Science.gov

Sample records for advanced underground coal

  1. Resource targets for advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Hoag, J. H.; Whipple, D. W.; Habib-Agahi, H.; Lavin, M. L.

    1982-01-01

    Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance.

  2. Overall requirements for an advanced underground coal extraction system

    SciTech Connect

    Goldsmith, M.; Lavin, M.L.

    1980-10-15

    This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

  3. Requirements for the conceptual design of advanced underground coal-extraction systems

    SciTech Connect

    Gangal, M.D.; Lavin, M.L.

    1981-12-15

    This document presents conceptual design requirements for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, the document identifies a number of desirable system characteristics which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat-lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals. This document results from the initial phase of a program to define, develop, and demonstrate advanced equipment suitable for the resources remaining beyond the year 2000. The requirements developed are meant to implement the broad systems performance goals formulated by Goldsmith and Lavin (1980) by providing a rational point of departure for the design of underground mining systems with emphasis on Central Appalachian coals. Because no one has yet attempted to design to these requirements, they may contain some inconsistencies and need clarification in some areas. Accordingly, the authors would very much appreciate commments and suggestions from those who have used or critically reviewed these requirements.

  4. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  5. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  6. Requirements for the conceptual design of advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lavin, M. L.

    1981-01-01

    Conceptual design requirements are presented for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, a number of desirable system characteristics are identified which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals.

  7. Underground Coal Gasification Program

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  8. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

  9. Underground Coal Thermal Treatment

    SciTech Connect

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  10. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  11. Underground coal mining section data

    NASA Technical Reports Server (NTRS)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  12. EFFECT OF UNDERGROUND COAL GASIFICATION ON GROUNDWATER

    EPA Science Inventory

    The potential effect of underground coal gasification on groundwater has been examined in a laboratory study. The study was directed at Fruitland Formation subbituminous coal of the San Juan Basin and at the groundwater found in this coal seam. Two wells were drilled into the coa...

  13. Geosphere in underground coal gasification

    SciTech Connect

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  14. A life-cycle description of underground coal mining

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Borden, C. S.; Duda, J. R.

    1978-01-01

    An initial effort to relate the major technological and economic variables which impact conventional underground coal mining systems, in order to help identify promising areas for advanced mining technology is described. The point of departure is a series of investment analyses published by the United States Bureau of Mines, which provide both the analytical framework and guidance on a choice of variables.

  15. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  16. Pumping carbon out of underground coal deposits

    SciTech Connect

    Steinberg, M.

    1999-07-01

    Thin steam and deep coal deposits are difficult and costly to mine. Underground coal gasification (UCG) with air or oxygen was thought to alleviate this problem. Experimental field tests were conducted in Wyoming and Illinois. Problems were encountered concerning a clear path for the team gasification to take place and removal of gas. The high endothermic heat of reaction requiring large quantities of steam and oxygen makes the process expensive. Safety problems due to incomplete reaction is also of concern. A new approach is proposed which can remedy most of these drawbacks for extracting energy from underground coal deposits. It is proposed to hydrogasify the coal underground with a heated hydrogen gas stream under pressure to produce a methane-rich gas effluent stream. The hydrogasification of coal is essentially exothermic so that no steam or oxygen is required. The gases formed are always in a reducing atmosphere making the process safe. The hydrogen is obtained by thermally decomposing the effluent methane above ground to elemental carbon and hydrogen. The hydrogen is returned underground for further hydrogasification of the coal seam. The small amount of oxygen and sulfur in the coal can be processed out above ground by removal as water and H{sub 2}S. Any CO can be removed by a methanation step returning the methane to process. The ash remains in the ground and the elemental carbon produced is the purest form of coal. The particulate carbon can be slurried with water to produce a fuel stream that can be fed to a turbine for efficient combined cycle power plants with lower CO{sub 2} emissions. Coal cannot be used for combined cycle because of its ash and sulfur content destroys the gas turbine. Depending on its composition of coal seam some excess hydrogen is also produced. Hydrogen is, thus, used to pump pure carbon out of the ground.

  17. Resource targets for advanced underground coal-extraction systems. [Identification of location and geology of deposit for which greatest savings can be realized by advanced mining systems in 2000

    SciTech Connect

    Hoag, J.H.; Whipple, D.W.; Habib-Agahi, H.; Lavin, M.L.

    1982-08-01

    This report identifies resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems. In contrast to previous research, which focused on a particular resource type, this study made a comprehensive examination of both conventional and unconventional coals, with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry. The major thrust of the targeting analysis was forecasting which coals would be of clear commercial significance at the beginning of the 21st century under three widely different scenarios for coal demand. The primary measure of commercial importance was an estimate of the aggregate dollar savings realized by consumers if advanced technology were available to mine coal at prices at or below the price projected for conventional technology in the year 2000. Both deterministic and probabilistic savings estimates were prepared for each demand scenario. The results indicate that the resource of primary importance is flat-lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat-lying multiple seams and thin seams (especially those in Appalachia). The rather substantial deposits of bituminous coal in North Alaska and the deeply buried lignites of the Gulf Coast present transportation and ground control problems which appear to postpone their commercial importance well beyond 2000. Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions or sub-regions, but the limited tonnage available places them in a position of tertiary importance.

  18. Coal properties and system operating parameters for underground coal gasification

    SciTech Connect

    Yang, L.

    2008-07-01

    Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

  19. Method for extraction of quantitative information using remote sensing data of underground coal fire areas and its application

    NASA Astrophysics Data System (ADS)

    Dang, Fu-xing; Li, Zhi-zhong; Xiong, Sheng-qing; Fang, Hong-bin; Yang, Ri-hong

    2008-11-01

    Underground coal-bed spontaneous combustion is a dynamic process with complex physical, chemical and environmental interaction. The anomalous information on remote sensing spatial, spectral and thermal indexes is very meaningful for detecting underground coal fires and assessing its effects on environment. This paper, based on a series of advanced technical datum in Wu Da coalfield areas located in Inner-Mongolia, such as ground spectral testing, thermal infrared multispectral indexes, and high-spatial resolution images, analyzes the correlation between the underground coal-bed burning conditions and the remote sensing information. Besides, it provides a further discussion on the application potential for quantitative feature extraction of underground coal fire.

  20. Underground coal gasification using oxygen and steam

    SciTech Connect

    Yang, L.H.; Zhang, X.; Liu, S.

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  1. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  2. Combustion front propagation in underground coal gasification

    SciTech Connect

    Dobbs, R.L. II; Krantz, W.B.

    1990-10-01

    Reverse Combustion (RC) enhances coal seam permeability prior to Underground Coal Gasification. Understanding RC is necessary to improve its reliability and economics. A curved RC front propagation model is developed, then solved by high activation energy asymptotics. It explicitly incorporates extinction (stoichiometric and thermal) and tangential heat transport (THT) (convection and conduction). THT arises from variation in combustion front temperature caused by tangential variation in the oxidant gas flux to the channel surface. Front temperature depends only weakly on THT; front velocity is strongly affected, with heat loss slowing propagation. The front propagation speed displays a maximum with respect to gas flux. Combustion promoters speed front propagation; inhibitors slow front propagation. The propagation model is incorporated into 2-D simulations of RC channel evolution utilizing the boundary element method with cubic hermetian elements to solve the flow from gas injection wells through the coal to the convoluted, temporally evolving, channel surface, and through the channel to a gas production well. RC channel propagation is studied using 17 cm diameter subbituminous horizontally drilled coal cores. Sixteen experiments at pressures between 2000 and 3600 kPa, injected gas oxygen contents between 21% and 75%, and flows between 1 and 4 standard liters per minute are described. Similarity analysis led to scaling-down of large RC ({approx}1 m) to laboratory scale ({approx}5 cm). Propagation velocity shows a strong synergistic increase at high levels of oxygen, pressure, and gas flow. Char combustion is observed, leaving ash-filled, irregularly shaped channels. Cracks are observed to penetrate the char zone surrounding the channel cores. 69 refs., 54 figs., 4 tabs.

  3. Influence of Geological Structure on Coal and Gas Outburst Occurrences in Turkish Underground Coal Mines

    NASA Astrophysics Data System (ADS)

    Esen, Olgun; Özer, Samet Can; Fişne, Abdullah

    2015-04-01

    Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in

  4. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  5. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  6. Underground communications and tracking technology advances

    SciTech Connect

    Fiscor, S.

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  7. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single

  8. Roof Rockmass Characterization in an Illinois Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Osouli, Abdolreza; Shafii, Iman

    2016-08-01

    Among all United States underground coal fields, those in Illinois have the highest rate of roof fall events due to their weak and severely moisture sensitive roof rock units. Rockmass characterization is the key initial step in designing safe and economical roof control measures in underground coal mines. In this study, a performance-based roof rockmass characterization is investigated. The geologic conditions as well as underground mine geographic specifications, roof fall analysis, mining method, utilized supplemental roof control measures, and geotechnical properties of roof rock units were considered to link the roof performance to rockmass characterization. The coal mine roof rating (CMRR) rockmass characterization method was used to evaluate the roof conditions and roof support design for an underground coal mine located in the Illinois Coal Basin. The results of several mine visit mappings, laboratory test results, and geotechnical issues and concerns are presented and discussed. The roof support designs are analyzed based on the rockmass characterization and are compared with the observed performance. This study shows that (1) CMRR index is a reasonable method for characterizing roof rockmass; (2) moisture sensitivity and bedding strengths in the horizontal direction are essential parameters for roof support design in mines with weak roof conditions; and (3) the applicability of the analysis of roof bolt system for roof support design of the studied mine is questionable.

  9. Coal face measurement system for underground use

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A measurement system was developed for the Eickhoff longwall shearer to determine the contour of the coal face as it mines coal. Contour data are obtained by an indirect measurement technique based on evaluating the motion of the shearer during mining. Starting from a known location, points along the coal face are established through a knowledge of the machines' positions and yaw movements as it moves past the coal face. The hardware and system operation procedures are described. The tests of system performance and their results are reported.

  10. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  11. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration. ACTION: Notice of... Alternatives for Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments... Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business or other...

  12. Health requirements for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1980-01-01

    Health requirements were developed as long range goals for future advanced coal extraction systems which would be introduced into the market in the year 2000. The goal of the requirements is that underground coal miners work in an environment that is as close as possible to the working conditions of the general population, that they do not exceed mortality and morbidity rates resulting from lung diseases that are comparable to those of the general population, and that their working conditions comply as closely as possible to those of other industries as specified by OSHA regulations. A brief technique for evaluating whether proposed advanced systems meet these safety requirements is presented, as well as a discussion of the costs of respiratory disability compensation.

  13. Underground coal gasification: a brief review of current status

    SciTech Connect

    Shafirovich, E.; Varma, A.

    2009-09-15

    Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

  14. Cyclic flow underground coal gasification process

    DOEpatents

    Bissett, Larry A.

    1978-01-01

    The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

  15. Science and Technology Gaps in Underground Coal Gasification

    SciTech Connect

    Upadhye, R; Burton, E; Friedmann, J

    2006-06-27

    Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid

  16. Early warning indicators for challenges in underground coal storage.

    PubMed

    Sipilä, Juha; Auerkari, Pertti; Holmström, Stefan; Vela, Iris

    2014-12-01

    Early warning or leading indicators are discussed for unexpected incidences in case of large-scale underground coal storage at a power plant. The experience is compared with above-ground stockpiles for which established procedures are available but where access for prevention and mitigation are much easier. It is suggested that while the explicit organization, procedures, and the general safety systems aim to provide the targeted levels of performance for the storage, representing new technology without much precedence elsewhere in the world, the extensive experience and tacit knowledge from above-ground open and closed storage systems can help to prepare for and to prevent unwanted incidents in the underground storage. This kind of experience has been also found useful for developing the leading or early warning indicators for underground storage. Examples are given on observed autoignition and freezing of coal in the storage silos, and on occupational hazards. Selection of the leading indicators needs to consider the specific features of the unique underground facility. PMID:25196594

  17. Gallium-67 citrate imaging in underground coal miners

    SciTech Connect

    Kanner, R.E.; Barkman, H.W. Jr.; Rom, W.N.; Taylor, A.T. Jr.

    1985-01-01

    Twenty-two underground coal workers with 27 or more years of coal dust exposure were studied with gallium-67 citrate (Ga-67) imaging. Radiographic evidence of coal workers indicates that pneumoconiosis (CWP) was present in 12 subjects. The Ga-67 scan was abnormal in 11 of 12 with, and 9 of 10 without, CWP. The Ga-67 uptake index was significantly correlated with total dust exposure (p less than 0.01) and approached significant correlation with the radiographic profusion of the nodules (0.10 greater than p greater than 0.05). There was no correlation between Ga-67 uptake and spirometric function, which was normal in this group of patients; furthermore, increased lung uptake of gallium did not indicate a poor prognosis in subjects no longer exposed to coal dust. While coal dust exposure may be associated with positive Ga-67 lung scan in coal miners with many years of coal dust exposure, the scan provided no information not already available from a careful exposure history and a chest radiograph. Since Ga-67 scanning is a relatively expensive procedure the authors would recommend that its use in subjects with asymptomatic CWP be limited to an investigative role and not be made part of a routine evaluation.

  18. VRLane: a desktop virtual safety management program for underground coal mine

    NASA Astrophysics Data System (ADS)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  19. Application of numerical simulation using a progressive failure approach to underground-coal-mine stability analysis

    SciTech Connect

    Ash, N.F.

    1987-01-01

    Stability in underground coal mines is of major concern to the coal industry due to its effect on both safety and productivity. Consequently, this can have a great influence on the design of efficient mine systems. In this work a progressive failure approach was used to simulate underground coal mine stability at two different mines. The two mines considered have different characteristics. Two- and three- dimensional finite element models were created to model different areas of a longwall mine. Different chain pillar configurations were considered and the resulting stress distributions were comparable to field measurements. A complete mine section was successfully modeled taking into consideration face advancement. The roof above entry intersections was also modeled using laminated composite simulation and the finite element method. The results showed trends similar to field observations. In addition, the progressive development of subsidence for the two different mines was simulated. The same variation in subsidence behavior recorded at the mine was realized in the finite element simulation. The progressive failure approach used in this work can successfully simulate underground coal mine stability. It can also be a helpful tool in the design of more efficient mine systems which can increase productivity and maintain a high level of safety.

  20. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this chapter must be provided with additional safety features in accordance with the following time... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  1. Psycho-social aspects of productivity in underground coal mining

    SciTech Connect

    Akin, G.

    1981-10-01

    This report presents the results of an investigation into the psycho-social aspects of productivity in underground coal mining. Chapter 1 reviews the status of the literature on labor productivity changes. Chapter 2 is an introduction to current concepts and research on psycho-social factors in productivity, with a survey of experiments in productivity improvement presented in Chapter 3. Chapter 4 discusses the impact of the introduction of new technology on the social system and the way that it accomplishes production. Chapter 5 presents a clinical study of a coal mining operation, and develops a model of how production is actually accomplished by workers at the coal face. Implications and recommendations for new technology design, implementation and ongoing management are presented in Chapter 6.

  2. An Integrated RFID and Sensor System for Emergency Handling in Underground Coal Mines Environments

    NASA Astrophysics Data System (ADS)

    Liao, Lingxia; Lou, Guohuan; Chen, Min

    Mobile communication system for underground coal mines is far more behind the one on surface for the unique underground tunnel environment and safety requirements. Though our previous CDMA System V1.0 can solve the problems of coal mine communication well in regular environments, it still remains a challenging issue for emergency handling. In this paper, we propose a novel integrated RFID and sensor system for emergency handling in underground coal mines environments.

  3. Modeling of contaminant transport in underground coal gasification

    SciTech Connect

    Lanhe Yang; Xing Zhang

    2009-01-15

    In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

  4. Advancing Underground Nuclear Astrophysics with CASPAR

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Couder, Manoel; Greife, Uwe; Strieder, Frank; Wells, Doug; Wiescher, Michael

    2015-04-01

    The advancement of experimental nuclear astrophysics techniques and the requirement of astrophysical network models for further nuclear data over greater energy ranges, has led to the requirement for the better understanding of nuclear reactions in stellar burning regimes. For those reactions of importance to stellar burning processes and elemental production through stellar nucleosynthesis, the energy range of astrophysical interest is always problematic to probe. As reaction measurements approach the burning window of interest, the rapid drop off in cross-section hampers laboratory investigation. The natural background suppression of underground accelerator facilities enables the extension of current experimental data to lower energies. An example of such reactions of interest are those thought to be sources of neutrons for the s-process, the major production mechanism for elements above the iron peak. The reactions 13 C(α,n)16 O and 22 Ne(α,n)25 Mg are the proposed initial focus of the new nuclear astrophysics accelerator laboratory (CASPAR) currently under construction at the Sanford Underground Research Facility, Lead, SD. With thanks to funding provided by South Dakota Science and Technology Authority and the NSF under Grant Number PHY-1419765.

  5. Geologic considerations in underground coal mining system design

    NASA Technical Reports Server (NTRS)

    Camilli, F. A.; Maynard, D. P.; Mangolds, A.; Harris, J.

    1981-01-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.

  6. Critical parameters for coarse coal underground slurry haulage systems

    SciTech Connect

    Maynard, D.P.

    1981-02-15

    This report describes the basic parameters which directly influence the behavior of a coal slurry pipeline transportation system and determine the limitations of the system performance. The purpose of this technology assessment is to provide an identification and understanding of the critical factors which must be given consideration in the design and evaluation of such a slurry haulage system intended for use in an underground coal mine. The slurry haulage system will be utilized to satisfy the transportation requirements of conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location near the mine entrance or to a coal preparation plant located on the surface. Coal-water slurries, particularly those consisting of homogeneous suspensions of small particles, frequently behave as non-Newtonian, Bingham-plastic fluids. For successful operation, slurry transport systems should be designed to operate in the turbulent flow regime and at a flow rate at least 30% greater than the deposition velocity. The deposition velocity is defined as the slurry flow rate at which the solid particles tend to settle in the pipe. Due to the importance of accurately determining the deposition velocity and the uncertainties of current methods for predicting the deposition velocity of coarse particle slurries, it is recommended that experimental efforts be performed as a part of the system design. The capacity of the haulage system should be compatible with the mine's projected coal output in order to avoid operational delays and the necessity for in-mine coal storage. The slurry pumps must generate sufficient discharge pressure to overcome the resultant friction losses in horizontal and vertical pipe sections and to satisfy the slurry hoisting requirements.

  7. Thermophysical models of underground coal gasification and FEM analysis

    SciTech Connect

    Yang, L.H.

    2007-11-15

    In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

  8. Diffuse soil degassing from abandoned underground coal mines

    NASA Astrophysics Data System (ADS)

    Lopez, D.; Ruiz, V.

    2003-04-01

    Southeastern Ohio has been extensively coal mined. The coal in this region and associated rocks are high in sulfur and generate acid mine drainage when exposed to air and water. Poor water quality in rivers and streams is a common problem in this region. Water recharge to the underground coal mines occurs preferentially throughout subsidence features in areas where the overburden is thinner than around 60 feet, usually close to river and streams. Gases released from the coal beds such as methane and carbon dioxide, as well as radon generated in the rocks can diffuse throughout the overlying rocks and soils and discharge to the atmosphere. The soils of an area covering around 151 km2 close to the town of Corning, Ohio, were investigated. Around half of the study area has been coal mined. Soil gas samples were taking every 600 to 1000 m using a sonde and extracting the gas with a syringe. Samples were also extracted with a vacuum pump and analyzed for radon in a Pylon AB-5 Radiation Detector. Soil gas samples were analyzed in a Arizona Mercury Analyzer. Additional samples were stored in vaccutainers and analyzed in a gas chromatograph to determine the partial pressures of carbon dioxide and methane. Our results indicate that gas concentrations are significantly higher in regions of thin overburden compared to regions of thick overburden and non-mined areas. These results suggest that gases are diffusing throughout fractures and subsidence features of the rocks overlying the exploited coal seams and are discharged more easily to the atmosphere when the overburden is thinner.

  9. Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification

    SciTech Connect

    Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

    2009-10-05

    This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships

  10. Hydrogeochemical characteristics of a flooded underground coal mine groundwater system

    NASA Astrophysics Data System (ADS)

    Gomo, M.; Vermeulen, D.

    2014-04-01

    Hydrogeochemical processes have an important influence on evolution of the groundwater chemistry and its quality. An investigation was conducted to assess the hydrogeochemical processes in a flooded underground coal mine located in a typical Karoo Basin of Southern Africa. The study utilises scatter plots, PHREEQC hydrogeochemical model and the expanded Durov diagram as complimentary tools to analyse the groundwater chemistry. 144 Samples were collected from 16 piezometers drilled into the flooded underground coal mine during a three year monitoring period (2000-2002). Field results indicate that the groundwater system is characterised by a Ca-SO4 main hydrochemical groundwater type that evolved from acid mine drainage (AMD) buffering by calcite and dolomite carbonate minerals. The carbonate AMD buffering process is hindering the leaching of metals into the flooded mine groundwater system. Hardness in at least 85% of the samples exceeded 1200 mg/L as CaCO3 and the groundwater was classified as excessively hard. Modelling results using PHREEQC suggests that increase of Ca2+ and SO42- concentration that evolve from carbonate AMD buffering process can only occur up to certain point until which the aqueous solubility of these ions becomes indirectly limited by gypsum saturation.

  11. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    .... Availability of Information MSHA published the proposed rule in the Federal Register on August 31, 2011 (76 FR... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION... Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines, published on August...

  12. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Period On August 31, 2011 (76 FR 54163), MSHA published a proposed rule, Proximity Detection Systems for... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION... addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines....

  13. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... both. (c) Employees are encouraged to review regulations contained in 30 CFR part 706 which pertain to... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining...

  14. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... both. (c) Employees are encouraged to review regulations contained in 30 CFR part 706 which pertain to... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining...

  15. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... both. (c) Employees are encouraged to review regulations contained in 30 CFR part 706 which pertain to... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining...

  16. Geologic considerations in underground coal mining system design

    SciTech Connect

    Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

    1981-10-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky, is next analyzed, using both the new baseline mine concept and traditional geologic investigative approach. The baseline mine concept presented is intended as a framework, providing a consistent basis for further analyses to be subsequently conducted in other geographic regions. The baseline mine concept is intended as a tool to give system designers a more realistic feel of the mine environment and will hopefully lead to acceptable alternatives for advanced coal extraction system.

  17. Investigating dynamic underground coal fires by means of numerical simulation

    NASA Astrophysics Data System (ADS)

    Wessling, S.; Kessels, W.; Schmidt, M.; Krause, U.

    2008-01-01

    Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative `Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,' a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an `operator-splitting' approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation

  18. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to underground coal mining in areas designated by Act of Congress. 761.200 Section 761.200 Mineral... to underground coal mining in areas designated by Act of Congress. OSM has adopted the following... or limited. Subsidence due to underground coal mining is not included in the definition of...

  19. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to underground coal mining in areas designated by Act of Congress. 761.200 Section 761.200 Mineral... to underground coal mining in areas designated by Act of Congress. OSM has adopted the following... or limited. Subsidence due to underground coal mining is not included in the definition of...

  20. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to underground coal mining in areas designated by Act of Congress. 761.200 Section 761.200 Mineral... to underground coal mining in areas designated by Act of Congress. OSM has adopted the following... or limited. Subsidence due to underground coal mining is not included in the definition of...

  1. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to underground coal mining in areas designated by Act of Congress. 761.200 Section 761.200 Mineral... to underground coal mining in areas designated by Act of Congress. OSM has adopted the following... or limited. Subsidence due to underground coal mining is not included in the definition of...

  2. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to underground coal mining in areas designated by Act of Congress. 761.200 Section 761.200 Mineral... to underground coal mining in areas designated by Act of Congress. OSM has adopted the following... or limited. Subsidence due to underground coal mining is not included in the definition of...

  3. A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1978-01-01

    Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.

  4. Underground coal gasification field experiment in the high-dipping coal seams

    SciTech Connect

    Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W.

    2009-07-01

    In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

  5. Aspects and Strategies of Numerical Modelling of Underground Coal Fires

    NASA Astrophysics Data System (ADS)

    Wuttke, M. W.; Han, J.; Liu, G.; Kessels, W.; Schmidt, M.; Gusat, D.; Fischer, Chr.; Hirner, A.; Meyer, U.

    2009-04-01

    Numerical modelling of underground coal fires has become a valuable tool even for practical fire extinction work. The approaches, methods and finally codes that are used depend on the targets that are aimed at by the particular modelling task. The most general one is to fully understand the processes that sustain or suppress the fire. Another purpose is to produce realistic data for regions that are not accessible (e . g. underneath a burning coal seam) or couldn't be investigated (e.g due to limited resources) to estimate the complete energy budget of the fire. Last but not least one would like to forecast the fire dynamics to predict the future damage or to assess the effectivenees of extinction work. These purposes require the consideration of all aspects with respect to thermal, hydraulic, mechanical and chemical (THMC) processes. At the moment there is no single code that completely covers all these aspects with every degree of complexity. Within the Sino-German project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in North China" we apply existing codes with different foci with respect to THMC processes and try to combine all codes to one comprehensive model. Besides the sophisticated academic modelling approach we also pursue the concept of "Onsite" modelling to enable fire fighting personnel to perform simplified modelling tasks even by means of web-based applications.

  6. Case study of underground-coal-mining productivity in Utah

    SciTech Connect

    Hannah, R.L.

    1981-01-01

    Reasons for the wide variance in productivity levels among underground-coal-mining firms in Utah are examined. Related objectives are to test the feasibility of relying on in-depth field research in the coal industry to clarify relationships and develop more-useful perspectives concerning productivity, to demonstrate in detail the considerable variance in productivity levels among firms, and to suggest more-useful hypotheses for further research. The methodology employed is a series of case studies of individual firms which include in-depth interviews, mine tours, and the collection of firm-specific data. Results indicate that, in the Utah case, the industrial-relations environment is the key to analyzing the determinants of productivity differences. However, this view of industrial relations encompasses more than the traditional area of labor-management relations. From the most-narrow perspective, it focuses on the impact on productivity of the differences in internal-labor-market organizations and functions in union and nonunion firms. From a broader perspective it includes such variables as the impact of the United Mine Workers of America on management philosophy, the work ethic and motivation of miners, and the impact of the size of the firm. The most general interpretation of the industrial-relations framework of analysis concerns the evolution of mine ownership patterns in Utah. The suggestion from this more historical view is that institutional forces have dictated the pattern of acquisition of union and nonunion coal operators.

  7. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  8. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  9. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  10. Economic baselines for current underground coal mining technology

    NASA Technical Reports Server (NTRS)

    Mabe, W. B.

