielded 1,006 responses from 82 DPT programs nationwide and indicated a disconnect in familiarity with the term "regenerative rehabilitation" and awareness of the inclusion of this material in the curriculum. To resolve this disconnect, the framework of the curriculum can be used to integrate new material via guest lecturers, interdisciplinary partnerships, and research opportunities. Successfully mentoring a generation of clinicians and rehabilitation scientists who incorporate new medical knowledge and technology into their own clinical and research practice depends greatly on sharing the responsibility among graduate students, professors, the American Physical Therapy Association (APTA), and DPT programs. Creating an interdisciplinary culture and integrating regenerative medicine and rehabilitation concepts into the curriculum will cultivate individuals who will be advocates for interprofessional behaviors and will ensure that the profession meets the goals stated in APTA Vision 2020.

  9. Video recording feedback: a feasible and effective approach to teaching history-taking and physical examination skills in undergraduate paediatric medicine.

    PubMed

    Paul, S; Dawson, K P; Lanphear, J H; Cheema, M Y

    1998-05-01

    Medical educators have always recognized the need to teach and train medical graduates and undergraduates the skills of conducting a consultation. Several authors have established the efficacy of using constructive feedback on videotape of each student's interaction with a patient to teach and enhance such skills. This study reports 'students' perceptions' of the feedback process used in the Junior Paediatric Clerkship at the Faculty of Medicine of the United Arab Emirates University. An unexpected 73% of the respondents believed that self-observation influenced development of their clinical skills. More than 80% said that the feedback from instructors and peers helped them to improve their clinical skills, but they would have liked to have more than one of their consultations recorded and reviewed. It was found that 75% of the students felt that self-critique of their performance made them aware of their strengths and weaknesses and their skills in analysing and evaluating consultations had been enhanced. It was found from Kruskal Wallis one-way ANOVA that the students' professional attitude, empathy, and warmth towards the patients differed highly significantly (P = 0.0062, 0.0089, 0.0007, respectively) from self-assurance, self-confidence and competence. They were also deficient in certain areas of history-taking, interviewing skills, and physical examination techniques and perceived they needed more training in order to be proficient.

  10. Successful aging: Advancing the science of physical independence in older adults.

    PubMed

    Anton, Stephen D; Woods, Adam J; Ashizawa, Tetso; Barb, Diana; Buford, Thomas W; Carter, Christy S; Clark, David J; Cohen, Ronald A; Corbett, Duane B; Cruz-Almeida, Yenisel; Dotson, Vonetta; Ebner, Natalie; Efron, Philip A; Fillingim, Roger B; Foster, Thomas C; Gundermann, David M; Joseph, Anna-Maria; Karabetian, Christy; Leeuwenburgh, Christiaan; Manini, Todd M; Marsiske, Michael; Mankowski, Robert T; Mutchie, Heather L; Perri, Michael G; Ranka, Sanjay; Rashidi, Parisa; Sandesara, Bhanuprasad; Scarpace, Philip J; Sibille, Kimberly T; Solberg, Laurence M; Someya, Shinichi; Uphold, Connie; Wohlgemuth, Stephanie; Wu, Samuel Shangwu; Pahor, Marco

    2015-11-01

    The concept of 'successful aging' has long intrigued the scientific community. Despite this long-standing interest, a consensus definition has proven to be a difficult task, due to the inherent challenge involved in defining such a complex, multi-dimensional phenomenon. The lack of a clear set of defining characteristics for the construct of successful aging has made comparison of findings across studies difficult and has limited advances in aging research. A consensus on markers of successful aging is furthest developed is the domain of physical functioning. For example, walking speed appears to be an excellent surrogate marker of overall health and predicts the maintenance of physical independence, a cornerstone of successful aging. The purpose of the present article is to provide an overview and discussion of specific health conditions, behavioral factors, and biological mechanisms that mark declining mobility and physical function and promising interventions to counter these effects. With life expectancy continuing to increase in the United States and developed countries throughout the world, there is an increasing public health focus on the maintenance of physical independence among all older adults.

  11. Successful Aging: Advancing the Science of Physical Independence in Older Adults

    PubMed Central

    Anton, Stephen D.; Woods, Adam J.; Ashizawa, Tetso; Barb, Diana; Buford, Thomas W.; Carter, Christy S.; Clark, David J.; Cohen, Ronald A.; Corbett, Duane B.; Cruz-Almeida, Yenisel; Dotson, Vonetta; Ebner, Natalie; Efron, Philip A.; Fillingim, Roger B.; Foster, Thomas C.; Gundermann, David M.; Joseph, Anna-Maria; Karabetian, Christy; Leeuwenburgh, Christiaan; Manini, Todd M.; Marsiske, Michael; Mankowski, Robert T.; Mutchie, Heather L.; Perri, Michael G.; Ranka, Sanjay; Rashidi, Parisa; Sandesara, Bhanuprasad; Scarpace, Philip J.; Sibille, Kimberly T.; Solberg, Laurence M.; Someya, Shinichi; Uphold, Connie; Wohlgemuth, Stephanie; Wu, Samuel Shangwu; Pahor, Marco

    2015-01-01

    The concept of ‘Successful Aging’ has long intrigued the scientific community. Despite this long-standing interest, a consensus definition has proven to be a difficult task, due to the inherent challenge involved in defining such a complex, multi-dimensional phenomenon. The lack of a clear set of defining characteristics for the construct of successful aging has made comparison of findings across studies difficult and has limited advances in aging research. The domain in which consensus on markers of successful aging is furthest developed is the domain of physical functioning. For example, walking speed appears to be an excellent surrogate marker of overall health and predicts the maintenance of physical independence, a cornerstone of successful aging. The purpose of the present article is to provide an overview and discussion of specific health conditions, behavioral factors, and biological mechanisms that mark declining mobility and physical function and promising interventions to counter these effects. With life expectancy continuing to increase in the United States and developed countries throughout the world, there is an increasing public health focus on the maintenance of physical independence among all older adults. PMID:26462882

  12. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  13. A driver linac for the Advanced Exotic Beam Laboratory : physics design and beam dynamics simulations.

    SciTech Connect

    Ostroumov, P. N.; Mustapha, B.; Nolen, J.; Physics

    2007-01-01

    The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper station and chicane. We present the results of an optimized linac design and end-to-end simulations including machine errors and detailed beam loss analysis. The Advanced Exotic Beam Laboratory (AEBL) has been proposed at ANL as a reduced scale of the original Rare Isotope Accelerator (RIA) project with about half the cost but the same beam power. AEBL will address 90% or more of RIA physics but with reduced multi-users capabilities. The focus of this paper is the physics design and beam dynamics simulations of the AEBL driver linac. The reported results are for a multiple charge state U{sup 238} beam.

  14. Recent Advances and Cross-Century Outlooks in Physics, Interplay between Theory and Experiment.

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wong, Cheuk-Yin

    The Table of Contents for the book is as follows: * Preface * Interdisciplinary Topics * SUPERSYMMETRY * Supersymmetry, Noncommutative Geometry and Ultimate Unification * Supersymmetry and Beam Dynamics * Brane World * Dynamical Symmetries in High-Temperature Superconductivity * BEAM, PLASMA, GRAVITATION, AND ASTRONOMY * Toroidal Akfvén Eigenmode Experiments in TFTR * Empirical Tests of the Relativistic Gravity: The Past, the Present and the Future * Radio Astronomy in Taiwan: (Personal) Highlights * PARTICLE AND NUCLEAR PHYSICS * Is There only Top Quark? Review of Top Results * Some Topics on Double Heavy Mesons: Heavy Quarkonia and Bc Meson * Softly Broken CP Symmetry * A Pilot Experiment with Reactor Neutrinos in Taiwan * The Composition of the Proton Spin * Recent Results from Thomas Jefferson National Accelerator Facility * SYNCHROTRON RADIATION AND ATOMIC PHYSICS * Synchrotron Radiation/Laser and Doubly-Excited Atoms * Multiply Excited States for Lithium * FRACTIONAL QUANTUM HALL EFFECT * An Introduction to Topological Orders and Edge Excitations in Quantum Hall States * Phases and Phase Transitions in the Quantum Hall Effect * Chiral Luttinger Liquids at the Fractional Quantum Hall Edge * HIGH-Tc SUPERCONDUCTOR PHYSICS * Two Energy Gaps in Cuprate Superconductors: Clues to the High-Tc Mechanism * Applications of High Temperature Superconductors * Magnetism and Superconductivity in Ru-Based Perovskites * Correlation between Crystal Symmetry, Weak Ferromagnetism and Superconductivity in Distorted T'-phase Cuprates * CHAOS * An Overview of Chaos * Chaotic Dynamics: Introduction and Recent Developments * Chaos in Accelerators * HIGHLIGHTS OF PHYSICS ADVANCES IN TAIWAN * Solving the X-Ray Phase Problem for omolecular Crystals by Multi-Wave X-Ray Interference * BOSE-EINSTEIN CONDENSATION * Bogoliubov Dispersion Relation and the Possibility of Superfluidity for Weakly-interacting Photons * Bose-Einstein Effects in High-Energy Physics * Physics without Borders

  15. Insights into the physical chemistry of materials from advances in HAADF-STEM

    DOE PAGES

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; ...

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging formore » probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.« less

  16. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  17. Insights into the physical chemistry of materials from advances in HAADF-STEM

    SciTech Connect

    Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; Pennycook, Stephen J.

    2014-11-13

    The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging for probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.

  18. Developing Effective Undergraduate Research Experience

    NASA Astrophysics Data System (ADS)

    Evans, Michael; Ilie, Carolina C.

    2011-03-01

    Undergraduate research is a valuable educational tool for students pursuing a degree in physics, but these experiences can become problematic and ineffective if not handled properly. Undergraduate research should be planned as an immersive learning experience in which the student has the opportunity to develop his/her skills in accordance with their interests. Effective undergraduate research experiences are marked by clear, measurable objectives and frequent student-professor collaboration. These objectives should reflect the long and short-term goals of the individual undergraduates, with a heightened focus on developing research skills for future use. 1. Seymour, E., Hunter, A.-B., Laursen, S. L. and DeAntoni, T. (2004), ``Establishing the benefits of research experiences for undergraduates in the sciences: First findings from a three-year study''. Science Education, 88: 493--534. 2. Behar-Horenstein, Linda S., Johnson, Melissa L. ``Enticing Students to Enter Into Undergraduate Research: The Instrumentality of an Undergraduate Course.'' Journal of College Science Teaching 39.3 (2010): 62-70.

  19. Undergraduate Breakfast, Career Workshop, and Awards

    NASA Astrophysics Data System (ADS)

    2017-01-01

    Undergraduate students can enjoy a hearty breakfast and learn about how to prepare for a wide variety of careers in physics outside of academia. Topics of this interactive workshop will include planning and self-assessment, inventorying transferable skills, finding out more about career opportunities, and successfully applying for jobs. Immediately following the workshop, top presenters from the Undergraduate Research/SPS sessions will be recognized. All presenters in the undergraduate sessions will receive certificates acknowledging their scientific accomplishments.

