Sample records for advanced vehicle simulator

  1. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  2. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  3. A numerical investigation on the efficiency of range extending systems using Advanced Vehicle Simulator

    NASA Astrophysics Data System (ADS)

    Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan

    2011-03-01

    Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.

  4. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    NASA Astrophysics Data System (ADS)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.

  5. Cost and Economics for Advanced Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Whitfield, Jeff

    1998-01-01

    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  6. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, E.; Neubauer, J.; Burton, E.

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patternsmore » using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.« less

  7. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2014-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.

  8. Advanced Simulator for Combat, Transport Vehicles, Submarines, Vessels, Airplanes and Helicopters

    DTIC Science & Technology

    2004-10-01

    simulation experiments. 3.1 Road vehicles - lane change test In order to evaluate the driving dynamics and also the driving safety of road vehicles...8] L.D. Chen, Y. Papelis, G. Watson, D. Solis. NADS at the University of Iowa: A Tool for Driving Safety Research, In Proceedings of 1st Human

  9. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.

    2015-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.

  10. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  11. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  12. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  13. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  14. 10 CFR 611.3 - Advanced technology vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced technology vehicle. 611.3 Section 611.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS ADVANCED TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM General § 611.3 Advanced technology vehicle. In order to demonstrate that a vehicle is an...

  15. Electric/Hybrid Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  16. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  17. Spatial multibody modeling and vehicle dynamics analysis of advanced vehicle technologies

    NASA Astrophysics Data System (ADS)

    Letherwood, Michael D.; Gunter, David D.; Gorsich, David J.; Udvare, Thomas B.

    2004-08-01

    The US Army vision, announced in October of 1999, encompasses people, readiness, and transformation. The goal of the Army vision is to transition the entire Army into a force that is strategically responsive and dominant at every point of the spectrum of operations. The transformation component will be accomplished in three ways: the Objective Force, the Legacy (current) Force, and the Interim Force. The objective force is not platform driven, but rather the focus is on achieving capabilities that will operate as a "system of systems." As part of the Objective Force, the US Army plans to begin production of the Future Combat System (FCS) in FY08 and field the first unit by FY10 as currently defined in the FCS solicitation(1). As part of the FCS program, the Future Tactical Truck System (FTTS) encompasses all US Army tactical wheeled vehicles and its initial efforts will focus only on the heavy class. The National Automotive Center (NAC) is using modeling and simulation to demonstrate the feasibility and operational potential of advanced commercial and military technologies with application to new and existing tactical vehicles and to describe potential future vehicle capabilities. This document will present the results of computer-based, vehicle dynamics performance assessments of FTTS concepts with such features as hybrid power sources, active suspensions, skid steering, and in-hub electric drive motors. Fully three-dimensional FTTS models are being created using commercially available modeling and simulation methodologies such as ADAMS and DADS and limited vehicle dynamics validation studies are will be performed.

  18. Modelling of an advanced charging system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  19. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  20. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  1. Advanced vehicles: Costs, energy use, and macroeconomic impacts

    NASA Astrophysics Data System (ADS)

    Wang, Guihua

    Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.

  2. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  3. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  4. Advanced vehicle systems assessment. Volume 3: Systems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.

  5. Real-Time Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the

  6. Advanced control design for hybrid turboelectric vehicle

    NASA Technical Reports Server (NTRS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-01-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  7. Advanced vehicle systems assessment. Volume 4: Supporting analyses

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 4 (Supporting Analyses) is part of a five-volume report, Advanced Vehicle Systems Assessment. Thirty-nine individuals, knowledgeable in advanced technology, were interviewed to obtain their preferences. Rankings were calculated for the eight groups they represented, using multiplicative and additive utility models. The four topics for consideration were: (1) preferred range for various battery technologies; (2) preferred battery technology for each of a variety of travel ranges; (3) most promising battery technology, vehicle range combination; and (4) comparison of the most preferred electric vehicle with the methanol-fuled, spark-ignition engine vehicle and with the most preferred of the hybrid vehicles.

  8. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  9. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  10. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  11. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  12. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  13. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  14. Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation (SAE Paper 2015-01-1142)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...

  15. Advanced small launch vehicle study

    NASA Technical Reports Server (NTRS)

    Reins, G. E.; Alvis, J. F.

    1972-01-01

    A conceptual design study was conducted to determine the most economical (lowest cost/launch) approach for the development of an advanced small launch vehicle (ASLV) for use over the next decade. The ASLV design objective was to place a 340 kg (750 lb) payload into a 556 km (300 n.mi.) circular orbit when launched due east from Wallops Island, Virginia. The investigation encompassed improvements to the current Scout launch vehicle; use of existing military and NASA launch vehicle stages; and new, optionally staged vehicles. Staging analyses included use of liquid, solid, and hybrid propellants. Improvements in guidance, controls, interstages, telemetry, and payload shroud were also considered. It was concluded that the most economical approach is to progressively improve the Scout launch vehicle in three phased steps which are discussed.

  16. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Science.gov Websites

    Laws and Incentives: 2014 Year in Review State Alternative Fuel and Advanced Vehicle Laws and Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review on Facebook Tweet about Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle Laws and Incentives: 2014 Year in Review

  17. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  18. Mission Assignment Model and Simulation Tool for Different Types of Unmanned Aerial Vehicles

    DTIC Science & Technology

    2008-09-01

    TABLE OF ABBREVIATIONS AND ACRONYMS AAA Anti Aircraft Artillery ATO Air Tasking Order BDA Battle Damage Assessment DES Discrete Event Simulation...clock is advanced in small, fixed time steps. Since the value of simulated time is important in DES , an internal variable, called as simulation clock...VEHICLES Yücel Alver Captain, Turkish Air Force B.S., Turkish Air Force Academy, 2000 Murat Özdoğan 1st Lieutenant, Turkish Air Force B.S., Turkish

  19. Vehicle Technology Simulation and Analysis Tools | Transportation Research

    Science.gov Websites

    | NREL Vehicle Technology Simulation and Analysis Tools Vehicle Technology Simulation and vehicle technologies with the potential to achieve significant fuel savings and emission reductions. NREL : Automotive Deployment Options Projection Tool The ADOPT modeling tool estimates vehicle technology

  20. Modeling of advanced technology vehicles

    DOT National Transportation Integrated Search

    2003-09-01

    The characterization of some types of "advanced technology vehicles" may help to understand policies that are strongly either explicitly or implicitly technology-dependent. Recent models attempt to characterize such technologies in terms of fuel econ...

  1. Optimum Vehicle Component Integration with InVeST (Integrated Vehicle Simulation Testbed)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, W; Paddack, E; Aceves, S

    2001-12-27

    We have developed an Integrated Vehicle Simulation Testbed (InVeST). InVeST is based on the concept of Co-simulation, and it allows the development of virtual vehicles that can be analyzed and optimized as an overall integrated system. The virtual vehicle is defined by selecting different vehicle components from a component library. Vehicle component models can be written in multiple programming languages running on different computer platforms. At the same time, InVeST provides full protection for proprietary models. Co-simulation is a cost-effective alternative to competing methodologies, such as developing a translator or selecting a single programming language for all vehicle components. InVeSTmore » has been recently demonstrated using a transmission model and a transmission controller model. The transmission model was written in SABER and ran on a Sun/Solaris workstation, while the transmission controller was written in MATRIXx and ran on a PC running Windows NT. The demonstration was successfully performed. Future plans include the applicability of Co-simulation and InVeST to analysis and optimization of multiple complex systems, including those of Intelligent Transportation Systems.« less

  2. Assessing the thermo-mechanical TaMeTirE model in offline vehicle simulation and driving simulator tests

    NASA Astrophysics Data System (ADS)

    Durand-Gasselin, Benoit; Dailliez, Thibault; Mössner-Beigel, Monika; Knorr, Stephanie; Rauh, Jochen

    2010-12-01

    This paper presents the experiences using Michelin's thermo-mechanical TaMeTirE tyre model for real-time handling applications in the field of advanced passenger car simulation. Passenger car handling simulations were performed using the tyre model in a full-vehicle real-time environment in order to assess TaMeTirE's level of consistency with real on-track handling behaviour. To achieve this goal, a first offline comparison with a state-of-the-art handling tyre model was carried out on three handling manoeuvres. Then, online real-time simulations of steering wheel steps and slaloms in straight line were run on Daimler's driving simulator by skilled and unskilled drivers. Two analytical tyre temperature effects and two inflation pressure effects were carried out in order to feel their impact on the handling behaviour of the vehicle. This paper underlines the realism of the handling simulation results performed with TaMeTirE, and shows the significant impact of a pressure or a temperature effect on the handling behaviour of a car.

  3. Implications of advanced vehicle technologies for older drivers.

    PubMed

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  5. Composite armored vehicle advanced technology demonstator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.

    1996-12-31

    Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less

  6. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  7. Advanced Manufacturing Processes in the Motor Vehicle Industry

    DOT National Transportation Integrated Search

    1983-05-01

    Advanced manufacturing processes, which include a range of automation and management techniques, are aiding U.S. motor vehicle manufacturers to reduce vehicle costs. This report discusses these techniques in general and their specific applications in...

  8. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  9. 40 CFR 86.1866-12 - CO2 credits for advanced technology vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false CO2 credits for advanced technology vehicles. 86.1866-12 Section 86.1866-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... advanced technology vehicles. (a) Electric vehicles, plug-in hybrid electric vehicles, and fuel cell...

  10. Consumer Views on Transportation and Advanced Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers tomore » and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  11. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technologies. 1037.615 Section 1037.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Provisions § 1037.615 Hybrid vehicles and other advanced technologies. (a) This section applies for hybrid... credits under 40 CFR part 1036. (b) Generate advanced technology emission credits for hybrid vehicles that...

  12. Advanced vehicle systems assessment. Volume 2: Subsystems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).

  13. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  14. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  15. Heterogeneous Teams of Autonomous Vehicles: Advanced Sensing & Control

    DTIC Science & Technology

    2009-03-01

    Final Technical 3. DATES COVERED (From To) 7/1/05-12/31708 4. TITLE AND SUBTITLE Heterogeneous Teams of Autonomous Vehicles Advanced Sensing...assimilating data from underwater and surface autonomous vehicles in addition to the usual sources of Eulerian and Lagrangian systems into a small scale

  16. Auxiliary propulsion technology for advanced Earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1987-01-01

    The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.

  17. Simulation model of the F/A-18 high angle-of-attack research vehicle utilized for the design of advanced control laws

    NASA Technical Reports Server (NTRS)

    Strickland, Mark E.; Bundick, W. Thomas; Messina, Michael D.; Hoffler, Keith D.; Carzoo, Susan W.; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    The 'f18harv' six degree-of-freedom nonlinear batch simulation used to support research in advanced control laws and flight dynamics issues as part of NASA's High Alpha Technology Program is described in this report. This simulation models an F/A-18 airplane modified to incorporate a multi-axis thrust-vectoring system for augmented pitch and yaw control power and actuated forebody strakes for enhanced aerodynamic yaw control power. The modified configuration is known as the High Alpha Research Vehicle (HARV). The 'f18harv' simulation was an outgrowth of the 'f18bas' simulation which modeled the basic F/A-18 with a preliminary version of a thrust-vectoring system designed for the HARV. The preliminary version consisted of two thrust-vectoring vanes per engine nozzle compared with the three vanes per engine actually employed on the F/A-18 HARV. The modeled flight envelope is extensive in that the aerodynamic database covers an angle-of-attack range of -10 degrees to +90 degrees, sideslip range of -20 degrees to +20 degrees, a Mach Number range between 0.0 and 2.0, and an altitude range between 0 and 60,000 feet.