    1979-01-01

    The cost of mining coal using a room pillar mining method with continuous miner and a longwall mining system was calculated. Costs were calculated for the years 1975 and 2000 time periods and are to be used as economic standards against which advanced mining concepts and systems will be compared. Some assumptions were changed and some internal model stored data was altered from the original calculations procedure chosen, to obtain a result that more closely represented what was considered to be a standard mine. Coal seam thicknesses were varied from one and one-half feet to eight feet to obtain the cost of mining coal over a wide range. Geologic conditions were selected that had a minimum impact on the mining productivity.

  11. Free chest x rays for working underground coal miners: questions and answers

    SciTech Connect

    Not Available

    1987-01-01

    This pamphlet provides information on free chest x rays available to working underground coal miners under the Federal Coal Mine Health and Safety Act of 1969. The Act provided that underground coal miners were eligible to participate in a chest x-ray program for the diagnosis of coal-worker's pneumoconiosis. Topics discussed in this pamphlet included coal workers' pneumoconiosis, mine operator payment for x-ray examinations of workers, arrangements for examinations, interpretation of the x rays by physicians, notification of the results, additional medical information from the x-ray examination, black-lung benefits, and general benefits of participation in the examination program.

  12. Proceedings of the ninth annual underground coal gasification symposium

    SciTech Connect

    Wieber, P.R.; Martin, J.W.; Byrer, C.W.

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  13. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds... employee may benefit from his or her holding in or salary from coal mining operation. Direct...

  14. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated coal mines, notification by the operator... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous §...

  15. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect

    2007-06-15

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  16. Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report

    SciTech Connect

    1981-01-01

    This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

  17. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Narayanan, K.S.; Urbina, R.H.; Diao, J.; Yin, Y.; Harris, G.; Hu, Weibei; Zou, Y.; Chen, W.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Xhong, K.; Xiao, L.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.; Utah Univ., Salt Lake City, UT; Columbia Univ., New York, NY; Praxis Engineers, Inc., Milpitas, CA )

    1989-08-15

    The primary goal of this project is to develop advanced flotation methods for coal cleaning in order to achieve 90% pyritic sulfur removal at 90% Btu yield, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is an important aspect of the project objectives. Large quantities of coal samples have been procured from six major seams. Samples of the same coals are also to be supplied to the University of Pittsburgh for selective agglomeration research. A second objective is to investigate factors involved in the progressive weathering and oxidation of coal stored in three storage modes, namely, open, covered and in an argon-inerted atmosphere, over a period of twelve months. After regular intervals of weathering, samples of the three base coals are to be collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered coals. Work is divided into 8 tasks: (1) project work plan; (2) coal procurement and weathering; (3) coal characterization; (4) standard beneficiation test; (5) grinding studies; (6) surface modification studies; (7) exploratory R D and support; and (8) task integration and project management. 8 refs., 50 figs., 38 tabs.

  18. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Narayanan, K.S.; Herrera-Urbina, R.; Diao, J.; Yin, Y.; Sotillo, F.; Harris, G. ); Hu, Weibei; Zou, Y.; Chen, W. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Xhong, K.; Xiao, L. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Mi

    1990-02-28

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve 90% pyritic sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is an important aspect of the project objectives. The effect of the following additives on flotation response was investigated. These include methanol lethanol, butylbenzaldehyde, glyoxal and several monomers. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been stored in three storage modes, namely, open, covered and in an argon-inerted'' atmosphere, over a period of twelve months. 33 refs., 134 figs., 98 tabs.

  19. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  20. Pneumoconiosis and advanced occupational lung disease among surface coal miners--16 states, 2010-2011.

    PubMed

    2012-06-15

    Coal workers' pneumoconiosis (CWP) is a chronic occupational lung disease caused by long-term inhalation of dust, which triggers inflammation of the alveoli, eventually resulting in irreversible lung damage. CWP ranges in severity from simple to advanced; the most severe form is progressive massive fibrosis (PMF). Advanced CWP is debilitating and often fatal. To prevent CWP, the Coal Mine Health and Safety Act of 1969 established the current federal exposure limit for respirable dust in underground and surface coal mines. The Act also established a surveillance system for assessing prevalence of pneumoconiosis among underground coal miners, but this surveillance does not extend to surface coal miners. With enforcement of the exposure limit, the prevalence of CWP among underground coal miners declined from 11.2% during 1970-1974 to 2.0% during 1995-1999, before increasing unexpectedly in the last decade, particularly in Central Appalachia. Exposure to respirable dust is thought to be less in surface than underground coal miners. Although they comprise 48% of the coal mining workforce, surface coal miners have not been studied since 2002. To assess the prevalence, severity, and geographic distribution of pneumoconiosis among current surface coal miners, CDC obtained chest radiographs of 2,328 miners during 2010-2011 through the Coal Workers' Health Surveillance Program of the National Institute for Occupational Safety and Health (NIOSH). Forty-six (2.0%) of 2,257 miners with >1 year of surface mining experience had CWP, including 37 who had never worked underground. Twelve (0.5%) had PMF, including nine who had never worked underground. A high proportion of the radiographs suggested silicosis, a disease caused by inhalation of crystalline silica. Surface coal mine operators should monitor worker exposures closely to ensure that both respirable dust and silica are below recommended levels to prevent CWP. Clinicians should be aware of the risk for advanced

  1. Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary

    SciTech Connect

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

  2. Analysis on Underground Coal Mining Subsidence Using Small Baseline InSAR in Yunjialing Mining Areas

    NASA Astrophysics Data System (ADS)

    Yan, Dapeng; Yang, Jin; Zeng, Qiming

    2013-01-01

    66.6 percent of China's energy production come from underground coal mining (fig. 1.) Hundreds of mining cities were affected by mining subsidence. Long-term underground mining activities ,which results in large areas of mined areas, are threatening the local ecological environment and people property.Coal mining development has become a major factor of restricting local economic and threatening the safety of future mine production. The research on mining subsidence takes a important practical significance.

  3. METHOD FOR ESTIMATING METHANE EMISSIONS FROM UNDERGROUND COAL MINES: PRELIMINARY FINDINGS

    EPA Science Inventory

    The paper discusses the development of an improved method for estimating global methane (CH4) emissions from underground coal mining. ince emissions data presently not available for surface mines, this method is currently restricted to underground mines. The EPA has embarked on a...

  4. Regional price targets appropriate for advanced coal extraction

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Whipple, D. M.

    1980-01-01

    A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.

  5. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (United

    1991-07-30

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from three major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is the main aspect of the project objectives. The results of this research are to be made available to ICF Kaiser Engineers who are currently working on the Engineering Development of Advanced Flotation under a separate contract with DOE under the Acid Rain Control Initiative program. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying degrees of weathering, namely, open to the atmosphere, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals of weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. 29 figs., 29 tabs.

  6. Structural implications of underground coal mining in the Mesaverde Group in the Somerset Coal Field, Delta and Gunnison Counties, Colorado

    SciTech Connect

    Christopher J. Carroll; Eric Robeck; Greg Hunt; Wendell Koontz

    2004-07-01

    Paleogene and Neogene faults and fractures on the eastern edge of the Colorado Plateau are present in Mesaverde Group coal and sandstone beds. Recent observations of coal cleat orientation in relation to faults in coal mines have significant impacts for mine planning in the area. Faults, coal cleats, and natural fractures are interpreted to show a structural evolution of the Mesaverde Group through time. This field trip included a visit to two active underground coal mines, the Bowie Resources' Bowie No. 2 Mine, and Mountain Coal's West Elk Mine. Mine geologists discussed structural styles including fault orientations and timing, cleat development, and rotation. Geologic encounters ranging from fault flooding, subsidence, mine fires, methane gas problems, and land use restrictions were also discussed. Coal cleat development and open-mode fractures in adjacent sandstones were observed on outcrops and compared to underground measurements in coal mines in the Somerset Coal Field, Colorado's most productive. Coal cleat orientations along a reverse fault in one mine showed rotation in relation to possible Neogene age displacement.

  7. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (United Stat

    1991-05-15

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from three major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is the main aspect of the project objectives. Research topics covered during this quarter include the characterization of the base coals, various flotation studies on optimization and pyrite rejection, and a detailed flotation kinetic study. The effect of hexanol, butanol, dodecane, and polyethylene glycol on flotation is described. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying weathered degrees, namely, open, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals if weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. 35 figs., 17 tabs.

  8. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J.; Yin, Y. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1990-05-31

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. The ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is an important aspect of the project objectives. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying weathered degrees, namely, open, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals of weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. Progress is described on weathering, washability studies (calorific value, ash analysis, pyritic sulfur rejection, variability analysis), coal grinding and flotation, pH effects and modification of surfaces on flotation. 26 figs., 20 tabs.

  9. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  10. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014

    PubMed Central

    Torres Rey, Carlos Humberto; Ibañez Pinilla, Milciades; Briceño Ayala, Leonardo; Checa Guerrero, Diana Milena; Morgan Torres, Gloria; Groot de Restrepo, Helena; Varona Uribe, Marcela

    2015-01-01

    In Colombia, coal miner pneumoconiosis is considered a public health problem due to its irreversibility, high cost on diagnosis, and lack of data related to its prevalence in the country. Therefore, a cross-sectional study was carried out in order to determine the prevalence of pneumoconiosis in underground coal mining workers in two regions of Colombia. The results showed a 35.9% prevalence of pneumoconiosis in the study group (42.3% in region 1 and 29.9% in region 2). An association was found between a radiologic diagnosis of pneumoconiosis and a medium risk level of exposure to carbon dust (OR: 2.901, 95% CI: 0.937, 8.982), medium size companies (OR: 2.301, 95% CI: 1.260–4.201), length of mining work greater than 25 years (OR: 3.222, 95% CI: 1.806–5.748), and a history of smoking for more than one year (OR: 1.479, 95% CI: 0.938–2.334). These results establish the need to generate an intervention strategy aimed at preventing the identified factors, as well as a timely identification and effective treatment of pneumoconiosis in coal miners, in which the commitment of the General Health and Social Security System and the workers compensation system is ensured. PMID:26366418

  11. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014.

    PubMed

    Torres Rey, Carlos Humberto; Ibañez Pinilla, Milciades; Briceño Ayala, Leonardo; Checa Guerrero, Diana Milena; Morgan Torres, Gloria; Groot de Restrepo, Helena; Varona Uribe, Marcela

    2015-01-01

    In Colombia, coal miner pneumoconiosis is considered a public health problem due to its irreversibility, high cost on diagnosis, and lack of data related to its prevalence in the country. Therefore, a cross-sectional study was carried out in order to determine the prevalence of pneumoconiosis in underground coal mining workers in two regions of Colombia. The results showed a 35.9% prevalence of pneumoconiosis in the study group (42.3% in region 1 and 29.9% in region 2). An association was found between a radiologic diagnosis of pneumoconiosis and a medium risk level of exposure to carbon dust (OR: 2.901, 95% CI: 0.937, 8.982), medium size companies (OR: 2.301, 95% CI: 1.260-4.201), length of mining work greater than 25 years (OR: 3.222, 95% CI: 1.806-5.748), and a history of smoking for more than one year (OR: 1.479, 95% CI: 0.938-2.334). These results establish the need to generate an intervention strategy aimed at preventing the identified factors, as well as a timely identification and effective treatment of pneumoconiosis in coal miners, in which the commitment of the General Health and Social Security System and the workers compensation system is ensured. PMID:26366418

  12. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  13. Coal and Coal Constituent Studies by Advanced EMR Techniques.

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.; Ceroke, P.J.

    1997-09-30

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on a high frequency EMR system particularly appropriate for such studies and on low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  14. COAL AND COAL CONSTITUENT STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson

    1997-03-28

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, progress was made on setting up a separate high frequency EMR system particularly appropriate for such studies and exploring the use of low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles.

  15. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J.; De, A. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1991-03-22

    The main goal of the project is to characterize the surface and control the behavior of coal during advanced flotation processing in order to achieve an overall objective of near-total pyritic sulfur removal with a high Btu recovery. Also, investigation of the effects of weathering on the surface characteristics of coal is another important aspect of this project. The effect of butanol, dodecane, lime, calcium cyanide, hydrogen peroxide, and ph on flotation performance is discussed. 2 refs., 26 figs., 18 tabs.

  16. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  17. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Narayanan, K.S.; Sotillo, F.; Diao, J.; Yin, Y.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Xhong, K.; Xiao, L. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A. (Praxis Engineers, Inc

    1990-02-12

    The primary goal of this research project is to develop advanced flotation methods for coal cleaning in order to achieve 90{percent} pyritic sulfur removal at 90{percent} Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6{percent} or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is an important aspect of the project objectives. A second major objective is to investigate factors involved in the progressive weathering and oxidation of three base coals stored in three storage modes, namely, open, covered and in an argon-inerted atmosphere, over a period of twelve months. This quarter results are presented under the following topics: effect of ph modifiers on flotation performance; effect of anionic reagents during grinding; effect of organic monomers; effect of non-ionic reagents; grinding with collector and flotation kinetics; and flotation behavior of weathered coals. (CBS)

  18. TRW advanced slagging coal combustor utility demonstration

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

  19. Feasibility study for underground coal gasification at the Krabi Coal Mine site, Thailand. Final report

    SciTech Connect

    Boysen, J.; Sole, J.; Schmit, C.R.; Harju, J.A.; Young, B.C.

    1997-01-01

    This study, conducted by Energy and Environmental Research Center, was funded by the U.S Trade and Development Agency. The report summarizes the accomplishments of field, analytical data evaluation and modeling activities focused on assessment of underground coal gasification (UCG) feasibility at Krabi over a two year period. The overall objective of the project was to determine the technical issues, environmental impact, and economic of developing and commercializing UCG at the site in Krabi. The report contains an Executive Summary followed by these chapters: (1) Project Overview; (2) Project Site Characterization; (3) Inorganic and Thermal Materials Characterization; (4) Technical and Economic Feasibility of UCG At the Krabi Site; (5) Conclusions and Recommendations; (6) Acknowledgments; (7) References.

  20. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  1. The knowledge of underground coal gasification (UCG) applied to coalbed methane extraction (CBM) and natural coal fires (NCF)

    SciTech Connect

    Wolf, K.H.A.A.; Hettema, M.H.H.; Bruining, J.; Schreurs, H.C.E.

    1997-12-31

    This paper will give a general view on the application of underground coal gasification (UCG) for the improvement of coalbed methane (CBM) production enhancement and the utilization of natural coal fires (NCF). In general UCG techniques will improve the opportunities for the enhancement and utilization of potential energy sources. When all options, UCG, CBM and NCF are placed in a Clean Coal Exploitation Program, it can be divided into a ``cold program`` and a ``hot program.`` In a cold program the authors propose the development and exploitation of second generation cold coal-energy, i.e., coal gas extraction (CBM). The hot program considers the activities in which in-situ burning coals make the core issue for exploitation (UCG, NCF). In both programs UCG-technologies could be important tools for energy acquisition and production improvement.

  2. Moving baseline for evaluation of advanced coal-extraction systems

    SciTech Connect

    Bickerton, C.R.; Westerfield, M.D.

    1981-04-15

    This document reports results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000. Systems used in this study were selected from contemporary coal mining technology and from conservative conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam thickness. To be more beneficial to the program, the effort should be extended to other seam thicknesses. This document is one of a series which describe systems level requirements for advanced underground coal mining equipment. Five areas of performance are discussed: production cost, miner safety, miner health, environmental impact, and recovery efficiency. The projections for cost and production capability comprise a so-called moving baseline which will be used to assess compliance with the systems requirement for production cost. Separate projections were prepared for room and pillar, longwall, and shortwall technology all operating under comparable sets of mining conditions. This work is part of an effort to define and develop innovative coal extraction systems suitable for the significant resources remaining in the year 2000.

  3. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  4. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  5. Analysis of Seismicity Recorded at an Underground Coal Mine During a Fatal Fire and Explosion Sequence

    NASA Astrophysics Data System (ADS)

    Swanson, P. L.

    2002-12-01

    On July 31, 2000 a sequence of four explosions occurred at the Willow Creek underground coal mine (Helper, UT) killing two miners and injuring 8 others. An investigation by the Mine Safety and Health Administration (MSHA) points to a roof fall as the most likely source of ignition of methane and other gaseous hydrocarbons which led to the explosions. NIOSH operated a seismic monitoring system at the mine in 1998-2000. Seismicity recorded by the underground array prior to and during the explosion sequence has been analyzed in an attempt to place constraints on the initial ignition source. Velocity sensors (4.5 Hz) were deployed in a 12-station underground array measuring 0.9 by 2.2 km. Throughout mining of the D-3 longwall panel, rates of seismic event occurrence, face advance, and methane accumulation were observed to be closely correlated indicating a strong association between longwall caving/deformation processes and gas release. At the approximate time of the first explosion a low-amplitude, emergent multiple-pulse seismic signal was observed which is interpreted to be the seismic signature of the first explosion. Features characteristic of caving- or fracture-related events are absent indicating that it was not accompanied nor preceded by such an event at least within the few seconds of recorded pre-trigger time. The preceding seismic event that was large enough to be recorded by the seismic monitoring system occurred 11 minutes before the first explosion. This observation does not rule out the possibility of a smaller fall that may have been ejected into the mine opening with damaging force but was not large enough to produce a seismic event that triggered the system. Consequently, the data appear incapable of supporting or refuting a rock fall as the ignition source. Seismic events were not recorded at the estimated times of the other three explosions.

  6. A Look into Miners' Health in Prevailing Ambience of Underground Coal Mine Environment

    NASA Astrophysics Data System (ADS)

    Dey, N. C.; Pal, S.

    2012-04-01

    Environmental factors such as noise, vibration, illumination, humidity, temperature and air velocity, etc. do play a major role on the health, comfort and efficient performance of underground coal miners at work. Ergonomics can help to promote health, efficiency and well being of miners and to make best use of their capabilities within the ambit of underground coal mine environment. Adequate work stretch and work-rest scheduling have to be determined for every category of miners from work physiology point of view so as to keep better health of the miners in general and to have their maximum efficiency at work in particular.

  7. Respiratory impairment and symptoms as predictors of early retirement with disability in US underground coal miners

    SciTech Connect

    Ames, R.G.; Trent, R.B.

    1984-08-01

    A five-year prospective study of 1,394 United States underground coal miners was undertaken to study the effects of respiratory impairment on the rate of early retirement with disability (ERD). Using a logistic regression analysis, ERD was found to be related to reported persistent phlegm after adjustment was made for other respiratory symptoms, respiratory function measurements, cigarette smoking, and some demographic characteristics. No prediction of ERD occurred for spirometrically determined measures of respiratory function. The data thus give limited support to the hypothesis that early retirement with disability in underground coal miners can be predicted prospectively by measures of respiratory symptoms.

  8. Prevalence and Associated Factors of Depressive Symptoms among Chinese Underground Coal Miners

    PubMed Central

    Liu, Li; Wang, Lie; Chen, Jie

    2014-01-01

    Although underground coal miners are quite susceptible to depressive symptoms due to a highly risky and stressful working environment, few studies have focused on this issue. The purpose of the study was to evaluate the prevalence of depressive symptoms and to explore its associated factors in this population. A cross-sectional survey was conducted in a coal-mining population in northeast China. A set of self-administered questionnaires was distributed to 2500 underground coal miners (1,936 effective respondents). Depressive symptoms, effort-reward imbalance (ERI), overcommitment (OC), perceived physical environment (PPE), work-family conflict (WFC), and some demographic and working characteristics were measured anonymously. The prevalence of depressive symptoms was 62.8%, and the mean level was 20.00 (9.99). Hierarchical linear regression showed that marital status, education, monthly income, and weekly working time were significantly associated with depressive symptoms. A high level of depressive symptoms was significantly associated with high ERI, PPE, WFC, and OC. Accordingly, most Chinese underground coal miners probably have depressive symptoms that are mainly predicted by some occupational psychosocial factors. Efforts should be made to develop strategies to reduce ERI and OC, improve physical working environment, and care for workers' family well-being, thereby mitigating the risk of depression among Chinese underground coal miners. PMID:24707503

  9. Steady-state model for estimating gas production from underground coal gasification

    SciTech Connect

    Greg Perkins; Veena Sahajwalla

    2008-11-15

    A pseudo-one-dimensional channel model has been developed to estimate gas production from underground coal gasification. The model incorporates a zero-dimensional steady-state cavity growth submodel and models mass transfer from the bulk gas to the coal wall using a correlation for natural convection. Simulations with the model reveal that the gas calorific value is sensitive to coal reactivity and the exposed reactive surface area per unit volume in the channel. A comparison of model results with several small-scale field trials conducted at Centralia in the U.S.A. show that the model can make good predictions of the gas production and composition under a range of different operating conditions, including operation with air and steam/oxygen mixtures. Further work is required to determine whether the model formulation is also suitable for simulating large-scale underground coal gasification field trials.

  10. Steady advance of coal and gas bursts

    NASA Astrophysics Data System (ADS)

    Shanbing, Yu

    1988-02-01

    This paper establishes a one-dimensional model to analyse the mechanism of coal and gas bursts. It is found that the intrinsic factor governing bursts is the coupling of the initiation of the moving of coal fragments with the gas seepage. A typical (strong) burst can be treated as a steady advance process. The significant dimensionless parameters concerning bursts and an approximate burst criterion are given, and they are in good agreement with the statistics of field data.

  11. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  12. Identifying underground coal mine displacement through field and laboratory laser scanning

    NASA Astrophysics Data System (ADS)

    Slaker, Brent; Westman, Erik

    2014-01-01

    The ability to identify ground movements in the unique environment of an underground coalmine is explored through the use of laser scanning. Time-lapse scans were performed in an underground coal mine to detect rib surface change after different volumes of coal were removed from the mine ribs. Surface changes in the rib as small as 57 cm3 were detected through analysis of surface differences between triangulated surfaces created from point clouds. Results suggest that the uneven geometry, coal reflectance, and small movements of objects and references in the scene due to ventilation air do not significantly influence monitoring ability. Time-lapse scans were also performed on an artificial coal rib constructed to allow the researchers to control deformation and error precisely. A test of displacement measurement precision showed relative standard deviations of <0.1% are attainable with point cloud densities of >3200 pts/m2. Changing the distance and angle of incidence of the artificial coal rib to the scanner had little impact on the accuracy of results beyond the expected reduction due to a smaller point density of the target area. The results collected in this study suggest that laser scanning can be a useful, comprehensive tool for measuring ground change in an underground coal mining environment.

  13. Controlling air toxics through advanced coal preparation

    SciTech Connect

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L.

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  14. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... both. (c) Employees are encouraged to review regulations contained in 30 CFR part 706 which pertain to... mining operations. 20.402 Section 20.402 Public Lands: Interior Office of the Secretary of the Interior... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining...

  15. 75 FR 57849 - Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ...- Hands-on training for miners in the use of self-contained self-rescue (SCSR) devices (52 FR 24373, June 30, 1987); Training and mine evacuation procedures for underground coal mines (67 FR 76658, Dec. 12... emergency evacuations (71 FR 12252, Mar. 9, 2006); and Sealing of abandoned areas (72 FR 28797, May 22,...

  16. 76 FR 54163 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... the Federal Register on February 1, 2010 (75 FR 5009). The comment period closed on April 2, 2010..., crushing, and striking accidents. Commenters stated that conditions in the mining environment, including... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor....

  17. SITE SELECTION AND DESIGN FOR MINIMIZING POLLUTION FROM UNDERGROUND COAL MINING OPERATIONS

    EPA Science Inventory

    The objectives of this study were to determine how best to select a layout and mining system and also to develop and operate an underground coal mine while at the same time minimizing pollution of the environment. The pre-mining environment was assessed by sampling Cedar Creek 3 ...

  18. Coal-underground fatalities: Second half, 1990. Abstracts with illustrations. Analysis and suggested uses

    SciTech Connect

    Not Available

    1990-01-01

    The 1990 Fatal Illustration Program is divided into four categories or subject areas. These categories are underground coal mining; surface coal mining; underground metal/nonmetal mining; and surface metal/nonmetal mining. Fatalities in each category are grouped by accident type. The materials in the unit include illustrated abstracts (summaries) of all chargeable underground coal mining fatalities for the second six months of 1990 accompanied by 35mm slides. A statistical analysis is included for fatalities that occurred during July through December 1990. The analysis examines the following areas: the victim's experience, the accident classification, the victim's occupation, and the size of the mine where the fatality occurred. Tables are included in the package. They are divided into first half and second half data for 1990. The tables tabulate age and experience of the victim, accident classification and occupation of the victim, and mine size and location of the accident. A slide index is also included which helps locate fatalities for a particular occupation, accident classification, location, and mine size. Twenty-six fatal accidents occurred at underground coal mines during July through December 1990.

  19. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF LABOR Mine... Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page 17529... MINE EQUIPMENT AND ACCESSORIES Appendix I to Subpart D On page 17549, in Appendix I to Subpart D,...

  20. Underground-noise interference effects of the personal respirable coal-mine-dust sampler

    SciTech Connect

    Giardino, D.A.

    1981-01-01

    The primary purpose of this study is to determine the potential interference effects of the noise emitted by the MSA Model G and Bendix Model 3900 personal respirable coal mine dust samplers in relation to underground warning and communication signals. The first part of the investigation involves the acoustical characterization of noise radiated by the dust samplers in terms of noise level and spectral content. In the second part of the study, these data are compared to the noise levels and octave band spectra of warning signals (roof talk and emergency alarms) and voice communication signals. Finally, the health hazard potential for hearing loss due to dust sampler noise is examined. It can be concluded that the noise emissions from either the MSA Model G or the Bendix Model 3900 dust samplers: will not, for all practical purposes, significantly interfere with face to face verbal communications between individuals at the face of an underground coal mine; will not significantly interfere with telephone communications as conducted in an underground coal mine; will not significantly interfere with the miner's ability to hear roof talk acoustic signals; will not significantly interfere with the miner's ability to hear warning signals such as emergency alarams as used in an underground coal mine; and will not be a health hazard to miners-that is, prolonged or extended exposure will not cause hearing loss.

  1. Applying hierarchical loglinear models to nonfatal underground coal mine accidents for safety management.

    PubMed

    Onder, Mustafa; Onder, Seyhan; Adiguzel, Erhan

    2014-01-01

    Underground mining is considered to be one of the most dangerous industries and mining remains the most hazardous occupation. Categorical analysis of accident records may present valuable information for preventing accidents. In this study, hierarchical loglinear analysis was applied to occupational injuries that occurred in an underground coal mine. The main factors affecting the accidents were defined as occupation, area, reason, accident time and part of body affected. By considering subfactors of the main factors, multiway contingency tables were prepared and, thus, the probabilities that might affect nonfatal injuries were investigated. At the end of the study, important accident risk factors and job groups with a high probability of being exposed to those risk factors were determined. This article presents important information on decreasing the number accidents in underground coal mines. PMID:24934420

  2. Critical parameters for coarse coal underground slurry haulage systems

    NASA Technical Reports Server (NTRS)

    Maynard, D. P.