  20. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    SciTech Connect

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  1. Undergraduate Research: Opportunities, Challenges, and Benefits

    NASA Astrophysics Data System (ADS)

    Singer, J.

    2001-05-01

    Undergraduate research is one of the best ways students can experience investigative learning. Undergraduates involved in research often cite the experience as the highlight of their education. Because many geoscience departments now recognize the benefits of undergraduate research, they are creating more opportunities for students and are expecting their faculty to provide research mentoring. The Council on Undergraduate Research (CUR) is a national organization of individual and institutional members representing nearly 900 public and private colleges and universities. CUR generates awareness and support for undergraduate research and offers a variety of faculty development opportunities and services. CUR also conducts workshops where teams of faculty develop a campus plan for institutionalizing undergraduate research. A new online registry facilitates matchmaking between undergraduates with research experience and a desire to pursue an advanced degree, and graduate schools seeking high quality students who are well prepared for research. This presentation will describe the role of CUR in supporting undergraduate research, give examples of successful undergraduate research programs, and highlight some of the challenges and benefits of undergraduate research.

  2. Bioinformatics and the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Maloney, Mark; Parker, Jeffrey; LeBlanc, Mark; Woodard, Craig T.; Glackin, Mary; Hanrahan, Michael

    2010-01-01

    Recent advances involving high-throughput techniques for data generation and analysis have made familiarity with basic bioinformatics concepts and programs a necessity in the biological sciences. Undergraduate students increasingly need training in methods related to finding and retrieving information stored in vast databases. The rapid rise of…

  3. Undergraduate Training for Industrial Careers.

    ERIC Educational Resources Information Center

    Stehney, Ann K.

    1983-01-01

    Forty-eight mathematicians in industry, business, and government replied to a questionnaire on the relative merits of the traditional undergraduate curriculum, advanced topics in pure mathematics, computer programing, additional computer science, and specialized or applied topics. They favored programing and applied mathematics, along with a…

  4. PREFACE: FLUIDOS 2010: XI Meeting on Recent Advances in the Physics of Fluids and their Applications

    NASA Astrophysics Data System (ADS)

    Bove, Italo; Cabeza, Cecilia; Martí, Arturo C.; Sarasúa, Gustavo

    2011-04-01

    The papers published in this volume of the Journal of Physics: Conference Series were selected from the manuscripts submitted to the XI Meeting on Recent Advances in the Physics of Fluids and their Applications (FLUIDOS2010), which was held in Colonia del Sacramento, Uruguay, 3-5 November 2010. FLUIDOS takes place every two years, usually in November, with the aim of gathering together researchers from all areas of the Physics of Fluids, to update themselves on the latest technical developments and applications, share knowledge and stimulate new ideas. This 11th meeting continues the successful experience of the previous ones which were held in different Argentinian cities. For the first time, the meeting was celebrated in Uruguay, more specifically, in the peaceful town of Colonia del Sacramento, designated a World Heritage Site by UNESCO. The conference presented an outstanding program of papers covering the most recent advances in Physics of Fluids in the following areas: General Fluid Dynamics General and non-Newtonian Flows Magnetohydrodynamics Electrohydrodynamics and Plasmas Hydraulics, Thermohydraulics and Multiple Phase Flows A website with full details of the conference program, abstracts and other information can be found at http://fluidos2010.fisica.edu.uy. We would like to thank all the participants, especially those who contributed with talks, posters and manuscripts, for making FLUDOS2010 such a successful conference. Our thanks also go to our colleagues for their support and encouragement, particularly in the refereeing of papers. We would like to acknowledge additional financial support from Comisión Sectorial de Investigación Científica (Universidad de la República, Uruguay), Programa de Desarrollo de las Ciencias Básicas (Uruguay) and the Centro Latinoamericano de Física (CLAF). Our thanks are extended to the local government of Colonia del Sacramento. The next FLUIDOS conference will be held in November 2013, in Buenos Aires, Argentina. We

  5. Serum 25-hydroxyvitamin D and Physical Function in Adults of Advanced Age: The CHS All Stars

    PubMed Central

    Houston, Denise K.; Tooze, Janet A.; Davis, Cralen C.; Chaves, Paulo H. M.; Hirsch, Calvin H.; Robbins, John A.; Arnold, Alice M.; Newman, Anne B.; Kritchevsky, Stephen B.

    2011-01-01

    Objectives To examine the association between 25-hydroxyvitamin D (25[OH]D) and physical function in adults of advanced age. Design Cross-sectional and longitudinal analysis of physical function over 3 years of follow-up in the Cardiovascular Health Study All Stars. Setting Forsyth County, NC; Sacramento County, CA; Washington County, MD; and Allegheny County, PA. Participants Community-dwelling adults aged 77–100 years (n=988). Measurements Serum 25(OH)D, short physical performance battery (SPPB) and grip and knee extensor strength assessed at baseline. Mobility disability (difficulty walking half a mile or up 10 steps) and activities of daily living (ADL) disability were assessed at baseline and every 6 months over 3 years of follow-up. Results 30.8% of participants had deficient 25(OH)D (<20 ng/mL). SPPB scores were lower among those with deficient 25(OH)D compared to those with sufficient 25(OH)D (≥30 ng/mL) after adjusting for sociodemographic characteristics, season, health behaviors and chronic conditions (mean±SE: 6.53±0.24 vs. 7.15±0.25, p <0.01). Grip strength adjusted for body size was also lower among those with deficient versus sufficient 25(OH)D (mean±SE: 24.7±0.6 vs. 26.0±0.6 kg, p <0.05). Participants with deficient 25(OH)D were more likely to have prevalent mobility and ADL disability at baseline (OR (95% CI): 1.44 (0.96–2.14) and 1.51 (1.01–2.25), respectively) compared to those with sufficient 25(OH)D. Furthermore, participants with deficient 25(OH)D were at increased risk of incident mobility disability over 3 years of follow-up (HR (95% CI): 1.56 (1.06–2.30)). Conclusion Vitamin D deficiency was common and was associated with poorer physical performance, lower muscle strength, and prevalent mobility and ADL disability among community-dwelling adults of advanced age. Moreover, vitamin D deficiency predicted incident mobility disability. PMID:22091492

  6. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation'', to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  7. Journal of Undergraduate Research, Volume VIII, 2008

    SciTech Connect

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2008-01-01

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  8. Monte Carlo Simulations in Statistical Physics -- From Basic Principles to Advanced Applications

    NASA Astrophysics Data System (ADS)

    Janke, Wolfhard

    2013-08-01

    This chapter starts with an overview of Monte Carlo computer simulation methodologies which are illustrated for the simple case of the Ising model. After reviewing importance sampling schemes based on Markov chains and standard local update rules (Metropolis, Glauber, heat-bath), nonlocal cluster-update algorithms are explained which drastically reduce the problem of critical slowing down at second-order phase transitions and thus improve the performance of simulations. How this can be quantified is explained in the section on statistical error analyses of simulation data including the effect of temporal correlations and autocorrelation times. Histogram reweighting methods are explained in the next section. Eventually, more advanced generalized ensemble methods (simulated and parallel tempering, multicanonical ensemble, Wang-Landau method) are discussed which are particularly important for simulations of first-order phase transitions and, in general, of systems with rare-event states. The setup of scaling and finite-size scaling analyses is the content of the following section. The chapter concludes with two advanced applications to complex physical systems. The first example deals with a quenched, diluted ferromagnet, and in the second application we consider the adsorption properties of macromolecules such as polymers and proteins to solid substrates. Such systems often require especially tailored algorithms for their efficient and successful simulation.

  9. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

  10. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    SciTech Connect

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  11. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    PubMed

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-03-22

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  12. MO-FG-BRC-00: Joint AAPM-ESTRO Symposium: Advances in Experimental Medical Physics.

    PubMed

    Berbeco, Ross; Ionascu, Dan

    2016-06-01

    Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and the implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.

  13. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    SciTech Connect

    Dale M. Meade

    2004-10-21

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains {approx}10, self-driven currents of {approx}80%, fusion power {approx}150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm{sup -3} and neutron wall loading from 2-4 MWm{sup -2} which are at the levels expected from the ARIES-RS/AT design studies.

  14. Physics pedagogical software: The CIP software contest

    NASA Astrophysics Data System (ADS)

    Donnelly, Denis

    1999-09-01

    In 1989, a decision was made that the journal Computers in Physics (CIP) would sponsor a software contest under the auspices of its education department. The goal was to reward software authors for their efforts to advance undergraduate pedagogy and to advertise their work to the larger physics community. The contest is now in its ninth year. In the following remarks, we will first attempt, some general observations and then some evaluative comments.

  15. A Course in Modern Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Szekeres, Peter

    2005-01-01

    Presenting an introduction to the mathematics of modern physics for advanced undergraduate and graduate students, this textbook introduces the reader to modern mathematical thinking within a physics context. Topics covered include tensor algebra, differential geometry, topology, Lie groups and Lie algebras, distribution theory, fundamental analysis and Hilbert spaces. The book also includes exercises and proofed examples to test the students' understanding of the various concepts, as well as to extend the text's themes.

  16. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    ERIC Educational Resources Information Center

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  17. Energy Projects in Undergraduate Physics

    ERIC Educational Resources Information Center

    Morgan, R.; And Others

    1976-01-01

    Describes a set of student projects, each involving about 240 hours of laboratory time, covering the following topics: wind power monitoring, wind generator design, solar power, and the heat pump. (MLH)

  18. Photon Quantum Mechanics in the Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Pearson, Brett; Carson, Zack; Jackson, David

    2011-05-01

    Although it has been discussed for centuries, the true nature of light is still being debated. In fact, the quantum mechanical aspects of light have only been observed within the past 30 years. Recent advances in technology have decreased the complexity of such tests, and the Department of Physics and Astronomy at Dickinson College has worked to infuse various quantum optics experiments throughout our curriculum. We describe a set of experiments that includes the existence of photons, single-photon interference, the quantum eraser, and tests of Bell's theorem. A primary motivation is bringing undergraduate students face to face with some of the fascinating and subtle aspects of quantum mechanics in a hands-on setting. Supported by Dickinson College and NSF DUE-0737230.

  19. Introducing Undergraduates to a Research Laboratory

    ERIC Educational Resources Information Center

    Weinberg, Robert

    1974-01-01

    Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)

  20. Greater Research Opportunities (GRO) Undergraduate Fellowships

    EPA Pesticide Factsheets

    By enhancing and supporting quality environmental education for undergraduate students, the GRO supported fellows have provided new environmental research in the physical, biological, health, and social sciences as well as in engineering.