  18. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    NASA Astrophysics Data System (ADS)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  19. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, Larry P.; Scheer, Dean D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  20. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  1. Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Klock, Ryan J.

    Hypersonic vehicles operate in a high-energy flight environment characterized by high dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive understanding of each of these disciplines must be developed not only in isolation, but also when coupled. Limitations on scaling and the availability of adequate test facilities mean that physical investigation is infeasible. Ever growing computational power offers the ability to perform elaborate numerical simulations, but also has its own limitations. The state of the art in numerical simulation is either to create ever more high-fidelity physics models that do not couple well and require too much processing power to consider more than a few seconds of flight, or to use low-fidelity analytical models that can be tightly coupled and processed quickly, but do not represent realistic systems due to their simplifying assumptions. Reduced-order models offer a middle ground by distilling the dominant trends of high-fidelity training solutions into a form that can be quickly processed and more tightly coupled. This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune in-the-loop flight controllers, and inform future design considerations. A partitioned approach to vehicle simulation is considered in which regions dominated by particular combinations of processes are made separate from the overall solution and simulated by a specialized set of models to improve overall processing

  2. Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.

    2007-01-01

    The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.

  3. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  4. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system by chassis testing a vehicle equipped with the advanced system and an equivalent conventional vehicle, or by testing the hybrid systems and the equivalent non-hybrid systems as described in § 1037.550... include regenerative braking (or the equivalent) and energy storage systems, fuel cell vehicles, and...

  5. Advance (Advanced Driver and Vehicle Advisory Navigation ConcEpt) Project: Insights and Achievements Compendium

    DOT National Transportation Integrated Search

    1996-10-23

    ADVANCE (Advanced Driver and Vehicle Advisory Navigation ConcEpt) was a public/private partnership developed by the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Nor...

  6. Advanced control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  7. Vehicle safety : technologies, challenges, and research development expenditures for advanced air bags

    DOT National Transportation Integrated Search

    2001-06-01

    Some advanced air bag technologies are currently being installed in vehicles and others are still being developed. The principal advanced technology that is currently being installed in some vehicles is air bags that can inflate with lower or higher ...

  8. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata.

    PubMed

    Chai, C; Wong, Y D

    2014-02-01

    At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Road simulation for four-wheel vehicle whole input power spectral density

    NASA Astrophysics Data System (ADS)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  10. An assessment of research and development leadership in advanced batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Bruch, V. L.

    1994-02-01

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles' heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  11. 40 CFR 86.1866-12 - CO2 credits for advanced technology vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false CO2 credits for advanced technology vehicles. 86.1866-12 Section 86.1866-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... technology vehicles. (a) Electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles, as...

  12. Advanced vehicle technology simulation and research outreach to STEM programs : research report summary

    DOT National Transportation Integrated Search

    2017-05-30

    The University of Iowa (UI) and the leaders of the MyCarDoesWhat campaign partnered with the National Advanced Driving Simulator (NADS) miniSim and the UI Mobile Museum to build an interactive exhibit as part of the overall museum for visitors to exp...

  13. Advanced low-floor vehicle (ALFV) specification research.

    DOT National Transportation Integrated Search

    2015-08-01

    This report details the results of research on market comparison, operational cost efficiencies, and prototype tests conducted on : a novel design for an Advanced Low Floor Vehicle (ALFV), flex-route transit bus. Section I describes how the need for ...

  14. Quantifying a cellular automata simulation of electric vehicles

    NASA Astrophysics Data System (ADS)

    Hill, Graeme; Bell, Margaret; Blythe, Phil

    2014-12-01

    Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.

  15. Vehicle impact simulation for curb and barrier design : volume 1, impact simulation procedures.

    DOT National Transportation Integrated Search

    1998-10-01

    The objectives of this study were to perform computer simulations of vehicle-curb and vehicle-berm impacts, to characterize : the behavior of a wide range of vehicle types after such impacts, and to produce design and evaluation trajectory data for u...

  16. Electric-hybrid-vehicle simulation

    NASA Astrophysics Data System (ADS)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  17. Simulation methods supporting homologation of Electronic Stability Control in vehicle variants

    NASA Astrophysics Data System (ADS)

    Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido

    2017-10-01

    Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.

  18. Application of the Environmental Sensation Learning Vehicle Simulation Platform in Virtual Reality

    ERIC Educational Resources Information Center

    Hsu, Kuei-Shu; Jiang, Jinn-Feng; Wei, Hung-Yuan; Lee, Tsung-Han

    2016-01-01

    The use of simulation technologies in learning has received considerable attention in recent years, but few studies to date have focused on vehicle driving simulation systems. In this study, a vehicle driving simulation system was developed to support novice drivers in practicing their skills. Specifically, the vehicle driving simulation system…

  19. Human Sensibility Ergonomics Approach to Vehicle Simulator Based on Dynamics

    NASA Astrophysics Data System (ADS)

    Son, Kwon; Choi, Kyung-Hyun; Yoon, Ji-Sup

    Simulators have been used to evaluate drivers' reactions to various transportation products. Most research, however, has concentrated on their technical performance. This paper considers driver's motion perception on a vehicle simulator through the analysis of human sensibility ergonomics. A sensibility ergonomic method is proposed in order to improve the reliability of vehicle simulators. A simulator in a passenger vehicle consists of three main modules such as vehicle dynamics, virtual environment, and motion representation modules. To evaluate drivers' feedback, human perceptions are categorized into a set verbal expressions collected and investigated to find the most appropriate ones for translation and angular accelerations of the simulator. The cut-off frequency of the washout filter in the representation module is selected as one sensibility factor. Sensibility experiments were carried out to find a correlation between the expressions and the cut-off frequency of the filter. This study suggests a methodology to obtain an ergonomic database that can be applied to the sensibility evaluation of dynamic simulators.

  20. Basic Simulation Environment for Highly Customized Connected and Autonomous Vehicle Kinematic Scenarios.

    PubMed

    Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen

    2017-08-23

    To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification.

  1. Basic Simulation Environment for Highly Customized Connected and Autonomous Vehicle Kinematic Scenarios

    PubMed Central

    Chai, Linguo; Cai, Baigen; ShangGuan, Wei; Wang, Jian; Wang, Huashen

    2017-01-01

    To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification. PMID:28832518

  2. Robust flight design for an advanced launch system vehicle

    NASA Astrophysics Data System (ADS)

    Dhand, Sanjeev K.; Wong, Kelvin K.

    Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.

  3. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  4. Advanced continuously variable transmissions for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  5. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; hide

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  6. Influence of wheel-rail contact modelling on vehicle dynamic simulation

    NASA Astrophysics Data System (ADS)

    Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf

    2015-08-01

    This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.

  7. Driver Training Simulator for Backing Up Commercial Vehicles with Trailers

    NASA Astrophysics Data System (ADS)

    Berg, Uwe; Wojke, Philipp; Zöbel, Dieter

    Backing up tractors with trailers is a difficult task since the kinematic behavior of articulated vehicles is complex and hard to control. Especially unskilled drivers are overstrained with the complicated steering process. To learn and practice the steering behavior of articulated vehicles, we developed a 3D driving simulator. The simulator can handle different types of articulated vehicles like semi-trailers, one- and two-axle trailers, or gigaliners. The use of a driving simulator offers many advantages over the use of real vehicles. One of the main advantages is the possibility to learn the steering behavior of all vehicle types. Drivers can be given more and better driving instructions like collision warnings or steering hints. Furthermore, the driver training costs can be reduced. Moreover, mistakes of the student do not lead to real damages and costly repairs. The hardware of the simulator consists of a low cost commercial driving stand with original truck parts, a projection of the windshield and two flat panel monitors for the left and right exterior mirrors. Standard PC hardware is used for controlling the driving stand and for generating the realtime 3D environment. Each aspect of the simulation like realistic vehicle movements or generation of different views, is handled by a specific software module. This flexible system can be easily extended which offers the opportunity for other uses than just driver training. Therefore, we use the simulator for the development and test of driver assistance systems.

  8. Advanced simulation technology used to reduce accident rates through a better understanding of human behaviors and human perception

    NASA Astrophysics Data System (ADS)

    Manser, Michael P.; Hancock, Peter A.

    1996-06-01

    Human beings and technology have attained a mutually dependent and symbiotic relationship. It is easy to recognize how each depends on the other for survival. It is also easy to see how technology advances due to human activities. However, the role technology plays in advancing humankind is seldom examined. This presentation examines two research areas where the role of advanced visual simulation systems play an integral and essential role in understanding human perception and behavior. The ultimate goal of this research is the betterment of humankind through reduced accident and death rates in transportation environments. The first research area examined involved the estimation of time-to-contact. A high-fidelity wrap-around simulator (RAS) was used to examine people's ability to estimate time-to- contact. The ability of people to estimate the amount of time before an oncoming vehicle will collide with them is a necessary skill for avoiding collisions. A vehicle approached participants at one of three velocities, and while en route to the participant, the vehicle disappeared. The participants' task was to respond when they felt the accuracy of time-to-contact estimates and the practical applications of the result. The second area of research investigates the effects of various visual stimuli on underground transportation tunnel walls for the perception of vehicle speed. A RAS is paramount in creating visual patterns in peripheral vision. Flat-screen or front-screen simulators do not have this ability. Results are discussed in terms of speed perception and the application of these results to real world environments.

  9. Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Tillier, Clemens Emmanuel

    1998-01-01

    This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.

  10. Crash simulation of UNS electric vehicle under frontal front impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susilo, D. D., E-mail: djoksus-2010@yahoo.com; Lukamana, N. I., E-mail: n.indra.lukmana@gmail.com; Budiana, E. P., E-mail: budiana.e@gmail.com

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. Themore » purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.« less

  11. Crash simulation of UNS electric vehicle under frontal front impact

    NASA Astrophysics Data System (ADS)

    Susilo, D. D.; Lukamana, N. I.; Budiana, E. P.; Tjahjana, D. D. D. P.

    2016-03-01

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.

  12. Advanced Range Safety System for High Energy Vehicles

    NASA Technical Reports Server (NTRS)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  13. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust

  14. Performance evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Tummillo, A. F.; Kulaga, J. E.; Webster, C. E.; Gillie, K. R.; Hogrefe, R. L.

    1990-01-01

    At the Argonne Analysis and Diagnostic Laboratory, advanced battery technology evaluations are performed under simulated electric vehicle operating conditions. During 1989 and the first quarter of 1990, single cell and multicell modules from seven developers were examined for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers with an interim measure of the progress being made in battery R&D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R&D. This paper summarizes the performance and life characterizations of two single cells and seven 3- to 960-cell modules that encompass six technologies (Na/S, Ni/Fe, Ni/Cd, Ni-metal hydride, lead-acid, and Zn/Br).