    1981-01-01

    Factors are identified which must be considered in meeting the requirements of a transportation system for conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location neat the mine entrance or to a coal preparation plant located near the surface. For successful operation, the slurry haulage the system should be designed to operated in the turbulent flow regime at a flow rate at least 30% greater than the deposition velocity (slurry flow rate at which the solid particles tend to settle in the pipe). The capacity of the haulage system should be compatible with the projected coal output. Partical size, solid concentration, density, and viscosity of the suspension are if importance as well as the selection of the pumps, pipes, and valves. The parameters with the greatest effect on system performance ar flow velocity, pressure coal particle size, and solids concentration.

  3. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  4. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  5. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  6. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  7. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  8. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Safety, Training programs, Underground mining. Authority: 30 U.S.C. 811. Dated: November 12, 2013. Joseph... refuge alternatives on December 31, 2008 (73 FR 80656), establishing requirements for refuge alternatives... response to the Court's decision, MSHA reopened the record on August 8, 2013 (78 FR 48592) and the...

  9. Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Youngberg, A.D.

    1984-01-01

    The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

  10. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; requirements. 75.1721 Section 75.1721 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75... prior to opening, reopening or reactivating the mine notify the Coal Mine Health and Safety......

  11. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; requirements. 75.1721 Section 75.1721 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75... prior to opening, reopening or reactivating the mine notify the Coal Mine Health and Safety......

  12. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; requirements. 75.1721 Section 75.1721 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75... prior to opening, reopening or reactivating the mine notify the Coal Mine Health and Safety......

  13. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; requirements. 75.1721 Section 75.1721 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75... prior to opening, reopening or reactivating the mine notify the Coal Mine Health and Safety......

  14. Combination air-blown and oxygen-blown underground coal gasification process

    SciTech Connect

    Puri, R.; Arri, L.E.; Gash, W.

    1987-05-05

    A method is described of underground coal gasification in a coal seam between linked injection and production wells comprising igniting coal located between the wells, injecting steam and oxygen into the coal seam through the injection well to maintain combustion between the wells thereby producing a medium-Btu gas. The Btu content of the gas is gradually decreased, switching to air injection into the coal seam through the injection well when the Btu content has reached a predetermined point thereby continuing combustion with the production of a low-Btu content gas suitable for consumption at facilities located on the surface in the vicinity of the seam for the production of utilities required at the seam.

  15. Advanced clean coal utilization technologies

    SciTech Connect

    Moritomi, Hiroshi

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  16. A review of the factors influencing the physicochemical characteristics of underground coal gasification

    SciTech Connect

    Yang, L.H.

    2008-07-01

    In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

  17. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... INFORMATION: On August 8, 2013 (78 FR 48593), MSHA published a Request for Information on Refuge Alternatives... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Mine... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for...

  18. Rock mass response to the decline in underground coal mining

    SciTech Connect

    Holub, K.

    2006-01-15

    Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

  19. Evaluation of occupational fatalities among underground coal mine workers through hierarchical loglinear models.

    PubMed

    Onder, Mustafa; Adiguzel, Erhan

    2010-01-01

    Despite the all precautions, underground coal mining is one of the dangerous industries owing to fatal occupational accidents. Accidents are complicated events to which many factors effect on their formation and preventing them is only possible by the analyses of the accident occurred in past and by straight evaluation of the obtained results. In this study, hierarchical loglinear analysis method was implemented to occupational fatalities occurred in the period of 1980-2004 in the five underground coal mines of Turkish Hardcoal Enterprises which has the most important coal production areas in Turkey. The accident records were evaluated and the main factors affecting the accidents were defined as mine, miners' age, occupation, and accident type. By taking into account the sub factors of the main factors, multi way contingency tables were prepared and thus, the probabilities might effect fatality accidents were investigated. At the end of this study, it was found that the mostly affected job group by the fatality accidents was the production workers and additionally, these workers were mostly exposed to roof collapses and methane explosions. Moreover, important accident risk factors and the occupational job groups which have high probability to be exposed to these risk factors were determined and important information about decreasing the accidents in the underground coal mines were presented. PMID:20616472

  20. Evaluation of electricity generation from underground coal fires and waste banks

    SciTech Connect

    Chiasson, A.D.; Yavuzturk, C.; Walrath, D.E.

    2007-06-15

    A temperature response factors model of vertical thermal energy extraction boreholes is presented to evaluate electricity generation from underground coal fires and waste banks. Sensitivity and life-cycle cost analyses are conducted to assess the impact of system parameters on the production of 1 MW of electrical power using a theoretical binary-cycle power plant. Sensitivity analyses indicate that the average underground temperature has the greatest impact on the exiting fluid temperatures from the ground followed by fluid flow rate and ground thermal conductivity. System simulations show that a binary-cycle power plant may be economically feasible at ground temperatures as low as 190 {sup o}C.

  1. TRW Advanced Slagging Coal Combustor Utility Demonstration

    SciTech Connect

    Not Available

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  2. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  3. Advanced systems for producing superclean coal

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

    1990-08-01

    The purpose of this project was to develop several advanced separation processes for producing superclean coal containing 0.4--2.0% ash and very little pyritic sulfur. Three physical and physico-chemical processes were studied: microbubble flotation, selective hydrophobic coagulation, and electrochemical coal cleaning. Information has been collected from bench-scale experiments in order to determine the basic mechanisms of all three processes. Additionally, because microbubble flotation has already been proven on a bench scale, preliminary scale-up models have been developed for this process. A fundamental study of the electrochemistry of coal pyrite has also been conducted in conjunction with this scale-up effort in order to provide information useful for improving sulfur rejection. The effects of additives (NaCl and kerosene) were also investigated. 94 refs., 167 figs., 25 tabs.

  4. Underground coal operators install several new longwall mining systems

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Several new names appear in the annual US Longwall Census, but the population remains the same: 52 although the number of longwall mines dropped from 40 to 47. CONSOL Energy remains the leader with 12 faces. Robert E. Murray owns 8 longwall mines followed by Arch Coal with 5 and Foundation Coal with 3. West Virginia has 13 longwalls followed by 9 in Pennsylvania, 7 in Utah and 6 in Alabama. The article describes CONSOL Energy's operations. A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries, depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs.

  5. A communication and monitoring system for an underground coal mine, iron ore mine, and deep underground silver mine. Open file report Jun 73-Mar 78

    SciTech Connect

    Bergeron, A.A.; Collins, R.L.; Michels, J.L.

    1981-11-01

    Advanced communication and monitoring systems were developed and demonstrated in three underground mines representing different mining techniques, geographical areas, and material mined. The first was a large coal mine in western Pennsylvania using room-and-pillar techniques and continuous mining methods. The system developed provided private telephone channels, environmental monitoring, and control of underground equipment, all on a single coaxial cable, with all system operations under the direction of a minicomputer. The second was a magnetite ore mine in eastern Pennsylvania that used block caving mining techniques. A radio system was developed that provided two-way communications between trackless vehicles and roving personnel. A unique system of uhf-vhf repeaters combined with a 'leaky-feeder' transmission line offered operational and emergency features not previously found in mine communication systems. The third was a deep silver mine in the Cour d'Alene district of Idaho. This system utilizes a single wire pair to provide up to 14 voice channels. A combination of PBX, telephone carrier systems, and intercoms offered private conversations, selective signaling, and emergency backup communications.

  6. Coal: Second half 1992 surface and underground fatalities. Abstracts with illustrations. Analysis and suggested uses

    SciTech Connect

    1994-12-31

    The 1992 Fatal Illustration Program is divided into two categories or subject areas. These categories are coal mining and metal/nonmetal mining. The materials in this unit include illustrated abstracts (summaries) of all chargeable surface and underground coal mining fatalities for the second six months of 1992 accompanied by 35mm slides. A statistical analysis is also included for fatilities that occurred during July through December 1992. The analysis examines the following areas: the victim`s ages, mining experiences and occupations, accident classifications, and the size of the mines where the fatalities occurred. Tables are included in this package.

  7. Resin grouted cable bolts as primary roof support in an underground coal mine

    SciTech Connect

    Bunnell, M.; Gillespie, D.

    1995-12-31

    A number of underground coal mines in the U.S. have been utilizing resin grouted cable bolts as a means of supplemental roof support in a variety of applications. These applications typically involve supplemental longwall tailgate and bleeder support to eliminate the use of wood cribbing or other forms of tailgate support. Due to occasional problems with lateral shearing of primary roof bolts, a test was conducted in a western U.S. underground coal mine to determine if cable bolts (in the 7 to 10 ft. length range) could be effectively installed in lieu of standard fully grouted resin bolts to help eliminate the need for replacement of sheared roof bolts and improve roof safety in areas where horizontal shifting of strata is likely. Primary bolting with resin grouted cable bolts appears to be a viable roof control option, particularly in areas where lateral shifting is expected in the immediate roof strata or where additional strength or yield capacity is required.

  8. Qualitative Assessment of Strata Control in an Indian Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Ala, Charan Kumar; Tripathy, Debi Prasad

    2016-04-01

    A prerequisite to reduction in the number of roof/side fall occurrences—a stated goal of DGMS for enhancing workmen safety in underground coal mines—is risk identification through application of appropriate assessment techniques. This article presents the outcome of a study undertaken to identify, analyse and evaluate the roof/side fall risks. WRAC and Risk Matrix tools have been used to provide a qualitative measure of the risk magnitude. Outcomes of a case study performed in an Indian underground coal mine are presented in the present work. It could be inferred that hazard severity increased because of the existence of "geological disturbances and weak roof and sides". Operational lacunae, such as non-determination of RMR, non-framing of SSR, and non-availability of support material, enhance roof/side fall risks.

  9. Methane control for underground coal mines. Information circular/1994

    SciTech Connect

    Diamond, W.P.

    1993-01-01

    The paper describes the history and technology of methane drainage in the United States as well as other countries. The methane drainage technology developed in other countries is a valuable resource since their longer history of mining has already forced mine operators to deal with methane emission problems only now being experienced in the United States. Methods for accessing the need for methane drainage as well as the data required for planning and implementing an appropriate system are reviewed. The effectiveness of the various technologies at reducing methane emissions underground and/or the in-place gas content of individual coalbeds is illustrated with case studies. In addition to the safety and productivity gains to be realized from methane drainage systems, the potential for commercialization of coalbed methane is also discussed.

  10. Pennsylvania's approach to underground coal mine permitting and long-term mine pool management

    SciTech Connect

    Callaghan, T.; Koricich, J.

    1999-07-01

    Pennsylvania's underground coal mine permitting process has two goals: first, to ensure that the mining and reclamation plan is designed to minimize adverse environmental impacts; and second, to minimize interference with the applicant's recovery of coal. A successful review process includes the consistent evaluation of mine site hydrology through scrutiny of key indicators of mining-induced, adverse hydrologic consequences. This allows the regulatory agency to assess the potential for mining-related impacts as well as cumulative impacts throughout the proposed mine area and adjacent area. General trends have been identified regarding quality of underground mine drainage versus coal seam mined. However, the large number of factors controlling the final mine pool chemistry along with the lack of focused research have combined to stunt the development of reliable methodologies for the prediction of postmining water quality. Absent reliable predictive methodologies, mine layout has become the best demonstrated technology for pollution prevention. Strategies include: (1) promotion of postmining inundation by down-dip development with proper location of mine openings and sizing and location of barriers; (2) restriction of mining to zones within the groundwater system where flow is relatively lethargic and time of travel is great when compared to natural mine pool amelioration time frames; and (3) mining in zones remote from groundwater discharge areas and features which may serve to short-circuit mine water to nearby existing water-supply aquifers or to the surface. This paper discusses Pennsylvania's application process for underground bituminous coal mines. It briefly outlines Pennsylvania's statutory history relating to mine discharges, touches on some of the tools permit reviewers use to evaluate the hydrology of proposed underground mining sites, and discusses the key factors that permit reviewers consider in assessing potential postmining mine pool levels.

  11. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  12. Investigation of relationship between barometric pressure and coal and gas outburst events in underground coal mining

    NASA Astrophysics Data System (ADS)

    Yönet, Sinem; Esen, Olgun; Fişne, Abdullah

    2015-04-01

    Coal and gas outburst is a serious risk which occurs during the mine production. This accident results both ejection of high volumes of gas and high amount of coal into the mine production area, and death of mining workers for many years in Turkey. Outburst of gas, coal and rock can be defined as sudden release of coal and rock accompanied by large quantities of gas into the working face or other mine workings. It is a phenomena that influenced by geological structure such as folds, joints of rocks or coal seams, is also still investigated for many years. Zonguldak Coal Basin is the main part of the Upper Carboniferous bituminous coal basin of Turkey. Much of the bituminous coal mining has thus been concentrated in the Zonguldak Basin which is located on the Black Sea coast. The coal field has been disturbed by tectonic activity, first by Hercynian and later by Alpine orogenesis resulting in folding and faulting of strata. This formation has a complex structural geology which consists mostly fault zones, anticlinal and syncline strata and because of this a large amount of methane gases are adsorbed or accumulated in strata or in coal fractures, pores and micropores. There are 5 Collieries exists in Zonguldak Coalfield and coal and gas outbursts were occurred only in two collieries such as Karadon and Kozlu Mines. In addition at a number of 90 coal and gas outburst events were experienced in these collieries. Based on the analysis of data, oscillation at barometric pressure and temperature values at the location of Kozlu and Karadon Mines were seen when coal and gas outburst events were occurred. In this study, barometric pressure and temperature changes are investigated at Kozlu and Karadon Mines. Also the relationship between the variation at temperature with barometric pressure and coal and gas outbursts are evaluated. It can be understand that this investigation depends to field observations and macroscopic considerations and on the purpose of predicting the

  13. Coal-underground fatalities. Second half-1989. Abstracts with illustrations. Analysis and suggested uses

    SciTech Connect

    Not Available

    1989-01-01

    The 1989 Fatal Illustration Program is divided into four categories or subject areas. These categories are underground coal mining; surface coal mining; underground metal/nonmetal mining; and surface metal/nonmetal mining. Fatalities in each category are grouped by accident type. The material in this unit includes illustrated abstracts (summaries) of all chargeable underground coal mining fatalities for the second six months of 1989 accompanied by 35mm slides. A statistical analysis is included for fatalities that occurred during July through December 1989. The analysis examines the following areas: the victim's experience, the accident classification, the victim's occupation, and the size of the mine where the fatality occurred. Tables are included in this package. They are divided into first half and second half data for 1989. The tables tabulate age and experience of the victim, accident classification and occupation of the victim, and mine size and location of the accident. A slide index is also included which helps locate fatalities for a particular occupation, accident classification, location, and mine size.

  14. Serum angiotensin-converting enzyme is elevated in association with underground coal mining

    SciTech Connect

    Thompson, A.B.; Cale, W.F.; Lapp, N.L. )

    1991-10-01

    Serum angiotensin-converting enzyme activity (SACE) and lysozyme activity were measured in a group of 40 underground coal miners and two control groups, 20 subjects with sarcoidosis and 15 normal non-dust-exposed volunteers. The miners were grouped first according to whether they had recent exposure (still actively mining or retired three years or less prior to measurement) or temporally more distant exposure (retired more than three years prior to measurement). Secondly, they were grouped as to whether or not they had coal workers' pneumoconiosis (CWP). The subjects with sarcoidosis were grouped according to disease activity. As expected, the subjects with active sarcoidosis had elevated SACE activity compared with normal subjects. The coal miners as a group did not have elevation of their SACE activity. However, the coal miners with recent exposure had elevated SACE activity (57.1 {plus minus} 3.9 U/ml) compared with normal controls (43.8 {plus minus} 1.5 U/ml, p = 0.007). The SACE activity in miners without recent exposure was not elevated (39.8 {plus minus} 1.3 U/ml) compared with the normal controls. No increase in SACE activity was found when the miners were grouped according to the presence or absence of CWP. In contrast, the miners' serum lysozyme activity was not elevated. Since alveolar macrophages are a potential source of SACE, elevation of SACE activity in underground coal miners may reflect alveolar macrophage activation caused by increased pulmonary mixed coal mine dust burden. Furthermore, since both SACE and serum lysozyme are elevated in association with silicosis, these findings may confirm that the macrophage responses to inhaled silica and coal dust differ.

  15. State-of-the-art study of resource characterization and planning for underground coal mining. Final technical report as of June 30, 1980

    SciTech Connect

    Walton, D.; Ingham, W.; Kauffman, P.

    1980-06-01

    With the rapid developments taking place in coal mining technology and due to high investment costs, optimization of the structure of underground coal mines is crucial to the success of the mining project. The structure of a mine, once it is developed, cannot be readily changed and has a decisive influence on the productivity, safety, economics, and production capacity of the mine. The Department of Energy desires to ensure that the resource characterization and planning activity for underground coal mining will focus on those areas that offer the most promise of being advanced. Thus, this project was undertaken by Management Engineers Incorporated to determine the status in all aspects of the resource characterization and planning activities for underground coal mining as presently performed in the industry. The study team conducted a comprehensive computerized literature search and reviewed the results. From this a selection of the particularly relevant sources were annotated and a reference list was prepared, catalogued by resource characterization and mine planning activity. From this data, and discussions with industry representatives, academia, and research groups, private and federal, an assessment and evaluation was made of the state-of-the-art of each element in the resource characterization and mine planning process. The results of this analysis lead to the identifcation of areas requiring research and, specifically, those areas where DOE research efforts may be focused.

  16. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  17. Rapid Qualitative Risk Assessment for Contaminant Leakage From Coal Seams During Underground Coal Gasification and CO2 Injection

    SciTech Connect

    Friedmann, S J

    2004-07-02

    One of the major risks associated with underground coal gasification is contamination of local aquifers with a variety of toxic compounds. It is likely that the rate, volume, extent, and concentrations of contaminant plumes will depend on the local permeability field near the point of gasification. This field depends heavily on the geological history of stratigraphic deposition and the specifics of stratigraphic succession. Some coals are thick and isolated, whereas others are thinner and more regionally expressed. Some coals are overlain by impermeable units, such as marine or lacustrine shales, whereas others are overlain by permeable zones associated with deltaic or fluvial successions. Rapid stratigraphic characterization of the succession provides first order information as to the general risk of contaminant escape, which provides a means of ranking coal contaminant risks by their depositional context. This risk categorization could also be used for ranking the relative risk of CO{sub 2} escape from injected coal seams. Further work is needed to verify accuracy and provide some quantification of risks.

  18. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  19. Mining injuries in Serbian underground coal mines -- a 10-year study.

    PubMed

    Stojadinović, Saša; Svrkota, Igor; Petrović, Dejan; Denić, Miodrag; Pantović, Radoje; Milić, Vitomir

    2012-12-01

    Mining, especially underground coal mining, has always been a dangerous occupation. Injuries, unfortunately, even those resulting in death, are one of the major occupational risks that all miners live with. Despite the fact that all workers are aware of the risk, efforts must be and are being made to increase the safety of mines. Injury monitoring and data analysis can provide us with valuable data on the causes of accidents and enable us to establish a correlation between the conditions in the work environment and the number of injuries, which can further lead to proper preventive measures. This article presents the data on the injuries in Serbian coal mines during a 10-year period (2000-2009). The presented results are only part of an ongoing study whose aim is to assess the safety conditions in Serbian coal mines and classify them according to that assessment. PMID:21920518

  20. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    SciTech Connect

    Stephens, D.R.; Clements, W.

    1981-11-09

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  1. Instrumentation for optimizing an underground coal-gasification process

    NASA Astrophysics Data System (ADS)

    Seabaugh, W.; Zielinski, R. E.

    1982-06-01

    While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

  2. Maximum Aerobic Capacity of Underground Coal Miners in India

    PubMed Central

    Saha, Ratnadeep; Dey, Netai Chandra; Samanta, Amalendu; Biswas, Rajib

    2011-01-01

    Miners fitness test was assessed in terms of determination of maximum aerobic capacity by an indirect method following a standard step test protocol before going down to mine by taking into consideration of heart rates (Telemetric recording) and oxygen consumption of the subjects (Oxylog-II) during exercise at different working rates. Maximal heart rate was derived as 220−age. Coal miners reported a maximum aerobic capacity within a range of 35–38.3 mL/kg/min. It also revealed that oldest miners (50–59 yrs) had a lowest maximal oxygen uptake (34.2 ± 3.38 mL/kg/min) compared to (42.4 ± 2.03 mL/kg/min) compared to (42.4 ± 2.03 mL/kg/min) the youngest group (20–29 yrs). It was found to be negatively correlated with age (r = −0.55 and −0.33 for younger and older groups respectively) and directly associated with the body weight of the subjects (r = 0.57 – 0.68, P ≤ 0.001). Carriers showed maximum cardio respiratory capacity compared to other miners. Indian miners VO2max was found to be lower both compared to their abroad mining counterparts and various other non-mining occupational working groups in India. PMID:21961020

  3. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  4. Assessment of groundwater quality impacts due to use of coal combustion byproducts to control subsidence from underground mines.

    PubMed

    Singh, G; Paul, B C

    2001-06-01

    Coal combustion byproducts are to be placed in an underground coal mine to control subsidence. The materials were characterized to determine potential groundwater impacts. No problems were found with respect to heavy or toxic metals. Coal combustion byproduct leachates are high in dissolved solids and sulfates. Chloride and boron from fly ash may also leach in initially high concentrations. Because the demonstration site is located beneath deep tight brine-bearing aquifers, no problems are anticipated at the demonstration site. PMID:11485225

  5. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  6. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  7. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  8. Method of producing synthesis gas by underground gasification of coal using specific well configuration

    SciTech Connect

    Gash, B.W.; Arri, L.E.; Hunt, E.B. Jr.; Parrish, D.R.

    1987-03-10

    A method is described of producing synthesis gas by the underground gasification of coal in individual noninteracting cavities formed by the gasification of the coal in a thick coal seam which is generally horizontal under an overburden and wherein loose coal and char formed from the combustion of the coal in the seam have a known angle of repose. The seam is provided with an injection well positioned at an angle with respect to the horizontal of less than the angle of repose and with a production well positioned at an angle with respect to the horizontal of greater than the angle of repose but less than 90/sup 0/. The distance between the wells decreases toward the bottom of the seam. The method comprises linking the wells, initiating combustion near the bottom of the seam and thereby producing a cavity in the seam, introducing an oxygen-containing gas mixture into the seam through the injection well, and removing combustion products through the production well.

  9. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  10. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  11. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  12. Data mining mining data: MSHA enforcement efforts, underground coal mine safety, and new health policy implications

    SciTech Connect

    Kniesner, T.J.; Leeth, J.D.

    2004-09-15

    Using recently assembled data from the Mine Safety and Health Administration (MSHA) we shed new light on the regulatory approach to workplace safety. Because all underground coal mines are inspected quarterly, MSHA regulations will not be ineffective because of infrequent inspections. From over 200 different specifications of dynamic mine safety regressions we select the specification producing the largest MSHA impact. Even using results most favorable to the agency, MSHA is not currently cost effective. Almost 700,000 life years could be gained for typical miners if a quarter of MSHA's enforcement budget were reallocated to other programs (more heart disease screening or defibrillators at worksites).

  13. The oxygen cost of an escape from an underground coal mine

    SciTech Connect

    Kamon, E.

    1983-07-01

    Six 27 to 63-year-old coal miners performed an 'escape' exercise from an underground mine along a passageway that required walking and running erect or stooped, duckwalking or crawling. The miners travelled at different speeds, for each mode of locomotion. The minute pulmonary ventilation, O/sub 2/ uptake and heart ratio, recorded continuously on magnetic tape, indicated similar average and peak values for all modes of locomotion. Compared to the aerobic capacity obtained during graded treadmill test to exhaustion, the average effort of the 'escape' was performed at 64% and the peak effort at 70% of the miners' aerobic capacity for an 'escape' time of 58 min.

  14. Underground

    ERIC Educational Resources Information Center

    Vrchota, Janet

    1974-01-01

    At a time when the future of New York's subway system looked bleak, new underground zoning legislation (the first ever) has been enacted. This new law requires buildings constructed near a subway station to provide transit easement space to allow public access to the subway through the building property. (MA)

  15. Debilitating Lung Disease Among Surface Coal Miners With No Underground Mining Tenure

    PubMed Central

    Halldin, Cara N.; Reed, William R.; Joy, Gerald J.; Colinet, Jay F.; Rider, James P.; Petsonk, Edward L.; Abraham, Jerrold L.; Wolfe, Anita L.; Storey, Eileen; Laney, A. Scott

    2015-01-01

    Objective To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Methods Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Results Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner’s lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Conclusions Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor. PMID:25563541

  16. Engineering geology applied to the design and operation of underground coal mines. Bulletin

    SciTech Connect

    Dunrud, C.R.

    1998-11-01

    The primary goal of this report is to present, in a systematic outline format, information gained from studies and experience of many geologists, engineers, and miners in the US and other countries in order to: (1) Help geologists, engineers, and other mine planners design underground coal mines that are safer, more efficient, and compatible with the environment by incorporating the information presented; (2) Ensure that mine planners are more aware of some of the more important geologic and geotechnical factors that control of affect mining; and (3) Show how geologic, geotechnical, and mining factors, commonly important to proper mine design, may be incorporated into the planning and design phase of the coal mining operations.

  17. Underground coal mine monitoring with wireless sensor networks - article no. 10

    SciTech Connect

    Li, M.; Liu, Y.H.

    2009-03-15

    Environment monitoring in coal mines is an important application of wireless sensor networks (WSNs) that has commercial potential. We discuss the design of a Structure-Aware Self-Adaptive WSN system, SASA. By regulating the mesh sensor network deployment and formulating a collaborative mechanism based on a regular beacon strategy, SASA is able to rapidly detect structure variations caused by underground collapses. We further develop a sound and robust mechanism for efficiently handling queries under instable circumstances. A prototype is deployed in a real coal mine. We present our implementation experiences as well as the experimental results. To better evaluate the scalability and reliability of SASA, we also conduct a large-scale trace-driven simulation based on real data collected from the experiments.

  18. Proceedings, twenty-fourth annual international Pittsburgh coal conference

    SciTech Connect

    2007-07-01

    Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

  19. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibei; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA

    1991-01-15

    The majority of research conducted was designed to control and selectivity modify coal and pyrite surfaces during flotation. Numerous approaches were used as part of the effort to enhance the separation efficiency of the flotation process. These included the addition of emulsifiers, dispersants, xanthated polymers, straight-chained alcohols, calcium cyanides an pH modifiers. The most important finding from these studies are the delineation of the role of pH and the beneficial effects of alcohols on coal flotation. For minus 28-mesh coal, a detailed study of the role of particle size on the kinetics of flotation was undertaken in order to determine flotation rate constants for coal, ash and pyrite particles as a function of particle size. In general, the rate constants for the flotation of coal were found to be higher than those of pyrite and ash and they did not vary substantially with particle size. Characterization studies of weathered and fresh coal samples were also completed. Induction times measured for freshly ground coal were found to indicate the same order of hydrophobicity as determined by contact angle measurements and all other techniques used to assess wettability. DRIFT spectroscopy of weathered coals was not able to detect the effects of weathering while zeta potential measurements showed that the weathered coal had a slightly more negative surface charge. The induction times for the coals generally increased with weathering time. 4 refs., 69 figs., 82 tabs.