  1. Advances in Galactic Dynamics: Classical Physics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Dubinski, John

    2007-04-01

    During the past 2 decades, there have been tremendous advances in computational power and algorithmic efficiency in the numerical N-body problem. Despite the vast scale of the universe, the original Newtonian equations of motion along with the inverse-square law of gravity still provide an adequate physical framework for studying many of the complexities of the dynamic universe. The relativistic limit in the macroscopic universe is only reached on the extreme scales of the entire observable universe and the event horizons of black holes. Here I will review some of the recent advances in parallel computational algorithms for application to the collisionless N-body problem with the main applications to the problem of the dynamics of galaxies and cosmological structure formation. The cosmological paradigm of cold dark matter with a cosmological constant is now so well-constrained that in principle detailed predictions of the dynamical behavior of galaxies can be tested against observation. I will describe two recent studies that use realistic, self-consistent N-body models of disk galaxies to study the effects of two cosmological predictions: dark matter halo triaxiality and substructure. The reaction of a stellar disk to these dark matter characteristics leads to triggering of the bar instability at random times in a given galaxy's life history and so can help explain the observed fraction and incidence of bars in the spiral galaxy population. I will also present some recent work on high-resolution computer animation of galactic dynamics that originated as a way to illustrate and develop intuition about dynamical processes but has since developed into a means of artistic expression through the beauty of complex gravitating systems.

  2. Physics in Virginia: The State of the State's Public Undergraduate and Graduate Physics Programs. A Report by the Virginia Task Force on Physics. Presented to Virginia's Colleges and Universities and the State Council of Higher Education for Virginia. Revised.

    ERIC Educational Resources Information Center

    Virginia State Council of Higher Education, Richmond.

    This report, presented in nine parts, contains an executive summary and recommendations, historical background, the national context, a description of physics programs in Virginia for physics majors and those in other majors, a description of students' experiences in physics programs including alumni, an explanation of distribution of faculty…

  3. Investigation of the Flow Physics Driving Stall-Side Flutter in Advanced Forward Swept Fan Designs

    NASA Technical Reports Server (NTRS)

    Sanders, Albert J.; Liu, Jong S.; Panovsky, Josef; Bakhle, Milind A.; Stefko, George; Srivastava, Rakesh

    2003-01-01

    Flutter-free operation of advanced transonic fan designs continues to be a challenging task for the designers of aircraft engines. In order to meet the demands of increased performance and lighter weight, these modern fan designs usually feature low-aspect ratio shroudless rotor blade designs that make the task of achieving adequate flutter margin even more challenging for the aeroelastician. This is especially true for advanced forward swept designs that encompass an entirely new design space compared to previous experience. Fortunately, advances in unsteady computational fluid dynamic (CFD) techniques over the past decade now provide an analysis capability that can be used to quantitatively assess the aeroelastic characteristics of these next generation fans during the design cycle. For aeroelastic applications, Mississippi State University and NASA Glenn Research Center have developed the CFD code TURBO-AE. This code is a time-accurate three-dimensional Euler/Navier-Stokes unsteady flow solver developed for axial-flow turbomachinery that can model multiple blade rows undergoing harmonic oscillations with arbitrary interblade phase angles, i.e., nodal diameter patterns. Details of the code can be found in Chen et al. (1993, 1994), Bakhle et al. (1997, 1998), and Srivastava et al. (1999). To assess aeroelastic stability, the work-per-cycle from TURBO-AE is converted to the critical damping ratio since this value is more physically meaningful, with both the unsteady normal pressure and viscous shear forces included in the work-per-cycle calculation. If the total damping (aerodynamic plus mechanical) is negative, then the blade is unstable since it extracts energy from the flow field over the vibration cycle. TURBO-AE is an integral part of an aeroelastic design system being developed at Honeywell Engines, Systems & Services for flutter and forced response predictions, with test cases from development rig and engine tests being used to validate its predictive

  4. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  5. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  6. Connecting Physics Bachelors to Their Dream Jobs

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shouvik

    2013-01-01

    People who earn bachelor’s degrees in physics are highly employable. Employers value the skills that physics bachelor’s recipients acquire and develop over their four years of a college education, such as complex problem solving, advanced mathematics, teamwork and programming. The Career Pathways Project of the American Institute of Physics (AIP) aims to better prepare physics undergraduates for the science, technology, engineering, and math (STEM) workforce. This presentation will include a discussion of common features among departments visited by the AIP’s Career Pathways team, ideas for a career workshop for physics undergraduates, and advice on how to make the most out of a job fair and how to start effective online professional networking.

  7. The advanced light source at Lawrence Berkeley laboratory: a new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1991-04-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ps) will be ideal for time-resolved measurements. Undulators will generate high-brightness partially coherent soft X-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV; this radiation is plane polarized. Wigglers and bend magnets will extend the spectrum by generating high fluxes of X-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy), and in biology, such as X-ray microscopy with element-specific sensitivity; the high flux will allow measurements in atomic physics and chemistry to be made with tenuous gas-phase targets. Technological applications could include lithography and nano-fabrication.

  8. Radiation Oncology Physics and Medical Physics Education

    NASA Astrophysics Data System (ADS)

    Bourland, Dan

    2011-10-01

    Medical physics, an applied field of physics, is the applications of physics in medicine. Medical physicists are essential professionals in contemporary healthcare, contributing primarily to the diagnosis and treatment of diseases through numerous inventions, advances, and improvements in medical imaging and cancer treatment. Clinical service, research, and teaching by medical physicists benefits thousands of patients and other individuals every day. This talk will cover three main topics. First, exciting current research and development areas in the medical physics sub-specialty of radiation oncology physics will be described, including advanced oncology imaging for treatment simulation, image-guided radiation therapy, and biologically-optimized radiation treatment. Challenges in patient safety in high-technology radiation treatments will be briefly reviewed. Second, the educational path to becoming a medical physicist will be reviewed, including undergraduate foundations, graduate training, residency, board certification, and career opportunities. Third, I will introduce the American Association of Physicists in Medicine (AAPM), which is the professional society that represents, advocates, and advances the field of medical physics (www.aapm.org).

  9. On the physical interconnection of Seismic Electric Signals with seismicity: Recent advances

    NASA Astrophysics Data System (ADS)

    Sarlis, Nicholas; Skordas, Efthimios; Lazaridou, Mary; Varotsos, Panayiotis

    2013-04-01

    We review the recent advances on Seismic Electric Signals (SES) which are low frequency (˜ 1Hz) signals that precede earthquakes [1-3]. Since the 1980's Varotsos and Alexopoulos proposed [4] that SES are generated in the future focal area when the stress reaches a critical value, thus causing a cooperative orientation of the electric dipoles that anyhow exist in the focal area due to lattice imperfections in the ionic constituents of the rocks. A series of such signals within a short time are termed SES activity [5] and usually appear before major earthquakes. The combination of their physical properties enable the determination of the epicentral region and the magnitude well in advance. Natural time analysis introduced a decade ago [6, 7] may uncover novel dynamic features hidden behind time series in complex systems [8]. By employing this analysis, several advances have been made towards a better understanding of the SES properties. For example, it has been found [6, 8] that the natural time analysis of the seismicity subsequent to the initiation of a SES activity enables the determination of the occurrence time of an impending major mainshock within a time window of around one week. On this basis, predictions -including the magnitude, epicenter and time window of the expected event- have been documented well in advance for all five mainshocks with M_w×6.4 in Greece since 2001 [8, 9]. In addition, by applying natural time analysis to the time series of earthquakes, we recently found [10] that the order parameter of seismicity exhibits a unique change approximately at the date at which SES activities have been reported to initiate. This is the first time that before the occurrence of major earthquakes, anomalous changes are found to appear almost simultaneously in two different geophysical observables. 1. P. Varotsos and K. Alexopoulos, Tectonophysics 110, 73-98, 1984a. 2. P. Varotsos and K. Alexopoulos, Tectonophysics 110, 99-125, 1984b. 3. P.A. Varotsos, N

  10. The consequences of using advanced physical assessment skills in medical and surgical nursing: A hermeneutic pragmatic study

    PubMed Central

    Zambas, Shelaine I.; Smythe, Elizabeth A.; Koziol-Mclain, Jane

    2016-01-01

    Aims and objectives The aim of this study was to explore the consequences of the nurse's use of advanced assessment skills on medical and surgical wards. Background Appropriate, accurate, and timely assessment by nurses is the cornerstone of maintaining patient safety in hospitals. The inclusion of “advanced” physical assessment skills such as auscultation, palpation, and percussion is thought to better prepare nurses for complex patient presentations within a wide range of clinical situations. Design This qualitative study used a hermeneutic pragmatic approach. Method Unstructured interviews were conducted with five experienced medical and surgical nurses to obtain 13 detailed narratives of assessment practice. Narratives were analyzed using Van Manen's six-step approach to identify the consequences of the nurse's use of advanced assessment skills. Results The consequences of using advanced assessment skills include looking for more, challenging interpretations, and perseverance. The use of advanced assessment skills directs what the nurse looks for, what she sees, interpretation of the findings, and her response. It is the interpretation of what is seen, heard, or felt within the full context of the patient situation, which is the advanced skill. Conclusion Advanced assessment skill is the means to an accurate interpretation of the clinical situation and contributes to appropriate diagnosis and medical management in complex patient situations. Relevance to clinical practice The nurse's use of advanced assessment skills enables her to contribute to diagnostic reasoning within the acute medical and surgical setting. PMID:27607193

  11. Mathematical Modeling in the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Toews, Carl

    2012-01-01

    Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…

  12. Principles for quality undergraduate education in psychology.

    PubMed

    2011-12-01

    The principles for undergraduate education in psychology presented here are designed for creating a world-class educational system that provides students with the workplace skills needed in this information age; a solid academic background that prepares them for advanced study in a wide range of fields; and the knowledge, skills, and abilities that will enhance their personal lives. A quality undergraduate education is designed to produce psychologically literate citizens who apply the principles of psychological science at work and at home. The American Psychological Association (APA) urges all stakeholders in undergraduate education in psychology to incorporate these principles in establishing goals and objectives that fit their specific institutional needs and missions.

  13. Relations of morale and physical function to advanced activities of daily living in health promotion class participants

    PubMed Central

    Yajima, Masahide; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu

    2016-01-01

    [Purpose] The aim of this study was to clarify the relations of morale and physical function to the presence/absence of advanced activities of daily living. [Subjects] The subjects were 86 elderly community residents participating in health promotion classes. [Methods] A questionnaire survey on age, gender, presence/absence of advanced activities of daily living, and Philadelphia Geriatric Center Morale Scale score was conducted, in addition to assessment of fitness, consisting of measurement of height, body weight, grip and knee extensor muscle strength, functional reach, one-leg standing time, and Timed Up and Go test. Furthermore, multiple logistic regression analysis was performed with the presence/absence of advanced activities of daily living as a dependent variable. [Results] Grip strength and Timed Up and Go time were identified as variables influencing the presence/absence of advanced activities of daily living. [Conclusion] Physical function represented by grip strength and Timed Up and Go time was higher among subjects performing advanced activities of daily living. PMID:27065541

  14. Creativity and Introductory Physics

    ERIC Educational Resources Information Center

    Guilaran, Ildefonso J.