  15. Simulated interactions of pedestrian crossings and motorized vehicles in residential areas

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Peng, Zhongyi; Chen, Qun

    2018-01-01

    To evaluate whether motorized vehicles can travel through a residential area, this paper develops a cellular automata (CA) model to simulate the interactions between pedestrian crossings and motorized vehicles in a residential area. In this paper, pedestrians determine their crossing speed according to their judgments of the position and velocity of the upcoming vehicles. The pedestrians may walk slowly or quickly or even run, and the pedestrian crossing time influences the vehicle movement. In addition, the proposed model considers the safety margin time needed for pedestrians to cross, and pedestrian-vehicle conflict is considered using the vehicle collision avoidance rule. Through simulations of interactions of pedestrian crossings with motorized vehicles' movement on a typical road in a residential area, the average wait time for pedestrians to cross and the average vehicle velocity under different pedestrian crossing volumes, different vehicle flows and different maximum vehicle velocities are obtained. To avoid an excessive waiting time for pedestrians to cross, the vehicle flow should be less than 180 veh/h, which allows an average of less than 10 s of waiting time; if the vehicle flow rate is less than 36 veh/h, then the waiting time is approximately 1 s. Field observations are conducted to validate the simulation results.

  16. Vehicle Animation Software (VAS) to Animate Results Obtained from Vehicle Handling and Rollover Simulations and Tests

    DOT National Transportation Integrated Search

    1991-04-01

    Results from vehicle computer simulations usually take the form of numeric data or graphs. While these graphs provide the investigator with the insight into vehicle behavior, it may be difficult to use these graphs to assess complex vehicle motion. C...

  17. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  18. Multibody simulation of vehicles equipped with an automatic transmission

    NASA Astrophysics Data System (ADS)

    Olivier, B.; Kouroussis, G.

    2016-09-01

    Nowadays automotive vehicles remain as one of the most used modes of transportation. Furthermore automatic transmissions are increasingly used to provide a better driving comfort and a potential optimization of the engine performances (by placing the gear shifts at specific engine and vehicle speeds). This paper presents an effective modeling of the vehicle using the multibody methodology (numerically computed under EasyDyn, an open source and in-house library dedicated to multibody simulations). However, the transmission part of the vehicle is described by the usual equations of motion computed using a systematic matrix approach: del Castillo's methodology for planetary gear trains. By coupling the analytic equations of the transmission and the equations computed by the multibody methodology, the performances of any vehicle can be obtained if the characteristics of each element in the vehicle are known. The multibody methodology offers the possibilities to develop the vehicle modeling from 1D-motion to 3D-motion by taking into account the rotations and implementing tire models. The modeling presented in this paper remains very efficient and provides an easy and quick vehicle simulation tool which could be used in order to calibrate the automatic transmission.

  19. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  20. Technology Advances Enabling a New Class of Hybrid Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Bowen, A.

    2016-02-01

    Both tethered (ROV) and untethered (AUV) systems have proven to be highly valuable tools for a range of application undersea. Certain enabling technologies coupled with recent advances in robotic systems make it possible to consider supplementing many of the functions performed by these platforms with appropriately designed semi-autonomous vehicles that may be less expensive operate than traditional deep-water ROVs. Such vehicles can be deployed from smaller ships and may lead to sea-floor resident systems able to perform a range of interventions under direct human control when required. These systems are effectively a hybrid cross between ROV and AUV vehicles and poised to enable an important new class of undersea vehicle. It is now possible to radically redefine the meaning of the words "tethered vehicle" to include virtual tethering via acoustic and optical means or through the use of small diameter re-useable tethers, providing not power but only high bandwidth communications. The recent developments at Woods Hole Oceanographic Institution (WHOI), paves the way for a derivative vehicle type able to perform a range of interventions in deep water. Such battery-powered, hybrid-tethered vehicles will be able to perform tasks that might otherwise require a conventional ROV. These functions will be possible from less complex ships because of a greatly reduced dependence on large, heavy tethers and associated vehicle handling equipment. In certain applications, such vehicles can be resident within subsea facilities, able to provide operators with near instant access when required. Several key emerging technologies and capabilities make such a vehicle possible. Advances in both acoustic and optical "wireless" underwater communications and mico-tethers as pioneered by the HROV Nereus offer the potential to transform ROV type operations and thus offer planners and designers an important new dimension to subsea robotic intervention

  1. Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.

    2005-04-01

    A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.

  2. A survey of electric and hybrid vehicle simulation programs

    NASA Technical Reports Server (NTRS)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    Results of a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are summarized. Altogether, 111 programs were identified as being in a usable state. The complexity of the existing programs spans a range from a page of simple desktop calculator instructions to 300,000 lines of a high-level programming language. The capability to simulate electric vehicles was most common, heat-engines second, and hybrid vehicles least common. Batch-operated programs are slightly more common than interactive ones, and one-third can be operated in either mode. The most commonly used language was FORTRAN, the language typically used by engineers. The higher-level simulation languages (e.g. SIMSCRIPT, GPSS, SIMULA) used by "model builders" were conspicuously lacking.

  3. System safety engineering in the development of advanced surface transportation vehicles

    NASA Technical Reports Server (NTRS)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  4. The Influence of Motion Cues on Driver-Vehicle Performance in a Simulator

    NASA Technical Reports Server (NTRS)

    Repa, B. S.; Leucht, P. M.; Wierwille, W. W.

    1981-01-01

    Four different motion base configurations were studied on driving simulator. Differently responding vehicles were simulated on each motion configurations and the effects of the vehicle characteristics on driver vehicle system performance, driver control activity, and driver opinion ratings of vehicle performance during driving are compared for different motion configurations. Data show that: (1)) the effects of changes in vehicle characteristics on the different objective and subjective measures of driver vehicle performance are not disguised by the lack of physical motion; (2) fixed base simulator can be used to draw inferences despite the lack of motion; (3) the presence of motion tends to reduce path keeping errors and driver control activity; (4) roll and yaw motions are recommended because of their marked influence on driver vehicle performance (5) the importance of motion increases as the driving maneuvers become more extreme.

  5. Simulation-based driver and vehicle crew training: applications, efficacy and future directions.

    PubMed

    Goode, Natassia; Salmon, Paul M; Lenné, Michael G

    2013-05-01

    Simulation is widely used as a training tool in many domains, and more recently the use of vehicle simulation as a tool for driver and vehicle crew training has become popular (de Winter et al., 2009; Pradhan et al., 2009). This paper presents an overview of how vehicle simulations are currently used to train driving-related procedural and higher-order cognitive skills, and team-based procedural and non-technical teamwork skills for vehicle crews, and evaluates whether there is evidence these training programs are effective. Efficacy was evaluated in terms of whether training achieves learning objectives and whether the attainment of those objectives enhances real world performance on target tasks. It was concluded that while some higher-order cognitive skills training programs have been shown to be effective, in general the adoption of simulation technology has far outstripped the pace of empirical research in this area. The paper concludes with a discussion of the issues that require consideration when developing and evaluating vehicle simulations for training purposes - based not only on what is known from the vehicle domain, but what can be inferred from other domains in which simulation is an established training approach, such as aviation (e.g. Jentsch et al., 2011) and medicine (e.g. McGaghie et al., 2010). STATEMENT OF RELEVANCE: Simulation has become a popular tool for driver and vehicle crew training in civilian and military settings. This review considers whether there is evidence that this training method leads to learning and the transfer of skills to real world performance. Evidence from other domains, such as aviation and medicine, is drawn upon to inform the design and evaluation of future vehicle simulation training systems. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Test vs. simulation

    NASA Technical Reports Server (NTRS)

    Wood, Charles C.

    1991-01-01

    The following topics are presented in tabular form: (1) simulation capability assessments (no propulsion system test); (2) advanced vehicle simulation capability assessment; (3) systems tests identified events; (4) main propulsion test article (MPTA) testing evaluation; (5) Saturn 5, 1B, and 1 testing evaluation. Special vehicle simulation issues that are propulsion related are briefly addressed.

  7. Propulsion issues for advanced orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1984-01-01

    Studies of the United States Space Transportation System show that in the mid to late 1990s expanded capabilities for orbital transfer vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possibly men to geosynchronous orbit. Discussion and observations relative to the propulsion system issues of space basing, aeroassist compatibility, man ratability and enhanced payload delivery capability are presented. These issues will require resolution prior to the development of a propulsion system for the advanced OTV. The NASA program in support of advanced propulsion for an OTV is briefly described along with conceptual engine design characteristics.

  8. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  9. [Real world instantaneous emission simulation for light-duty diesel vehicle].

    PubMed

    Huang, Cheng; Chen, Chang-Hong; Dai, Pu; Li, Li; Huang, Hai-Ying; Cheng, Zhen; Jia, Ji-Hong

    2008-10-01

    Core architecture and input parameters of CMEM model were introduced to simulation the second by second vehicle emission rate on real world by taking a light-duty diesel car as a case. On-board test data by a portable emission measurement system were then used to validate the simulation results. Test emission factors of CO, THC, NO(x) and CO2 were respectively 0.81, 0.61, 2.09, and 193 g x km(-1), while calculated emission factors were 0.75, 0.47, 2.47, and 212 g x km(-1). The correlation coefficients reached 0.69, 0.69, 0.75, and 0.72. Simulated instantaneous emissions of the light duty diesel vehicle by CMEM model were strongly coherent with the transient driving cycle. By analysis, CO, THC, NO(x), and CO2 emissions would be reduced by 50%, 47%, 45%, and 44% after improving the traffic situation at the intersection. The result indicated that it is necessary and feasible to simulate the instantaneous emissions of mixed vehicle fleet in some typical traffic areas by the micro-scale vehicle emission model.

  10. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    PubMed

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control

  11. Motor vehicle nanoparticle emissions: Numerical simulations and comparisons with recent observations

    NASA Astrophysics Data System (ADS)

    Yu, F.

    2002-05-01

    Epidemiological studies have linked urban fine particles (FPs, diameter <= 2.5 um) to adverse health effects, and the EPA has proposed more stringent standards on the mass concentration of ambient FPs. Recently it has been pointed out that it is not sufficient to study only the mass of FPs. The main concern is that, while nanoparticles (NPs, diameter <= 50 nm) contribute a small fraction to the mass concentration of the ambient aerosol, they may contribute disproportionately to its toxicity. Furthermore, measurements indicate that pollution control measures to reduce FP mass emissions may paradoxically increase the number emissions of NPs. Future standards might be imposed on NP emissions and NP emissions from gasoline engines might also become a concern. Effective and least costly means of NP emission reduction must be based on a firm physical understanding of the formation mechanisms of NPs in the exhaust of motor vehicles. Measurements of NPs in motor engine exhaust have been made both in the laboratory and in the atmosphere under various conditions. In this study, we investigate the key processes and parameters controlling formation and evolution of NPs in vehicle exhaust through model simulations and comparisons with field measurements. The detailed aerosol dynamics are simulated with an advanced multi-type, multi-component, size-resolved microphysics model. The classical binary homogeneous nucleation of H2SO4-H2O fails to explain the observed NP properties. We find that chemiions generated in engine combustor may play an important role in the formation of NPs in vehicle exhaust. The predicted NP properties based on our ion-mediated nucleation of H2SO4-H2O consistently explain the measurements in terms of total NP concentrations, and their sensitivity to fuel sulfur contents, on-road vehicle speeds, soot concentrations, and dilution conditions. Our study indicates that total number of NPs formed is very sensitive to chemiion concentrations, and we propose a

  12. Advanced vehicle dynamics of heavy trucks with the perspective of road safety

    NASA Astrophysics Data System (ADS)

    Trigell, Annika Stensson; Rothhämel, Malte; Pauwelussen, Joop; Kural, Karel

    2017-10-01

    This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.