  20. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification. [STEALTH Codes

    SciTech Connect

    Langland, R.T.; Trent, B.C.

    1981-01-01

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  1. Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification

    SciTech Connect

    Trent, B.C.; Langland, R.T.

    1981-08-01

    Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

  2. Evaluation and zoning of groundwater hazards in Pingshuo No. 1 underground coal mine, Shanxi Province, China

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Fan, Zhenli; Zhang, Zhongwen; Zhou, Wanfang

    2014-05-01

    Coal mining safety has been compromised with water inrushes from aquifers either overlying or underlying the coal seams. Detailed studies of the associated hydrogeological conditions in China have led to different approaches to mitigate the water inrush risks from these two types of aquifers—the `three diagram method' for overlying-aquifer water inrushes and the `vulnerability index method' for underlying-aquifer water inrushes. The `three diagram method' consists of: (1) aquifer water-abundance distribution charts derived from a geographic information system and analytic hierarchy process based water-abundance index model; (2) a fracture height map showing mining-induced fractures above the coal seam, established with stratified numerical simulations; and (3) a comprehensive partition map identifying the overlying-aquifer water inrush risk. The `vulnerability index method' uses site-specific data to establish thematic maps for major factors that affect the underlying-aquifer water inrushes, whereas the weight of each control factor is determined by the analytic hierarchy process. The calculated vulnerability index is indicative of water inrush risks. The effectiveness of these methods is illustrated with a case study at the Pingshuo No. 1 underground coal mine, Shanxi Province, China.

  3. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  4. Rocketdyne's advanced coal slurry pumping program

    NASA Technical Reports Server (NTRS)

    Davis, D. E.; Wong, G. S.; Gilman, H. H.

    1977-01-01

    The Rocketdyne Division of Rockwell International Corporation is conducting a program for the engineering, fabrication, and testing of an experimental/prototype high-capacity, high-pressure centrifugal slurry feed pump for coal liquefaction purposes. The abrasion problems in a centrifugal slurry pump are primarily due to the manner in which the hard, solid particles contained in the slurry are transported through the hydraulic flow passages within the pump. The abrasive particles can create scraping, grinding, cutting, and sandblasting effects on the various exposed parts of the pump. These critical areas involving abrasion and impact erosion wear problems in a centrifugal pump are being addressed by Rocketdyne. The mechanisms of abrasion and erosion are being studied through hydrodynamic analysis, materials evaluation, and advanced design concepts.

  5. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    PubMed Central

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  6. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    NASA Astrophysics Data System (ADS)

    Murphy, M. M.

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  7. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1998-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a detailed comparative analysis of the suite of spectral editing results obtained on the Argonne coals. We have extended our fitting procedure to include carbons of all types in the analysis.

  8. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.

    1990-01-01

    Research continued on surface control of coal. This report describes Task 7 of the program. The following topics are discussed: quantitative distribution of iron species; surface functional groups; comparison of wet and dry ground samples; study of Illinois No. 6 coal wet ground using additives; study of wet grinding using tall oil; elemental distribution of coal samples wet ground without additives; elemental distribution of coal samples wet ground with tall oil; direct determination of pyrite by x-ray diffraction; electron microprobe measurements; morphology; zeta potential measurements; pyrite size distribution; statistical analysis of grinding study data; grinding using N-pentane; cyclohexane, and N-heptane; study of the effects of the grinding method and time; study of the effects of the agglomeration time; and the pentane to coal ratio. 13 refs.

  9. Analysis of underground coal mine fire incidents in the United States from 1978 through 1992. Information circular/1995

    SciTech Connect

    Pomroy, W.H.; Carigiet, A.M.

    1995-10-01

    This U.S. Bureau of Mines publication is an analysis of underground coal mine fire incidents in the United States from 1978 through 1992. Fires were analyzed by year, state, coal bed thickness, mine size, mining method, ignition source, burning substance, location, equipment involved, detection, time of day, time of year, number of injuries and fatalities, method of extinguishment, and evacuation measures taken. In all, 164 fires are included, an average of 10.8 fires per year.

  10. The siting of a prison complex above an abandoned underground coal mine

    SciTech Connect

    Marino, G.G.

    1997-12-31

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the State of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. The original plan for construction consisted of one phase. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. One masonry building, however, was located within the potential draw zone of mine works which still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was accordingly designed to be mine subsidence resistant. It was decided that a phase two prison complex should be constructed adjacent to and just south of the Phase I complex. This complex would be directly above the underground workings. The first stage of design was to minimize subsidence potential by positioning the exposure of significant structures to the subjacent mining assuming the mine map was sufficiently accurate. Subsequently, an extensive subsurface investigation program was then undertaken to: (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future; and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical data base of subsidence events in the Illinois Coal Basin. As a result of this work many structures on the site required no or nominal subsidence considerations.

  11. High resolution seismic survey of the Hanna, Wyoming underground coal gasification area

    SciTech Connect

    Youngberg, A.D.; Berkman, E.; Orange, A.

    1982-01-01

    In November 1980 a high resolution seismic survey was conducted at the Department of Energy, Laramie Energy Technology Center's underground coal gasification test site near Hanna, Wyoming. The objectives of the survey were to determine the feasibility of utilizing high resolution seismic technology to locate and characterize underground coal burn zones and to identify shallow geologic faults at the test site. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow, 61 to 91 meter (200 to 300 foot) depths of interest. A three-dimensional grid of data was obtained over the Hanna II, Phases 2 and 3 burn zone. Processing included time varying filters, deconvolution, trace composition, and two-dimensional, areal stacking of the data in order to identify burn zone anomalies. An anomaly was clearly discernable resulting from the rubble-collapse void above the burn zone which was studied in detail and compared to synthetic models. It is felt, based on these results, that the seismic method can be used to define similar burns if great care is taken in both acquisition and processing phases of an investigation. The fault studies disclosed faults at the test site of hitherto unsuspected complexity. The fault system was found to be a graben complex with numerous antithetic faults. The antithetic faults also contain folded beds. One of the faults discovered may be responsible for the unexpected problems experienced in some of the early in-situ gasification tests at the site. A series of anomalies were discovered on the northeast end of one of the seismic lines, and these reflections have been identified as adits from the old Hanna No. 1 Coal Mine.

  12. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  13. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  14. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect

    Cena, R. J.; Thorsness, C. B.

    1981-08-21

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  15. NATIONAL ASSESSMENT OF ENVIRONMENTAL AND ECONOMIC BENEFITS FROM METHANE CONTROL AND UTILIZATION TECHNOLOGIES AT U.S. UNDERGROUND COAL MINES

    EPA Science Inventory

    The report gives results of EPA research into the emission processes and control strategies associated with underground coal mines in the U.S. (NOTE: Methane is a greenhouse gas in the atmosphere which ranks behind carbon dioxide as the second largest contributor to global warmin...

  16. An explanation of large-scale coal and gas outbursts in underground coal mines: the effect of low-permeability zones on abnormally abundant gas

    NASA Astrophysics Data System (ADS)

    An, F. H.; Cheng, Y. P.

    2013-09-01

    Large-scale coal and gas outbursts post a risk of fatal disasters in underground mines. Large-scale outbursts (outburst of coal and rock greater than 500 t) in recent years in China indicate that there is abundant gas in areas of outbursts containing large amounts of potential energy. The adequate sealing properties of the roof and floor of a coal seam are required for local abundant gas around the site of an outburst, but an annular low-permeability zone in a coal seam, which prevents the loss by gas migration through the coal seam itself, is also required. The distribution of coal gas with this annular zone of low permeability is described, and it is proposed that the annular zone of low permeability creates conditions for confining the coal gas. The effect of this low-permeability zone on the gas distribution is analyzed after allowing for simplifications in the model. The results show that the permeability and length of the low-permeability zone have a great impact on the gas distribution. A steep gradient of gas pressure in the low-permeability zone and the high gas pressure in the abundant zone of gas can promote coal mass failure and coal wall deformation, thereby accelerating the coal and gas outburst. The high pressure gas in abundant zone of gas will lead to a large-scale outburst if an outburst occurs.

  17. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  18. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  19. Numerical study on convection diffusion for gasification agent in underground coal gasification. Part I: establishment of mathematical models and solving method

    SciTech Connect

    Yang, L.H.; Ding, Y.M.

    2009-07-01

    The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.

  20. Profitability and occupational injuries in U.S. underground coal mines☆

    PubMed Central

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2015-01-01

    Background Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. Objective The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. Data and method We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines × number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the ‘most serious’ (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. Results After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost

  1. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  2. Integrated Positioning for Coal Mining Machinery in Enclosed Underground Mine Based on SINS/WSN

    PubMed Central

    Hui, Jing; Wu, Lei; Yan, Wenxu; Zhou, Lijuan

    2014-01-01

    To realize dynamic positioning of the shearer, a new method based on SINS/WSN is studied in this paper. Firstly, the shearer movement model is built and running regularity of the shearer in coal mining face has been mastered. Secondly, as external calibration of SINS using GPS is infeasible in enclosed underground mine, WSN positioning strategy is proposed to eliminate accumulative error produced by SINS; then the corresponding coupling model is established. Finally, positioning performance is analyzed by simulation and experiment. Results show that attitude angle and position of the shearer can be real-timely tracked by integrated positioning strategy based on SINS/WSN, and positioning precision meet the demand of actual working condition. PMID:24574891

  3. Review of fire test methods and incident data for portable electric cables in underground coal mines

    NASA Astrophysics Data System (ADS)

    Braun, E.

    1981-06-01

    Electrically powered underground coal mining machinery is connected to a load center or distribution box by electric cables. The connecting cables used on mobile machines are required to meet fire performance requirements defined in the Code of Federal Regulations. This report reviews Mine Safety and Health Administration's (MSHA) current test method and compares it to British practices. Incident data for fires caused by trailing cable failures and splice failures were also reviewed. It was found that the MSHA test method is more severe than the British but that neither evaluated grouped cable fire performance. The incident data indicated that the grouped configuration of cables on a reel accounted for a majority of the fires since 1970.

  4. Integrated positioning for coal mining machinery in enclosed underground mine based on SINS/WSN.

    PubMed

    Fan, Qigao; Li, Wei; Hui, Jing; Wu, Lei; Yu, Zhenzhong; Yan, Wenxu; Zhou, Lijuan

    2014-01-01

    To realize dynamic positioning of the shearer, a new method based on SINS/WSN is studied in this paper. Firstly, the shearer movement model is built and running regularity of the shearer in coal mining face has been mastered. Secondly, as external calibration of SINS using GPS is infeasible in enclosed underground mine, WSN positioning strategy is proposed to eliminate accumulative error produced by SINS; then the corresponding coupling model is established. Finally, positioning performance is analyzed by simulation and experiment. Results show that attitude angle and position of the shearer can be real-timely tracked by integrated positioning strategy based on SINS/WSN, and positioning precision meet the demand of actual working condition. PMID:24574891

  5. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  6. Citation-related reliability analysis for a pilot sample of underground coal mines.

    PubMed

    Kinilakodi, Harisha; Grayson, R Larry

    2011-05-01

    The scrutiny of underground coal mine safety was heightened because of the disasters that occurred in 2006-2007, and more recently in 2010. In the aftermath of the 2006 incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address various issues related to emergency preparedness and response, escape from an emergency situation, and protection of miners. The National Mining Association-sponsored Mine Safety Technology and Training Commission study highlighted the role of risk management in identifying and controlling major hazards, which are elements that could come together and cause a mine disaster. In 2007 MSHA revised its approach to the "Pattern of Violations" (POV) process in order to target unsafe mines and then force them to remediate conditions in their mines. The POV approach has certain limitations that make it difficult for it to be enforced. One very understandable way to focus on removing threats from major-hazard conditions is to use citation-related reliability analysis. The citation reliability approach, which focuses on the probability of not getting a citation on a given inspector day, is considered an analogue to the maintenance reliability approach, which many mine operators understand and use. In this study, the citation reliability approach was applied to a stratified random sample of 31 underground coal mines to examine its potential for broader application. The results clearly show the best-performing and worst-performing mines for compliance with mine safety standards, and they highlight differences among different mine sizes. PMID:21376896

  7. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. PMID:23702378

  8. Returning coal waste underground. Technical progress report, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1982-01-15

    The initial approach for returning coal waste underground at the No. 4 Mine will be limited to the current 1'' x 0 refuse product (132 TPH; 540 GPM) from the Wolf Creek plant at Pilgrim, Kentucky. It is possible to bypass existing units in the refuse circuits by pumping the refuse directly out of the cleaning circuits for backfilling. the refuse dryer, filter screen and static thickener will not be used when the refuse is backfilled. A necessary condition of this concept is to maintain continuous backfilling operations by providing two outlets underground and always keeping at least one unit working. To avoid settling and unstable conditions in the pipe, the percentage of solids in the refuse slurry should not exceed 45% by weight and the velocity of the slurry should be about 10 feet per second. The pumping of the 150 TPH of refuse solids (45% by weight) requires that the slurry flow at approximately 1000 GPM. The velocity will be about 10 feet per second if the inside diameter of the pipeline is six (6) inches. The backfilling process could function with an open-end outlet pipe if there was a sufficient gradient in the mine. The areas to be backfilled in the No. 4 Mine are generally flat. This condition will require the installation of bulkheads for containing the material. The slurry water, however, will be free flowing and may deterioriate the floor. The water will therefore have to be collected and pumped back to the surface.

  9. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    PubMed

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  10. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  11. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. Brigham Young Univ., Provo, UT )

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  12. Carbon cycle in advanced coal chemical engineering.

    PubMed

    Yi, Qun; Li, Wenying; Feng, Jie; Xie, Kechang

    2015-08-01

    This review summarizes how the carbon cycle occurs and how to reduce CO2 emissions in highly efficient carbon utilization from the most abundant carbon source, coal. Nowadays, more and more attention has been paid to CO2 emissions and its myriad of sources. Much research has been undertaken on fossil energy and renewable energy and current existing problems, challenges and opportunities in controlling and reducing CO2 emission with technologies of CO2 capture, utilization, and storage. The coal chemical industry is a crucial area in the (CO2 value chain) Carbon Cycle. The realization of clean and effective conversion of coal resources, improving the utilization and efficiency of resources, whilst reducing CO2 emissions is a key area for further development and investigation by the coal chemical industry. Under a weak carbon mitigation policy, the value and price of products from coal conversion are suggested in the carbon cycle. PMID:25978270

  13. SPONCOM - a computer program for the prediction of the spontaneous combustion potential of an underground coal mine

    SciTech Connect

    Smith, A.C.; Rumancik, W.P.; Lazzara, C.P.

    1996-12-31

    The United States Bureau of Mines (USBM) developed SPONCOM to aid in the assessment of the spontaneous combustion risk of an underground mining operation. A prior knowledge of the spontaneous combustion risk of the coal and factors that increase that risk can be useful in the planning and development of proactive monitoring, ventilation, and prevention plans for the mining operation. Interactive data input screens prompt the user for information about the coal`s chemical and physical properties, the geologic and mining conditions encountered in the mining of the coal, and the mining practices employed. During the input process, {open_quote}expand{close_quote} screens provide the user with specific information on each input parameter. This information includes a description of the parameter and its effect on the overall spontaneous combustion risk. The program logic determines the coal`s relative spontaneous combustion potential, based on the coal`s proximate and ultimate analyses, and heating value. The program then evaluates the impact of the coal properties, geologic and mining conditions, and mining practices on the spontaneous combustion risk of the mining operation. The program output provides details on each factor that increases the risk of spontaneous combustion.

  14. Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project

    NASA Astrophysics Data System (ADS)

    Sirdesai, N. N.; Singh, R.; Singh, T. N.; Ranjith, P. G.

    2015-11-01

    Underground Coal Gasification, with enhanced knowledge of hydrogeological, geomechanical and environmental aspects, can be an alternative technique to exploit the existing unmineable reserves of coal. During the gasification process, petro-physical and geomechanical properties undergo a drastic change due to heating to elevated temperatures. These changes, caused due to the thermal anisotropy of various minerals, result in the generation of thermal stresses; thereby developing new fracture pattern. These fractures cause the overhead rock strata to cave and fill the gasification chamber thereby causing subsidence. The degree of subsidence, change in fluid transport and geomechanical properties of the rock strata, in and around the subsidence zone, can affect the groundwater flow. This study aims to predict the thermo-geomechanical response of the strata during UCG. Petro-physical and geomechanical properties are incorporated in the numerical modelling software COMSOL Multiphysics and an analytical strength model is developed to validate and further study the mechanical response and heat conduction of the host rock around the gasification chamber. Once the problems are investigated and solved, the enhanced efficiency and the economic exploitation of gasification process would help meet country's energy demand.

  15. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  16. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    NASA Astrophysics Data System (ADS)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  17. Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis

    SciTech Connect

    Terasawa, K.L.; Whipple, D.W.

    1980-12-01

    The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

  18. Human health and safety risks management in underground coal mines using fuzzy TOPSIS.

    PubMed

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. PMID:24815558

  19. Materials of construction for advanced coal conversion systems

    SciTech Connect

    Nangia, V.K.

    1982-01-01

    This book describes materials of construction, and materials problems for equipment used in advanced coal conversion systems. The need for cost effective industrial operation is always a prime concern, particularly in this age of energy consciousness. Industry is continually seeking improved materials for more efficient systems. The information presented here is intended to be of use in the design and planning of these systems. Coal conversion and utilization impose severe demands on construction materials because of high temperature, high pressure, corrosive/erosive, and other hostile environmental factors. Successful economic development of these processes can be achieved only to the extent that working materials can withstand increasingly more aggressive operating conditions. The book, which reviews present and past work on the behavior of materials in the environments of advanced coal conversion systems, is divided into three parts: atmospheric fluidized bed combustion, coal gasification and liquefaction, and advanced power systems.

  20. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

  1. Advanced direct coal liquefaction concepts - appendix

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    This detailed appendix presents the results of direct coal liquefaction studies performed by the contractor. Several hundred tables summarizing the chemical compostion for runs of a bench scale reactor are presented.

  2. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to

  3. An explanation of large-scale coal and gas outbursts in underground coal mines: the effect of low-permeability zones on abnormally abundant gas

    NASA Astrophysics Data System (ADS)

    An, F. H.; Cheng, Y. P.

    2014-08-01

    Large-scale coal and gas outbursts pose a risk of fatal disasters in underground mines. Large-scale outbursts (outburst of coal and rock greater than 500 t) in recent years in China indicate that there is abundant gas in areas of outbursts containing large amounts of potential energy. The adequate sealing properties of the roof and floor of a coal seam are required for local abundant gas around the site of an outburst, but an annular low-permeability zone in a coal seam, which prevents the loss by gas migration through the coal seam itself, is also required. The distribution of coal gas with this annular zone of low permeability is described, and it is proposed that the annular zone of low permeability creates conditions for confining the coal gas. The effect of this low-permeability zone on the gas distribution is analyzed after allowing for simplifications in the model. The results show that the permeability and length of the low-permeability zone have a great impact on the gas distribution, and the permeability is required to be several orders of magnitude less than that of normal coal and enough length is also in demand. A steep gradient of gas pressure in the low-permeability zone and the high-pressure gas in the abundant zone of gas can promote coal mass failure and coal wall deformation, thereby accelerating the coal and gas outburst. The high-pressure gas in abundant zone of gas will lead to a large-scale outburst if an outburst occurs.

  4. Evaluation of ADAM/1 model for advanced coal-extraction concepts

    SciTech Connect

    Deshpande, G. K.; Gangal, M. D.

    1982-01-15

    The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

  5. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    PubMed Central

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-01-01

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels. PMID:26426023

  6. Availability and Quality of Water from Underground Coal Mines in Johnson and Martin Counties, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Cordivio1a, Steven; Risser, Dennis W.

    1981-01-01

    This report provides water users with detailed information on the location, quantity, and quality of water available from underground coal mines in the Breathitt Formation of Pennsylvanian age in part of eastern Kentucky. The principal coal seams mined are the Van Lear in Johnson County and the Alma in Martin County. Coal mines that contained water were located by field inventory and coal-mine maps. The principal factors that affect the occurrence of water in coal mines are the size of the recharge area overlying the mine, the intensity and duration of precipitation, and the altitude of the mine relative to that of the nearest perennial stream. Ten above-drainage mines (that is, mines at higher elevations than that of the nearest perennial stream) are considered potential sources of water. Discharge from these mines ranged from 12 to 1,700 gallons per minute. The highest sustained discharge from a mine ranged from 750 to 1,200 gallons per minute. The water in coal mines is part of the hydrologic system and varies seasonally with precipitation. Annual discharge from most above-drainage mines ranged from 3 to 10 percent of annual precipitation on the 1and-surface area above the mine. Eight below-drainage mines are considered potential sources of water. Two were test-pumped at rates of 560 to 620 gallons per minute for as long as 6 hours. After test pumping the Warfield Mining No. 1 mine during September 1977 and March 1978, the recovery (or recharge) rates were significantly different. In September, the recharge rate was about 1,150 gallons per minute, but in March the recharge rate was 103,500 gallons per minute. This difference reflects the seasonal variations in the amount of water available to the ground-water system. Estimates of water stored in below-drainage mines ranged from 22 to 1,462 million gallons. This storage represents a safety factor sufficient to provide water through periods of limited recharge to the mine. Most mine water is of the calcium

  7. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  8. A moving baseline for evaluation of advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Bickerton, C. R.; Westerfield, M. D.

    1981-01-01

    Results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000 are reported. Systems used were selected from contemporary coal mining technology and from conservation conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam extended to other seam thicknesses.

  9. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1998-09-30

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size on water nuclear spin relaxation, T2, were measured.

  10. Coal and char studies by advanced EMR techniques

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1999-03-31

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size and type on water nuclear spin relaxation, T2, were measured and modeled.

  11. Advanced progress concepts for direct coal liquefaction

    SciTech Connect

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  12. CO2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities

    SciTech Connect

    Romanov, Vyacheslav N.; Ackman, Terry E.; Soong, Yee; Kleinman, Robert L.

    2009-02-01

    For coal to be a viable energy source, its excessive CO2 emissions must be curtailed. Sequestration of CO2 and other greenhouse gases is a possibility, but success therein is preceded by a significant number of challenges. Perhaps the most onerous is the tradeoff between using deep mines that would better trap CO2 against using shallower options that are more economical to access. In confronting this issue, a group of U.S. Department of Energy researchers argue that recent advances in the understanding of materials afforded by nanoscale mechanistic models point in a promising direction to develop better sequestration technologies.

  13. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  14. The application of advanced analytical techniques to direct coal liquefaction

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1991-12-31

    Consol is coordinating a program designed to bridge the gap between the advanced, modern techniques of the analytical chemist and the application of those techniques by the direct coal liquefaction process developer, and to advance our knowledge of the process chemistry of direct coal liquefaction. The program is designed to provide well-documented samples to researchers who are utilizing techniques potentially useful for the analysis of coal derived samples. The choice of samples and techniques was based on an extensive survey made by Consol of the present status of analytical methodology associated with direct coal liquefaction technology. Sources of information included process developers and analytical chemists. Identified in the survey are a number of broadly characterizable needs. These categories include a need for: A better understanding of the nature of the high molecular weight, non-distillable residual materials (both soluble and insoluble) in the process streams; improved techniques for molecular characterization, heteroatom and hydrogen speciation and a knowledge of the hydrocarbon structural changes across coal liquefaction systems; better methods for sample separation; application of advanced data analysis methods; the use of more advanced predictive models; on-line analytical techniques; and better methods for catalyst monitoring.

  15. Review of toxicity studies performed on an underground coal gasification condensate water

    SciTech Connect

    Barker, F.P.

    1987-09-01

    Three studies related to the toxicity of underground coal gasification (UCG) waters have bee conducted: (1) toxicity study of UCG water and its fractions as determined by the Microtox test, (2) toxicity study of biotreated UCG water as determined by the Microtox test, and (3) toxicity study of UCG water to macroinvertebrates. The results of these studies are summarized herein. The gas condensate water from the UCG process is extremely toxic as determined by assays with photoluminescent bacteria (Microtox), benthic (bottom-dwelling) macroinvertebrates (mayflies), and Daphnia magna (water flea). Microtox bioassays reveal that the toxic components of the water reside in both the organophilic and hydrophilic fractions, although the organophilic fraction is notably more toxic. A sequential treatment process reduced the toxicity of the UCG water, as measured by the Microtox test. Solvent extraction (to remove phenols) followed by ammonia stripping yielded a less toxic water. Additional treatment by activated sludge further reduced toxicity. Finally, the addition of powdered activated carbon to the activated sludge yielded the least toxic water. A bioassay technique was developed for lotic (running water) macroinvertebrates (Drunella doddsi and Iron longimanus). The toxicity results were compared with results from the traditional test animal, Daphnia magna. Short-term exposures to the UCG waters were more toxic to Daphnia magna than to Drunella doddsi or Iron longimanus, although the toxicity values begin to merge with longer test exposure. The greater toxicity seems to be related to a thinner exoskeleton. 26 refs., 2 figs., 6 tabs.

  16. Thermodynamic controls on quality of water from underground coal mines in Colorado

    SciTech Connect

    Tark, J.T.

    1982-02-01

    Water samples collected from 14 underground coal mines in Colorada were analyzed for major dissolved constituents. The data indicate the water quality of 13 of the samples has developed by the interaction of calcite saturated ground water with sodium rich marine shales. Those samples that displayed evidence of being most completly reacted were composed almost entirely of sodium and bicarbonate ions and had a calcium to sodium activity ratio of 0.16, similar to that of seawater. The one sample that was not saturated with respect to calcite was saturated with respect to gypsum. The dissolved solids concentration attainable by dissolution of gypsum is much less than that attainable by the calcite marine shale equilibration, or approximately 2,500 milligrams per liter. By considering the maximum predicted concentrations of dissolved solids in relation to promulgated water quality criteria, it is possible to predict the hazards of reuse of this mine drainage. The primary problems would be damage or destruction of crops if the drainage water was used for irrigation. In addition, some samples contained concentrations of chloride and sulfate in excess of recommended standards for public water supplies.