    2012-01-01

    When I was an undergraduate physics major, I would often stay up late with my physics major roommate as we would digest the physics content we were learning in our courses and explore our respective imaginations armed with our new knowledge. Such activity during my undergraduate years was confined to informal settings, and the first formal…

  15. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  16. Experiences Gained Creating a Biophysics Major at a Predominately Undergraduate Institution

    NASA Astrophysics Data System (ADS)

    Link, Justin; Herbert, Steven

    2014-03-01

    Xavier University, a liberal arts predominately undergraduate institution (PUI) located in Cincinnati, OH, implemented a Biophysics major in the Department of Physics in spring 2012. The program is built upon foundational physics courses and is unique due to the possible selection of upper-division courses that students elect to take towards their undergraduate degree. A capstone course is offered to bring all prior knowledge in the fundamental sciences together to approach complex problems in biology. Due to the flexibility of the program, it serves students well who are interested in pursuing advanced degrees in Biophysics or Biomedical Engineering. It also offers students interested in the health professions an alternate path towards medical school which can be advantageous in the application process. This session will express some of the advantages and challenges to creating such a program at a liberal arts PUI and discuss the capstone course within the major.

  17. PREFACE: X Meeting on Recent Advances in the Physics of Fluids and their Applications

    NASA Astrophysics Data System (ADS)

    Saita, Fernando Adolfo; Giavedoni, María Delia

    2009-07-01

    The X Meeting on Recent Advances in Physics of Fluids and Related Applications (Fluids 2008) was held in Santa Fe, Argentina, on 19-21 November 2008. It belongs to a series of meetings that started in 1989 and has continued - except for just one occasion - every other year. Thus, the first meeting took place in the city of Tandil in 1989 followed by three events in the city of La Plata (1991-93-95), Tunuyán (Mendoza) in 1997, Paraná (Entre Rios) in 1999, Buenos Aires in 2001, Tandil in 2003 and Mendoza in 2006. These meetings gather together most of the people working in Fluid Mechanics and related problems in Argentina. The objective of the meetings is to provide a forum to facilitate the interactions between participants in a friendly academic atmosphere. This goal is achieved by means of lectures and technical presentations on different subjects and from different points of view, the only constraint being the current academic/technical interest. Applications usually deal with problems of local interest. In the present meeting a variety of lecture topics were presented, among them we might mention Capillary Hydrodynamics, Wetting, Density Currents, Instabilities, Elastic-Dynamics, Flows in Porous Media, Sediment Transport, Plasma Dynamics, etc. In particular, we would like to highlight the specially invited lectures given by Dr Ramon Cerro (Chemical and Material Engineering Department University of Alabama in Huntsville, USA), Dr David Quéré (Physique et Mécanique des Milieux Hétérogènes ESPCI, FRANCE), Dr Marcelo García (College of Engineering University of Illinois at Urbana-Champaign) and Dr Víctor Calo (Earth and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST) and Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin). In addition, we had 18 invited talks and more than fifty contributions that were presented in poster sessions. On behalf of both the Honorary

  18. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  19. CPUG: Computational Physics UG Degree Program at Oregon State University

    NASA Astrophysics Data System (ADS)

    Landau, Rubin H.

    2004-03-01

    A four-year undergraduate degree program leading to a Bachelor's degree in Computational Physics is described. The courses and texts under development are research- and Web-rich, and culminate in an advanced computational laboratory derived from graduate theses and faculty research. The five computational courses and course materials developed for this program act as a bridge connecting the physics with the computation and the mathematics, and as a link to the computational science community.

  20. Elucidating Bioethics with Undergraduates.

    ERIC Educational Resources Information Center

    Hoskins, Betty B.; Shannon, Thomas A.

    1977-01-01

    Discusses the importance of developing bioethics programs for undergraduate students. Two aspects are considered: (1) current areas of concern and sources of bibliographic information; and (2) problems encountered in undergraduate projects. A list of references is provided. (HM)

  1. The Undergraduate ALFALFA Team: Outcomes for Over 250 Undergraduate Participants

    NASA Astrophysics Data System (ADS)

    Troischt, Parker; Koopmann, Rebecca A.; Haynes, Martha P.; ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 19 institutions founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. In this talk we present outcomes for the more than 250 undergraduate students who have who have participated in the program during the 8 years of funding. 40% of these students have been women and members of underrepresented groups. To date 148 undergraduate students have attended annual workshops at Arecibo Observatory, interacting with faculty, graduate students, their peers, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 159 summer research projects and 120 academic year (e.g., senior thesis) projects. 68 students have traveled to Arecibo Observatory for observing runs and 55 have presented their results at national meetings such as the AAS. Through participation in the UAT, students are made aware of career paths they may not have previously considered. More than 90% of alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005

  2. Engaging Undergraduates in Economics

    ERIC Educational Resources Information Center

    Gajwani, Kiran; Miron, Jeffrey

    2015-01-01

    Siegfried and Stock (2007) explore the undergraduate training of PhD economists. Their findings show that among U.S. undergraduate economics programs, the Harvard University Economics Department produces many eventual economics PhD recipients. In this article, the authors discuss Harvard's undergraduate economics program and highlight some key…

  3. A paradox in physics education in France

    NASA Astrophysics Data System (ADS)

    Smigiel, Eddie; Sonntag, Michel

    2013-07-01

    This paper deals with the nature and the level of difficulty of teaching and learning physics in the first year of undergraduate engineering schools in France. Our case study is based on a survey regarding a classic and basic question in applied physics, and which was conducted with a group of second-year students in a post-baccalaureateThe French baccalaureate (baccalauréat) is the examination students must pass to graduate from high school. undergraduate engineering school. The responses to the survey indicate that many students fall into a kind of mathematical ‘formalism’, which prevents them from understanding the actual physics behind the question. This leads us to believe that we must reconsider the way that physics is taught. An analysis of a physics teaching sequence in French and English undergraduate textbooks confirms the weight given to mathematical formalism in France. When approached from a purely mathematical angle, physics becomes a long and slow process of assimilation of the specific scientific culture that underlies the teaching model used in classes préparatoires, classes that are usually presented as a model of academic excellence. However, this model appears to be less suitable when teaching more ‘ordinary students’, who respond better when taken through a ‘detour’ of the ‘important roots’ of physics. This paper shows that in France historically rooted pedagogical traditions persist, ignoring the latest advances in research on science teaching.

  4. Showing the Love: Predictors of Student Loyalty to Undergraduate Institutions

    ERIC Educational Resources Information Center

    Vianden, Jörg; Barlow, Patrick J.

    2014-01-01

    This article advances the notion that undergraduates may be considered student-customers whose relationship with and loyalty to their institutions can be managed by college educators. The Student University Loyalty Instrument administered to 1,207 undergraduates at three comprehensive Midwestern institutions assessed the predictors of student…

  5. Comparative Economics Systems in the Undergraduate Curriculum: An Update

    ERIC Educational Resources Information Center

    Kovzik, Alexander; Johnson, Marianne

    2016-01-01

    In this study, the authors report on the status of comparative economics systems in the U.S. undergraduate economics curriculum. The treatment of comparative economics systems topics in introductory courses is examined through a survey of standard textbooks. To evaluate comparative economics systems at the advanced undergraduate level, they rely…

  6. Capitalizing on Advances in Mathematics and K-12 Mathematics Education in Undergraduate Mathematics: An Inquiry-Oriented Approach to Differential Equations

    ERIC Educational Resources Information Center

    Rasmussen, Chris; Kwon, Oh Nam; Allen, Karen; Marrongelle, Karen; Burtch, Mark

    2006-01-01

    This paper provides an overview of the Inquiry-Oriented Differential Equations (IO-DE) project and reports on the main results of a study that compared students' beliefs, skills, and understandings in IO-DE classes to more conventional approaches. The IO-DE project capitalizes on advances within mathematics and mathematics education, including the…

  7. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    SciTech Connect

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-06-15

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  8. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Gallier, P.W.

    1992-10-20

    The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies- advanced cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept. The commercially available ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. This report is submitted to document the progress of Aspen Technology Inc. (AspenTech), its contractor, ICF Kaiser Engineers, Inc., (ICF KE) and CQ Inc., for the period of July through September 1992. ICF KE is providing coal preparation consulting and processing engineering services in this work and they are responsible for recommending the design of models to represent conventional coal cleaning equipment and costing of these models. CQ Inc. is a subcontractor to ICF KE on Tasks I - 5 and is a contractor to AspenTech on Task 6.

  9. An Advanced Objective Structured Clinical Examination Using Patient Simulators to Evaluate Pharmacy Students’ Skills in Physical Assessment

    PubMed Central

    Takamura, Norito; Ogata, Kenji; Setoguchi, Nao; Utsumi, Miho; Kourogi, Yasuyuki; Osaki, Takashi; Ozaki, Mineo; Sato, Keizo; Arimori, Kazuhiko

    2014-01-01

    Objective. To implement an advanced objective structured clinical examination (OSCE) in the curriculum and to evaluate Japanese pharmacy students’ skills in physical assessment such as measuring pulse and blood pressure, and assessing heart, lung, and intestinal sounds. Design. An advanced OSCE was implemented in a hospital pharmacy seminar as a compulsory subject. We programmed patient simulators with 21 different patient cases in which normal and abnormal physiological conditions were produced. The virtual patients were then used to evaluate the physical assessment skills of fifth-year pharmacy students. Assessment. Significant differences were observed between the average of all the detailed evaluations and the mean results for the following skills: pulse measurement, blood pressure measurement, deflating the cuff at a rate of 2-3 mmHg/sec, listening to heart sounds, and listening to lung sounds. Conclusion. Administering an advanced OSCE using virtual patients was an effective way of assessing pharmacy students’ skills in a realistic setting. Several areas in which pharmacy students require further training were identified. PMID:25657371

  10. Valuing Professional Development Components for Emerging Undergraduate Researchers

    NASA Astrophysics Data System (ADS)

    Cheung, I.

    2015-12-01

    In 2004 the Hatfield Marine Science Center (HMSC) at Oregon State University (OSU) established a Research Experience for Undergraduates (REU) program to engage undergraduate students in hands-on research training in the marine sciences. The program offers students the opportunity to conduct research focused on biological and ecological topics, chemical and physical oceanography, marine geology, and atmospheric science. In partnership with state and federal government agencies, this ten-week summer program has grown to include 20+ students annually. Participants obtain a background in the academic discipline, professional development training, and research experience to make informed decisions about careers and advanced degrees in marine and earth system sciences. Professional development components of the program are designed to support students in their research experience, explore career goals and develop skills necessary to becoming a successful young marine scientist. These components generally include seminars, discussions, workshops, lab tours, and standards of conduct. These componentscontribute to achieving the following professional development objectives for the overall success of new emerging undergraduate researchers: Forming a fellowship of undergraduate students pursuing marine research Stimulating student interest and understanding of marine research science Learning about research opportunities at Oregon State University "Cross-Training" - broadening the hands-on research experience Exploring and learning about marine science careers and pathways Developing science communication and presentation skills Cultivating a sense of belonging in the sciences Exposure to federal and state agencies in marine and estuarine science Academic and career planning Retention of talented students in the marine science Standards of conduct in science Details of this program's components, objectives and best practices will be discussed.