  13. Alternative fuels and advanced technology vehicles : issues in Congress

    DOT National Transportation Integrated Search

    2009-02-13

    Alternative fuels and advanced technology vehicles are seen by proponents as integral to improving urban air quality, decreasing dependence on foreign oil, and reducing emissions of greenhouse gases. However, major barriers especially economics curre...

  14. Environmentally Responsible Aviation N plus 2 Advanced Vehicle Study

    NASA Technical Reports Server (NTRS)

    Drake, Aaron; Harris, Christopher A.; Komadina, Steven C.; Wang, Donny P.; Bender, Anne M.

    2013-01-01

    This is the Northrop Grumman final report for the Environmentally Responsible Aviation (ERA) N+2 Advanced Vehicle Study performed for the National Aeronautics and Space Administration (NASA). Northrop Grumman developed advanced vehicle concepts and associated enabling technologies with a high potential for simultaneously achieving significant reductions in emissions, airport area noise, and fuel consumption for transport aircraft entering service in 2025. A Preferred System Concept (PSC) conceptual design has been completed showing a 42% reduction in fuel burn compared to 1998 technology, and noise 75dB below Stage 4 for a 224- passenger, 8,000 nm cruise transport aircraft. Roadmaps have been developed for the necessary technology maturation to support the PSC. A conceptual design for a 55%-scale demonstrator aircraft to reduce development risk for the PSC has been completed.

  15. Evaluating effectiveness of real-time advanced traveler information systems using a small test vehicle fleet

    DOT National Transportation Integrated Search

    1997-01-01

    ADVANCE was an in-vehicle advanced traveler information system (ATIS) providing route guidance in real time that operated in the northwestern portion and northwest suburbs of Chicago, Illinois. It used probe vehicles to generate dynamically travel ti...

  16. U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1996-01-01

    U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...

  17. Simulating an underwater vehicle self-correcting guidance system with Simulink

    NASA Astrophysics Data System (ADS)

    Fan, Hui; Zhang, Yu-Wen; Li, Wen-Zhe

    2008-09-01

    Underwater vehicles have already adopted self-correcting directional guidance algorithms based on multi-beam self-guidance systems, not waiting for research to determine the most effective algorithms. The main challenges facing research on these guidance systems have been effective modeling of the guidance algorithm and a means to analyze the simulation results. A simulation structure based on Simulink that dealt with both issues was proposed. Initially, a mathematical model of relative motion between the vehicle and the target was developed, which was then encapsulated as a subsystem. Next, steps for constructing a model of the self-correcting guidance algorithm based on the Stateflow module were examined in detail. Finally, a 3-D model of the vehicle and target was created in VRML, and by processing mathematical results, the model was shown moving in a visual environment. This process gives more intuitive results for analyzing the simulation. The results showed that the simulation structure performs well. The simulation program heavily used modularization and encapsulation, so has broad applicability to simulations of other dynamic systems.

  18. Numerical simulation of vehicle crashworthiness and occupant protection

    NASA Astrophysics Data System (ADS)

    Saha, Nripen K.

    1993-08-01

    Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.

  19. Numerical simulation of vehicle crashworthiness and occupant protection

    NASA Technical Reports Server (NTRS)

    Saha, Nripen K.

    1993-01-01

    Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.

  20. VEEP: A Vehicle Economy, Emissions, and Performance simulation program

    NASA Technical Reports Server (NTRS)

    Klose, G. J.

    1978-01-01

    The purpose of the VEEP simulation program was to: (1) predict vehicle fuel economy and relative emissions over any specified driving cycle; (2) calculate various measures of vehicle performance (acceleration, passing manuevers, gradeability, top speed), and (3) give information on the various categories of energy dissipation (rolling friction, aerodynamics, accessories, inertial effects, component inefficiences, etc.). The vehicle is described based on detailed subsystem information and numerical parameters characterizing the components of a wide variety of self-propelled vehicles. Conventionally arranged heat engine powered automobiles were emphasized, but with consideration in the design toward the requirement of other types of vehicles.

  1. Recycling of Advanced Batteries for Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  2. Virtual Reality Modelling Simulation of the Re-entry Motion of an Axialsymmetric Vehicle

    NASA Astrophysics Data System (ADS)

    Guidi, A.; Chu, Q.. P.; Mulder, J. A.

    This work started during the stability analysis of the Delft Aerospace Re-entry Test demonstrator (DART) which is a small axisymmetric ballistic re-entry vehicle. The dynamic stability evaluation of an axisymmetric re-entry vehicle is especially concerned on the behaviour of its angle of attack during the flight through the atmosphere. The variation in the angle of attack is essential for prediction of the trajectory of the vehicle and for heating requirement of the structure of the vehicle. The concept of the total angle of attack and the windward meridian plane are introduced. The position of the centre of pressure can be a crucial point in the stability of the vehicle. Although the simpleness of an axisymmetric shape, the re-entry of such a vehicle is characterised by several complex phenomenologies that were analysed with the aid of the flight simulator and of a 3D virtual reality modeling simulator. Simulations were performed with a 25° AOA initial condition in order to simulate the response of the vehicle to a disturbance that may occur during the flight causing a variation in attitude from its Trim . Certain aspects of re-entry vehicle motion are conveniently described in the terms of Euler angles. Using the Eulerian angle it is possible to generate a tridimensional animation of the output of the Flight Simulator. This tridimensional analysis is of great importance in order to understand the mentioned complex motions. Furthermore with growing in computer power it is possible to generate online visualisation of the simulations. The output of the flight simulator was used in a software written in Virtual Reality Modelling Language (VRML). With VRML this software was possible the visualisation of the re-entry motion of the vehicle. With this option the animation can run on-line during the with the flight simulator and can be also easily published on the internet or send to other users in very small file size. (the VRLM simulation of the re-entry, can be seen

  3. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  4. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  5. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  6. Advancing Transportation through Vehicle Electrification - PHEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the developmentmore » of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.« less

  7. Vehicle response-based track geometry assessment using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Kraft, Sönke; Causse, Julien; Coudert, Frédéric

    2018-02-01

    The assessment of the geometry of railway tracks is an indispensable requirement for safe rail traffic. Defects which represent a risk for the safety of the train have to be identified and the necessary measures taken. According to current standards, amplitude thresholds are applied to the track geometry parameters measured by recording cars. This geometry-based assessment has proved its value but suffers from the low correlation between the geometry parameters and the vehicle reactions. Experience shows that some defects leading to critical vehicle reactions are underestimated by this approach. The use of vehicle responses in the track geometry assessment process allows identifying critical defects and improving the maintenance operations. This work presents a vehicle response-based assessment method using multi-body simulation. The choice of the relevant operation conditions and the estimation of the simulation uncertainty are outlined. The defects are identified from exceedances of track geometry and vehicle response parameters. They are then classified using clustering methods and the correlation with vehicle response is analysed. The use of vehicle responses allows the detection of critical defects which are not identified from geometry parameters.

  8. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  9. FY13 Annual Report: PHEV Advanced Series Gen-set Development/Demonstration Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, Paul H.

    2013-12-01

    The objective of this project is to integrate ORNL advancements in vehicle technologies to properly design, and size a gen-set for various vehicle applications and then simulate multiple advanced series hybrid (HEV/PHEV) vehicles with the genset models.

  10. Modeling and simulation of reliability of unmanned intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Dixit, Arati M.; Mustapha, Adam; Singh, Kuldip; Aggarwal, K. K.; Gerhart, Grant R.

    2008-04-01

    Unmanned ground vehicles have a large number of scientific, military and commercial applications. A convoy of such vehicles can have collaboration and coordination. For the movement of such a convoy, it is important to predict the reliability of the system. A number of approaches are available in literature which describes the techniques for determining the reliability of the system. Graph theoretic approaches are popular in determining terminal reliability and system reliability. In this paper we propose to exploit Fuzzy and Neuro-Fuzzy approaches for predicting the node and branch reliability of the system while Boolean algebra approaches are used to determine terminal reliability and system reliability. Hence a combination of intelligent approaches like Fuzzy, Neuro-Fuzzy and Boolean approaches is used to predict the overall system reliability of a convoy of vehicles. The node reliabilities may correspond to the collaboration of vehicles while branch reliabilities will determine the terminal reliabilities between different nodes. An algorithm is proposed for determining the system reliabilities of a convoy of vehicles. The simulation of the overall system is proposed. Such simulation should be helpful to the commander to take an appropriate action depending on the predicted reliability in different terrain and environmental conditions. It is hoped that results of this paper will lead to more important techniques to have a reliable convoy of vehicles in a battlefield.

  11. Current CFD Practices in Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2012-01-01

    The quest for sustained space exploration will require the development of advanced launch vehicles, and efficient and reliable operating systems. Development of launch vehicles via test-fail-fix approach is very expensive and time consuming. For decision making, modeling and simulation (M&S) has played increasingly important roles in many aspects of launch vehicle development. It is therefore essential to develop and maintain most advanced M&S capability. More specifically computational fluid dynamics (CFD) has been providing critical data for developing launch vehicles complementing expensive testing. During the past three decades CFD capability has increased remarkably along with advances in computer hardware and computing technology. However, most of the fundamental CFD capability in launch vehicle applications is derived from the past advances. Specific gaps in the solution procedures are being filled primarily through "piggy backed" efforts.on various projects while solving today's problems. Therefore, some of the advanced capabilities are not readily available for various new tasks, and mission-support problems are often analyzed using ad hoc approaches. The current report is intended to present our view on state-of-the-art (SOA) in CFD and its shortcomings in support of space transport vehicle development. Best practices in solving current issues will be discussed using examples from ascending launch vehicles. Some of the pacing will be discussed in conjunction with these examples.

  12. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  13. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  14. Simulation of electric vehicles with hybrid power systems

    NASA Astrophysics Data System (ADS)

    Burke, A. F.; Cole, G. H.

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.

  15. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  16. Development of a non-linear simulation for generic hypersonic vehicles - ASUHS1

    NASA Technical Reports Server (NTRS)

    Salas, Juan; Lovell, T. Alan; Schmidt, David K.

    1993-01-01

    A nonlinear simulation is developed to model the longitudinal motion of a vehicle in hypersonic flight. The equations of motion pertinent to this study are presented. Analytic expressions for the aerodynamic forces acting on a hypersonic vehicle which were obtained from Newtonian Impact Theory are further developed. The control surface forces are further examined to incorporate vehicle elastic motion. The purpose is to establish feasible equations of motion which combine rigid body, elastic, and aeropropulsive dynamics for use in nonlinear simulations. The software package SIMULINK is used to implement the simulation. Also discussed are issues needing additional attention and potential problems associated with the implementation (with proposed solutions).

  17. Modeling and Controls Development of 48V Mild Hybrid Electric Vehicles

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...

  18. [Computer simulation by passenger wound analysis of vehicle collision].

    PubMed

    Zou, Dong-Hua; Liu, Nning-Guo; Shen, Jie; Zhang, Xiao-Yun; Jin, Xian-Long; Chen, Yi-Jiu

    2006-08-15

    To reconstruct the course of vehicle collision, so that to provide the reference for forensic identification and disposal of traffic accidents. Through analyzing evidences left both on passengers and vehicles, technique of momentum impulse combined with multi-dynamics was applied to simulate the motion and injury of passengers as well as the track of vehicles. Model of computer stimulation perfectly reconstructed phases of the traffic collision, which coincide with details found by forensic investigation. Computer stimulation is helpful and feasible for forensic identification in traffic accidents.