  17. Monitoring Velocity Changes Caused By Underground Coal Mining Using Seismic Noise

    NASA Astrophysics Data System (ADS)

    Czarny, Rafał; Marcak, Henryk; Nakata, Nori; Pilecki, Zenon; Isakow, Zbigniew

    2016-01-01

    We use passive seismic interferometry to monitor temporal variations of seismic wave velocities at the area of underground coal mining named Jas-Mos in Poland. Ambient noise data were recorded continuously for 42 days by two three-component broadband seismometers deployed at the ground surface. The sensors are about 2.8 km apart, and we measure the temporal velocity changes between them using cross-correlation techniques. Using causal and acausal parts of nine-component cross-correlation functions (CCFs) with a stretching technique, we obtain seismic velocity changes in the frequency band between 0.6 and 1.2 Hz. The nine-component CCFs are useful to stabilize estimation of velocity changes. We discover correlation between average velocity changes and seismic events induced by mining. Especially after an event occurred between the stations, the velocity decreased about 0.4 %. Based on this study, we conclude that we can monitor the changes of seismic velocities, which are related to stiffness, effective stress, and other mechanical properties at subsurface, caused by mining activities even with a few stations.

  18. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  19. Regulatory implications of airborne respirable free silica variability in underground coal mines

    SciTech Connect

    Villnave, J.M.; Corn, M.; Francis, M.; Hall, T.A. )

    1991-03-01

    The respirable dust standard for respirable free crystalline silica in underground coal mines is expressed as milligrams per cubic meter (mg/m3) of respirable dust and is determined by the silica content of the dust. The Mine Safety and Health Administration (MSHA) regulates silica exposure by determining and enforcing compliance with the respirable dust standard for each active mine section. The MSHA strategy for regulation is examined in the context of respirable free crystalline silica and dust data. Deficiencies of the strategy include the same enforcement efforts regardless of compliance history, inappropriate treatment of data, and emphasis on short-term variability of silica content. These deficiencies result in inadequate enforcement in chronically dusty mines, 'game playing' with optional samples, and an overall approach that does not focus on the long-term impact of silica exposure on lung health. Alternative approaches include enforcement efforts proportional to compliance history, use of a moving average silica content, and more statistically sound approaches to data interpretation.

  20. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  1. Monitoring Velocity Changes Caused By Underground Coal Mining Using Seismic Noise

    NASA Astrophysics Data System (ADS)

    Czarny, Rafał; Marcak, Henryk; Nakata, Nori; Pilecki, Zenon; Isakow, Zbigniew

    2016-06-01

    We use passive seismic interferometry to monitor temporal variations of seismic wave velocities at the area of underground coal mining named Jas- Mos in Poland. Ambient noise data were recorded continuously for 42 days by two three-component broadband seismometers deployed at the ground surface. The sensors are about 2.8 km apart, and we measure the temporal velocity changes between them using cross-correlation techniques. Using causal and acausal parts of nine-component cross-correlation functions (CCFs) with a stretching technique, we obtain seismic velocity changes in the frequency band between 0.6 and 1.2 Hz. The nine-component CCFs are useful to stabilize estimation of velocity changes. We discover correlation between average velocity changes and seismic events induced by mining. Especially after an event occurred between the stations, the velocity decreased about 0.4 %. Based on this study, we conclude that we can monitor the changes of seismic velocities, which are related to stiffness, effective stress, and other mechanical properties at subsurface, caused by mining activities even with a few stations.

  2. A comparison of physiological strain of carriers in underground manual coal mines in India

    SciTech Connect

    Saha, R.; Dey, N.C.; Samanta, A.; Biswas, R.

    2008-07-15

    Thirty nine healthy carriers (23-57 years of age) were investigated in underground manual coal mines in West Bengal, India during two different work spells of a single work shift. We compared physiological strain of workers <40 and {ge} 40 years of age. For both groups, mean heart rate was 124-133 beats/min, with a mean corresponding relative cardiac cost of 50-66%. Maximum aerobic capacities were estimated indirectly, following a standard step test protocol. Average oxygen consumption was 1.07-1.1 l/min, with an energy expenditure of 5.35-5.5 kcal/min among both age groups. Acceptable levels of physiological strain were well encroached, and older workers faced the maximum burden. The tasks studied were heavy to very heavy in nature. The weight of load carriage at a spontaneously chosen speed and the prevailing environmental conditions merit serious attention. There is extreme need of ergonomic interventions in reducing the postural load and musculoskeletal discomforts in this population.

  3. Regulatory implications of airborne respirable free silica variability in underground coal mines.

    PubMed

    Villnave, J M; Corn, M; Francis, M; Hall, T A

    1991-03-01

    The respirable dust standard for respirable free crystalline silica in underground coal mines is expressed as milligrams per cubic meter (mg/m3) of respirable dust and is determined by the silica content of the dust. The Mine Safety and Health Administration (MSHA) regulates silica exposure by determining and enforcing compliance with the respirable dust standard for each active mine section. The MSHA strategy for regulation is examined in the context of respirable free crystalline silica and dust data. Deficiencies of the strategy include the same enforcement efforts regardless of compliance history, inappropriate treatment of data, and emphasis on short-term variability of silica content. These deficiencies result in inadequate enforcement in chronically dusty mines, "game playing" with optional samples, and an overall approach that does not focus on the long-term impact of silica exposure on lung health. Alternative approaches include enforcement efforts proportional to compliance history, use of a moving average silica content, and more statistically sound approaches to data interpretation. PMID:1851384

  4. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-04-24

    No combustion tests for this program were conducted during this reporting period of January 1 to March 31, 1992. DOE-sponsored slogging combustor tests have been suspended since December 1991 in order to perform combustion tests on Northern States Power Company (NSP) coals. The NSP coal tests were conducted to evaluate combustor performance when burning western sub bituminous coals. The results of these tests will guide commercialization efforts, which are being promoted by NSP, Westinghouse Electric, and Textron Defense Systems. The NSP testing has been completed and preparation of the final report for that effort is underway. Although the NSP testing program has been completed, the Westinghouse/DOE program will not be resumed immediately. The reason for this is that Textron Defense Systems (TDS) has embarked on an internally funded program requiring installation of a new liquid fuel combustor system at the Haverhill site. The facility modifications for this new system are significant and it is not possible to continue the Westinghouse/DOE testing while these modifications are being made. These facility modifications are being performed during the period February 15, 1992 through May 31, 1992. The Westinghouse/DOE program can be resumed upon completion of this work.

  5. Advanced coal-fueled gas turbine systems

    NASA Astrophysics Data System (ADS)

    1992-04-01

    No combustion tests for this program were conducted during this reporting period of January 1 to March 31, 1992. DOE-sponsored slogging combustor tests have been suspended since December 1991 in order to perform combustion tests on Northern States Power Company (NSP) coals. The NSP coal tests were conducted to evaluate combustor performance when burning western sub bituminous coals. The results of these tests will guide commercialization efforts, which are being promoted by NSP, Westinghouse Electric, and Textron Defense Systems. The NSP testing has been completed and preparation of the final report for that effort is underway. Although the NSP testing program has been completed, the Westinghouse/DOE program will not be resumed immediately. The reason for this is that Textron Defense Systems (TDS) has embarked on an internally funded program requiring installation of a new liquid fuel combustor system at the Haverhill site. The facility modifications for this new system are significant and it is not possible to continue the Westinghouse/DOE testing while these modifications are being made. These facility modifications are being performed during the period February 15, 1992 through May 31, 1992. The Westinghouse/DOE program can be resumed upon completion of this work.

  6. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  7. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States

    PubMed Central

    Kilinc, F. Selcen; Monaghan, William D.; Powell, Jeffrey B.

    2016-01-01

    The mining industry is among the top ten industries nationwide with high occupational injury and fatality rates, and mine rescue response may be considered one of the most hazardous activities in mining operations. In the aftermath of an underground mine fire, explosion or water inundation, specially equipped and trained teams have been sent underground to fight fires, rescue entrapped miners, test atmospheric conditions, investigate the causes of the disaster, or recover the dead. Special personal protective ensembles are used by the team members to improve the protection of rescuers against the hazards of mine rescue and recovery. Personal protective ensembles used by mine rescue teams consist of helmet, cap lamp, hood, gloves, protective clothing, boots, kneepads, facemask, breathing apparatus, belt, and suspenders. While improved technology such as wireless warning and communication systems, lifeline pulleys, and lighted vests have been developed for mine rescuers over the last 100 years, recent research in this area of personal protective ensembles has been minimal due to the trending of reduced exposure of rescue workers. In recent years, the exposure of mine rescue teams to hazardous situations has been changing. However, it is vital that members of the teams have the capability and proper protection to immediately respond to a wide range of hazardous situations. Currently, there are no minimum requirements, best practice documents, or nationally recognized consensus standards for protective clothing used by mine rescue teams in the United States (U.S.). The following review provides a summary of potential issues that can be addressed by rescue teams and industry to improve potential exposures to rescue team members should a disaster situation occur. However, the continued trending in the mining industry toward non-exposure to potential hazards for rescue workers should continue to be the primary goal. To assist in continuing this trend, the mining industry

  8. Recent technology advances in the KRW coal gasification development program

    SciTech Connect

    Haldipur, G.B.; Bachovchin, D.; Cherish, P.; Smith, K.J.

    1984-08-01

    This paper presents an update of the technological advances made at the coal gasification PDU during 1982 and 1983. These process improvements have resulted in higher carbon conversion efficiency, greater operational simplicity and enhanced potential for low grade or highly reactive feedstocks such as subbituminous coals and lignites. Process and component performance data are presented on the following topics: Application of advanced non-mechanical fines recycle techniques in a pressurized fluidized bed process, Demonstration of fines consumption and 95+% carbon conversion in recent tests, including results of a successful 15 day process feasibility test; and, Techniques to produce low carbon containing (less than 5%) ash agglomerates from highly reactive feedstocks, such as Wyoming subbituminous coal and North Dakota lignite.

  9. Field study of disposed wastes from advanced coal processes

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. DOE has contracted Radian Corporation and the North Dakota Energy Environmental Research Center (EERC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. This report discusses waste composition from fluidized bed coal combustion. Also presented is analytical data from the leaching of waste sampled from storage soils and of soil samples collected. 6 figs., 13 tabs.

  10. Determining the Heat Exchange Capacity of Underground Coal Mines in Ohio

    NASA Astrophysics Data System (ADS)

    Richardson, J. J.; Lopez, D. A.; Leftwich, T. E.; Wolfe, M. E.; Angle, M. P.; Fugitt, F. L.

    2013-12-01

    heat extractable per change in mine water temperature were calculated. Looking at 147 different mines located less than 1 mile from cities, this study has estimated that an average of 10^10 kJ of heat per mine is extractable. A change in mine water temperature of 1 degree Celsius was used for this calculation. The average maximum and minimum linear groundwater velocities were 0.5 and 0.3 meters/day, respectively. From the groundwater velocities, the average potential flux of heat to the mines was 10^9 kJ/year. These results show that underground coal mines in Ohio can be an important resource for GSHPs.

  11. Low-Rank Coal and Advanced Technologies for Power Generation

    NASA Astrophysics Data System (ADS)

    Zhang', Dong-ke; Jackson, Peter J.; Vuthaluru, Hari B.

    Fluidised-bed based advanced power generation technologies offer higher efficiencies than conventional pulverised fuel fired power plants and better prospects in reducing ash-related problems associated with low-rank coal in such plants. However, bed material agglomeration and bed defluidisation present significant operational difficulties for the utilisation of the low-rank coal in fluidised-bed processes. Alkali and alkaline-earth elements and sulphur compounds, often found in low-rank coals, form low melting point eutectics at typical fluidised-bed combustion and gasification operating temperatures. These low melting-point materials are subsequently transferred onto the bed material particle surfaces, and the ash-coated particles then become adhesive and agglomerate. Defluidisation can occur either as an extension of agglomeration as a rate process gradually leading to defluidisation or as an instantaneous event without agglomeration. A critical thickness of the ash coating layer on the particle surface exists, above which defluidisation occurs. This critical thickness decreases with an increase in bed temperature. Several mineral additives, alternative bed materials and pretreatment of coal have been shown to suppress, to different extents, particle agglomeration and bed defluidisation when burning a high sodium, high sulphur low-rank coal in a spouted fluidised-bed combustor. Sillimanite as an alternative bed material is found to be most effective for defluidisation control. Alternative advanced technologies such as low-temperature pyrolysis and co-production are proposed for future investigation.

  12. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  13. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1992-01-01

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In order to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)

  14. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  15. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1990-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specified conversion behavior is ARF's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (1) validation of the submodels by comparison with laboratory data obtained in this program, (2) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (3) development of well documented user friendly software applicable to a workstation'' environment.

  16. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1990-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. Success in this program will be a major step in improving in predictive capabilities for coal conversion processes including: demonstrated accuracy and reliability and a generalized first principles'' treatment of coals based on readily obtained composition data. The progress during the fifteenth quarterly of the program is presented. 56 refs., 41 figs., 5 tabs.

  17. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  18. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  19. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water underground, treatment of water if released to surface streams, and the effect on the hydrologic... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS...

  20. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  1. Geohydrology and potential hydrologic effects of underground coal mining in the Rapid Creek Basin, Mesa County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1986-01-01

    The U.S. Bureau of Land Management may lease additional coal tracts in the Rapid Creek basin, Colorado. Springs in this basin are used as a water supply for the town of Palisade. The geohydrology of the basin is described and the potential hydrologic effects of underground coal mining in the basin summarized. Geologic formations in the basin consists of Cretaceous sandstone and shale, Tertiary sandstone, shale, and basalt, and unconsolidated deposits of Quaternary age. Some sandstone and coal beds are permeable, although bedrock in the basin typically is a confining bed. Unconsolidated deposits contain aquifers that are the source of spring discharge. Stream discharge was measured on Rapid and Cottonwood Creeks, and inventories were made of 7 reservoirs, 25 springs, and 12 wells. Specific conductance of streams ranged from 320 to 1,050 microsiemens/cm at 25C; pH ranged from 7.8 to 8.6. Specific conductance of springs ranged from 95 to 1,050 microsiemens/cm at 25C; pH ranged from 6.8 to 8.3. Discharge from the basin includes about 18,800 acre-ft/yr as evapotranspiration, 1,300 acre-ft/yr as springflow, 1,280 acre-ft/yr as streamflow, and negligible groundwater flow in bedrock. With appropriate mining methods, underground mining would not decrease flow in basin streams or from springs. The potential effects of mining-caused subsidence might include water-pipeline damage and temporary dewatering of bedrock adjacent to coal mining. (Author 's abstract)

  2. Oral Health Status of Underground Coal Mine Workers of Ramakrishnapur, Adilabad District, Telangana, India - A Cross-Sectional Study

    PubMed Central

    Abbas, Irram; Mohammad, Shakeel Anjum; Peddireddy, Parthasarathi Reddy; Mocherla, Monica; Koppula, Yadav Rao

    2016-01-01

    Introduction Standard of living and quality of life of people has been improved by the expanding industrial activity, but at the other end it has created many occupational hazards. Coal mining is one of the major age old industries throughout the world and in India. Till date very less literature is available worldwide and in India concerning the oral health status of laborers in this field. Aim To assess the oral health status of underground coal mine workers, oral hygiene practices, alcohol and tobacco habits. Materials and Methods A cross-sectional descriptive study was conducted among the underground coal mine workers of a coal mine located in Adilabad district, Telangana, according to the criteria described in the World Health Organization (WHO) Oral Health Assessment form (2013). Statistical analysis Descriptive statistics were done. Results A total of 356 workers participated in the study. Ninety percent of the subjects were with tobacco and/or alcohol habits. Dental caries was prevalent in more than half (55.6%) of the study subjects with a mean DMFT of 2.32±2.99. About 48.3% study subjects were with untreated dental caries and 20.3% subjects were with missing teeth. DMFT ≤=6 was seen in 45.5% of subjects and 10.1% have DMFT scores ≥=7. Periodontal disease was the most prevalent condition seen in the population with 94.4% subjects having unhealthy periodontium in terms of gingival bleeding and/or periodontal pockets. About 186 (52.25%) and 145 (40.73%) of subjects were with 0-3mm and 4-5mm loss of attachment respectively. Fourteen percent of population showed dental traumatic injuries. Conclusion The findings highlighted the high caries prevalence, higher periodontal disease, traumatic injuries which requires immediate intervention. PMID:26894171

  3. Geohydrology and potential hydrologic effects of underground coal mining in the Rapid Creek basin, Mesa County, Colorado

    SciTech Connect

    Brooks, T.

    1986-01-01

    The US Bureau of Land Management may lease additional coal tracts in the Rapid Creek basin, Colorado. Springs in this basin are used as a water supply for the town of Palisade. The geohydrology of the basin is described and the potential hydrologic effects of underground coal mining in the basin summarized. Geologic formations in the basin consists of Cretaceous sandstone and shale, Tertiary sandstone, shale, and basalt, and unconsolidated deposits of Quaternary age. Some sandstone and coal beds are permeable, although bedrock in the basin typically is a confining bed. Unconsolidated deposits contain aquifers that are the source of spring discharge. Stream discharge was measured on Rapid and Cottonwood Creeks, and inventories were made of 7 reservoirs, 25 springs, and 12 wells. Specific conductance of streams ranged from 320 to 1,050 microsiemens/cm at 25c; pH ranged from 7.8 to 8.6. Specific conductance of springs ranged from 95 to 1,050 microsiemens/cm at 25C; pH ranged from 7.8 to 8.6. Specific conductance of springs ranged from 95 to 1,050 microsiemens/cm at 25C; pH ranged from 6.8 to 8.3. Discharge from the basin includes about 18,800 acre-ft/yr as evapotranspiration, 1,300 acre-ft/yr as springflow, 1,280 acre-ft/yr as streamflow, and negligible groundwater flow in bedrock. With appropriate mining methods, underground mining would not decrease flow in basin streams or from springs. The potential effects of mining-caused subsidence might include water-pipeline damage and temporary dewatering of bedrock adjacent to coal mining. 19 refs., 6 figs., 5 tabs.

  4. Engineering and economical aspects of selection of coal conveying system in Czech underground mines

    SciTech Connect

    Polak, J.; Drozdek, K.

    1995-12-31

    Coal, rock and material conveying and men-riding presently represent the critical activities of the mining process. Coal when cut out in the face is continually transported towards the expedition from a mine. The selection of coal conveying system from face to the skip complex or directly to the surface depends mainly on the quantity of coal conveyed, the hauling distance, the local and time concentration of production and the lifetime of a system. Possibilities of belt conveying and combined belt conveying and locomotive haulage, used in Czech coal mines, are analyzed from the point of view of technological advantages and disadvantages and compared according to the economic parameters.

  5. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  6. Advanced coal-fired glass melting development program

    SciTech Connect

    Not Available

    1991-05-01

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  7. Evaluation of ADAM/1 model for advanced coal extraction concepts

    NASA Technical Reports Server (NTRS)

    Deshpande, G. K.; Gangal, M. D.

    1982-01-01

    Several existing computer programs for estimating life cycle cost of mining systems were evaluated. A commercially available program, ADAM/1 was found to be satisfactory in relation to the needs of the advanced coal extraction project. Two test cases were run to confirm the ability of the program to handle nonconventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs.

  8. A Critical Study on the Underground Environment of Coal Mines in India-an Ergonomic Approach

    NASA Astrophysics Data System (ADS)

    Dey, Netai Chandra; Sharma, Gourab Dhara

    2013-04-01

    Ergonomics application on underground miner's health plays a great role in controlling the efficiency of miners. The job stress in underground mine is still physically demanding and continuous stress due to certain posture or movement of miners during work leads to localized muscle fatigue creating musculo-skeletal disorders. A good working environment can change the degree of job heaviness and thermal stress (WBGT values) can directly have the effect on stretch of work of miners. Out of many unit operations in underground mine, roof bolting keeps an important contribution with regard to safety of the mine and miners. Occupational stress of roof bolters from ergonomic consideration has been discussed in the paper.

  9. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    SciTech Connect

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  10. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... water underground, treatment of water if released to surface streams, and the effect on the hydrologic... hydrologic monitoring....

  11. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  12. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  13. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  15. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND...

  16. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND...

  17. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND...

  18. Performance of a high efficiency advanced coal combustor

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. )

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the primary act,'' and three further annuli for the supply of the secondary air.'' The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  19. Evaluation of reverse coal-pyrite flotation for a proposed Ohio advanced coal-cleaning test facility

    SciTech Connect

    Miller, K.J.

    1989-07-01

    A laboratory test program was conducted at the Pittsburgh Energy Technology Center with precleaned and classified middlings samples of three high-sulfur Ohio coals. The test program was run to evaluate the possible application of the US Department of Energy's two-stage reverse coal-pyrite flotation process in a new coal-cleaning test facility to be built in Ohio by the Ohio Coal Development Office. Results showed that the pyritic sulfur content of all three of the prepared coal samples could be substantially lowered via the coal-pyrite flotation process. But with two of the three coals, the organic sulfur levels were so high that removal of all of the pyrite would have contributed little to total sulfur reduction. Thus, processes aimed at pyritic sulfur reduction alone (such as the reverse coal-pyrite flotation process) would have limited impact on total sulfur reduction with some Ohio coals. However, with other coals in which sulfur is predominantly in the form of pyrite and marcasite, the process would likely prove beneficial. Therefore, the inclusion of reverse coal-pyrite flotation circuitry in the new facility would be prudent, especially since the proposed advanced coal-cleaning test plant will contain other deep-cleaning circuitry to ensure maximum ash reduction to achieve the lowest possible SO/sub 2/ per Btu emission levels. 13 refs., 2 figs., 6 tabs.

  20. Radiological study of exposure levels in El Maghara underground coal mine.

    PubMed

    Amer, Hany A; Shawky, S; Hussein, Mohamed I; Abd el-Hady, M L

    2002-08-01

    Coal is largely composed of organic matter, but it is the inorganic matter in coal minerals and trace elements that have been cited as possible causes of health, environmental and technological problems associated with the use of coal. Some trace elements in coal are naturally radioactive. These radioactive elements include uranium (U), thorium (Th) and their numerous decay products, including radium (Ra) and radon (Rn). Although these elements are less chemically toxic than other coal constituents, such as arsenic, selenium or mercury, questions have been raised concerning the possible risk from radiation. In order to accurately address these questions and to predict the mobility of radioactive elements during the coal fuel cycle, it is important to determine the specific activity, distribution and form of radioactive elements in coal. The assessment of the radiation exposure from coal burning is critically dependent on the specific activity of radioactive elements in coal and in the fly ash that remains after combustion. The El-Maghara coal mine is the only producing coal mine in Egypt. It is located in the middle of the Sinai desert about 250 km north-east of Cairo, where a coal-fired power plant is intended to be built. In this study, a pre-operational radiological baseline of the site and the occupational radiation exposures due to radon progeny in the mine were determined. The specific activities of 226Ra, 232Th and 40K in soil and coal dust samples collected along the main gallery ranges were found to be 6-22.9, 9.6-47.3 and 77-489 Bq kg-1, respectively. Soil samples collected around the mine showed concentrations of 226Ra, 232Th and 40K in the ranges 2.7-20.2, 3.2-12.6 and 14.6-201 Bq kg-1, respectively. All of the mean values of radon progeny were lower than the action levels for working places recommended in the International Commission on Radiological Protection (ICRP) 65. PMID:12196005

  1. Coal surface control for advanced fine coal flotation: Quarterly report No. 2, January 1--March 31, 1989

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Narayanan, K.S.; Khan, L.; Diao, J.; Yin, Y.; Waltermire, M.; Hu, W.; Zou, Y.

    1989-06-01

    The primary goal of this research project is to develop advanced flotation methods of coal cleaning in order to achieve 90% pyritic sulfur removal at 90% Btu yield, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. The investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is an important aspect of the project objectives. A second major objective is to investigate the factors involved in the progressive weathering and oxidation of coal stored in three storage modes, namely, open, covered and in an argon-inerted atmosphere, over a period of twelve months. 37 figs., 41 tabs.

  2. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  3. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  4. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  5. Technology and development requirements for advanced coal conversion systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.

  6. Underground Coal Gasification (UCG) gas to methanol and MTG-gasoline: An economic and sensitivity study, task B

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The technical and economic aspects of the production of methanol and gasoline using gas from an underground coal gasification (UCG) facility are discussed. The economics of producing gasoline is studied as well as a number of other aspects of the economics of upgrading UCG gas. Capital and operating costs for three different capacities of gasoline plants are presented. These are 1600 barrels per day (BPD), 4800 BPD, and 9600 BPD. These capacities are equivalent to fuel grade methanol plants having capacities of 4000 BPD, 12,000 BPD, and 24,000 BPD - the methanol capacities considered in the previous studies. The economics of the gasoline plant were developed using published information and the best estimate of the processing steps in the gasoline process. Several sensitivity studies were undertaken to examine the sensitivity of both methanol and gasoline product costs to changes in technical and economic parameters.

  7. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  8. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  9. National assessment of environmental and economic benefits from methane control and utilization technologies at US underground coal mines. Final report, April 1994-April 1997

    SciTech Connect

    Masemore, S.; Piccot, S.; Lanning, J.

    1997-12-01

    The report gives results of EPA research into the emission processes and control strategies associated with underground coal mines in the U.S. Goals of the EPA program have been to assess the economic performance and emissions reductions of methane control strategies for underground coal mines, and to develop modeling tools and data bases that miners can use to conduct their own site-specific methane control analyses. To this end, nine standard or model mines were designed to closely simulate existing mines in the major coal producing regions. Cost performance and methane reductions were then calculated for a number of methane recovery and utilization combinations at these model mines. Algorithms were developed using site-specific mine designs, geologic parameters, and costs, with the assistance of mine operators, mining consultants, degasification system consultants, and the U.S. Bureau of Mines.

  10. Underground Coal-Fires in Xinjiang, China: Assessment of Fire Dynamics from Surface Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.; Zeng, Qiang; Tanner, David C.; Halisch, Matthias; Cai, Zhong-yong; Wang, Chunli

    2013-04-01

    Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. The Xinjiang Coalfield Fire Fighting Bureau (XJCFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. In this contribution we describe the latest results from a new conjoint project between China and Germany where on the basis of field investigations and laboratory measurements realistic dynamical models of fire-zones are constructed to increase the understanding of particular coal-fires, to interpret the surface signatures of the coal-fire in terms of location and propagation and to estimate the output of hazardous exhaust products to evaluate the economic benefit of fire extinction. For two exemplary fire-locations, coarse digital terrain models have been produced. These models serve as basis for a detailed surface exploration by terrestrial laser scanning which shall deliver a detailed fracture inventory. Samples of rock and coal have been taken in the field and are characterized in LIAG's petrophysical laboratory in terms of transport properties. All these data serve as input for our detailed numerical fire models. Repeated measurements of the surface changes together with thermal images reveal the dynamics of fire propagation. The numerical models are calibrated by such data and can later be used to quantify the emissions from such a fire zone.