  11. A comparative analysis of teacher-authored websites in high school honors and Advanced Placement physics for Web-design and NSES content and process standards

    NASA Astrophysics Data System (ADS)

    Persin, Ronald C.

    The purpose of this study was to investigate whether statistically significant differences existed between high school Honors Physics websites and those of Advanced Placement (AP) Physics in terms of Web-design, National Science Education Standards (NSES) Physics content, and NSES Science Process standards. The procedure began with the selection of 152 sites comprising two groups with equal sample sizes of 76 for Honors Physics and for Advanced Placement Physics. The websites used in the study were accumulated using the Google(TM) search engine. To find Honors Physics websites, the search words "honors physics high school" were entered as the query into the search engine. To find sites for Advanced Placement Physics, the query, "advanced placement physics high school," was entered into the search engine. The evaluation of each website was performed using an instrument developed by the researcher based on three attributes: Web-design, NSES Physics content, and NSES Science Process standards. A "1" was scored if the website was found to have each attribute, otherwise a "0" was given. This process continued until all 76 websites were evaluated for each of the two types of physics websites, Honors and Advanced Placement. Subsequently the data were processed using Excel functions and the SPSS statistical software program. The mean and standard deviation were computed individually for the three attributes under consideration. Three, 2-tailed, independent samples t tests were performed to compare the two groups of physics websites separately on the basis of Web Design, Physics Content, and Science Process. The results of the study indicated that there was only one statistically significant difference between high school Honors Physics websites and those of AP Physics. The only difference detected was in terms of National Science Education Standards Physics content. It was found that Advanced Placement Physics websites contained more NSES physics content than Honors

  12. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  13. From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists

    ERIC Educational Resources Information Center

    Nadeau, Jay L.

    2009-01-01

    This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…

  14. Using Computer-Assisted Argumentation Mapping to develop effective argumentation skills in high school advanced placement physics

    NASA Astrophysics Data System (ADS)

    Heglund, Brian

    Educators recognize the importance of reasoning ability for development of critical thinking skills, conceptual change, metacognition, and participation in 21st century society. There is a recognized need for students to improve their skills of argumentation, however, argumentation is not explicitly taught outside logic and philosophy---subjects that are not part of the K-12 curriculum. One potential way of supporting the development of argumentation skills in the K-12 context is through incorporating Computer-Assisted Argument Mapping to evaluate arguments. This quasi-experimental study tested the effects of such argument mapping software and was informed by the following two research questions: 1. To what extent does the collaborative use of Computer-Assisted Argumentation Mapping to evaluate competing theories influence the critical thinking skill of argument evaluation, metacognitive awareness, and conceptual knowledge acquisition in high school Advanced Placement physics, compared to the more traditional method of text tables that does not employ Computer-Assisted Argumentation Mapping? 2. What are the student perceptions of the pros and cons of argument evaluation in the high school Advanced Placement physics environment? This study examined changes in critical thinking skills, including argumentation evaluation skills, as well as metacognitive awareness and conceptual knowledge, in two groups: a treatment group using Computer-Assisted Argumentation Mapping to evaluate physics arguments, and a comparison group using text tables to evaluate physics arguments. Quantitative and qualitative methods for collecting and analyzing data were used to answer the research questions. Quantitative data indicated no significant difference between the experimental groups, and qualitative data suggested students perceived pros and cons of argument evaluation in the high school Advanced Placement physics environment, such as self-reported sense of improvement in argument

  15. Engineering design and analysis of advanced physical fine coal cleaning technologies. Quarterly technical progress report No. 9, October--December 1991

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the ``Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  16. Advanced computations of multi-physics, multi-scale effects in beam dynamics

    SciTech Connect

    Amundson, J.F.; Macridin, A.; Spentzouris, P.; Stern, E.G.; /Fermilab

    2009-01-01

    Current state-of-the-art beam dynamics simulations include multiple physical effects and multiple physical length and/or time scales. We present recent developments in Synergia2, an accelerator modeling framework designed for multi-physics, multi-scale simulations. We summarize recent several recent results in multi-physics beam dynamics, including simulations of three Fermilab accelerators: the Tevatron, the Main Injector and the Debuncher. Early accelerator simulations focused on single-particle dynamics. To a first approximation, the forces on the particles in an accelerator beam are dominated by the external fields due to magnets, RF cavities, etc., so the single-particle dynamics are the leading physical effects. Detailed simulations of accelerators must include collective effects such as the space-charge repulsion of the beam particles, the effects of wake fields in the beam pipe walls and beam-beam interactions in colliders. These simulations require the sort of massively parallel computers that have only become available in recent times. We give an overview of the accelerator framework Synergia2, which was designed to take advantage of the capabilities of modern computational resources and enable simulations of multiple physical effects. We also summarize some recent results utilizing Synergia2 and BeamBeam3d, a tool specialized for beam-beam simulations.

  17. Physics Comes to Winnipeg: The 1909 Meeting of the British Association for the Advancement of Science

    ERIC Educational Resources Information Center

    Klassen, Stephen; Dietrich, Sarah

    2010-01-01

    History of science can be used to bring scientific concepts to school science in a way that humanizes the protagonists and provides an appropriate context. The authors have researched the 1909 meeting of the British Association for the Advancement of Science (BAAS) in Winnipeg, a significant event in the city's history that has remained largely…

  18. U.S. Poised to Sit Out TIMSS Test: Physics, Advanced Math Gauged in Global Study

    ERIC Educational Resources Information Center

    Viadero, Debra

    2007-01-01

    This article reports on reactions to the U.S. Department of Education's first time decision to sit out an international study designed to show how advanced high school students around the world measure up in math and science. Mark S. Schneider, the commissioner of the department's National Center for Education Statistics, which normally takes the…

  19. Performance in Physical Science Education by Dint of Advance Organiser Model of Teaching

    ERIC Educational Resources Information Center

    Bency, P. B. Beulahbel; Raja, B. William Dharma

    2010-01-01

    Education should be made painless and the teaching must be made effective. Teaching is an activity, which is designed and performed for multiple objectives, in terms of changes in student behaviours. Models of teaching are just a blue print designed in advance for providing necessary structure and direction to the teacher for realizing the…

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy's program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research Development Center (Amax R D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  1. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Gallier, P.W.

    1991-10-20

    The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies- heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of- concept (POC) level. The commercially available ASPEN PLUS process simulation package will be extended to handle coal applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. This report is submitted to document the progress of Aspen Technology, Inc. (ApsenTech), its contractor, ICF Kaiser Engineers, Inc., (ICF KE) and CQ Inc., a subcontractor to ICF KE, for the seventh quarterly reporting period, April through June 1991. ICF KE is providing coal preparation consulting and processing engineering services in this work and they are responsible for recommending the design of models to represent conventional coal cleaning equipment and costing of these models.

  2. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Gallier, P.W.

    1990-10-20

    The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

  3. Interest and preferences for using advanced physical activity tracking devices: results of a national cross-sectional survey

    PubMed Central

    Alley, Stephanie; Schoeppe, Stephanie; Guertler, Diana; Jennings, Cally; Vandelanotte, Corneel

    2016-01-01

    Objectives Pedometers are an effective self-monitoring tool to increase users' physical activity. However, a range of advanced trackers that measure physical activity 24 hours per day have emerged (eg, Fitbit). The current study aims to determine people's current use, interest and preferences for advanced trackers. Design and participants A cross-sectional national telephone survey was conducted in Australia with 1349 respondents. Outcome measures Regression analyses were used to determine whether tracker interest and use, and use of advanced trackers over pedometers is a function of demographics. Preferences for tracker features and reasons for not wanting to wear a tracker are also presented. Results Over one-third of participants (35%) had used a tracker, and 16% are interested in using one. Multinomial regression (n=1257) revealed that the use of trackers was lower in males (OR=0.48, 95% CI 0.36 to 0.65), non-working participants (OR=0.43, 95% CI 0.30 to 0.61), participants with lower education (OR=0.52, 95% CI 0.38 to 0.72) and inactive participants (OR=0.52, 95% CI 0.39 to 0.70). Interest in using a tracker was higher in younger participants (OR=1.73, 95% CI 1.15 to 2.58). The most frequently used tracker was a pedometer (59%). Logistic regression (n=445) revealed that use of advanced trackers compared with pedometers was higher in males (OR=1.67, 95% CI 1.01 to 2.79) and younger participants (OR=2.96, 95% CI 1.71 to 5.13), and lower in inactive participants (OR=0.35, 95% CI 0.19 to 0.63). Over half of current or interested tracker users (53%) prefer to wear it on their wrist, 31% considered counting steps the most important function and 30% regarded accuracy as the most important characteristic. The main reasons for not wanting to use a tracker were, ‘I don't think it would help me’ (39%), and ‘I don't want to increase my activity’ (47%). Conclusions Activity trackers are a promising tool to engage people in self-monitoring a physical activity

  4. ``Franklin's Bells'' and charge transport as an undergraduate lab

    NASA Astrophysics Data System (ADS)

    Krotkov, R. V.; Tuominen, M. T.; Breuer, M. L.

    2001-01-01

    "Franklin's Bells" is a popular lecture demonstration in electricity but seems to have been overlooked as a quantitative undergraduate lab experiment. In our version, a charged ball oscillates back and forth between the plates of a capacitor. This paper has two purposes: one is to discuss some of the wide variety of experiments and calculations which this system affords, the other is to present an analysis of a particular situation in which the ball excites resonant modes of the plates. This excitation gives rise to unexpected steps in the graph of shuttle frequency versus the potential difference between the plates. The apparatus required to show the demonstration is available in most physics departments. Similarly, a quantitative experiment for an introductory undergraduate lab does not require any unusual equipment, nor particularly high voltages. (In our experiment, the highest voltage used was 600 V; this can probably be reduced by scaling down the apparatus.) The physical situation may be analyzed at many different levels, suitable for students in the freshman to senior years, and ranging from a qualitative understanding of the demonstration to computer calculations of chaotic dynamics. The apparatus may be a simple one appropriate to the introductory level, or, at an "Advanced Lab" level, a sophisticated one, with computer-controlled measurements and analysis of various parameters. It is surprising that such a rich system has been neglected in the traditional curriculum.

  5. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development's facility near Beverly, Ohio. OCDO's facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  6. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  7. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    SciTech Connect

    Shemon, E. R.; Grudzinski, J. J.; Lee, C. H.; Thomas, J. W.; Yu, Y. Q.

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  8. Principles for Quality Undergraduate Education in Psychology

    ERIC Educational Resources Information Center

    American Psychologist, 2011

    2011-01-01

    The principles for undergraduate education in psychology presented here are designed for creating a world-class educational system that provides students with the workplace skills needed in this information age; a solid academic background that prepares them for advanced study in a wide range of fields; and the knowledge, skills, and abilities…

  9. Navigating Disruptive Innovation in Undergraduate Business Education

    ERIC Educational Resources Information Center

    Behara, Ravi S.; Davis, Mark M.