  19. Path selection system simulation and evaluation for a Martian roving vehicle

    NASA Technical Reports Server (NTRS)

    Boheim, S. L.; Prudon, W. C.

    1972-01-01

    The simulation and evaluation of proposed path selection systems for an autonomous Martian roving vehicle was developed. The package incorporates a number of realistic features, such as the simulation of random effects due to vehicle bounce and sensor-reading uncertainty, to increase the reliability of the results. Qualitative and quantitative evaluation criteria were established. The performance of three different path selection systems was evaluated to determine the effectiveness of the simulation package, and to form some preliminary conclusions regarding the tradeoffs involved in a path selection system design.

  20. Results of advanced battery technology evaluations for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1992-10-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  1. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    NASA Technical Reports Server (NTRS)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  2. Weight and cost forecasting for advanced manned space vehicles

    NASA Technical Reports Server (NTRS)

    Williams, Raymond

    1989-01-01

    A mass and cost estimating computerized methology for predicting advanced manned space vehicle weights and costs was developed. The user friendly methology designated MERCER (Mass Estimating Relationship/Cost Estimating Relationship) organizes the predictive process according to major vehicle subsystem levels. Design, development, test, evaluation, and flight hardware cost forecasting is treated by the study. This methodology consists of a complete set of mass estimating relationships (MERs) which serve as the control components for the model and cost estimating relationships (CERs) which use MER output as input. To develop this model, numerous MER and CER studies were surveyed and modified where required. Additionally, relationships were regressed from raw data to accommodate the methology. The models and formulations which estimated the cost of historical vehicles to within 20 percent of the actual cost were selected. The result of the research, along with components of the MERCER Program, are reported. On the basis of the analysis, the following conclusions were established: (1) The cost of a spacecraft is best estimated by summing the cost of individual subsystems; (2) No one cost equation can be used for forecasting the cost of all spacecraft; (3) Spacecraft cost is highly correlated with its mass; (4) No study surveyed contained sufficient formulations to autonomously forecast the cost and weight of the entire advanced manned vehicle spacecraft program; (5) No user friendly program was found that linked MERs with CERs to produce spacecraft cost; and (6) The group accumulation weight estimation method (summing the estimated weights of the various subsystems) proved to be a useful method for finding total weight and cost of a spacecraft.

  3. Hardware-in-the-loop simulation for undersea vehicle applications

    NASA Astrophysics Data System (ADS)

    Kelf, Michael A.

    2001-08-01

    Torpedoes and other Unmanned Undersea Vehicles (UUV) are employed by submarines and surface combatants, as well as aircraft, for undersea warfare. These vehicles are autonomous devices whose guidance systems rival the complexity of the most sophisticated air combat missiles. The tactical environment for undersea warfare is a difficult one in terms of target detection,k classification, and pursuit because of the physics of underwater sounds. Both hardware-in-the-loop and all-digital simulations have become vital tools in developing and evaluating undersea weapon and vehicle guidance performance in the undersea environment.

  4. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jason; Yu, Wensong; Sun, Pengwei

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling andmore » simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.« less

  5. A data-driven dynamics simulation framework for railway vehicles

    NASA Astrophysics Data System (ADS)

    Nie, Yinyu; Tang, Zhao; Liu, Fengjia; Chang, Jian; Zhang, Jianjun

    2018-03-01

    The finite element (FE) method is essential for simulating vehicle dynamics with fine details, especially for train crash simulations. However, factors such as the complexity of meshes and the distortion involved in a large deformation would undermine its calculation efficiency. An alternative method, the multi-body (MB) dynamics simulation provides satisfying time efficiency but limited accuracy when highly nonlinear dynamic process is involved. To maintain the advantages of both methods, this paper proposes a data-driven simulation framework for dynamics simulation of railway vehicles. This framework uses machine learning techniques to extract nonlinear features from training data generated by FE simulations so that specific mesh structures can be formulated by a surrogate element (or surrogate elements) to replace the original mechanical elements, and the dynamics simulation can be implemented by co-simulation with the surrogate element(s) embedded into a MB model. This framework consists of a series of techniques including data collection, feature extraction, training data sampling, surrogate element building, and model evaluation and selection. To verify the feasibility of this framework, we present two case studies, a vertical dynamics simulation and a longitudinal dynamics simulation, based on co-simulation with MATLAB/Simulink and Simpack, and a further comparison with a popular data-driven model (the Kriging model) is provided. The simulation result shows that using the legendre polynomial regression model in building surrogate elements can largely cut down the simulation time without sacrifice in accuracy.

  6. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less

  7. Simulation of adaptive semi-active magnetorheological seat damper for vehicle occupant blast protection

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.

    2013-04-01

    This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.

  8. In-vehicle group activity modeling and simulation in sensor-based virtual environment

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Telagamsetti, Durga; Poshtyar, Azin; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human group activity recognition is a very complex and challenging task, especially for Partially Observable Group Activities (POGA) that occur in confined spaces with limited visual observability and often under severe occultation. In this paper, we present IRIS Virtual Environment Simulation Model (VESM) for the modeling and simulation of dynamic POGA. More specifically, we address sensor-based modeling and simulation of a specific category of POGA, called In-Vehicle Group Activities (IVGA). In VESM, human-alike animated characters, called humanoids, are employed to simulate complex in-vehicle group activities within the confined space of a modeled vehicle. Each articulated humanoid is kinematically modeled with comparable physical attributes and appearances that are linkable to its human counterpart. Each humanoid exhibits harmonious full-body motion - simulating human-like gestures and postures, facial impressions, and hands motions for coordinated dexterity. VESM facilitates the creation of interactive scenarios consisting of multiple humanoids with different personalities and intentions, which are capable of performing complicated human activities within the confined space inside a typical vehicle. In this paper, we demonstrate the efficiency and effectiveness of VESM in terms of its capabilities to seamlessly generate time-synchronized, multi-source, and correlated imagery datasets of IVGA, which are useful for the training and testing of multi-source full-motion video processing and annotation. Furthermore, we demonstrate full-motion video processing of such simulated scenarios under different operational contextual constraints.

  9. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    PubMed

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  10. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin; Davidson, John B.; Ifju, Peter G.

    2002-01-01

    Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.

  11. The new car following model considering vehicle dynamics influence and numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Liu, Hui; Zhang, Geng; Zhao, Min

    2015-12-01

    In this paper, the car following model is investigated by considering the vehicle dynamics in a cyber physical view. In fact, that driving is a typical cyber physical process which couples the cyber aspect of the vehicles' information and driving decision tightly with the dynamics and physics of the vehicles and traffic environment. However, the influence from the physical (vehicle) view was been ignored in the previous car following models. In order to describe the car following behavior more reasonably in real traffic, a new car following model by considering vehicle dynamics (for short, D-CFM) is proposed. In this paper, we take the full velocity difference (FVD) car following model as a case. The stability condition is given on the base of the control theory. The analytical method and numerical simulation results show that the new models can describe the evolution of traffic congestion. The simulations also show vehicles with a more actual acceleration of starting process than early models.

  12. Advanced APS impacts on vehicle payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1989-01-01

    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethylhydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination of scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.

  13. Advanced APS Impacts on Vehicle Payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1989-01-01

    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.

  14. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.

  15. An economic study of an advanced technology supersonic cruise vehicle

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Williams, L. J.

    1975-01-01

    A description is given of the methods used and the results of an economic study of an advanced technology supersonic cruise vehicle. This vehicle was designed for a maximum range of 4000 n.mi. at a cruise speed of Mach 2.7 and carrying 292 passengers. The economic study includes the estimation of aircraft unit cost, operating cost, and idealized cash flow and discounted cash flow return on investment. In addition, it includes a sensitivity study on the effects of unit cost, manufacturing cost, production quantity, average trip length, fuel cost, load factor, and fare on the aircraft's economic feasibility.

  16. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  17. Advancing electric-vehicle development with pure-lead-tin battery technology

    NASA Astrophysics Data System (ADS)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  18. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of themore » rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.« less

  19. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.

  20. Shuttle vehicle and mission simulation requirements report, volume 1

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1972-01-01

    The requirements for the space shuttle vehicle and mission simulation are developed to analyze the systems, mission, operations, and interfaces. The requirements are developed according to the following subject areas: (1) mission envelope, (2) orbit flight dynamics, (3) shuttle vehicle systems, (4) external interfaces, (5) crew procedures, (6) crew station, (7) visual cues, and (8) aural cues. Line drawings and diagrams of the space shuttle are included to explain the various systems and components.

  1. A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  2. Docking simulation analysis of range data requirements for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Micheal, J. D.; Vinz, F. L.

    1985-01-01

    The results of an initial study are reported assess the controllability of the Orbital Maneuvering Vehicle (OMV) for terminal closure and docking are reported. The vehicle characteristics used in this study are those of the Marshall Space Flight Center (MSFC) baseline OMV which were published with the request for proposals for preliminary design of this vehicle. This simulation was conducted at MSFC using the Target Motion Simulator. The study focused on the OMV manual mode capability to accommodate both stabilized and tumbling target engagements with varying complements of range and range rate data displayed to the OMV operator. Four trained test subjects performed over 400 simulated orbital dockings during this study. A firm requirement for radar during the terminal closure and dock phase of the OMV mission was not established by these simulations. Fifteen pound thrusters recommended in the MSFC baseline design were found to be advantageous for initial rate matching maneuvers with unstabilized targets; however, lower thrust levels were desirable for making the final docking maneuvers.

  3. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  4. Platform for Testing Robotic Vehicles on Simulated Terrain

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel

    2006-01-01

    The variable terrain tilt platform (VTTP) is a means of providing simulated terrain for mobility testing of engineering models of the Mars Exploration Rovers. The VTTP could also be used for testing the ability of other robotic land vehicles (and small vehicles in general) to move across terrain under diverse conditions of slope and surface texture, and in the presence of obstacles of various sizes and shapes. The VTTP consists mostly of a 16-ft-(4.88-m)-square tilt table. The tilt can be adjusted to any angle between 0 (horizontal) and 25 . The test surface of the table can be left bare; can be covered with hard, high-friction material; or can be covered with sand, gravel, and/or other ground-simulating material or combination of materials to a thickness of as much as 6 in. (approx. 15 cm). Models of rocks, trenches, and other obstacles can be placed on the simulated terrain. For example, for one of the Mars- Rover tests, a high-friction mat was attached to the platform, then a 6-in.- ( 15 cm) deep layer of dry, loose beach sand was deposited on the mat. The choice of these two driving surface materials was meant to bound the range of variability of terrain that the rover was expected to encounter on the Martian surface. At each of the different angles at which tests were performed, for some of the tests, rocklike concrete obstacles ranging in height from 10 to 25 cm were placed in the path of the rover (see figure). The development of the VTTP was accompanied by development of a methodology of testing to characterize the performance and modes of failure of a vehicle under test. In addition to variations in slope, ground material, and obstacles, testing typically includes driving up-slope, down-slope, cross-slope, and at intermediate angles relative to slope. Testing includes recording of drive-motor currents, wheel speeds, articulation of suspension mechanisms, and the actual path of the vehicle over the simulated terrain. The collected data can be used to

  5. Minimum fuel control of a vehicle with a continuously variable transmission. [control system simulation

    NASA Technical Reports Server (NTRS)

    Burghart, J. H.; Donoghue, J. F.