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy's program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research Development Center (Amax R D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  12. 76 FR 55837 - Workshops To Discuss Revisions to Federal and Indian Coal Valuation Regulations: Advance Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Revisions to Federal and Indian Coal Valuation Regulations: Advance Notice of Proposed Rulemaking AGENCY... existing royalty valuation regulations at 30 CFR parts 1202 and 1206 for coal produced from Federal and... Notice ] of Proposed Rulemaking (ANPR) for Federal and Indian coal valuation closed on July 26, 2011....

  13. Mortality among US underground coal miners: A 23-year follow-up

    SciTech Connect

    Attfield, M.D.; Kuempel, E.D.

    2008-03-15

    The mortality experience over 22-24 years of 8,899 working coal miners initially medically examined in 1969-1971 at 31 U.S. coal mines was evaluated. A cohort life-table analysis was undertaken on underlying causes of death, and proportional hazards models were fitted to both underlying, and underlying and contributing causes of death. Elevated mortality from nonviolent causes, nonmalignant respiratory disease (NMRD), and accidents was observed, but lung cancer and stomach cancer mortality were not elevated. Smoking, pneumoconiosis, coal rank region, and cumulative coal mine dust exposure were all predictors of mortality from nonviolent causes and NMRD. Mortality from nonviolent causes and NMRD was related to dust exposure within the complete cohort and also for the never smoker subgroup. Dust exposure relative risks for mortality were similar for pneumoconiosis, NMRD, and chronic airways obstruction. The findings confirm and enlarge upon previous results showing that exposure to coal mine dust leads to increased mortality, even in the absence of smoking.

  14. CO2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities

    SciTech Connect

    Romanov, V.N.; Ackman, T.E.; Soong, Yee; Kleinmann, R.L.

    2009-02-01

    The looming global energy and environmental crises underscore a pressing need for the revision of current energy policies. The dominating albeit somewhat optimistic public perception is that hundreds of years worth of coal available for power generation will offset the decline of oil and gas reserves. Although use of coal accounts for half of U.S. electricity generation and for a quarter of world energy consumption, it has been perceived until recently as unwelcomed by environmentalists and legislators. For coal power generation to be properly considered, CO2 and other greenhouse gas (GHG) generation and deposition must be addressed to assuage global climate change concerns. Capturing and sequestering CO2 emissions is one of the principal modes of carbon management. Herein we will suggest a novel process that includes capturing GHG in abundant materials, which can be facilitated by controlled sequential heating and cooling of these solids. By taking advantage of the properties of waste materials generated during coal production and the exhaust heat generated by the power plants, such an approach permits the integration of the entire CO2 cycle, from generation to deposition. Coupling coal extraction/preparation with power generation facilities would improve the economics of “zero-emission” power plants due to the proximity of all the involved facilities.

  15. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  16. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  17. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute`s Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  18. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute's Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  19. Utilization of wet FGD material for AMD abatement in underground coal mines

    SciTech Connect

    Ashby, J.C.

    1998-12-31

    Electric utility response to certain amendments of the Clean Air Act has resulted in the production of several types of alkaline coal combustion byproducts. Alkaline combustion byproducts are gaining increasing usage for acid mine drainage mitigation as research leads to a better understanding of their beneficial applications. Since January of 1997, Mettiki Coal Corporation has been injecting alkaline flue gas desulfurization material from Virginia Power`s Mt. Storm Unit No. 3 wet limestone scrubber into abandoned portions of the active Mettiki mine. This paper provides an overview of the key design, transportation, regulatory, and environmental issues faced in the project.

  20. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    SciTech Connect

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  1. Forecast of long term coal supply and mining conditions: Model documentation and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A coal industry model was developed to support the Jet Propulsion Laboratory in its investigation of advanced underground coal extraction systems. The model documentation includes the programming for the coal mining cost models and an accompanying users' manual, and a guide to reading model output. The methodology used in assembling the transportation, demand, and coal reserve components of the model are also described. Results presented for 1986 and 2000, include projections of coal production patterns and marginal prices, differentiated by coal sulfur content.

  2. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage

  3. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  4. 76 FR 35968 - Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Children From Environmental Health Risks and Safety Risks G. Executive Order 13175: Consultation and... duster with good perimeter coating in a single pass. Trickle--good for dusting return entries or belt entries, run continuously. Wet/Slurry--more coverage per pound of dust, good adherence to coal, can...

  5. 77 FR 25205 - Proposed Extension of Existing Information Collection; Roof Control Plans for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... Safety and Health Administration Proposed Extension of Existing Information Collection; Roof Control... Act of 1977 (Mine Act) 30 U.S.C. 846, requires that a roof control plan and revisions thereof suitable to the roof conditions and mining system of each coal mine be first approved by the Secretary...

  6. 76 FR 25277 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Coal Mines, published on December 27, 2010 (75 FR 81165), and the proposed rule for Pattern of Violations, published on February 2, 2011 (76 FR 5719), are available on http://www.regulations.gov and on... Safety and Health Administration 30 CFR Parts 75 and 104 RIN 1219-AB75, 1219-AB73 Examinations of...

  7. Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy

    SciTech Connect

    Watzlaf, G.R.; Ackman, T.E.

    2007-04-01

    Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)

  8. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  9. Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

  10. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  11. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  12. Advanced direct coal liquefaction concepts. Final report, Volume 2

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).

  13. Safety evaluation methodology for advanced coal extraction systems

    SciTech Connect

    Zimmerman, W.F.

    1981-07-15

    To be acceptable to the coal industry, an advanced extraction system must provide a significant improvement over conventional systems in cost, safety, environmental impact, and conservation of unmined coal. Qualitative and quantitative evaluation methodologies were developed to assist the designer in determining if a proposed extraction design will be safer than existing systems. The qualitative analysis is a process which tests the new system against regulations and hazards of existing similar systems. The analysis examines the soundness of the design, whether or not the major hazards have been eliminated or reduced, and how the reduction would be accomplished. The quantitative methodology provides the designer with a means of establishing the approximate impact of hazards on injury levels. The results are further weighted by peculiar geological elements, specialized safety training, peculiar mine environmental aspects, and reductions in labor force. The outcome is compared with injury level requirements based on similar, safer industries to get a measure of the new system's success in reducing injuries. This approach provides a more detailed and comprehensive analysis of hazards and their effects than existing safety analyses.

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  15. Economic effects of subsidence from underground coal mining on agricultural land in Illinois. Open file report, 1 September 1982-30 November 1984

    SciTech Connect

    Guither, H.D.

    1984-01-30

    The objective of this study was to determine the economic impact of subsidence from underground coal mining on agricultural lands in Illinois. In a survey of Illinois agricultural extension advisers, the presence of subsidence from underground coal mining was reported in 31 counties. The most frequently reported problems were the presence of depressions or potholes, standing water in depressed areas, surface drainage disruption, broken tile lines, and reduced crop yields. The most frequently reported attempts to restore productivity from subsidence damage were to dig surface drainage ditches, haul in fill dirt, fill in depressions with tractor and blade or land leveler, and replace tile lines; success was varied. Positive identification of all subsidence occurrences and measurement of the area affected is very elusive.

  16. Effects of wearing gumboots and leather lace-up boots on lower limb muscle activity when walking on simulated underground coal mine surfaces.

    PubMed

    Dobson, Jessica A; Riddiford-Harland, Diane L; Steele, Julie R

    2015-07-01

    This study aimed to investigate the effects of wearing two standard underground coal mining work boots (a gumboot and a leather lace-up boot) on lower limb muscle activity when participants walked across simulated underground coal mining surfaces. Quadriceps (rectus femoris, vastus medialis, vastus lateralis) and hamstring (biceps femoris, semitendinosus) muscle activity were recorded as twenty male participants walked at a self-selected pace around a circuit while wearing each boot type. The circuit consisted of level, inclined and declined surfaces composed of rocky gravel and hard dirt. Walking in a leather lace-up boot, compared to a gumboot, resulted in increased vastus lateralis and increased biceps femoris muscle activity when walking on sloped surfaces. Increased muscle activity appears to be acting as a slip and/or trip prevention strategy in response to challenging surfaces and changing boot features. PMID:25766420

  17. The design and application of Propsetter{trademark} in underground coal mines

    SciTech Connect

    McCartney, C.; Tupper, L.; Paton-Ash, G.R.

    1995-11-01

    The Propsetter{trademark} System has been designed and developed to cost effectively solve problems experienced with conventional underground supports used in tailgates, headgates, bleeder entries and as supplemental supports. The Propsetter{trademark} System utilizes the strength and orthotropic properties of timber to achieve initial stiffness and controlled yield as the roof and floor converge. Utilizing a prestressing system developed in South Africa by the parent company, the Propsetter{trademark} prestresses/preloads the roof and floor on installation. The Propsetter{trademark} System consists of five integrated elements which are easily assembled to achieve the objectives of: improved support, improved safety, reduced cost, reduced material handling, improved installation productivity, and improved ventilation.

  18. Response of hydrology to underground coal mine subsidence: Literature assessment and annotated bibliography. Information circular/1994

    SciTech Connect

    Kadnuck, L.L.M.; Fejes, A.J.

    1994-01-01

    This U.S. Bureau of Mines publication is intended to provide mining industry representatives and regulatory authorities with a reference package dealing with hydrology and underground mine subsidence related studies. An annotated bibliography and a list of additional sources are given and represent references published prior to June 1993. Ninety-seven references were identified and 75 obtained for assessment. Annotating the references included evaluating the study methodology and summarizing the basic results. Table 1 compiles the references based on geographic location and will aid the user in identifying articles of particular interest. Appendix A is an annotated bibliography of the literature listed in Table 1, and Appendix B is a listing of additional sources on the subject.

  19. Relationship between the geological and working parameters in high productivity longwalls in underground competitive coal mining of very thick seams

    SciTech Connect

    Torano, J.; Rivas, J.M.; Rodriguez, R.; Diego, I.; Pelegry, A.

    2005-07-01

    Carbonar S.A. is using a high productivity long panel to mine a coal seam that is over 4 meters thick in some places. The equipment comprises a double drum shearer and a powered roof support. Seam thickness, close joint state, and roof load over the support were measured, in situ. Data were collected on both cross and longitudinal sections of the panel. The data are interpreted and related to the longwall advance. The data are being processed using fuzzy logic methods. The results will be applied to remote control automation using virtual reality tools. 7 refs., 27 figs.

  20. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    PubMed

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-01-01

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660

  1. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    PubMed Central

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-01-01

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660

  2. The research of underground coal fires based on thermal infrared images

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2009-07-01

    Coal mine fires has become a very severe geologic disaster that affects the sustainable development of China's national economy. They result in a reduction of the coal reserve, attribute to atmospheric pollution through the emission of greenhouse related gases, cause land subsidence and negatively impact human health in nearby areas. Fire source localization is an important direction in the research area of fire detection at present. For application researches of fire source localization in fire nonage, a method of fire source localization and its algorithm are presented in the paper. The method is applied to estimate the characterization of infrared image for fire source localization in condition of radiation of fire source having a character of approximate spherical wave, and its convenience of fine orientation distinguishing ability is also presented. The coherence of detection precision for fire source localization applied with the method is similarity while detected in the closed or semi-closed space. Fine feasible and compatible of this detection method is represented in the paper, and especially suited for fire source localization in the rectangle restricted space.

  3. Performance and risks of advanced pulverized-coal plants

    SciTech Connect

    Nalbandian, H.

    2009-07-01

    This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

  4. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  5. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  6. Effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine.

    PubMed

    Lamminen, M; Wood, J; Walker, H; Chin, Y P; He, Y; Traina, S J

    2001-01-01

    In this paper, a field study was carried out to examine the effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine in central-eastern Ohio. Flue gas desulfurizalion by-product was injected into the down-dip portions of the Robert-Dawson mine in an attempt to seal major seeps exiting the mine and to coat exposed pyritic surfaces. Immediately following grout injection, significant increases in acidity, iron, aluminum, sulfur, and calcium were observed at most surface and ground water locations near where grouting was carried out. Following this initial flush of elements, concentrations of most constituents have decreased to near pre-grouting levels. Data from the site and geochemical modeling suggest that an increase in water level or rerouting of drainage flow resulted in the dissolution of iron and aluminum sulfate salts and ferrihydrite. Dissolution of the FGD grout material resulted in increases in calcium and sulfate concentrations in the drainage waters. Water within the mine voids was saturated with respect to calcium sulfate and gypsum immediately following grout injection. Based on an analysis of core samples obtained from the site, acid mine drainage (AMD) was in contact with at least some portions of the grout and this resulted in grout weathering. Subsequent transport of calcium and sulfate to the underclay, perhaps by fracture flow, has resulted in the deposition of gypsum and calcium sulfate solids. PMID:11476516

  7. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Gallier, P.W.

    1993-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies: The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The commercially available ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. This report is submitted to document the progress of Aspen Technology, Inc. (AspenTech), its contractor, ICF Kaiser Engineers, Inc.,(ICF KE) and CQ Inc., a subcontractor to ICF KE, for the period of October through December 1992. ICF KE is providing coal preparation consulting and processing engineering services in this work and they are responsible for recommending the design of models to represent conventional coal cleaning equipment and costing of these models. CQ Inc. is a subcontractor to ICF KE on Tasks 1-5.

  8. Development of steel-fiber-reinforced concrete cribs to replace wood cribs in underground coal mines

    SciTech Connect

    Tanious, N.S.; Becket, R.D.; Bollinger, E.R.

    1984-02-01

    The need to provide better mine roof support and control in longwall tailgate entries prompted the Bureau of Mines to search for a replacement product for wood cribs. Their search isolated steel-fiber-reinforced concrete (SFC) as the most effective replacement. Through successful laboratory and underground mine tests, handmade SFC cribs proved to be a viable and more effective roof support system. However, to ensure wider usage, U.S. Steel Mining Co. initiated a joint development and evaluation program with Burrell Construction Company in order to mass produce SFC blocks of reasonable dimension, weight, and cost. Small specimens and full-size cribs were evaluated during this program to determine their compressive strength and post failure characteristics. After considerable testing and adjusting of various concrete mixtures, a final formulation for the SFC crib blocks was selected. That formulation permitted the construction of SFC cribs possessing a nominal crib strength of 3200 psi (22.1 x 10/sup 6/ Pa) and a nominal modulus of elasticity of 1.0 x 10/sup 6/ psi (6894.76 x 10/sup 6/ Pa). These SFC cribs can support from 3.5 to 14.5 times as much load as a wood crib, depending on the size of the wood crib being replaced. Both laboratory and limited mine tests, conducted by U.S. Steel Mining Co. have shown the SFC crib to be an economical and effective means of roof control.

  9. Advanced Coal-Extraction-Systems Project: report of activities for fiscal year 1980-1981. [By coal field and basin

    SciTech Connect

    Dutzi, E.J.

    1982-03-15

    The Advanced Coal Extraction Systems Project completed several major accomplishments in the definition of target resources, definition of conceptual design requirements for Central Appalachia coals, and initiation of the conceptual design effort. Geologically and economically significant resources were characterized, resulting in recommendations for additional target resources; conceptual design requirements for Central Appalachia coals in the areas of production cost, safety, health, environmental impact, and coal conservation were formulated; and strategies for internal and external design efforts were defined. In addition, an in-depth health and safety evaluation of a modified tunnel borer design for coal mining was completed. At the end of fiscal year 1980-1981, the project was prepared to begin evolution and evaluation of conceptual designs for advanced coal mining systems. The selection of Central Appalachia as the target region automatically imposes certain restrictions and constraints, pertinent to the geology, geography, and other aspects of the operating environment. Requirements imposed by the target resource are summarized. Figure 2-1 presents an overview of the relationship between the conceptual design requirements and the constraints imposed by the Central Appalachian target resource.

  10. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  11. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  12. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  13. Processes governing flow and chemical characteristics of discharges from free-draining, underground coal mines

    SciTech Connect

    McDonough, K.M.; Lambert, D.C.; Mugunthan, P.; Dzombak, D.A.

    2005-10-01

    In the Uniontown Syncline of Southwestern Pennsylvania, discharges from unflooded, free-draining coal mines are acidic with high sulfate concentrations. Flow and water quality data obtained in 1998-2000 for an unflooded mine discharge in the Uniontown Syncline were evaluated using a tank reactor fill-and-draw model to describe seasonal variations in outflows over time observed for the mine as well as to simulate discharge water quality. The hydraulic model was coupled to a chemical mass balance using estimates of recharge water quality and in-mine chemical production/loss. Field data indicated that the concentrations of sulfate, iron, and acidity were fairly constant even when flow varied greatly. Flow-related mass production functions for these constituents were obtained by fitting the field data. The hydraulic-chemical model was used to simulate sulfate and acidity production from pyrite dissolution and total carbonate loss in the mine. Model simulations indicated that in-mine acid production correlated with recharge rate, due to the sustained presence of oxygen which drives pyrite dissolution, and that recharge water chemistry had a significant influence on discharge characteristics. For the mine studied, alkaline recharge water mitigates the acidity of the discharges.

  14. Quantifying of the Thermal Dynamic Characteristics of the Combustion System for Underground Coal Fire and its Impact on Environment in Xinjiang region, China

    NASA Astrophysics Data System (ADS)

    ZENG, Qiang; Tiyip, Tashpolat; Wuttke, Manfred; NIE, Jing; PU, Yan

    2015-04-01

    Underground Coal fire (UCF) is one disaster associated with coal mining activities around the world. The UCF not only burns up the coal reservoir, but also causes serious environmental problems, such as the pollution to air, the damage to soils, and the contamination to surface and underground water and consequently the health problem to human beings. In the present paper, the authors attempts to quantify the thermal dynamic characteristics of the combustion system for UCF and its impact on environment by modeling, including delineating the physical boundary of UCF zone, modeling of the capacity of the oxygen supply to UCF, modeling the intensity of heat generation from UCF and modeling the process of heat transfer within UCF and its surrounding environment. From this research, results were obtained as follows: First of all, based on the rock control theory, a model was proposed to depict the physical boundary of UCF zone which is important for coal fire research. Secondly, with analyzing the characteristics of air and smoke flow within UCF zone, an air/smoke flow model was proposed and consequently a method was put forward to calculate the capacity of oxygen supply to the UCF. Thirdly, with analyzing the characteristics of coal combustion within UCF zone, a method of calculating the intensity of heat generation from UCF, i.e., the heat source models, was established. Heat transfer with UCF zone includes the heat conductivity within UCF zone, the heat dissipation by radiation from the surface of fire zone, and the heat dissipation by convection as well as the heat loss taken away by mass transport. The authors also made an effort to depict the process of heat transfer by quantitative methods. Finally, an example of Shuixigou coal fire was given to illustrate parts of above models. Further more, UCF's impact on environment, such as the heavy metals contamination to surface soil of fire zone and the characteristics of gaseous pollutants emission from the UCF also was

  15. ADVANCED HETEROGENEOUS REBURN FUEL FROM COAL AND HOG MANURE

    SciTech Connect

    Melanie D. Jensen; Ronald C. Timpe; Jason D. Laumb

    2003-09-01

    This study was performed to investigate whether the nitrogen content inherent in hog manure and alkali used as a catalyst during processing could be combined with coal to produce a reburn fuel that would result in advanced reburning NO{sub x} control without the addition of either alkali or ammonia/urea. Fresh hog manure was processed in a cold-charge, 1-gal, batch autoclave system at 275 C under a reducing atmosphere in the presence of an alkali catalyst. Instead of the expected organic liquid, the resulting product was a waxy solid material. The waxy nature of the material made size reduction and feeding difficult as the material agglomerated and tended to melt, plugging the feeder. The material was eventually broken up and sized manually and a water-cooled feeder was designed and fabricated. Two reburn tests were performed in a pilot-scale combustor. The first test evaluated a reburn fuel mixture comprising lignite and air-dried, raw hog manure. The second test evaluated a reburn fuel mixture made of lignite and the processed hog manure. Neither reburn fuel reduced NO{sub x} levels in the combustor flue gas. Increased slagging and ash deposition were observed during both reburn tests. The material-handling and ash-fouling issues encountered during this study indicate that the use of waste-based reburn fuels could pose practical difficulties in implementation on a larger scale.

  16. Advanced turbine design for coal-fueled engines

    NASA Astrophysics Data System (ADS)

    Bornstein, N. S.

    1992-07-01

    The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500 F (815 C), relatively innocuous salts. In this study it is found that at 1650 F (900 C) and above, calcium sulfate becomes an aggressive corrodent.

  17. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  18. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  19. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  20. Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2

    SciTech Connect

    Moretti, C.J.; Olson, E.S.

    1992-09-01

    Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

  1. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground...-3 through § 75.1107-16, or be enclosed in a noncombustible structure or area. (b) Underground...

  2. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  3. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  4. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  5. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    SciTech Connect

    Ferris, D.D.; Bencho, J.R.

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  6. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  7. An evaluation of disposal and utilization options for advanced coal utilization wastes

    SciTech Connect

    Moretti, C.J.

    1996-05-01

    If the US is to continue to effectively use its substantial coal reserves, new clean coal technologies must be developed to improve power production efficiency and reduce emissions from power plants. In order to gain information about wastes produced by advanced coal utilization processes, a research project is being conducted to characterize the geotechnical and geochemical properties of advanced coal process wastes. The University of North Dakota Energy and Environmental Research Center (EERC) analyzed 34 of these wastes for their bulk chemical and mineral compositions and for the disposal-related physical properties listed in a table. This paper discusses potentially useful waste management practices for eight bulk waste samples obtained from four different clean coal processes: gas reburning with sorbent injection (GRSI); pressurized fluidized-bed combustion (PFBC); SO{sub x}, NO{sub x}, RO{sub x}, BOX (SNRB); and coal reburning (CR). All four processes have been demonstrated at either full-scale or pilot-scale facilities in the US. Since the properties of advanced process wastes are different from conventional coal combustion wastes, an analysis was performed to identify any potential problems that could occur when standard, off-the-shelf waste management technologies are used for handling and disposal of advanced process wastes. When potential problems were identified, possible alternative technologies were evaluated.

  8. Do we have to consider temperature-dependent material properties in large-scale environmental impact assessments of underground coal gasification?

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas

    2015-04-01

    Underground coal gasification (UCG) can increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce environmental impacts such as ground subsidence associated with groundwater pollution due to generation of hydraulic connectivities between the UCG reactor and adjacent aquifers. These changes overburden conductivity may introduce potential migration pathways for UCG contaminants such as organic (phenols, benzene, PAHs and heterocyclics) and inorganic (ammonia, sulphates, cyanides, and heavy metals) pollutants. Mitigation of potential environmental UCG impacts can be achieved by improving the understanding of coupled thermo-hydro-mechanical processes in the rocks surrounding the UCG reactor. In the present study, a coupled thermo-mechanical model has been developed to carry out a parameter sensitivity analysis and assess permeability changes derived from volumetric strain increments in the UCG reactor overburden. Our simulation results demonstrate that thermo-mechanical rock behavior is mainly influenced by the thermal expansion coefficient, tensile strength and elastic modulus of the surrounding rock. A comparison of temperature-dependent and temperature-independent simulation results indicates high variations in the distribution of total displacements in the UCG reactor vicinity related to thermal stress, but only negligible differences in permeability changes. Hence, temperature-dependent thermo-mechanical parameters have to be considered in the assessment of near-field UCG impacts, while far-field models can achieve a higher computational efficiency by using temperature-independent thermo-mechanical parameters. Considering the findings of the present study in the large-scale assessment of

  9. Fluid placement of fixated scrubber sludge to reduce surface subsidence and to abate acid mine drainage in abandoned underground coal mines

    SciTech Connect

    Meiers, R.J.; Golden, D.; Gray, R.; Yu, W.C.

    1995-12-31

    Indianapolis Power and Light Company (IPL) began researching the use of fluid placement techniques of the fixated scrubber sludge (FSS) to reduce surface subsidence from underground coal mines to develop an economic alternative to low strength concrete grout. Abandoned underground coal mines surround property adjacent to IPL`s coal combustion by-product (CCBP) landfill at the Petersburg Generating Station. Landfill expansion into these areas is in question because of the high potential for sinkhole subsidence to develop. Sinkholes manifesting at the surface would put the integrity of a liner or runoff pond containment structure for a CCBP disposal facility at risk. The fluid placement techniques of the FSS as a subsidence abatement technology was demonstrated during an eight week period in September, October, and November 1994 at the Petersburg Generating Station. The success of this technology will be determined by the percentage of the mine void filled, strength of the FSS placed, and the overall effects on the hydrogeologic environment. The complete report for this project will be finalized in early 1996.

  10. Measurement and modeling of advanced coal conversion processes, Volume II

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  11. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  12. Coupled thermo-mechanical and poro-mechanical response evaluations associated with underground coal conversion. Final report, June 1982-December 1985

    SciTech Connect

    Advani, S.H.; Lee, J.K.; Min, O.K.; Chen, S.M.; Tseng, Y.P.; El Rafei, Al; Aboustit, B.L.; Chen, K.S.; Kitamura, M.; So, J.Y.

    1986-04-01

    Research investigations on hygrothermomechanical response modeling associated with underground coal conversion processes are reported. In particular, stress mediated cavity shapes and subsidence profiles for several field experiments are evaluated from the developed thermostructural models. These finite element codes utilize temperature dependent material properties with different constitutive characterizations, depending on the desired predictive capabilities and field applications. On the basis of the conducted thermo-elastic, thermo-elastoplastic, thermal consolidation, cavity spalling model, and parametric sensitivity simulations, criteria related to UCC site selection, cavity roof, and subsidence response prediction are identified and discussed. 15 refs., 11 figs.