    2015-01-01

    The undergraduate business education landscape is dramatically changing and will continue to do so for the foreseeable future. Many of the changes are being driven by increasing costs, advances in technology, rapid globalization, and an increasingly diverse workforce and customer base, and are occurring simultaneously in both the business world…

  10. Transforming Undergraduate Research Opportunities Using Telepresence

    ERIC Educational Resources Information Center

    Pallant, Amy; McIntyre, Cynthia; Stephens, A. Lynn

    2016-01-01

    The National Science Foundation funded the "Transforming Remotely Conducted Research through Ethnography, Education, and Rapidly Evolving Technologies" (TREET) project to explore ways to utilize advances in technology and thus to provide opportunities for scientists and undergraduate students to engage in deep sea research. The…

  11. Graduate admissions in clinical neuropsychology: the importance of undergraduate training.

    PubMed

    Karazsia, Bryan T; Stavnezer, Amy Jo; Reeves, Jonathan W

    2013-11-01

    Discussions of and recommendations for the training of clinical neuropsychologists exist at the doctoral, internship, and post-doctoral level. With few exceptions, the literature on undergraduate preparations in clinical neuropsychology is sparse and lacks empirical evidence. In the present study, graduate-level faculty and current trainees completed surveys about graduate school preparations. Faculty expectations of minimum and ideal undergraduate training were highest for research methods, statistics, and assessment. Preferences for "goodness of fit" also emerged as important admissions factors. These results offer evidence for desirable undergraduate preparations for advanced study in clinical neuropsychology. Although undergraduate training in psychology is intentionally broad, results from this study suggest that students who desire advanced study in clinical neuropsychology need to tailor their experiences to be competitive in the application process. The findings have implications for prospective graduate students, faculty who train and mentor undergraduates, and faculty who serve on admissions committees.

  12. Advanced Magnetic Resonance Imaging of the Physical Processes in Human Glioblastoma

    PubMed Central

    Emblem, Kyrre E.; Andronesi, Ovidiu; Rosen, Bruce

    2014-01-01

    The most common malignant primary brain tumor, glioblastoma (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than 2 years and fewer than 10% of patients survive more than 5 years. Magnetic Resonance Imaging (MRI) can have great utility in the diagnosis, grading and management of patients with GBM as many of the physical manifestations of the pathological processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced (DCE) and dynamic susceptibility contrast (DSC) MRI provide functional information regarding the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We will review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We will conclude with challenges and opportunities for further research in applying physical principles to better understand the biological process in this deadly disease. PMID:25183787

  13. LHC Olympics: Advanced Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Armour, Kyle; Larkoski, Andrew; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is a discussion of some of the more advanced techniques used and the recent results of one such LHC Olympics study.

  14. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  15. Nuclear physics with advanced brilliant gamma beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Ur, Călin A.; Filipescu, Dan; Gheorghe, Ioana; Iancu, Violeta; Suliman, Gabriel; Teşileanu, Ovidiu

    2016-01-01

    The Extreme Light Infrastructure - Nuclear Physics facility is dedicated to nuclear physics studies with the use of extreme electromagnetic radiation. One of the main research system to be installed and operated in the facility is an outstanding high brilliance gamma beam system. The Gamma Beam System of ELI-NP will produce intense, quasi-monochromatic gamma beams via inverse Compton scattering of short laser pulses on relativistic electron beam pulses. The gamma beams available at ELI-NP will allow for the performance of photo-nuclear reactions aiming to reveal the intimate structure of the atomic nucleus. Nuclear Resonance Fluorescence, photo-fission, photo-disintegration reactions above the particle threshold will be used to study the dipole response of nuclei, the structure of the Pygmy resonances, nuclear processes relevant for astrophysics, production and study of exotic neutron-rich nuclei.

  16. Advancing Minorities and Women to the PhD in Physics and Astronomy

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan

    2017-01-01

    We briefly review the current status of underrepresented minorities in physics and astronomy: The underrepresentation of Black-, Hispanic-, and Native-Americans is an order of magnitude problem. We then describe the Fisk-Vanderbilt Masters-to-PhD Bridge program as a successful model for addressing this problem. Since 2004 the program has admitted 110 students, 90% of them underrepresented minorities (50% female), with a retention rate of 90%. The program has become the top producer of African American master's degrees in physics, and is now one of the top producers of minority PhDs in astronomy, materials science, and physics. We summarize the main features of the program including its core strategies: (1) replacing the GRE in admissions with indicators that are better predictive of long-term success, (2) partnering with a minority-serving institution for student training through collaborative research, and (3) using the master's degree as a deliberate stepping stone to the PhD. We show how misuse of the GRE in graduate admissions may by itself in large part explain the ongoing underrepresentation of minorities in PhD programs, and we describe our alternate methods to identify talented individuals most likely to succeed. We describe our mentoring model and toolkit which may be utilized to enhance the success of all PhD students.

  17. Power and promise of narrative for advancing physical therapist education and practice.

    PubMed

    Greenfield, Bruce H; Jensen, Gail M; Delany, Clare M; Mostrom, Elizabeth; Knab, Mary; Jampel, Ann

    2015-06-01

    This perspective article provides a justification for and an overview of the use of narrative as a pedagogical tool for educators to help physical therapist students, residents, and clinicians develop skills of reflection and reflexivity in clinical practice. The use of narratives is a pedagogical approach that provides a reflective and interpretive framework for analyzing and making sense of texts, stories, and other experiences within learning environments. This article describes reflection as a well-established method to support critical analysis of clinical experiences; to assist in uncovering different perspectives of patients, families, and health care professionals involved in patient care; and to broaden the epistemological basis (ie, sources of knowledge) for clinical practice. The article begins by examining how phronetic (ie, practical and contextual) knowledge and ethical knowledge are used in physical therapy to contribute to evidence-based practice. Narrative is explored as a source of phronetic and ethical knowledge that is complementary but irreducible to traditional objective and empirical knowledge-the type of clinical knowledge that forms the basis of scientific training. The central premise is that writing narratives is a cognitive skill that should be learned and practiced to develop critical reflection for expert practice. The article weaves theory with practical application and strategies to foster narrative in education and practice. The final section of the article describes the authors' experiences with examples of integrating the tools of narrative into an educational program, into physical therapist residency programs, and into a clinical practice.

  18. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This is being accomplished by utilization the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. 31 figs., 22 tabs.

  19. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  20. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    SciTech Connect

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  1. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research

    NASA Astrophysics Data System (ADS)

    Speer, T.; Boudjema, F.; Lauret, J.; Naumann, A.; Teodorescu, L.; Uwer, P.

    "Beyond the Cutting edge in Computing" Fundamental research is dealing, by definition, with the two extremes: the extremely small and the extremely large. The LHC and Astroparticle physics experiments will soon offer new glimpses beyond the current frontiers. And the computing infrastructure to support such physics research needs to look beyond the cutting edge. Once more it seems that we are on the edge of a computing revolution. But perhaps what we are seeing now is a even more epochal change where not only the pace of the revolution is changing, but also its very nature. Change is not any more an "event" meant to open new possibilities that have to be understood first and exploited then to prepare the ground for a new leap. Change is becoming the very essence of the computing reality, sustained by a continuous flow of technical and paradigmatic innovation. The hardware is definitely moving toward more massive parallelism, in a breathtaking synthesis of all the past techniques of concurrent computation. New many-core machines offer opportunities for all sorts of Single/Multiple Instructions, Single/Multiple Data and Vector computations that in the past required specialised hardware. At the same time, all levels of virtualisation imagined till now seem to be possible via Clouds, and possibly many more. Information Technology has been the working backbone of the Global Village, and now, in more than one sense, it is becoming itself the Global Village. Between these two, the gap between the need for adapting applications to exploit the new hardware possibilities and the push toward virtualisation of resources is widening, creating more challenges as technical and intellectual progress continues. ACAT 2010 proposes to explore and confront the different boundaries of the evolution of computing, and its possible consequences on our scientific activity. What do these new technologies entail for physics research? How will physics research benefit from this revolution in

  2. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    SciTech Connect

    Ferris, D.D.; Bencho, J.R.

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  3. The advanced light source — a new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.

    1991-03-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory in Berkeley, California, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Undulators will generate high-brightness, partially coherent, plane polarized, soft x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will generate high fluxes of x-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms.

  4. The advanced light source: A new tool for research in atomic physics

    NASA Astrophysics Data System (ADS)

    Schlachter, A. S.

    1990-09-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory in Berkeley, California, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Undulators will generate high-brightness, partially coherent, plane polarized, soft-x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will generate high fluxes of x-rays to photon energies above 10 keV. The ALS will have an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms.

  5. Human-centered design of a cyber-physical system for advanced response to Ebola (CARE).

    PubMed

    Dimitrov, Velin; Jagtap, Vinayak; Skorinko, Jeanine; Chernova, Sonia; Gennert, Michael; Padir, Taşkin

    2015-01-01

    We describe the process towards the design of a safe, reliable, and intuitive emergency treatment unit to facilitate a higher degree of safety and situational awareness for medical staff, leading to an increased level of patient care during an epidemic outbreak in an unprepared, underdeveloped, or disaster stricken area. We start with a human-centered design process to understand the design challenge of working with Ebola treatment units in Western Africa in the latest Ebola outbreak, and show preliminary work towards cyber-physical technologies applicable to potentially helping during the next outbreak.

  6. Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Houlberg, Wayne A; Jaeger, Erwin Frederick; Jardin, S. C.; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; McCune, Douglas; Schissel, D.; Schnack, D.; Wright, J. C.

    2007-06-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).

  7. Development of Research Projects in Advanced Laboratory

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Guha, Suchi

    2008-04-01

    Advanced laboratory serves as a bridge spanning primary physics laboratory and scientific research or industrial activities for undergraduate students. Students not only study modern physics experiments and techniques but also acquire the knowledge of advanced instrumentation. It is of interest to encourage students using the knowledge into research projects at a later stage of the course. We have designed several scientific projects for advanced laboratory to promote student's abilities of independent research. Students work as a team to select the project and search literatures, to perform experiments, and to give presentations. During the research project, instructor only provides necessary equipment for the project without any pre-knowledge of results, giving students a real flavor of scientific research. Our initial attempt has shown some interesting results. We found that students showed a very strong motivation in these projects, and student performances exceeded our expectation. Almost all the students in our first batch of the course have now joined graduate school in Physics and Materials Science. In the future we will also arrange graduate students working with undergraduate students to build a collaborative environment. In addition, a more comprehensive method will be used to evaluate student achievements.

  8. Conditions for building a community of practice in an advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Sayre, Eleanor C.