    1980-01-01

    The design and evaluation of a control system for a sedan with a heat engine and a continuously variable transmission, is considered in a effort to minimize fuel consumption and achieve satisfactory dynamic response of vehicle variables as the vehicle is driven over a standard driving cycle. Even though the vehicle system was highly nonlinear, attention was restricted to linear control algorithms which could be easily understood and implemented demonstrated by simulation. Simulation results also revealed that the vehicle could exhibit unexpected dynamic behavior which must be taken into account in any control system design.

  6. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  7. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...

  8. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...

  9. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...

  10. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caille, Gary

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a keymore » program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.« less

  11. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  12. Advancing eco-driving strategies for drivers and automated vehicles traveling within intersection vicinities : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    Vehicle emissions occupy a considerable share of emission inventories in the United States. One of the approaches taken to minimize vehicle emissions is eco-driving. Supported by advanced ITS technologies, it is available to provide the real-time eco...

  13. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema

    Dan; Arvizu; Barbara; Goodman; Robert; McCormick; Tony; Markel; Matt; Keyser; Sreekant; Narumanchi; Rob; Farrington

    2017-12-09

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles.

  14. Advanced wiring technique and hardware application: Airplane and space vehicle

    NASA Technical Reports Server (NTRS)

    Ernst, H. L.; Eichman, C. D.

    1972-01-01

    An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.

  15. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.; Thornton, M.

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less

  16. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Hanson, J. M.; Beard, B. B.

    2010-01-01

    This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.

  17. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  18. Modular Approach to Structural Simulation for Vehicle Crashworthiness Prediction

    DOT National Transportation Integrated Search

    1975-03-01

    A modular formulation for simulation of the structural deformation and deceleration of a vehicle for crashworthiness and collision compatibility is presented. This formulation includes three dimensional beam elements, various spring elements, rigid b...

  19. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J.; Wood, E.

    2013-01-01

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonlymore » used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.« less

  20. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  1. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  2. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Astrophysics Data System (ADS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-06-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  3. Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Dogigli, Michael; Pradier, Alain; Tumino, Giorgio

    2002-01-01

    (1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle

  4. Advanced Vehicle and Power Initiative

    DTIC Science & Technology

    2010-07-29

    optimize vehicle operation, and capture vehicle kinetic energy during braking ( regenerative energy). As much as two-thirds of this imported oil comes... categories . Figure 4 provides a visual representation of many of the HEV and BEV options available on the 2010 GSA Schedule. Figure 4 - GSA...gallon • Renewable energy generated 24 • Vehicle miles driven by vehicle category • Implementation costs – Infrastructure modifications required

  5. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuelmore » type(s), power source(s), and related information.« less

  6. Proving autonomous vehicle and advanced driver assistance systems safety : final research report.

    DOT National Transportation Integrated Search

    2016-02-15

    The main objective of this project was to provide technology for answering : crucial safety and correctness questions about verification of autonomous : vehicle and advanced driver assistance systems based on logic. : In synergistic activities, we ha...

  7. Advanced sensor-simulation capability

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.

    1990-09-01

    This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.

  8. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  9. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  10. Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification

    NASA Astrophysics Data System (ADS)

    Ni, Jun; Hu, Jibin

    2016-08-01

    In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.

  11. Simulation Research on Vehicle Active Suspension Controller Based on G1 Method

    NASA Astrophysics Data System (ADS)

    Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui

    2017-09-01

    Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.

  12. FY2011 Annual Progress Report for Vehicle and Systems Simulation and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-15

    The VSST team's mission is to evaluate the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context. These evaluations address light-, medium-, and heavy-duty vehicle platforms. This work is directed toward evaluating and verifying the targets of the VTP R&D teams and to providing guidance in establishing roadmaps for achievement of these goals.

  13. NREL: News - Advisor 2002-A Powerful Vehicle Simulation Tool Gets Better

    Science.gov Websites

    Advisor 2002-A Powerful Vehicle Simulation Tool Gets Better Golden, Colo., June 11, 2002 A powerful analysis is made possible by co-simulation links to Avant!'s Saber and Ansoft's SIMPLORER�. Transient air conditioning system analysis is possible by co-simulation with C&R Technologies' SINDA/FLUINT

  14. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    DTIC Science & Technology

    2016-08-02

    PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED

  15. Flight simulator for hypersonic vehicle and a study of NASP handling qualities

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.

    1992-01-01

    The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.

  16. Further Investigations of Gravity Modeling on Surface-Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2009-01-01

    A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of the gravitation and world model. A surface-interacting simulation cannot treat the gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a subsonic civil transport in level flight under various starting conditions.

  17. Estimation of light commercial vehicles dynamics by means of HIL-testbench simulation

    NASA Astrophysics Data System (ADS)

    Groshev, A.; Tumasov, A.; Toropov, E.; Sereda, P.

    2018-02-01

    The high level of active safety of vehicles is impossible without driver assistance electronic systems. Electronic stability control (ESC) system is one of them. Nowadays such systems are obligatory for installation on vehicles of different categories. The approval of active safety level of vehicles with ESC is possible by means of high speed road tests. The most frequently implemented tests are “fish hook” and “sine with dwell” tests. Such kind of tests provided by The Global technical regulation No. 8 are published by the United Nations Economic Commission for Europe as well as by ECE 13-11. At the same time, not only road tests could be used for estimation of vehicles dynamics. Modern software and hardware technologies allow imitating real tests with acceptable reliability and good convergence between real test data and simulation results. ECE 13-11 Annex 21 - Appendix 1 “Use Of The Dynamic Stability Simulation” regulates demands for special Simulation Test bench that could be used not only for preliminary estimation of vehicles dynamics, but also for official vehicles homologation. This paper describes the approach, proposed by the researchers from Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU, Russia) with support of engineers of United Engineering Center GAZ Group, as well as specialists of Gorky Automobile Plant. The idea of approach is to use the special HIL (hardware in the loop) -test bench, that consists of Real Time PC with Real Time Software and braking system components including electronic control unit (ECU) of ESC system. The HIL-test bench allows imitating vehicle dynamics in condition of “fish hook” and “sine with dwell” tests. The paper describes the scheme and structure of HIL-test bench and some peculiarities that should be taken into account during HIL-simulation.

  18. Integrated development of light armored vehicles based on wargaming simulators

    NASA Astrophysics Data System (ADS)

    Palmarini, Marc; Rapanotti, John

    2004-08-01

    Vehicles are evolving into vehicle networks through improved sensors, computers and communications. Unless carefully planned, these complex systems can result in excessive crew workload and difficulty in optimizing the use of the vehicle. To overcome these problems, a war-gaming simulator is being developed as a common platform to integrate contributions from three different groups. The simulator, OneSAF, is used to integrate simplified models of technology and natural phenomena from scientists and engineers with tactics and doctrine from the military and analyzed in detail by operations analysts. This approach ensures the modelling of processes known to be important regardless of the level of information available about the system. Vehicle survivability can be improved as well with better sensors, computers and countermeasures to detect and avoid or destroy threats. To improve threat detection and reliability, Defensive Aids Suite (DAS) designs are based on three complementary sensor technologies including: acoustics, visible and infrared optics and radar. Both active armour and softkill countermeasures are considered. In a typical scenario, a search radar, providing continuous hemispherical coverage, detects and classifies the threat and cues a tracking radar. Data from the tracking radar is processed and an explosive grenade is launched to destroy or deflect the threat. The angle of attack and velocity from the search radar can be used by the soft-kill system to carry out an infrared search and track or an illuminated range-gated scan for the threat platform. Upon detection, obscuration, countermanoeuvres and counterfire can be used against the threat. The sensor suite is completed by acoustic detection of muzzle blast and shock waves. Automation and networking at the platoon level contribute to improved vehicle survivability. Sensor data fusion is essential in avoiding catastrophic failure of the DAS. The modular DAS components can be used with Light Armoured

  19. Improvement of mathematical models for simulation of vehicle handling : volume 7 : technical manual for the general simulation

    DOT National Transportation Integrated Search

    1980-03-01

    This volume is the technical manual for the general simulation. Mathematical modelling of the vehicle and of the human driver is presented in detail, as are differences between the APL simulation and the current one. Information on model validation a...

  20. Integrated G and C Implementation within IDOS: A Simulink Based Reusable Launch Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Fisher, Joseph E.; Bevacqua, Tim; Lawrence, Douglas A.; Zhu, J. Jim; Mahoney, Michael

    2003-01-01

    The implementation of multiple Integrated Guidance and Control (IG&C) algorithms per flight phase within a vehicle simulation poses a daunting task to coordinate algorithm interactions with the other G&C components and with vehicle subsystems. Currently being developed by Universal Space Lines LLC (USL) under contract from NASA, the Integrated Development and Operations System (IDOS) contains a high fidelity Simulink vehicle simulation, which provides a means to test cutting edge G&C technologies. Combining the modularity of this vehicle simulation and Simulink s built-in primitive blocks provide a quick way to implement algorithms. To add discrete-event functionality to the unfinished IDOS simulation, Vehicle Event Manager (VEM) and Integrated Vehicle Health Monitoring (IVHM) subsystems were created to provide discrete-event and pseudo-health monitoring processing capabilities. Matlab's Stateflow is used to create the IVHM and Event Manager subsystems and to implement a supervisory logic controller referred to as the Auto-commander as part of the IG&C to coordinate the control system adaptation and reconfiguration and to select the control and guidance algorithms for a given flight phase. Manual creation of the Stateflow charts for all of these subsystems is a tedious and time-consuming process. The Stateflow Auto-builder was developed as a Matlab based software tool for the automatic generation of a Stateflow chart from information contained in a database. This paper describes the IG&C, VEM and IVHM implementations in IDOS. In addition, this paper describes the Stateflow Auto-builder.

  1. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  2. Application of CFE/POST2 for Simulation of Launch Vehicle Stage Separation

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Tartabini, Paul V.; Toniolo, Matthew D.; Roithmayr, Carlos M.; Karlgaard, Christopher D.; Samareh, Jamshid A.

    2009-01-01

    The constraint force equation (CFE) methodology provides a framework for modeling constraint forces and moments acting at joints that connect multiple vehicles. With implementation in Program to Optimize Simulated Trajectories II (POST 2), the CFE provides a capability to simulate end-to-end trajectories of launch vehicles, including stage separation. In this paper, the CFE/POST2 methodology is applied to the Shuttle-SRB separation problem as a test and validation case. The CFE/POST2 results are compared with STS-1 flight test data.

  3. Reliability Testing Using the Vehicle Durability Simulator

    DTIC Science & Technology

    2017-11-20

    remote parameter control (RPC) software. The software is specifically designed for the data collection, analysis, and simulation processes outlined in...4516. 3. TOP 02-2-505 Inspection and Preliminary Operation of Vehicles, 4 February 1987. 4. Multi-Shaker Test and Control : Design , Test, and...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 20-11-2017 2. REPORT

  4. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  5. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  6. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  7. Mission Simulation Facility: Simulation Support for Autonomy Development

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael

    2003-01-01

    The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.

  8. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  9. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  10. Future Automotive Systems Technology Simulator (FASTSim)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.