  13. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1990-07-01

    The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

  14. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    SciTech Connect

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  15. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners in Kentucky, Virginia and West Virginia

    PubMed Central

    Blackley, David J; Halldin, Cara N; Wang, Mei Lin; Laney, A Scott

    2015-01-01

    Objectives To describe the prevalence of lung function abnormality and coal workers’ pneumoconiosis (CWP) by mine size among underground coal miners in Kentucky, Virginia and West Virginia. Methods During 2005–2012, 4491 miners completed spirometry and chest radiography as part of a health surveillance programme. Spirometry was interpreted according to American Thoracic Society and European Respiratory Society guidelines, and radiography per International Labour Office standards. Prevalence ratios (PR) were calculated for abnormal spirometry (obstructive, restrictive or mixed pattern using lower limits of normal derived from National Health and Nutrition Examination Survey (NHANES) III) and CWP among workers from small mines (≤50 miners) compared with those from large mines. Results Among 3771 eligible miners, those from small mines were more likely to have abnormal spirometry (18.5% vs 13.8%, p<0.01), CWP (10.8% vs 5.2%, p<0.01) and progressive massive fibrosis (2.4% vs 1.1%, p<0.01). In regression analysis, working in a small mine was associated with 37% higher prevalence of abnormal spirometry (PR 1.37, 95% CI 1.16 to 1.61) and 2.1 times higher prevalence of CWP (95% CI 1.68 to 2.70). Conclusions More than one in four of these miners had evidence of CWP, abnormal lung function or both. Although 96% of miners in the study have worked exclusively under dust regulations implemented following the 1969 Federal Coal Mine Safety and Health Act, we observed high rates of respiratory disease including severe cases. The current approach to dust control and provision of safe work conditions for central Appalachian underground coal miners is not adequate to protect them from adverse respiratory health effects. PMID:25052085

  16. Frequent Detection of Latent Tuberculosis Infection among Aged Underground Hard Coal Miners in the Absence of Recent Tuberculosis Exposure

    PubMed Central

    Ringshausen, Felix C.; Nienhaus, Albert; Schablon, Anja; Torres Costa, José; Knoop, Heiko; Hoffmeyer, Frank; Bünger, Jürgen; Merget, Rolf; Harth, Volker; Schultze-Werninghaus, Gerhard; Rohde, Gernot

    2013-01-01

    Background Miners are at particular risk for tuberculosis (TB) infection due to exposure to silica dust and silicosis. The objectives of the present observational cohort study were to determine the prevalence of latent TB infection (LTBI) among aged German underground hard coal miners with silicosis or chronic obstructive pulmonary disease (COPD) using two commercial interferon-gamma release assays (IGRAs) and to compare their performance with respect to predictors of test positivity. Methods Between October 2008 and June 2010, miners were consecutively recruited when routinely attending pneumoconiosis clinics for an expert opinion. Both IGRAs, the QuantiFERON®-TB Gold In-Tube (QFT) and the T-SPOT®.TB (T-SPOT), were performed at baseline. A standardized clinical interview was conducted at baseline and at follow-up. The cohort was prospectively followed regarding the development of active TB for at least two years after inclusion of the last study subject. Independent predictors of IGRA positivity were calculated using logistic regression. Results Among 118 subjects (mean age 75 years), none reported recent exposure to TB. Overall, the QFT and the T-SPOT yielded similarly high rates of positive results (QFT: 46.6%; 95% confidence interval 37.6–55.6%; T-SPOT: 61.0%; 95% confidence interval 52.2–69.8%). Positive results were independently predicted by age ≥80 years and foreign country of birth for both IGRAs. In addition, radiological evidence of prior healed TB increased the chance of a positive QFT result fivefold. While 28 subjects were lost to follow-up, no cases of active TB occurred among 90 subjects during an average follow-up of >2 years. Conclusions Considering the high prevalence of LTBI, the absence of recent TB exposure, and the currently low TB incidence in Germany, our study provides evidence for the persistence of specific interferon-gamma responses even decades after putative exposure. However, the clinical value of current IGRAs among our

  17. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, Cold Flow Burner Development''. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  18. Advanced coal-fueled gas turbine systems reference system definition update

    SciTech Connect

    Not Available

    1991-09-01

    The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

  19. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

  1. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  2. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  3. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  4. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  5. Measurement and modeling of advanced coal conversion processes, Volume III

    SciTech Connect

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G.

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  6. The Relationship between Elemental Carbon and Diesel Particulate Matter in Underground Metal/Nonmetal Mines in the United States and Coal Mines in Australia

    PubMed Central

    Noll, James; Gilles, Stewart; Wu, Hsin Wei; Rubinstein, Elaine

    2015-01-01

    In the United States, total carbon (TC) is used as a surrogate for determining diesel particulate matter (DPM) compliance exposures in underground metal/nonmetal mines. Since TC can be affected by interferences and elemental carbon (EC) is not, one method used to estimate the TC concentration is to multiply the EC concentration from the personal sample by a conversion factor to avoid the influence of potential interferences. Since there is no accepted single conversion factor for all metal/nonmetal mines, one is determined every time an exposure sample is taken by collecting an area sample that represents the TC/EC ratio in the miner's breathing zone and is away from potential interferences. As an alternative to this procedure, this article investigates the relationship between TC and EC from DPM samples to determine if a single conversion factor can be used for all metal/nonmetal mines. In addition, this article also investigates how well EC represents DPM concentrations in Australian coal mines since the recommended exposure limit for DPM in Australia is an EC value. When TC was predicted from EC values using a single conversion factor of 1.27 in 14 US metal/nonmetal mines, 95% of the predicted values were within 18% of the measured value, even at the permissible exposure limit (PEL) concentration of 160 μg/m3 TC. A strong correlation between TC and EC was also found in nine underground coal mines in Australia. PMID:25380085

  7. The relationship between elemental carbon and diesel particulate matter in underground metal/nonmetal mines in the United States and coal mines in Australia.

    PubMed

    Noll, James; Gilles, Stewart; Wu, Hsin Wei; Rubinstein, Elaine

    2015-01-01

    In the United States, total carbon (TC) is used as a surrogate for determining diesel particulate matter (DPM) compliance exposures in underground metal/nonmetal mines. Since TC can be affected by interferences and elemental carbon (EC) is not, one method used to estimate the TC concentration is to multiply the EC concentration from the personal sample by a conversion factor to avoid the influence of potential interferences. Since there is no accepted single conversion factor for all metal/nonmetal mines, one is determined every time an exposure sample is taken by collecting an area sample that represents the TC/EC ratio in the miner's breathing zone and is away from potential interferences. As an alternative to this procedure, this article investigates the relationship between TC and EC from DPM samples to determine if a single conversion factor can be used for all metal/nonmetal mines. In addition, this article also investigates how well EC represents DPM concentrations in Australian coal mines since the recommended exposure limit for DPM in Australia is an EC value. When TC was predicted from EC values using a single conversion factor of 1.27 in 14 US metal/nonmetal mines, 95% of the predicted values were within 18% of the measured value, even at the permissible exposure limit (PEL) concentration of 160 μg/m(3) TC. A strong correlation between TC and EC was also found in nine underground coal mines in Australia. PMID:25380085

  8. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  9. Advances in Ammonia Removal from Hot Coal Gas

    SciTech Connect

    Jothimurugesan, K.; Gangwal, S.K.

    1996-12-31

    Nitrogen occurs in coal in the form of tightly bound organic ring compounds, typically at levels of 1 to 2 wt%. During coal gasification, this fuel bound nitrogen is released principally as ammonia (NH{sub 3}). When hot coal gas is used to generate electricity in integrated gasification combined cycle (IGCC) power plants, NH{sub 3} is converted to nitrogen oxides (NO{sub x}) which are difficult to remove and are highly undesirable as atmospheric pollutants. Similarly, while the efficiency of integrated gasification molten carbonate fuel cell (IGFC) power plants is not affected by NH{sub 3}, NO{sub x} is generated during combustion of the anode exhaust gas. Thus NH{sub 3} must be removed from hot coal gas before it can be burned in a turbine or fuel cell. The objective of this study is to develop a successful combination of an NH{sub 3} decomposition catalyst with a zinc-based mixed-metal oxide sorbent so that the sorbent-catalyst activity remains stable for NH{sub 3} decomposition in addition to H{sub 2}S removal under cycle sulfidation-regeneration conditions in the temperature range of 500 to 750{degrees}C.

  10. Design optimization in underground coal systems. Volume VIII. The roof truss: an analysis with applications to mine design. Final technical report

    SciTech Connect

    Not Available

    1981-02-28

    The purpose of this research effort was to optimize the application of the roof truss for use in supporting coal mine roofs. Model analysis using two-dimensinal, body-loaded, photoelastic models was supplemented with field data and testing. A detailed literature review was also undertaken. The detailed analysis of photoelastic models of roof trusses was pursued by varying a number of the truss parameters - center-span installation angles and blocking-point configuration. In obtaining reduced deflection, the best support was achieved employing an angle of installation of 90/sup 0/. However, due to roof failute considerations, the recommended angle of installation was 45/sup 0/. Blocking points were shown to have an effect on roof-support capacity as well as truss span, and field tests indicated that the installation of a roof truss actually raised the roof. Also, from field measurements, it was shown that all sections of the arch carried the same load. The use of the roof truss as a major support principle and device in underground coal mines was confined. The installation angle should be 45/sup 0/ in any specified roof span. Blocking is an essential part of the arch installation and should be carefully implemented to insure maximum efficiency of the arch. It was concluded that: the truss installation of 45/sup 0/ produces maximum benefit when the overall stability of the roof is considered; the two-dimensional, body-loaded photoelastic model may be used to analyze underground structures; in underground installations, all components of the roof truss structure sustain the same load; and uplift of the roof may be achieved during installation of the roof truss system.

  11. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect

    Gallier, P.W.

    1990-10-20

    The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MF coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.

  13. Advanced concepts in coal liquefaction: Optimization of reactor configuration in coal liquefaction. Final report

    SciTech Connect

    Pradhan, V.R.; Comolli, A.G.; Lee, L.K.

    1994-11-01

    The overall objective of this Project was to find the ways to effectively reduce the cost of coal liquids to about dollar 25 per barrel of crude oil equivalent. The work described herein is primarily concerned with the testing at the laboratory scale of three reactor configuration concepts, namely (1) a fixed-bed plug-flow reactor as a ``finishing reactor`` in coal liquefaction, (2) three-stage well-mixed reactors in series, and (3) interstage stream concentration/product separation. The three reactor configurations listed above were tested during this project using a 20 cc tubing microreactor, a fixed-bed plug flow reactor, and a two-stage modified Robinson-Mahoney reactor system. The reactor schemes were first evaluated based on theoretical modelling studies, then experimentally evaluated at the microautoclave level and laboratory scale continuous operations. The fixed-bed ``finishing reactor`` concept was evaluated in both the upflow and the downflow modes of operation using a partially converted coal-solvent slurry as feed. For most of the testing of concepts at the microautoclave level, simulated coal, recycle oil, and slurry feedstocks were either specially prepared (to represent a specific state of coal/resid conversion) and/or obtained from HRI`s other ongoing bench-scale and PDU scale coal liquefaction experiments. The three-stage continuous stirred tank reactors (CSTR) and interstage product stream separation/concentration concepts were tested using a simulated three-stage CSTR system by employing a laboratory-scale ebullated-bed system and a modified version of the HRI`s existing Robinson-Mahoney fixed catalyst basket reactor system. This testing was conducted as a fourteen day long continuous run, divided into four Conditions to allow for a comparison of the new three-stage CSTR and interstage product concentration concepts with a two-stage CSTR baseline configuration.

  14. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  15. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  16. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  17. Engineering development of advanced coal-fired low-emission boiler system

    SciTech Connect

    Not Available

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  18. The fate of alkali species in advanced coal conversion systems

    SciTech Connect

    Krishnan, G.N.; Wood, B.J.

    1991-11-01

    The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950[degree]C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800[degree] to 950[degree]C, the concentrations of vapor phase sodium species (Na, Na[sub 2]O, NaCl, and Na[sub 2]SO[sub 4]) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820[degree]. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na[sub 2]SO[sub 4] increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 [mu]m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

  19. Safety evaluation methodology for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    Qualitative and quantitative evaluation methods for coal extraction systems were developed. The analysis examines the soundness of the design, whether or not the major hazards have been eliminated or reduced, and how the reduction would be accomplished. The quantitative methodology establishes the approximate impact of hazards on injury levels. The results are weighted by peculiar geological elements, specialized safety training, peculiar mine environmental aspects, and reductions in labor force. The outcome is compared with injury level requirements based on similar, safer industries to get a measure of the new system's success in reducing injuries. This approach provides a more detailed and comprehensive analysis of hazards and their effects than existing safety analyses.

  20. Advanced NMR approaches in the characterization of coal

    SciTech Connect

    Maciel, G.E.

    1992-01-01

    A considerable effort in this project during the past few months has been focussed on the development of [sup 1]H and [sup 13]C NMR imaging techniques to yield spatially-resolved chemical shift (structure) information on coal. In order to yield the chemical shift information, a solid-state NMR imaging technique must include magic-angle spinning, so rotating gradient capabilities are indicated. A [sup 13]C MAS imaging probe and a [sup 1]H MAS imaging probe and the circuitry necessary for rotating gradients have been designed and constructed. The [sup 1]H system has already produced promising preliminary results, which are briefly described in this report.

  1. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  2. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M.; Gould, L.; Botros, P.

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  3. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  4. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  5. Hydrology of the North Fork of the Right Fork of Miller Creek, Carbon County, Utah, before, during, and after underground coal mining

    USGS Publications Warehouse

    Slaughter, C.B.; Freethey, G.W.; Spangler, L.E.

    1995-01-01

    From 1988-92 the U.S. Geological Survey, in cooperation with the Utah Division of Oil, Gas, and Mining, studied the effects of underground coal mining and the resulting subsidence on the hydrologic system near the North Fork of the Right Fork of Miller Creek, Carbon County, Utah. The subsidence caused open fractures at land surface, debris slides, and rockfalls in the canyon above the mined area. Land surface subsided and moved several feet horizontally. The perennial stream and a tributary upstream from the mined area were diverted below the ground by surface fractures where the overburden thickness above the Wattis coal seam is 300 to 500 feet. The reach downstream was dry but flow resumed where the channel traversed the Star Point Sandstone, which forms the aquifer below the coal seams where ground-water discharge provides new base flow. Concentrations of dissolved constituents in the stream water sampled just downstream from the mined area increased from about 300 mg/L (milligrams per liter) to more than 1,500 mg/L, and the water changed from primarily a magnesium calcium bicarbonate to primarily a magnesium sulfate type. Monitored water levels in two wells completed in the perched aquifer(s) above the mine indicate that fractures from subsidence- related deformation drained the perched aquifer in the Blackhawk Formation. The deformation also could have contributed to the decrease in discharge of three springs above the mined area, but discharge from other springs in the area did not change ubstantially; thus, the relation between subsidence and spring discharge, if any, is not clear. No significant changes in the chemical character of water discharging from springs were detected, but the dissolved-solids concentration in water collected from a perched sandstone aquifer overlying the mined coal seams increased during mining activity.

  6. Uncovering and evaluation of a twenty-five-year-old underground-coal-gasification burn at a site in Gorgas, Alabama

    SciTech Connect

    Capp, J.P.

    1981-04-01

    During the late forties and into the fifties, the US Bureau of Mines (USBM) and the Alabama Power Company conducted a series of underground coal gasification burns in the Pratt and America coal beds at Gorgas, Alabama. Following the first burn, by the so called stream method, it was feasible to enter the burned out areas by deep mining and assess what had taken place during the operation of the test site. In the latter tests, however, it was not economically feasible to explore the burned out areas except by means of core drilling. Now, in early 1981, surface mining is being done in the vicinity of the first hydraulic fracture area. I had been there during the active operation of the burns and agreed to go to Gorgas, evaluate the exposed area, collect samples, take photographs, and provide this written report. I spent several days taking photographs and making observations at the exposed burn site, taking samples, and discussing the best ways to coordinate future exposures with the coal mining process. The uncovered burn area at the site of the first hydraulic fracture can be described as a flat, roughly circular shaped area, varying in thickness from about 1 foot to 2 feet high and covered with a mixture of the various materials removed in the mining operation, i.e., broken bits of coal, rock, clay, etc. However it rained the night before the observation and during the entire evaluation period making it extremely difficult to determine whether fine gray colored materials were clay or residual ash.

  7. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  8. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    1998-10-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the tenth quarter of this project, Task 6 (Equipment Procurement and Installation) was completed through the efforts of J.A. Herbst and Associates, Virginia Tech, Pittston Coal Company, and FGR Automation. As a result of this work, a model-based control system is now in place which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. Testing of this control system is expected to be carried out during the next quarter, and the results of this testing will be reported in the Eleventh Quarterly report. In addition, calibration of the video-based ash analyzer was continued and an extensive set of calibration data were obtained showing that the plant is running remarkably well under manual control. This may be a result of increased attention being paid to froth flotation as a result of this project.

  9. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    G.H. Luttrell; G.T. Adel

    1999-01-11

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eleventh quarter of this project, Task 7 (Operation and Testing) was nearly completed through the efforts of J.A. Herbst and Associates, Virginia Tech, and Pittston Coal Company. As a result of this work, a model-based control system has now been installed which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. The system has gone through a shake-down period, training has been carried out for plant operators, and the bulk of the control logic testing has been completed with the results of these tests awaiting analysis under Task 8 (System Evaluation). The flotation model has been shown to predict incremental ash quite successfully, implying that this approach may provide the basis for a useful ''soft sensor'' for on-line incremental ash analysis.

  10. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  11. Fire hazard criteria for noise control products in underground coal mines. Open file report 28 Sep 79-5 Apr 83

    SciTech Connect

    Pettitt, M.R.; Giuntini, R.E.; Wessels, W.R.

    1983-05-01

    The development of fire hazard criteria for noise control products in underground coal mines are presented. Qualifying requisites of the criteria include maintaining miners' safety, allowing for maximum use of noise control products, and economic feasibility. The burning process is analyzed for its relationship to fire hazard criteria developed by the National Aeronautics and Space Administration and the Federal Aviation Administration, and the mine environment is analyzed in conjunction with the end-use applications of noise control products. Also, the interim fire hazard specification developed by the Mine Safety and Health Administration is appraised as it applies to end-use applications of noise control products. From these analyses and a literature survey, fire hazard criteria are developed that include an initial screening procedure that evaluates the level of flammability testing required.

  12. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1990-05-01

    The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

  13. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect

    Spencer, D.F.

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  14. Design manual for management of solid by-products from advanced coal technologies

    SciTech Connect

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  15. Concept selection for advanced low-emission coal fired boiler

    SciTech Connect

    Gorrell, R.L.; Rodgers, L.W.; Farthing, G.A.

    1993-12-31

    The Babcock & Wilcox Company (B&W), under contract to the US Department of Energy (DOE) with subcontract to Physical Sciences, Inc. (PSIT), the Massachusetts Institute of Technology (MIT) and United Engineers and Constructors (UE&C) has begun development of an advanced low-emission boiler system (LEBS). The initial phase of this multi-phase program required a thorough review and assessment of potential advanced technologies and techniques for control of combustion and flue gas emissions. Results of this assessment are presented in this paper.

  16. Blasting to stabilize abandoned underground mines in eastern and midwestern coal fields: A feasibility study. Open File Report

    SciTech Connect

    Not Available

    1991-05-22

    The study was designed to assist individuals involved with problem of abandoned mines that are subsiding. The study analyzed the practicality and desirability of using blasting to stabilize subsiding abandoned underground mines. Application of blasting to subsidence problems could provide a valuable alternative technology to classical methods of injecting fill material into abandoned mines to fill voids and prevent subsidence. By blasting, subsidence can be induced in a controlled manner, completed, and the site returned to its desired usage.

  17. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  18. TRW Advanced Slagging Coal Combustor Utility Demonstration. Fourth Quarterly progress report, August 1989--October 1989

    SciTech Connect

    Not Available

    1989-12-31

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O&R) Utility Corporation`s Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  19. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  20. Advanced turbine design for coal-fueled engines

    SciTech Connect

    Wagner, J.H.; Johnson, B.V.

    1993-04-01

    The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

  1. Assessment and evaluation of noise controls on roof bolting equipment and a method for predicting sound pressure levels in underground coal mining

    NASA Astrophysics Data System (ADS)

    Matetic, Rudy J.

    Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting

  2. Report of activities of the advanced coal extraction systems definition project for the period 1979-1980

    SciTech Connect

    Lavin, M.L.; Isenberg, L.

    1981-08-01

    The primary focus of the Project during 1979-1980 was formulation of system level performance goals and the translation of these goals into conceptual design requirements. The overall performance goals, although presented as specific to the Central Appalachian resource, are general in all areas except mine size and regional geology. Five system performance areas were covered: production cost, miner safety and health, environmental impact, and coal conservation. During the latter portion of 1980, project attention turned to transformation into conceptual design requirements the previously identified opportunities to meet the systems requirements. The Central Appalachian coals were chosen as the focus of the early system definition work on the basis of a brief analysis. Preliminary estimates indicated substantial deposits of coal in the Gulf Coast and the Brooks Range region of Alaska. At the close of 1980, this resource study was in the midst of an in-depth analysis of substantial coal deposits within the five major coal provinces - Appalachia, the Interior, the Rocky Mountains, the Gulf Coast, and Alaska. Finally, the project launched a brief conceptual design activity in early 1979, and performed a broad survey of current R and D in underground mining technology. Subsequent work in the area of technology assessment focused on underground slurry transport.

  3. Toxicity studies of underground coal gasification and tarsands processes. Progress report, February 1, 1982-January 31, 1983

    SciTech Connect

    Not Available

    1983-01-01

    Process waters were obtained from trial coal gasification experiments at Hanna, Wyoming and Vernal, Utah. Samples were assayed for toxicity using the Ames test and the Paramecium bioassay. Results indicate that both the Paramecium and Ames bioassays show sporadic genotoxic response to the process waters. (DMC)

  4. 77 FR 20700 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... conditions (35 FR 17890). The final rule restated the statutory provisions of the Coal Act, which were retained in the Mine Act. On January 27, 1988 (53 FR 2382), MSHA issued a proposed rule to revise the... examinations. After evaluating the comments, MSHA issued a final rule on May 15, 1992 (57 FR 20868)....

  5. 75 FR 81165 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Hazardous Conditions (30 CFR 75.303, 304, and 305 (35 FR 17890)). The final rule restated the statutory provisions of the Coal Act (as retained in the Mine Act). On January 27, 1988 (53 FR 2382), MSHA issued a..., 1992 (57 FR 20868). Neither the proposed rule nor the final rule included a requirement that...

  6. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  7. Carbon formation and metal dusting in advanced coal gasification processes

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  8. An Advanced Control System For Fine Coal Flotation

    SciTech Connect

    G. H. Luttrell; G. T. Adel

    1998-08-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the ninth quarter of this project, Task 3 (Model Building and Computer Simulation) and Task 4 (Sensor Testing) were nearly completed, and Task 6 (Equipment Procurement and Installation) was initiated. Previously, data collected from the plant sampling campaign (Task 2) were used to construct a population balance model to describe the steady-state and dynamic behavior of the flotation circuit. The details of this model were presented in the Eighth Quarterly Technical Progress Report. During the past quarter, a flotation circuit simulator was designed and used to evaluate control strategies. As a result of this work, a model-based control strategy has been conceived which will allow manipulated variables to be adjusted in response to disturbances to achieve a target incremental ash value in the last cell of the bank. This will, in effect, maximize yield at an acceptable product quality. During this same period, a video-based ash analyzer was installed on the flotation tailings stream at the Moss No. 3 preparation plant. A preliminary calibration curve was established, and data are continuing to be collected in order to improve the calibration of the analyzer.

  9. An Advanced Control System for Fine Coal Floatation

    SciTech Connect

    G. H. Luttrell; G. T. Adel

    1998-06-01

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eighth quarter of this project, the analysis of data collected during Task 2 (Sampling and Data Analysis) was completed, and significant progress was made on Task 3 (Model Building and Computer Simulation). Previously, a plant sampling campaign had been conducted at Pittston�s Moss No. 3 preparation plant to provide data for the development of a mathematical process model and a model-based control system. During this campaign, a one-half factorial design experiment, blocked into low and high feed rates, was conducted to investigate the effects of collector, frother, and pulp level on model parameters. In addition, samples were collected during the transient period following each change in the manipulated variables to provide data for confirmation of the dynamic process simulator. A residence time distribution (RTD) test was also conducted to estimate the mean residence time. This is a critical piece of information since no feed flowrate measurement is available, and the mean residence time can be used to estimate the feed flowrate. Feed samples were taken at timed intervals and floated in a laboratory flotation cell to investigate the magnitude of feed property disturbances and their duration.

  10. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.

    1991-01-01

    The advanced flotation techniques, namely column flotation, have shown potential in obtaining a low ash, low pyritic sulfur fine size clean coal. The overall objective of this program is to evaluate applicability of an advanced flotation technique, 'Ken-Flote' column to recover clean coal with minimum mineral matter content at greater than 90 percent combustible recovery from two Illinois preparation plant waste streams. Column flotations tests were conducted on the flotation feed obtained from the Kerr-McGee Galatia and Ziegler No. 26 plants using three different bubble-generating devices: sparger, gas saver and foam jet. Each of these devices was tested with three different frothers and various column-operating variable to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. For the Galatia slurry, the column provided a clean coal containing 5 percent ash, 0.48 percent pyritic sulfur at combustible recovery averaging 90 percent. In other words, about 90 percent ash and about 75 percent pyritic sulfur rejection were attained for the Galatia slurry. Pilot plant studies on this slurry basically obtained results similar to the laboratory studies. For the Ziegler No. 26, slurry column flotation provided a clean coal containing about 5 percent ash, 0.44 percent pyritic sulfur at more than 90 percent combustible recovery. The ash and pyrite sulfur rejection was about 85 percent and 65 percent, respectively.

  11. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  12. Psychophysical investigations of discomfort and disability glare from underground coal mine illumination systems. Open File Report, May 1980-July 1983

    SciTech Connect

    Whitehead, K.L.; Lindahl, P.; Vincent, R.; Crouch, C.

    1983-10-01

    A literature search was conducted to identify current light-control technology and hardware that may be applicable on underground lighting systems to minimize disability and discomfort glare. No research dealing specifically with mine lighting was found, but abstracts on research considered potentially applicable are included in the report. Information on several commercial light-control products for use in controlling glare are also included. Vision tests conducted on 137 mine personnel to determine their discomfort and disability glare sensitivity indicate their sensitivity to disability glare is about the same as the general population.

  13. Advanced coal-fired slagging combustor for the low-emission boiler system

    SciTech Connect

    Diehl, R.C.; Eppich, H.M.; Stankevics, J.O.A.; Reich, J.E.; Beittel, R.; Ake, T.R.

    1994-12-31

    The Department of Energy, Pittsburgh Energy Technology Center has recently initiated a major engineering development program called {open_quotes}Combustion 2000{close_quotes} which is geared toward advanced coal-fired electric utility plants. The Riley Stoker Corp. is leading one of three teams developing a Low-Emission coal-fired Boiler System (LEBS), which will be commercial by the end of this decade. The Riley team includes Textron Defense Systems, Reaction Engineering, International, Sargent & Lundy Engineers, Research Cottrell, and Tecogen. In LEBS advanced pollution control goals will lower SOx and NOx emissions to 1/3 current New Source Performance Standards (NSPS) and particulate emissions to 1/2 current NSPS. Riley`s LEBS has selected the 4500 psi 1100{degrees}F double reheat cycle, which will include a high efficiency, once through supercritical Benson boiler.

  14. Underground atom gradiometer array for mass distribution monitoring and advanced geodesy

    NASA Astrophysics Data System (ADS)

    Canuel, B.

    2015-12-01

    After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the

  15. Advances in technology for the construction of deep-underground facilities

    SciTech Connect

    Not Available

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  16. Methodology for the environmental assessment of advanced coal extraction systems

    SciTech Connect

    Sullivan, P.J.; Hutchinson, C.F.; Makihara, J.; Evensizer, J.