    2014-06-01

    We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation process is facilitated by four specific structural features of the course and supported by a primary instructional choice. The four structural features are "paucity of instructor time," "all in a room together," "long and difficult experiments," and "same experiments at different times." The instructional choice is the encouragement of the sharing and development of knowledge and understanding by the instructor. The combination of the instructional choice and structural features promotes the development of the learning community in which students engage in authentic practices of a physicist. This results in a classroom community that can provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of a practice of physicists. We support our claims with video-based observations of laboratory classroom interactions and individual, semistructured interviews with students about their laboratory experiences and physics identity.

  9. Physics.

    ERIC Educational Resources Information Center

    Bromley, D. Allan

    1980-01-01

    The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)

  10. An analysis of predictors of enrollment and successful achievement for girls in high school Advanced Placement physics

    NASA Astrophysics Data System (ADS)

    Depalma, Darlene M.

    A problem within science education in the United States persists. U.S students rank lower in science than most other students from participating countries on international tests of achievement (National Center for Education Statistics, 2003). In addition, U.S. students overall enrollment rate in high school Advanced Placement (AP) physics is still low compared to other academic domains, especially for females. This problem is the background for the purpose of this study. This investigation examined cognitive and motivational variables thought to play a part in the under-representation of females in AP physics. Cognitive variables consisted of mathematics, reading, and science knowledge, as measured by scores on the 10th and 11th grade Florida Comprehensive Assessment Tests (FCAT). The motivational factors of attitude, stereotypical views toward science, self-efficacy, and epistemological beliefs were measured by a questionnaire developed with questions taken from previously proven reliable and valid instruments. A general survey regarding participation in extracurricular activities was also included. The sample included 12th grade students from two high schools located in Seminole County, Florida. Of the 106 participants, 20 girls and 27 boys were enrolled in AP physics, and 39 girls and 20 boys were enrolled in other elective science courses. Differences between males and females enrolled in AP physics were examined, as well as differences between females enrolled in AP physics and females that chose not to participate in AP physics, in order to determine predictors that apply exclusively to female enrollment in high school AP physics and predictors of an anticipated science related college major. Data were first analyzed by Exploratory Factor Analysis, followed by Analysis of Variance (ANOVA), independent t-tests, univariate analysis, and logistic regression analysis. One overall theme that emerged from this research was findings that refute the ideas that

  11. Scrapbook of Undergraduate Literacies.

    ERIC Educational Resources Information Center

    Harris, John

    This scrapbook resulted from a search for possible consensus on the outcomes of undergraduate education. The scrapbook contains quotations from various sources related to undergraduate education and serves as a resource that reviews some of the literature. It begins with later 20th century expectations of corporate and governmental bodies in…

  12. Using Student Centred Evaluation for Curriculum Enhancement: An Examination of Undergraduate Physiotherapy Education in Relation to Physical Activity and Exercise Prescription

    ERIC Educational Resources Information Center

    O'Donoghue, Grainne; Doody, Catherine; Cusack, Tara

    2011-01-01

    The purpose of this study was to examine physiotherapy students' perceptions of current education content of entry-level physiotherapy programmes in terms of physical activity (PA) and exercise promotion and prescription (EPP). Sixty-two physiotherapy students from three Irish Universities participated. Three Structured Group Feedback Sessions…

  13. Flash Photolysis Experiment of o-Methyl Red as a Function of pH: A Low-Cost Experiment for the Undergraduate Physical Chemistry Lab

    ERIC Educational Resources Information Center

    Larsen, Molly C.; Perkins, Russell J.

    2016-01-01

    A low-cost, time-resolved spectroscopy experiment appropriate for third year physical chemistry students is presented. Students excite o-methyl red in basic solutions with a laser pointer and use a modular spectrometer with a CCD array detector to monitor the transient spectra as the higher-energy cis conformer of the molecule converts back to the…

  14. Production of Closed-Circuit Television Programs for Improving Instruction in Professional Health and Physical Education Courses at the Undergraduate Level.

    ERIC Educational Resources Information Center

    Henderson, Joe M.; Griffey, Bert

    To study the adaptability of semi-portable closed-circuit television equipment on remote location, six videotape programs were produced at Midwestern University for use in physical education courses. The programs dealt with "Knee Injuries,""Rehabilitation of Knee Injuries,""Teaching Tumbling by Progression,""The…

  15. Miscibility studies of Polyethylene Glycol with Polystyrene in Toluene by Various Physical and Advanced Techniques

    NASA Astrophysics Data System (ADS)

    Padmanaban, R.; Venkatramanan, K.

    2016-10-01

    Polyethylene glycol (PEG) is a chemical that has an extensive variety of applications in the world of medicine. It is used as a base to manufacture certain medicines, assist in drug delivery, and is also used as an agent in some medical procedures. It is an osmotic laxative. Polyethylene glycol works by retaining water in the stool, resulting in softer stools and more frequent bowel movements. Polyethylene glycol does not affect glucose and electrolytes in the body. PEG refers to a hydrocarbon molecule that can have a variable size, and different sizes can have different physical properties, giving this compound a great deal of flexibility in its application. In the present study, Polyethylene Glycol (PEG) (Molar mass: 1500) is blended with Polystyrene (PS) (Molar mass: 35000) in Toluene. The miscibility nature of the poly blend is analyzed by Ultrasonic velocity, viscosity, density and refractive index techniques at 303K. The compatibility nature of the blend is confirmed by Differential Scanning Calorimetry (DSC) studies.

  16. The Frontier of Modern Calorimetry: Hardware Advances and Application in Particle Physics Analysis

    NASA Astrophysics Data System (ADS)

    Medvedeva, Tatiana

    While the last missing components of the SM puzzle seem to be successfully found, particle physicists remain hungry for what might be there, beyond the cosy boundaries of the well studies elementary particle world. However, the sophisticated technique of data analysis and acute Monte Carlo simulations remain fruitless. It appears that the successful intrusion into the realm, in which we were not welcome so far, may require a very different implication of effort. All those results might suggest, though banal, that we need an improvement on the hardware side. Indeed, the hadronic calorimeter of CMS is no competitor to its other state-of-art components. This obstacle in many cases significantly complicates the flow of the physics analysis. Besides, the era of high luminosity LHC operation in the offing is calling for the same. After exploration of the analysis debri with 8TeV collision data, we investigate various approaches for better calorimetry for the CMS detector.

  17. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    SciTech Connect

    Nielsen, Joseph Wayne

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report to support the thermal analysis.

  18. Advances in wearable technology and applications in physical medicine and rehabilitation.

    PubMed

    Bonato, Paolo

    2005-02-25

    The development of miniature sensors that can be unobtrusively attached to the body or can be part of clothing items, such as sensing elements embedded in the fabric of garments, have opened countless possibilities of monitoring patients in the field over extended periods of time. This is of particular relevance to the practice of physical medicine and rehabilitation. Wearable technology addresses a major question in the management of patients undergoing rehabilitation, i.e. have clinical interventions a significant impact on the real life of patients? Wearable technology allows clinicians to gather data where it matters the most to answer this question, i.e. the home and community settings. Direct observations concerning the impact of clinical interventions on mobility, level of independence, and quality of life can be performed by means of wearable systems. Researchers have focused on three main areas of work to develop tools of clinical interest: 1)the design and implementation of sensors that are minimally obtrusive and reliably record movement or physiological signals, 2)the development of systems that unobtrusively gather data from multiple wearable sensors and deliver this information to clinicians in the way that is most appropriate for each application, and 3)the design and implementation of algorithms to extract clinically relevant information from data recorded using wearable technology. Journal of NeuroEngineering and Rehabilitation has devoted a series of articles to this topic with the objective of offering a description of the state of the art in this research field and pointing to emerging applications that are relevant to the clinical practice in physical medicine and rehabilitation.

  19. Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.

    ERIC Educational Resources Information Center

    Rioux, Frank; Harriss, Donald K.

    1980-01-01

    Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.

  20. Fourier transform infrared spectrometery: an undergraduate experiment

    NASA Astrophysics Data System (ADS)

    Lerner, L.

    2016-11-01

    Simple apparatus is developed, providing undergraduate students with a solid understanding of Fourier transform (FT) infrared (IR) spectroscopy in a hands on experiment. Apart from its application to measuring the mid-IR spectra of organic molecules, the experiment introduces several techniques with wide applicability in physics, including interferometry, the FT, digital data analysis, and control theory.

  1. Engineering development of advance physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Jha, M.C.; Smit, F.J.; Shields, G.L.

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1991-01-01

    The design criteria for each unit operation have been developed based upon a number of variables. These variables, at this time, are based upon the best engineering design information available to industry. A number of assumptions utilized in the design criteria are uncertain. The uncertainties of inert atmospheres for grinding and flotation as well as pyrite depressants were answered by the Surface Control Project. It was determined that inerting was not required and no new'' reagents were presented that improved the flotation results. In addition, Tasks 5 and 6 results indicated the required reagent dosage for conventional flotation and advanced flotation. Task 5 results also indicated the need for a clean coal,thickener, the flocculent dosages for both the clean coal and refuse thickeners, and final dewatering requirements. The results from Tasks 5 and 6 and summarized in Task 7 indicate several uncertainties that require continuous long duration testing. The first is the possibility of producing a grab product for both the Pittsburgh and Illinois No. 6 coals in conventional flotation. Second what does long-term recirculation of clarified water do to the product quality The verification process and real data obtained from Tasks 5 and 6 greatly reduced the capital and operating costs for the process. This was anticipated and the test work indeed provided confirming data.

  3. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  4. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  5. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  6. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  7. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    SciTech Connect

    S.C. Jardin; C.E. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M.S. Chu; R. LaHaye; L.L. Lao; T.W. Petrie; P. Politzer; H.E. St. John; P. Snyder; G.M. Staebler; A.D. Turnbull; W.P. West

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads to a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.

  8. Physical and chemical effects of direct aqueous advanced oxidation processing on green sand foundry mold materials

    NASA Astrophysics Data System (ADS)

    Clobes, Jason Kenneth

    Iron foundries using the common green sand molding process have increasingly been incorporating aqueous advanced oxidation (AO) systems to reduce the consumption of sand system bentonite clay and coal raw materials by and to decrease their volatile organic compound (VOC) emissions. These AO systems typically use a combination of sonication, ozone aeration, and hydrogen peroxide to treat and recycle slurries of sand system baghouse dust, which is rich in clay and coal. While the overall effects of AO on raw material consumption and organic emissions are known, the mechanisms behind these effects are not well understood. This research examined the effects of bench-scale direct aqueous AO processing on green sand mold materials at the micro level. Bench-scale AO processing, including acoustic sonication, ozone/oxygen aeration, and hydrogen peroxide dramatically decreased the particle sizes of both western bentonite and foundry sand system baghouse dust. Bench-scale AO processing was shown to effectively separate the clay material from the larger silica and coal particles and to extensively break up the larger clay agglomerates. The acoustic sonication component of AO processing was the key contributor to enhanced clay recovery. Acoustic sonication alone was slightly more effective than combined component AO in reducing the particle sizes of the baghouse dust and in the recovery of clay yields in the supernatant during sedimentation experiments. Sedimentation separation results correlated well with the increase in small particle concentrations due to AO processing. Clay suspension viscosity decreased with AO processing due to enhanced dispersion of the particles. X-ray diffraction of freeze-dried baghouse dust indicated that AO processing does not rehydrate calcined montmorillonite and does not increase the level of interlayer water hydration in the dry clays. Zeta potential measurements indicated that AO processing also does not produce any large changes in the

  9. "Heidelberg standard examination" and "Heidelberg standard procedures" - Development of faculty-wide standards for physical examination techniques and clinical procedures in undergraduate medical education.