  11. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    NASA Technical Reports Server (NTRS)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  12. Multimodal control of sensors on multiple simulated unmanned vehicles.

    PubMed

    Baber, C; Morin, C; Parekh, M; Cahillane, M; Houghton, R J

    2011-09-01

    The use of multimodal (speech plus manual) control of the sensors on combinations of one, two, three or five simulated unmanned vehicles (UVs) is explored. Novice controllers of simulated UVs complete a series of target checking tasks. Two experiments compare speech and gamepad control for one, two, three or five UVs in a simulated environment. Increasing the number of UVs has an impact on subjective rating of workload (measured by NASA-Task Load Index), particularly when moving from one to three UVs. Objective measures of performance showed that the participants tended to issue fewer commands as the number of vehicles increased (when using the gamepad control), but, while performance with a single UV was superior to that of multiple UVs, there was little difference across two, three or five UVs. Participants with low spatial ability (measured by the Object Perspectives Test) showed an increase in time to respond to warnings when controlling five UVs. Combining speech with gamepad control of sensors on UVs leads to superior performance on a secondary (respond-to-warnings) task (implying a reduction in demand) and use of fewer commands on primary (move-sensors and classify-target) tasks (implying more efficient operation). STATEMENT OF RELEVANCE: Benefits of multimodal control for unmanned vehicles are demonstrated. When controlling sensors on multiple UVs, participants with low spatial orientation scores have problems. It is proposed that the findings of these studies have implications for selection of UV operators and suggests that future UV workstations could benefit from multimodal control.

  13. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  14. Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...

  15. CVO driver fatigue and complex in-vehicle systems

    DOT National Transportation Integrated Search

    1997-10-01

    As one of a series of studies aimed at gathering data to develop human factors design guidelines for Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO), the present study utilized a driving simulator to study CVO dri...

  16. Potential occupant injury reduction in the U.S. vehicle fleet for lane departure warning-equipped vehicles in single-vehicle crashes.

    PubMed

    Kusano, Kristofer; Gorman, Thomas I; Sherony, Rini; Gabler, Hampton C

    2014-01-01

    Single-vehicle collisions involve only 10 percent of all occupants in crashes in the United States, yet these same crashes account for 31 percent of all fatalities. Along with other vehicle safety advancements, lane departure warning (LDW) systems are being introduced to mitigate the harmful effects of single-vehicle collisions. The objective of this study is to quantify the number of crashes and seriously injured drivers that could have been prevented in the United States in 2012 had all vehicles been equipped with LDW. In order to estimate the potential injury reduction benefits of LDW in the vehicle fleet, a comprehensive crash and injury simulation model was developed. The model's basis was 481 single-vehicle collisions extracted from the NASS-CDS for year 2012. Each crash was simulated in 2 conditions: (1) as it occurred and (2) as if the driver had an LDW system. By comparing the simulated vehicle's off-road trajectory before and after LDW, the reduction in the probability of a crash was determined. The probability of a seriously injured occupant (Maximum Abbreviated Injury Score [MAIS] 3+) given a crash was computed using injury risk curves with departure velocity and seat belt use as predictors. Each crash was simulated between 18 and 216 times to account for variable driver reaction, road, and vehicle conditions. Finally, the probability of a crash and seriously injured driver was summed over all simulations to determine the benefit of LDW. A majority of roads where departure crashes occurred had 2 lanes and were undivided. As a result, 58 percent of crashes had no shoulder. LDW will not be as effective on roads with no shoulder as on roads with large shoulders. LDW could potentially prevent 28.9 percent of all road departure crashes caused by the driver drifting out of his or her lane, resulting in a 24.3 percent reduction in the number of seriously injured drivers. The results of this study show that LDW, if widely adopted, could significantly mitigate

  17. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    NASA Technical Reports Server (NTRS)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  18. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuelmore » type(s), power source(s), and related information.« less

  19. Motorcycles that See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    PubMed Central

    2018-01-01

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267

  20. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J.; Wood, E.

    2013-03-01

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonlymore » used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.« less

  1. Reusable cryogenic foam insulation for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.

    1991-01-01

    Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.

  2. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.« less

  3. Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.; hide

    2012-01-01

    NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch

  4. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Standards; Advanced Clean Car Program; Request for Waiver of Preemption; Opportunity for Public Hearing and... developed an Advanced Clean Car program (ACC) which combines the control of smog and soot causing pollutants... cars, light-duty trucks and medium-duty passenger vehicles (and limited requirements related to heavy...

  5. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  6. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.

    2000-01-01

    An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.

  7. Simulation of product distribution at PT Anugrah Citra Boga by using capacitated vehicle routing problem method

    NASA Astrophysics Data System (ADS)

    Lamdjaya, T.; Jobiliong, E.

    2017-01-01

    PT Anugrah Citra Boga is a food processing industry that produces meatballs as their main product. The distribution system of the products must be considered, because it needs to be more efficient in order to reduce the shipment cost. The purpose of this research is to optimize the distribution time by simulating the distribution channels with capacitated vehicle routing problem method. Firstly, the distribution route is observed in order to calculate the average speed, time capacity and shipping costs. Then build the model using AIMMS software. A few things that are required to simulate the model are customer locations, distances, and the process time. Finally, compare the total distribution cost obtained by the simulation and the historical data. It concludes that the company can reduce the shipping cost around 4.1% or Rp 529,800 per month. By using this model, the utilization rate can be more optimal. The current value for the first vehicle is 104.6% and after the simulation it becomes 88.6%. Meanwhile, the utilization rate of the second vehicle is increase from 59.8% to 74.1%. The simulation model is able to produce the optimal shipping route with time restriction, vehicle capacity, and amount of vehicle.

  8. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    NASA Technical Reports Server (NTRS)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  9. Pilot/Vehicle display development from simulation to flight

    NASA Technical Reports Server (NTRS)

    Dare, Alan R.; Burley, James R., II

    1992-01-01

    The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.

  10. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  11. Structural weights analysis of advanced aerospace vehicles using finite element analysis

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.

    1989-01-01

    A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.

  12. On the road performance tests of electric test vehicle for correlation with road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    A dynamometer (road load simulator) is used to test and evaluate electric vehicle propulsion systems. To improve correlation between system tests on the road load simulator and on the road, similar performance tests are conducted using the same vehicle. The results of track tests on the electric propulsion system test vehicle are described. The tests include range at constant speeds and over SAE J227a driving cycles, maximum accelerations, maximum gradability, and tire rolling resistance determination. Road power requirements and energy consumption were also determined from coast down tests.

  13. A Simulation Study of a Speed Control System for Autonomous On-Road Operation of Automotive Vehicles.

    DTIC Science & Technology

    1987-06-01

    by block numoiber) The study of human driving of automotive vehicles is an important aid to the development of viable autonomous vehicle navigation...of human driving which could provide some different insights into possible approaches to autonomous vehicle control. At the start of this work, it was...advanced work in the behavioral aspects of human driving . Research of this nature can have a significant impact on the development of autonomous vehicles

  14. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  15. Advanced Vehicle Monitoring And Communication Systems For Bus Transit Benefits And Economic Feasibility

    DOT National Transportation Integrated Search

    1993-03-01

    THIS REPORT ANALYZES THE FEASIBILITY OF ADVANCED VEHICLE MONITORING AND COMMUNICATION (AVM/C) SYSTEMS FOR BUS TRANSIT IN THE UNITED STATES. SUCH SYSTEMS ARE WIDELY USED IN EUROPE AND CANADA TO PROVIDE MORE RELIABLE AND EFFICIENT BUS SERVICES, BUT HAV...

  16. Advanced Vehicle Monitoring And Communication Systems For Bus Transit, Benefits And Economic Feasibility

    DOT National Transportation Integrated Search

    1991-09-01

    THIS REPORT ANALYZES THE FEASIBILITY OF ADVANCED VEHICLE MONITORING AND COMMUNICATION (AVM/C) SYSTEMS FOR BUS TRANSIT IN THE UNITED STATES. SUCH SYSTEMS ARE WIDELY USED IN EUROPE AND CANADA TO PROVIDE MORE RELIABLE AND EFFICIENT BUS SERVICES, BUT HAV...

  17. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooker, A.; Gonder, J.; Wang, L.

    2015-05-04

    The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles tomore » provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).« less

  18. Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. III

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  19. Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. II

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  20. Simulation and Analyses of Stage Separation Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, Kelly J.; Covell, Peter F.

    2005-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(registered Trademark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  1. 40 CFR 86.163-00 - Spot check correlation procedures for vehicles tested using a simulation of the environmental...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...

  2. 40 CFR 86.163-00 - Spot check correlation procedures for vehicles tested using a simulation of the environmental...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...

  3. 40 CFR 86.163-00 - Spot check correlation procedures for vehicles tested using a simulation of the environmental...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...

  4. 40 CFR 86.163-00 - Spot check correlation procedures for vehicles tested using a simulation of the environmental...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...

  5. 40 CFR 86.163-00 - Spot check correlation procedures for vehicles tested using a simulation of the environmental...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicles tested using a simulation of the environmental test cell for air conditioning emission testing. 86... tested using a simulation of the environmental test cell for air conditioning emission testing. This section is applicable for vehicles which are tested using a simulation of the environmental test cell...

  6. Simulation of dynamic vehicle-track interaction on small radius curves

    NASA Astrophysics Data System (ADS)

    Torstensson, Peter T.; Nielsen, Jens C. O.

    2011-11-01

    A time-domain method for the simulation of general three-dimensional dynamic interaction between a vehicle and a curved railway track, accounting for a prescribed relative wheel-rail displacement excitation in a wide frequency range (up to several hundred Hz), is presented. The simulation model is able to capture the low-frequency vehicle dynamics simultaneously due to curving and the high-frequency track dynamics due to the excitation by, for example, the short-pitch corrugation on the low rail. The adopted multibody dynamics formulation considers inertia forces, such as centrifugal and Coriolis forces, as well as the structural flexibility of vehicle and track components. To represent a wheel/rail surface irregularity, isoparametric two-dimensional elements able to describe generally curved surface shapes are used. The computational effort is reduced by including only one bogie in the vehicle model. The influence of the low-frequency vehicle dynamics of the remaining parts of the vehicle is considered by pre-calculated look-up tables of forces and moments acting in the secondary suspension. For a track model taken as rigid, good agreement is observed between the results calculated with the presented model and a commercial software. The features of the model are demonstrated by a number of numerical examples. The influence of the structural flexibility of the wheelset and track on wheel-rail contact forces is investigated. For a discrete rail irregularity excitation, it is shown that the longitudinal creep force is significantly influenced by the wheelset eigenmodes. The introduction of a velocity-dependent friction law is found to induce an oscillation in the tangential contact force on the low rail with a frequency corresponding to the first anti-symmetric torsional mode of the wheelset. Further, under the application of driving moments on the two wheelsets and excitation by a discrete irregularity on the high rail, the frequency content of the tangential

  7. CAT/RF Simulation Lessons Learned

    DTIC Science & Technology

    2003-06-11

    IVSS-2003-MAS-7 CAT /RF Simulation Lessons Learned Christopher Mocnik Vetronics Technology Area, RDECOM TARDEC Tim Lee DCS Corporation...developed a re- configurable Unmanned Ground Vehicle (UGV) simulation for the Crew integration and Automation Test bed ( CAT ) and Robotics Follower (RF...Advanced Technology Demonstration (ATD) experiments. This simulation was developed as a component of the Embedded Simulation System (ESS) of the CAT

  8. Control definition study for advanced vehicles

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.