    1980-06-15

    This document describes the methodology which was developed to identify and assess potential environmental impacts of advanced mining technology as it moves from a generic concept to a more precise systems definition. Two levels of assessment are defined in terms of the design stage of the technology being evaluated. The first level of analysis is appropriate to a conceptual design. At this level it is assumed that each mining process has known and potential environmental impacts that are generic to each mining activity. By using this assumption, potential environmental impacts can be identified for new mining systems. When two or more systems have been assessed, they can be evaluated by comparing potential environmental impacts. At the preliminary stage of design, a systems performance can be assessed again with more precision. At this level of systems definition, potential environmental impacts can be analyzed and their significance determined in a manner to facilitate comparisons between systems. An important output of each level of analysis is suggestions calculated to help the designer mitigate potentially harmful impacts.

  17. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  18. Relationship of roof falls in underground coal mines to fractures mapped on ERTS-1 imagery. [Indiana and Illinois

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J.; Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    ERTS imagery is of unique value for mapping of certain fractures that are not identifiable on aircraft imagery. Because color infrared and ERTS imagery complement each other both sources of data were used to map fractures in western Indiana and eastern Illinois. In the Kings Station Mine, Gibson County, Indiana, most roof falls reported had occurred in areas where mapped fractures were closely spaced and intersecting. Using this information as a basis for extrapolation, roof fall hazard maps were prepared for other mine sites. Various coal resources programs related to energy and environment also were conducted.

  19. Development of advanced capitalism: a case study of retired coal miners in southern West Virginia

    SciTech Connect

    Legeay, S.P.

    1980-01-01

    This dissertation develops a critical analysis of changes in American society during the last fifty years. It is focused in particular on the southern West Virginia coal fields, and examines the changes in class structure (specifically, coal miners), the labor process, the union, class consciousness, community and leisure. The study is grounded within a theoretical perspective that is dialectical. It is concerned with the interaction between specific social categories (such as the union) and the greater whole of capitalist development. It is centrally concerned with continuing a research orientation to which the Frankfurt School gave a powerful contribution: the development of advanced capitalism in the modern epoch. The study utilizes life-history interviews with retired coal miners, almost all of whom had experience with the exploitive company towns of an earlier time. Thus, techniques for the study of oral history are instrumental in developing an analysis of social developments, inasmuch as they provide data appropriate for an analysis of the transformation from early to late capitalism. Finally, this dissertation examines a problem central to dialectical theory, that of the relation between theory and praxis, by approaching the life histories as exemplifications of collective (i.e., social) experience. It integrates the biographical experience of individual miners with the theoretical dimensions of political economy in early and late capitalism. The current crisis in the coal fields is examined, with a view to possible transformation.

  20. Engineering development of advance physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Jha, M.C.; Smit, F.J.; Shields, G.L.

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  1. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be

  2. Modelling of Underground Coal Gasification Process Using CFD Methods / Modelowanie Procesu Podziemnego Zgazowania Węgla Kamiennego Z Zastosowaniem Metod CFD

    NASA Astrophysics Data System (ADS)

    Wachowicz, Jan; Łączny, Jacek Marian; Iwaszenko, Sebastian; Janoszek, Tomasz; Cempa-Balewicz, Magdalena

    2015-09-01

    The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine "Barbara" and Coal Mine "Wieczorek" and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent

  3. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  4. Advanced solids NMR studies of coal structure and chemistry. Progress report, September 1, 1995--February 28, 1996

    SciTech Connect

    Zilm, K.W.

    1996-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 129}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  5. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  6. Development and application of the Safe Performance Index as a risk-based methodology for identifying major hazard-related safety issues in underground coal mines

    NASA Astrophysics Data System (ADS)

    Kinilakodi, Harisha

    The underground coal mining industry has been under constant watch due to the high risk involved in its activities, and scrutiny increased because of the disasters that occurred in 2006-07. In the aftermath of the incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address the various issues related to a safe working environment in the mines. Risk analysis in any form should be done on a regular basis to tackle the possibility of unwanted major hazard-related events such as explosions, outbursts, airbursts, inundations, spontaneous combustion, and roof fall instabilities. One of the responses by the Mine Safety and Health Administration (MSHA) in 2007 involved a new pattern of violations (POV) process to target mines with a poor safety performance, specifically to improve their safety. However, the 2010 disaster (worst in 40 years) gave an impression that the collective effort of the industry, federal/state agencies, and researchers to achieve the goal of zero fatalities and serious injuries has gone awry. The Safe Performance Index (SPI) methodology developed in this research is a straight-forward, effective, transparent, and reproducible approach that can help in identifying and addressing some of the existing issues while targeting (poor safety performance) mines which need help. It combines three injury and three citation measures that are scaled to have an equal mean (5.0) in a balanced way with proportionate weighting factors (0.05, 0.15, 0.30) and overall normalizing factor (15) into a mine safety performance evaluation tool. It can be used to assess the relative safety-related risk of mines, including by mine-size category. Using 2008 and 2009 data, comparisons were made of SPI-associated, normalized safety performance measures across mine-size categories, with emphasis on small-mine safety performance as compared to large- and

  7. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  8. Advanced NMR approaches in the characterization of coal. Final technical report, September 1, 1990--August 31, 1993

    SciTech Connect

    Maciel, G.E.

    1993-09-30

    This project addressed two main goals and one much smaller one. The main goals were (1) to improve the significance, reliability and information content in high-resolution NMR (nuclear magnetic resonance) characterization of coal samples and (2) to develop chemically informative NMR imaging techniques for coal. The minor goal was to explore advanced features of dynamic nuclear polarization (DNP) as a technique for coal characterization; this included the development of two DNP probes and the examination of DNP characteristics of various carbonaceous samples, including coals. {sup 13}C NMR advances for coal depended on large-sample MAS devices, employing either cross-polarization (CP) or direct polarization (DP) approaches. CP and DP spin dynamics and their relationships to quantitation and spin counting were elucidated. {sup 1}H NMR studies, based on CRAMPS, dipolar dephasing and saturation with perdeuteropyridine, led to a {sup 1}H NMR-based elucidation of chemical functionality in coal. {sup 1}H and {sup 13}C NMR imaging techniques, based on magic-angle spinning and rotating magnetic field gradients, were developed for introducing chemical shift information (hence, chemical detail) into the spatial imaging of coal. The TREV multiple-pulse sequence was found to be useful in the {sup 1}H CRAMPS imaging of samples like coal.

  9. 30 CFR 75.1712-10 - Underground sanitary facilities; maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground sanitary facilities; maintenance. 75.1712-10 Section 75.1712-10 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-10 Underground sanitary...

  10. Application of seismic velocity tomography in underground coal mines: A case study of Yima mining area, Henan, China

    NASA Astrophysics Data System (ADS)

    Cai, Wu; Dou, Linming; Cao, Anye; Gong, Siyuan; Li, Zhenlei

    2014-10-01

    A better understanding of geological structures, stress regimes, and rock burst risks around longwall mining panels can allow for higher extraction efficiency with reduced safety concerns. In this paper, the stress change of rock mass was first examined by using ultrasonic technique into laboratory-scale rock samples. Subsequently, the active and passive seismic velocity tomograms were simultaneously applied into two study cases with field-scale. Similar characteristics can be found between the active and passive tomography results. More specifically, in the first case, a geological discontinuity was clearly indicated by a linear image in both active and passive seismic tomography results. The results of the second case suggest that seismic tomography can be used to infer stress redistribution, and assess rock burst hazard or locate high-seismicity zones. Ultimately, comparisons have been made between the results of active and passive seismic tomography. Active tomography is found to be better applied in accurately detecting stress distribution and geological structures prior to the extraction of longwall panels, while passive tomography has advantages in continuously monitoring the stress changes and assessing rock burst potential during the mining of longwall panels. This study is expected to increase the safety and efficiency of the underground mining.

  11. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  12. Logistics background study: underground mining

    SciTech Connect

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  13. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  15. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  16. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  17. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  19. Monolithic solid oxide fuel cell technology advancement for coal- based power generation. Quarterly report, December 1991

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  20. Monolithic solid oxide fuel cell technology advancement for coal- based power generation

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  1. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  2. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-28

    This thirteenth quarterly report describes work done during the thirteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  3. Development of an advanced high efficiency coal combustor for boiler retrofit. Task 1, Cold flow burner development: Final report

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, ``Cold Flow Burner Development``. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  4. Engineering development of advanced coal-fired low emission boiler systems

    SciTech Connect

    Not Available

    1993-10-01

    Riley Stoker Corporation is leading an R&D program for the expedited development of a new generation of pulverized coal-fired boiler systems. The overall objective is to develop relatively near term technologies to produce Low-Emission coal-fired Boiler Systems (LEBS) ready for full scale commercial generating plants by the end of the decade. The specific goal is to develop a LEBS incorporating an advanced slagging system for improved ash management in addition to meeting the emission and performance goals. This Concept Selection Report documents an evaluation of subsystems and LEBS concepts. Priority was given to the evaluation of the boiler system, steam cycle, and advanced slagging combustor. Some findings are as follows: An ultra supercritical steam cycle is required to meet project efficiency goals. The cost of electricity (COE) for this cycle, at today`s fuel prices, and without externality costs, is slightly higher than a conventional subcritical cycle. The supercritical cycle includes a substantial contingency. Reduction of contingency, escalation of fuel cost, or inclusion of externalities all lead to a lower COE for the supercritical cycle compared to the subcritical cycle. The advanced cycle is selected for inclusion in the LEBS. The advanced slagging combustor (TVC), should it meet the projected performance goals, yields a lower COE than either a dry firing system or a more conventional slagger fitted with post combustion NO{sub x} controls. Verification and development of the advanced slagger performance is the primary focus of this project. A commercial slagging configuration know as U-firing is selected for parallel development and as a platform for adaptation to the TVC.

  5. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  6. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  7. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-01-01

    This is the 9th quarterly technical progress report for the project entitled Pyrite surface characterization and control for advanced fine coal desulfurization technologies'', DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS[sub 2] + B(OH)[sub 4][sup =] ------> [S[sub 2]Fe-B(OH)[sub 4

  8. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1991-01-01

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  9. Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1995-09-01

    The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

  10. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.; Parekh, B.K. . Center for Applied Energy Research)

    1991-01-01

    The overall objective of this program is to evaluate the application of an advanced physical separation technique, namely Ken-Flote'' column flotation to recover clean coal with minimum sulfur and ash content at greater than 90 percent combustible recovery from two Illinois coal preparation plant fine waste streams. The project will optimize various operating parameters with particular emphasis on fine bubble generating devices and reagent packages to enhance the rejection of liberated ash and pyritic sulfur. During this contract period, column flotation testing was completed on the flotation feed slurry obtained from the Kerr-McGee Galatia Preparation Plant. The column flotation tests were conducted using three different bubble generating devices: Static, gas saver and foam jet spargers. Each of these devices was tested with three different frothers and various column operating variables to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. In general, the column flotation provided a clean coal containing about 4--6 percent ash at combustible recovery ranging from 88 to 92 percent while pyrite rejection was 70 to 75 percent. Flotation tests were also conducted on a slurry sample obtained from The Ziegler {number sign}26 Preparation Plant in Sesse, Illinois. Base-line flotation testing was completed using batch flotation to identify optimum reagent addition. Column flotation of the Ziegler slurry provided a clean coal containing 4--6 percent ash with a combustible recovery of 90--95 percent and pyrite rejection of 60--67 percent. Efforts are in progress in installing a 6-inc. I.D. pilot column at the Ziegler {number sign}26. 9 figs.

  11. The Coal-Seq III Consortium. Advancing the Science of CO2 Sequestration in Coal Seam and Gas Shale Reservoirs

    SciTech Connect

    Koperna, George

    2014-03-14

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3 expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to

  12. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 1, October--December 1992

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy`s program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research & Development Center (Amax R&D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  14. The Mulled Coal process: An advanced fine coal preparation technology used to improve the handling characteristics of fine wet coal products

    SciTech Connect

    Jamison, P.R.

    1996-12-31

    The Mulled Coal process is a simple low cost method of improving the handling characteristics of the fine wet coal. The process involves the addition of a specifically formulated reagent to fine wet coal by mixing the two together in a pug mill. The converted material (Mulled Coal) retains some of its original surface moisture, but it handles, stores and transports like dry coal. It does not cause any of the sticking, fouling, bridging and freezing problems normally associated with fine wet coal, and, unlike thermally dried fine coal, it will not rewet and it is not dusty. In the process, large (baseball size) loosely bound sticky masses of fine wet coal particles are broken down into granules which are fairly uniform in the 28 Mesh x 0 size range. Due to the unique combination of the mixing action of the pug mill, the surface chemistry of the fine coal particles and the properties of the reagent; the individual granules are tightly bound, and they become completely enveloped by a very thin film of reagent. The reagent envelope will allow moisture out in the vapor stage, but it will not allow moisture back into the agglomerated granule. The envelope also prevents individual granules from adhering to or freezing to one another. The end result is a fine coal product which is free flowing, which is not dusty, and which will not rewet.

  15. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground storage, lubricating oil and grease... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1104 Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and...

  16. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground storage, lubricating oil and grease... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1104 Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and...

  17. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  18. Engineering design and analysis of advanced physical fine coal cleaning technologies. Quarterly technical progress report No. 9, October--December 1991

    SciTech Connect

    Not Available

    1992-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the ``Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

  19. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  20. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  1. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  2. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Robson, F. L.

    1981-03-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  3. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO[sub x], process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayedin Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO[sub x], by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0[sub 2]. Assuming that 85 percent of the newly formed N0[sub 2] can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO[sub x], process has been shown capable of reducing NO[sub 2], by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0[sub 2] formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  4. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Rodgers, L.W.

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  5. Engineereing development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 5, October--December 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1994-02-18

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. The project has three major objectives: The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  6. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  7. Engineering development of advanced coal-fired low-emissions boiler systems. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    1997-12-31

    This progress report is on the project by Babcock and Wilcox Company to develop an advanced coal-fired low-emissions boiler system. The topics of the report include project management, the NO{sub x} subsystem, the SO{sub 2}/particulate/air toxics/solid by-product subsystem, boiler subsystem, balance of plant subsystem, and controls and sensors subsystems.

  8. The worldwide applicability of B and W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Sivy, J.L.

    1996-12-31

    Babcock and Wilcox, under contract to the US Department of Energy (DOE), has been developing an advanced generating plant design in DOE`s Combustion 2000 program entitled, Engineering Development of Advanced Coal-Fired Low Emission Boiler System. The objective of the LEBS program is to develop an advanced pulverized coal (PC) fired power generation system for commercial application by the year 2000. Since concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further tighten regulations for new coal-fired plants, the system must achieve very low emissions and high cycle efficiency at a life cycle cost equivalent to a conventional PC plant meeting New Source Performance Standards (NSPS). B and W has coupled advanced environmental control technologies capable of achieving emissions or NO{sub x}, SO{sub x}, and particulate far below current NSPS with an advanced boiler equipped with improved combustion and heat transfer subsystems to meet this objective. The B and W LEBS plant uses conventional state-of-the-art equipment along with developing new technologies to meet the program goals. This combustion of new and proven technologies allows B and W to meet the current demands in the marketplace. This paper describes B and W`s advanced generating plant design and its relevance to both the foreign and domestic markets.

  9. In-plant testing of a novel coal cleaning circuit using advanced technologies, Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Honaker, R.Q.; Reed, S.; Mohanty, M.K.

    1996-12-31

    Research conducted at Southern Illinois University at Carbondale over the past two years has identified highly efficient methods for treating fine coal (i.e., -28 mesh). In this study, a circuit comprised of the three advanced fine coal cleaning technologies is being tested in an operating preparation plant to evaluate circuit performance and to compare the performance with the current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon concentrator and a Jameson froth flotation cell. The Floatex hydrosizer is being used as a primary cleaner for the nominally -16 mesh Illinois No. 5 fine coal circuit feed. The overflow of the Floatex is screened at 48 mesh using a Sizetec vibratory screen to produce a clean coal product from the screen overflow. The screen overflow is further treated by the Falcon and Jameson Cell. During this reporting period, tests were initiated on the fine coal circuit installed at the Kerr-McGee Galatia preparation plant. The circuit was found to reduce both the ash content and the pyritic sulfur content. Additional in-plant circuitry tests are ongoing.

  10. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  11. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

    1992-07-14

    The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the native'' or self-induced'' floatability of pyrite is no as profound as the oil-induced flotation.

  12. APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

  13. Engineering design and analysis of advanced physical fine coal cleaning technologies. Quarterly technical progress report No. 13, October--December 1992

    SciTech Connect

    Gallier, P.W.

    1993-01-20

    This project is sponsored by the United States Department of Energy (DOE) for the ``Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies: The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The commercially available ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. This report is submitted to document the progress of Aspen Technology, Inc. (AspenTech), its contractor, ICF Kaiser Engineers, Inc.,(ICF KE) and CQ Inc., a subcontractor to ICF KE, for the period of October through December 1992. ICF KE is providing coal preparation consulting and processing engineering services in this work and they are responsible for recommending the design of models to represent conventional coal cleaning equipment and costing of these models. CQ Inc. is a subcontractor to ICF KE on Tasks 1-5.

  14. Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 23, April 1, 1994--June 30, 1994

    SciTech Connect

    1995-04-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  15. Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994

    SciTech Connect

    1995-04-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  16. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

    1992-01-01

    The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

  17. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    SciTech Connect

    Manowitz, B.

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  18. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  19. Engineering development of advanced coal-fired low emission boiler systems. Fourth quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    The LEBS plant design will be based on a high-sulfur Illinois No. 6 coal. This coal meets program selection requirements of extensive reserves and production, sulfur content, and representativeness. Two alternate test coals have been selected to examine fuel effects, and to broaden the range of application of the technology being developed. The alternate coals are a medium sulfur, Pittsburgh No. 8 bituminous, and a Wyoming subbituminous coal. The efficiency goals for the LEBS are challenging, particularly with the demands environmental controls are likely to place on auxiliary power. Table 1 shows estimates of overall plant efficiencies for three steam cycles: (1) a 2400 psi subcritical single reheat cycle typical of current plants; (2) a 3500 psi supercritical single reheat cycle; and (3) an advanced 4500 psi double reheat cycle. The plant heat rates are based on maximum boiler efficiency and minimum auxiliary power requirements consistent with conventional plant design for the design and alternate coals. The aggressive efficiency goals clearly require advanced steam conditions, as well as careful management of any added auxiliary power requirements for environmental controls. The EPRI SOAPP (State-of-the-Art Power Plant) project has selected the 4500 psi cycle as maximizing plant efficiency while minimizing generating costs for a commercial plant to be constructed by the year 2000. This program will incorporate the SOAPP base case cycle. The LESS design will incorporate a high-efficiency, once-through boiler design known as the Benson. Significant improvements in availability and operating flexibility have made this boiler design the system of choice for European power generation over the last fifteen years.

  20. Advanced direct coal liquefaction. Quarterly technical progress report No. 2, December 1983-February 1984

    SciTech Connect

    Paranjape, A.S.

    1984-04-30

    Five Bench-Scale coal liquefaction runs were completed with Wyoming subbituminous coal in a two-stage process scheme. In this process scheme, LDAR, the lighter fraction of ash-free resid, was fed to the catalytic stage prior to its recycle to the thermal stage, whereas DAR, the heavy fraction of the deashed resid, was directly recycled to the thermal stage without any intermediate processing step. The results indicate that increasing coal space rate in the dissolver resulted in lower coal conversion and reduced distillate yield in this process configuration. The coal conversions decreased from 92 wt% to 89 wt% (MAF coal) and the distillate yield was reduced from 50 wt% to less than 40 wt% (MAF coal), as the coal space velocity increased. Attempts to duplicate the yields of Run 32, at comparable process conditions in Runs 37 and 38, were unsuccessful. Several process parameters were investigated but failed to show why the yields of Run 32 could not be duplicated. Valuable process related information was gained as a result of process parameter studies completed during these runs. At comparable process conditions, coal conversions were lower by about 3 to 4 relative percent and were only in the 87 wt% (MAF coal) range. Similarly, the distillate yield was about 40 wt% (MAF coal) which is about 10 wt% lower than observed in Run 32. Although no exact cause for these results could be determined, it appeared that the H/C atomic ratio of the solvent and possibly the flow pattern (plug-flow versus back-mixed) could have affected the coal conversion and quantity of distillate product produced. A significant decrease in coal conversion of 4 to 5 wt% was observed when the disposable catalyst (iron oxide) was removed from the reaction mixture and therefore substantiates the need for a disposable catalyst in the liquefaction of Wyoming subbituminous coal.

  1. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  2. Recovery of fine coal from waste streams using advanced column flotation. Annual report, September 1, 1990--August 31, 1991

    SciTech Connect

    Groppo, J.G.

    1991-12-31

    The advanced flotation techniques, namely column flotation, have shown potential in obtaining a low ash, low pyritic sulfur fine size clean coal. The overall objective of this program is to evaluate applicability of an advanced flotation technique, `Ken-Flote` column to recover clean coal with minimum mineral matter content at greater than 90 percent combustible recovery from two Illinois preparation plant waste streams. Column flotations tests were conducted on the flotation feed obtained from the Kerr-McGee Galatia and Ziegler No. 26 plants using three different bubble-generating devices: sparger, gas saver and foam jet. Each of these devices was tested with three different frothers and various column-operating variable to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. For the Galatia slurry, the column provided a clean coal containing 5 percent ash, 0.48 percent pyritic sulfur at combustible recovery averaging 90 percent. In other words, about 90 percent ash and about 75 percent pyritic sulfur rejection were attained for the Galatia slurry. Pilot plant studies on this slurry basically obtained results similar to the laboratory studies. For the Ziegler No. 26, slurry column flotation provided a clean coal containing about 5 percent ash, 0.44 percent pyritic sulfur at more than 90 percent combustible recovery. The ash and pyrite sulfur rejection was about 85 percent and 65 percent, respectively.

  3. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  4. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  5. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  6. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  7. The development of a combustion system for B&W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    Sivy, J.L.; Kaufman, K.C.; McDonald, D.K.

    1997-07-01

    Babcock & Wilcox has been leading a team in the development of an advanced coal-fired low emission boiler system (LEBS). The project objective is to design a new pulverized coal (PC) powered generating system equipped with improved combustion and heat transfer subsystems and advanced environmental control technologies capable of achieving emissions of NO{sub x}, SO{sub x}, and particulates far below current New Source Performance Standards (NSPS). The objectives of the program are to achieve continuous NO{sub x} emissions below 0.2 lb NO{sub x}/MBtu with a specified design coal, through combustion techniques only, with a further target of 0.1 lb NO{sub x}/MBtu using supplementary advanced flue gas cleanup technologies if necessary. The SO{sub 2} limit for the project has been set at 0.1 lb SO{sub 2}/MBtu, with a particulate emission limit of 0.01 lb particulate/MBtu. The net plant efficiency is specified to be at least 42% (HHV), while overall the cost of electricity must not increase relative to a conventional plant meeting cur-rent NSPS. The B&W LEBS plant uses conventional state-of-the-art equipment along with developing new technologies to meet the program goals. To meet this goal, B&W has coupled advanced environmental control technologies capable of achieving emission of NO{sub x}, SO{sub x}, and particulate far below current NSPS with an advanced boiler equipped with improved combustion and heat transfer subsystems. Phase I of the LEBS program began with a thorough review and assessment of potential advanced technologies and techniques. Through engineering analysis, pilot-scale testing, and numerical modeling in Phases I and II, a near full-scale 100 MBtu/hr advanced NO{sub x} emissions control system was designed, fabricated, and tested. Further experimental testing and numerical modeling has continued to refine the LEBS concept.

  8. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-12-31

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.

  9. Development of a low-cost cableless geophone and its application in a micro-seismic survey at an abandoned underground coal mine

    NASA Astrophysics Data System (ADS)

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-04-01

    Due to the urbanization in China, some building construction sites are planned on areas above abandoned underground mines, which pose a concern for the stability of these sites and a critical need for the use of reliable site investigations. The array-based surface wave method has the potential for conducting large-scale field surveys at areas above underground mines. However, the dense deployment of conventional geophones requires heavy digital cables. On the other hand, the bulky and expensive standard stand-alone seismometers limit the number of stations for the array-based surface wave measurements. Therefore, this study developed a low-cost cableless geophone system for the array-based surface wave survey. A field case study using this novel cableless geophone system was conducted at an abandoned underground mine site in China to validate its functionality.

  10. Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

    1996-09-01

    This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  12. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect

    Wang, Anbo; Pickrell, Gary

    2012-03-31

    This report summarizes technical progress on the program Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  13. Component development in support of B and W`s advanced coal-fired low-emissions boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Rodgers, L.W.; Sivy, J.L.

    1995-12-31

    Shortly after the year 2000 it is expected that new generating plants will be needed in North America to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. If coal is to remain the fuel of choice for this new and replacement power generation, the plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further tighten regulations for new coal-fired plants. To address the design issues facing new and replacement coal-fired power plants, Babcock and Wilcox (B and W), under contract to the US Department of Energy (DOE), with subcontracts to Physical Sciences Inc. (PSI) and Raytheon Engineers and Constructors (RE and C), has been developing an advanced generating plant design in DOE`s Combustion 2000 program entitled, ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler System`` (LEBS). The project objective is to design a new boiler equipped with improved combustion and heat transfer subsystems and advanced environmental control technologies capable of achieving emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and particulates far below current New Source Performance Standards (NSPS). In Phase 1, completed in 1994, a thorough review and assessment of potential advanced technologies and techniques for the control of emissions, and a review of boiler design options were performed. In phases 2 and 3 currently underway, research and development continues to resolve design uncertainties at the pilot and subsystem scale. A preliminary design for a Proof-Of-Concept (POC) Demonstration Facility has also been completed. Results of these activities will be presented in this paper.

  14. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  15. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  16. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be...

  17. 30 CFR 75.1712-7 - Underground sanitary facilities; waiver of requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground sanitary facilities; waiver of... OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-7 Underground sanitary facilities; waiver of requirements. If it has been determined by...

  18. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan stoppage with persons underground... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.313 Main mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is...

  19. 30 CFR 75.1712-6 - Underground sanitary facilities; installation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground sanitary facilities; installation..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-6 Underground sanitary facilities; installation and maintenance. (a) Except as...

  20. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, May--July 1989

    SciTech Connect

    1989-12-31

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Mineral Research Center (EMRC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. The specific objectives for the reporting period were as follows: review fourth site candidates; obtain site access for the Freeman United site; select an ash supplier for the Illinois site and initiate subcontracts for on-site work; commence construction of the Freeman United test cell; and obtain waste for the Colorado Ute test site. Accomplishments under each task are discussed.