    PubMed

    Nikendei, C; Ganschow, P; Groener, J B; Huwendiek, S; Köchel, A; Köhl-Hackert, N; Pjontek, R; Rodrian, J; Scheibe, F; Stadler, A-K; Steiner, T; Stiepak, J; Tabatabai, J; Utz, A; Kadmon, M

    2016-01-01

    The competent physical examination of patients and the safe and professional implementation of clinical procedures constitute essential components of medical practice in nearly all areas of medicine. The central objective of the projects "Heidelberg standard examination" and "Heidelberg standard procedures", which were initiated by students, was to establish uniform interdisciplinary standards for physical examination and clinical procedures, and to distribute them in coordination with all clinical disciplines at the Heidelberg University Hospital. The presented project report illuminates the background of the initiative and its methodological implementation. Moreover, it describes the multimedia documentation in the form of pocketbooks and a multimedia internet-based platform, as well as the integration into the curriculum. The project presentation aims to provide orientation and action guidelines to facilitate similar processes in other faculties.

  10. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties

    PubMed Central

    Haneef, Muhammad; Ceseracciu, Luca; Canale, Claudio; Bayer, Ilker S.; Heredia-Guerrero, José A.; Athanassiou, Athanassia

    2017-01-01

    In this work is presented a new category of self-growing, fibrous, natural composite materials with controlled physical properties that can be produced in large quantities and over wide areas, based on mycelium, the main body of fungi. Mycelia from two types of edible, medicinal fungi, Ganoderma lucidum and Pleurotus ostreatus, have been carefully cultivated, being fed by two bio-substrates: cellulose and cellulose/potato-dextrose, the second being easier to digest by mycelium due to presence of simple sugars in its composition. After specific growing times the mycelia have been processed in order to cease their growth. Depending on their feeding substrate, the final fibrous structures showed different relative concentrations in polysaccharides, lipids, proteins and chitin. Such differences are reflected as alterations in morphology and mechanical properties. The materials grown on cellulose contained more chitin and showed higher Young’s modulus and lower elongation than those grown on dextrose-containing substrates, indicating that the mycelium materials get stiffer when their feeding substrate is harder to digest. All the developed fibrous materials were hydrophobic with water contact angles higher than 120°. The possibility of tailoring mycelium materials’ properties by properly choosing their nutrient substrates paves the way for their use in various scale applications. PMID:28117421

  11. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties

    NASA Astrophysics Data System (ADS)

    Haneef, Muhammad; Ceseracciu, Luca; Canale, Claudio; Bayer, Ilker S.; Heredia-Guerrero, José A.; Athanassiou, Athanassia

    2017-01-01

    In this work is presented a new category of self-growing, fibrous, natural composite materials with controlled physical properties that can be produced in large quantities and over wide areas, based on mycelium, the main body of fungi. Mycelia from two types of edible, medicinal fungi, Ganoderma lucidum and Pleurotus ostreatus, have been carefully cultivated, being fed by two bio-substrates: cellulose and cellulose/potato-dextrose, the second being easier to digest by mycelium due to presence of simple sugars in its composition. After specific growing times the mycelia have been processed in order to cease their growth. Depending on their feeding substrate, the final fibrous structures showed different relative concentrations in polysaccharides, lipids, proteins and chitin. Such differences are reflected as alterations in morphology and mechanical properties. The materials grown on cellulose contained more chitin and showed higher Young’s modulus and lower elongation than those grown on dextrose-containing substrates, indicating that the mycelium materials get stiffer when their feeding substrate is harder to digest. All the developed fibrous materials were hydrophobic with water contact angles higher than 120°. The possibility of tailoring mycelium materials’ properties by properly choosing their nutrient substrates paves the way for their use in various scale applications.

  12. A Comprehensive Analysis of the Physical Properties of Advanced GaAs/AlGaAs Junctions

    NASA Technical Reports Server (NTRS)

    Menkara, Hicham M.

    1996-01-01

    Extensive studies have been performed on MQW junctions and structures because of their potential applications as avalanche photodetectors in optical communications and imaging systems. The role of the avalanche photodiode is to provide for the conversion of an optical signal into charge. Knowledge of junction physics, and the various carrier generation/recombination mechanisms, is crucial for effectively optimizing the conversion process and increasing the structure's quantum efficiency. In addition, the recent interest in the use of APDs in imaging systems has necessitated the development of semiconductor junctions with low dark currents and high gains for low light applications. Because of the high frame rate and high pixel density requirements in new imaging applications, it is necessary to provide some front-end gain in the imager to allow operation under reasonable light conditions. Understanding the electron/hole impact ionization process, as well as diffusion and surface leakage effects, is needed to help maintain low dark currents and high gains for such applications. In addition, the APD must be capable of operating with low power, and low noise. Knowledge of the effects of various doping configurations and electric field profiles, as well as the excess noise resulting from the avalanche process, are needed to help maintain low operating bias and minimize the noise output.

  13. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties.

    PubMed

    Haneef, Muhammad; Ceseracciu, Luca; Canale, Claudio; Bayer, Ilker S; Heredia-Guerrero, Jose A; Athanassiou, Athanassia

    2017-01-24

    In this work is presented a new category of self-growing, fibrous, natural composite materials with controlled physical properties that can be produced in large quantities and over wide areas, based on mycelium, the main body of fungi. Mycelia from two types of edible, medicinal fungi, Ganoderma lucidum and Pleurotus ostreatus, have been carefully cultivated, being fed by two bio-substrates: cellulose and cellulose/potato-dextrose, the second being easier to digest by mycelium due to presence of simple sugars in its composition. After specific growing times the mycelia have been processed in order to cease their growth. Depending on their feeding substrate, the final fibrous structures showed different relative concentrations in polysaccharides, lipids, proteins and chitin. Such differences are reflected as alterations in morphology and mechanical properties. The materials grown on cellulose contained more chitin and showed higher Young's modulus and lower elongation than those grown on dextrose-containing substrates, indicating that the mycelium materials get stiffer when their feeding substrate is harder to digest. All the developed fibrous materials were hydrophobic with water contact angles higher than 120°. The possibility of tailoring mycelium materials' properties by properly choosing their nutrient substrates paves the way for their use in various scale applications.

  14. A simple DPSS laser setup and experiments for undergraduates

    NASA Astrophysics Data System (ADS)

    Bergmann, Antje; Kircher, Sandra; Setzler, Dominik; Gerharz, Miriam; Rockstuhl, Carsten

    2017-01-01

    Advanced optical concepts are often thought to be out of reach when it comes to an experimental demonstration for undergraduates and secondary school students. This is not always true. Here, we discuss the use of a diode-pumped solid state (DPSS) laser based on Nd:YVO4/KTP hybrid crystals, being also at the heart of many green laser pointers, to educate students on multiple modern optical concepts and applications thereof. This concerns not only nonlinear optics, e.g. second harmonic generation, but also laser physics and electromagnetic wave phenomena that occur if light interacts with matter. In this contribution we primarily describe the setup of the simple Nd:YVO4/KTP solid state laser system using hybrid crystals. The setup is integrated into our lab for undergraduates and school students. We show that various experiments on the topics mentioned above can be performed with affordable equipment while investigating some basic laser characteristics. By studying the influence of different surface roughness from various materials on the appearance of laser speckles, students get to know a modern laser application. Furthermore, we describe an experiment on the optical data transfer in free space optical communication: an additional experiment with a high motivational nature.

  15. Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D

    SciTech Connect

    Wade, M. R.; Nazikian, R.; deGrassie, John S.; Evans, T. E.; Ferraro, N. M.; Moyer, R. A.; Orlov, D. M.; Buttery, R. J.; Fenstermacher, Max E.; Garofalo, Andrea M.; Lanctot, M. A.; McKee, George R.; Osborne, T. H.; Shafer, M. A.; Solomon, W. M.; Snyder, P. B.; Suttrop, Wolfgang; Wingen, Andreas; Unterberg, Ezekial A.; Zeng, L.

    2015-01-14

    Recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. In this study, complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlated with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. Finally, in the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.

  16. A physical description of fission product behavior fuels for advanced power reactors.

    SciTech Connect

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  17. Advances in the physics understanding of ELM suppression using resonant magnetic perturbations in DIII-D

    DOE PAGES

    Wade, M. R.; Nazikian, R.; deGrassie, John S.; ...

    2015-01-14

    Recent experiments on DIII-D have increased confidence in the ability to suppress edge-localized modes (ELMs) using edge-resonant magnetic perturbations (RMPs) in ITER, including an improved physics basis for the edge response to RMPs as well as expansion of RMP ELM suppression to more ITER-like conditions. In this study, complete ELM suppression has been achieved utilizing n = 3 RMPs in the ITER baseline scenario. In addition, RMP ELM suppression has been expanded to include plasmas with helium concentrations near 25% and the use of n = 2 RMPs. Analysis of the kinetic profile response suggests that ELM suppression is correlatedmore » with the co-alignment of the ω⊥e = 0 location, an n = 3 rational surface, and the top of the pedestal. Modelling predicts that such a co-alignment could potentially lead to island (or island chain) formation just inside the top of the pedestal, inhibiting the growth of the pedestal and thereby maintaining the ELM-free state. Detailed analysis of data obtained during toroidal phase variations of the applied n = 3 RMPs have provided further evidence of an island-like structure at the top of the pedestal. In addition, nearly matched discharges with co-neutral-beam-injection (co-NBI) and counter-NBI have demonstrated the importance of the presence of the ω⊥e = 0 location for ELM suppression. Finally, in the counter-NBI cases, the toroidal rotation profile is such that there is no ω⊥e = 0 location and ELMs are not suppressed in conditions in which ELM suppression is generally observed with co-NBI.« less

  18. Studies of the physical aspects of intumescence using advance diagnostics methods

    NASA Astrophysics Data System (ADS)

    Saeed, Hussain; Huang, Hua Wei; Zhang, Yang

    2014-04-01

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  19. Studies of the physical aspects of intumescence using advance diagnostics methods

    SciTech Connect

    Saeed, Hussain Huang, Hua Wei Zhang, Yang

    2014-04-11

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  20. Journal of Undergraduate Research, Volume IX, 2009

    SciTech Connect

    Stiner, K. S.; Graham, S.; Khan, M.; Dilks, J.; Mayer, D.

    2009-01-01

    Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.