    1983-01-01

    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  9. Orion Crew Module / Service Module Structural Weight and Center of Gravity Simulator and Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing

    NASA Technical Reports Server (NTRS)

    Ascoli, Peter A.; Haddock, Michael H.

    2014-01-01

    An Orion Crew Module Service Module Structural Weight and Center of Gravity Simulator and a Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing were designed during a summer 2014 internship in Kennedy Space Centers Structures and Mechanisms Design Branch. The simulator is a structure that supports ballast, which will be integrated into an existing Orion mock-up to simulate the mass properties of the Exploration Mission-1 flight vehicle in both fueled and unfueled states. The simulator mimics these configurations through the use of approximately 40,000 lbf of steel and water ballast, and a steel support structure. Draining four water tanks, which house the water ballast, transitions the simulator from the fueled to unfueled mass properties. The Ground Systems Development and Operations organization will utilize the simulator to verify and validate equipment used to maneuver and transport the Orion spacecraft in its fueled and unfueled configurations. The second design comprises a cantilevered tripod hoist structure that provides the capability to position a large Orion Service Module Umbilical in proximity to the Vehicle Motion Simulator. The Ground Systems Development and Operations organization will utilize the Vehicle Motion Simulator, with the hoist structure attached, to test the Orion Service Module Umbilical for proper operation prior to installation on the Mobile Launcher. Overall, these two designs provide NASA engineers viable concepts worthy of fabricating and placing into service to prepare for the launch of Orion in 2017.

  10. The rationale for advancing the formulation of azelaic acid vehicles.

    PubMed

    Draelos, Zoe Diana

    2006-02-01

    When first approved in December 2002, 15% azelaic acid (AzA) gel represented a significant advance over the available 20% AzA cream. Although a smaller amount of AzA was present in the new formulation, the gel medium provided a highly effective system for delivering the active ingredient, thus providing more effective treatment. This article explores the nature of these 2 vehicles and highlights the importance of the formulation in which dermatologic drugs are delivered.

  11. Recent advancements in medical simulation: patient-specific virtual reality simulation.

    PubMed

    Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E

    2012-07-01

    Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.

  12. The role of simulation in the development and flight test of the HiMAT vehicle

    NASA Technical Reports Server (NTRS)

    Evans, M. B.; Schilling, L. J.

    1984-01-01

    Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.

  13. Architecture of a platform for hardware-in-the-loop simulation of flying vehicle control systems

    NASA Astrophysics Data System (ADS)

    Belokon', S. A.; Zolotukhin, Yu. N.; Filippov, M. N.

    2017-07-01

    A hardware-software platform is presented, which is designed for the development and hardware-in-the-loop simulation of flying vehicle control systems. This platform ensures the construction of the mathematical model of the plant, development of algorithms and software for onboard radioelectronic equipment and ground control station, and visualization of the three-dimensional model of the vehicle and external environment of the cockpit in the simulator training mode.

  14. Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Fraire, Usbaldo, Jr.; Bledsoe, Kristin J.; Ray, Eric; Moore, Jim W.; Olson, Leah M.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is engaged in a multi-year design and test campaign to qualify a parachute recovery system for human use on the Orion Spacecraft. Test and simulation techniques have evolved concurrently to keep up with the demands of a challenging and complex system. The primary simulations used for preflight predictions and post-test data reconstructions are Decelerator System Simulation (DSS), Decelerator System Simulation Application (DSSA), and Drop Test Vehicle Simulation (DTV-SIM). The goal of this paper is to provide a roadmap to future programs on the test technique challenges and obstacles involved in executing a large-scale, multi-year parachute test program. A focus on flight simulation modeling and correlation to test techniques executed to obtain parachute performance parameters are presented.

  15. Simulation Development and Analysis of Crew Vehicle Ascent Abort

    NASA Technical Reports Server (NTRS)

    Wong, Chi S.

    2016-01-01

    NASA's Commercial Crew Program is an integral step in its journey to Mars as it would expedite development of space technologies and open up partnership with U.S. commercial companies. NASA reviews and independent assessment of Commercial Crew Program is fundamental to its success, and being able to model a commercial crew vehicle in a simulation rather than conduct a live test would be a safer, faster, and less expensive way to assess and certify the capabilities of the vehicle. To this end, my project was to determine the feasibility of using a simulation tool named SOMBAT version 2.0 to model a multiple parachute system for Commercial Crew Program simulation. The main tasks assigned to me were to debug and test the main parachute system model, (capable of simulating one to four main parachute bodies), and to utilize a graphical program to animate the simulation results. To begin tackling the first task, I learned how to use SOMBAT by familiarizing myself with its mechanics and by understanding the methods used to tweak its various parameters and outputs. I then used this new knowledge to set up, run, and analyze many different situations within SOMBAT in order to explore the limitations of the parachute model. Some examples of parameters that I varied include the initial velocity and orientation of the falling capsule, the number of main parachutes, and the location where the parachutes were attached to the capsule. Each parameter changed would give a different output, and in some cases, would expose a bug or limitation in the model. A major bug that I discovered was the inability of the model to handle any number of parachutes other than three. I spent quite some time trying to debug the code logically, but was unable to figure it out until my mentor taught me that digital simulation limitations can occur when some approximations are mistakenly assumed for certain in a physical system. This led me to the realization that unlike in all of the programming classes

  16. Design of the liquefied natural gas (LNG) vehicle gas cylinder filling semi-physical simulation training and assessment system

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Zheng, Jianrong; Zhao, Yinghui

    2017-08-01

    With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.

  17. Extraction and Separation Modeling of Orion Test Vehicles with ADAMS Simulation

    NASA Technical Reports Server (NTRS)

    Fraire, Usbaldo, Jr.; Anderson, Keith; Cuthbert, Peter A.

    2013-01-01

    The Capsule Parachute Assembly System (CPAS) project has increased efforts to demonstrate the performance of fully integrated parachute systems at both higher dynamic pressures and in the presence of wake fields using a Parachute Compartment Drop Test Vehicle (PCDTV) and a Parachute Test Vehicle (PTV), respectively. Modeling the extraction and separation events has proven challenging and an understanding of the physics is required to reduce the risk of separation malfunctions. The need for extraction and separation modeling is critical to a successful CPAS test campaign. Current PTV-alone simulations, such as Decelerator System Simulation (DSS), require accurate initial conditions (ICs) drawn from a separation model. Automatic Dynamic Analysis of Mechanical Systems (ADAMS), a Commercial off the Shelf (COTS) tool, was employed to provide insight into the multi-body six degree of freedom (DOF) interaction between parachute test hardware and external and internal forces. Components of the model include a composite extraction parachute, primary vehicle (PTV or PCDTV), platform cradle, a release mechanism, aircraft ramp, and a programmer parachute with attach points. Independent aerodynamic forces were applied to the mated test vehicle/platform cradle and the separated test vehicle and platform cradle. The aero coefficients were determined from real time lookup tables which were functions of both angle of attack ( ) and sideslip ( ). The atmospheric properties were also determined from a real time lookup table characteristic of the Yuma Proving Grounds (YPG) atmosphere relative to the planned test month. Representative geometries were constructed in ADAMS with measured mass properties generated for each independent vehicle. Derived smart separation parameters were included in ADAMS as sensors with defined pitch and pitch rate criteria used to refine inputs to analogous avionics systems for optimal separation conditions. Key design variables were dispersed in a Monte

  18. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.

  19. Ascent Guidance for a Winged Boost Vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Corvin, Michael Alexander

    1988-01-01

    The objective of the advanced ascent guidance study was to investigate guidance concepts which could contribute to increased autonomy during ascent operations in a winged boost vehicle such as the proposed Shuttle II. The guidance scheme was required to yield near a full-optimal ascent in the presence of vehicle system and environmental dispersions. The study included consideration of trajectory shaping issues, trajectory design, closed loop and predictive adaptive guidance techniques and control of dynamic pressure by throttling. An extensive ascent vehicle simulation capability was developed for use in the study.

  20. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J.; Wood, E.

    2013-05-01

    This presentation discusses a method of accounting for realistic levels of driver aggression to higher-level vehicle studies, including the impact of variation in real-world driving characteristics (acceleration and speed) on vehicle energy consumption and different powertrains (e.g., conventionally powered vehicles versus electrified drive vehicles [xEVs]). Aggression variation between drivers can increase fuel consumption by more than 50% or decrease it by more than 20% from average. The normalized fuel consumption deviation from average as a function of population percentile was found to be largely insensitive to powertrain. However, the traits of ideal driving behavior are a function of powertrain. Inmore » conventional vehicles, kinetic losses dominate rolling resistance and aerodynamic losses. In xEVs with regenerative braking, rolling resistance and aerodynamic losses dominate. The relation of fuel consumption predicted from real-world drive data to that predicted by the industry-standard HWFET, UDDS, LA92, and US06 drive cycles was not consistent across powertrains, and varied broadly from the mean, median, and mode of real-world driving. A drive cycle synthesized by NREL's DRIVE tool accurately and consistently reproduces average real-world for multiple powertrains within 1%, and can be used to calculate the fuel consumption effects of varying levels of driver aggression.« less

  1. Safety of railroad passenger vehicle dynamics : OMNISIM simulation and test correlations for passenger rail cars

    DOT National Transportation Integrated Search

    2002-07-01

    The purpose of the work is to validate the safety assessment methodology previously developed for passenger rail vehicle dynamics, which requires the application of simulation tools as well as testing of vehicles under different track scenarios. This...

  2. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    DTIC Science & Technology

    2014-08-07

    Modeling and Simulation of an Unmanned Ground Vehicle Power System John Broderick Jack Hartner Dawn Tilbury Ella Atkins Sponsored by U.S...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John Broderick ; Jack Hartner; Dawn Tilbury; Ella Atkins 5d. PROJECT

  3. Simulation of Wind Profile Perturbations for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2004-01-01

    Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.

  4. Computer Program (VEHSIM) For Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. IV: Enhancements

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  5. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  6. Launch Vehicle Ascent Trajectory Simulation Using the Program to Optimize Simulated Trajectories II (POST2)

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Shidner, Jeremy D.; Powell, Richard W.; Marsh, Steven M.; Hoffman, James A.; Litton, Daniel K.; Schmitt, Terri L.

    2017-01-01

    The Program to Optimize Simulated Trajectories II (POST2) has been continuously developed for over 40 years and has been used in many flight and research projects. Recently, there has been an effort to improve the POST2 architecture by promoting modularity, flexibility, and ability to support multiple simultaneous projects. The purpose of this paper is to provide insight into the development of trajectory simulation in POST2 by describing methods and examples of various improved models for a launch vehicle liftoff and ascent.

  7. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less

  8. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  9. Computer Program (HEVSIM) for Heavy Duty Vehicle Fuel Economy and Performance Simulation. Volume I: Description and Analysis

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  10. A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation : Volume II: Users' Manual

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  11. Effects of forming history on crash simulation of a vehicle

    NASA Astrophysics Data System (ADS)

    Gökler, M. İ.; Doğan, U. Ç.; Darendeliler, H.

    2016-08-01

    The effects of forming on the crash simulation of a vehicle have been investigated by considering the load paths produced by sheet metal forming process. The frontal crash analysis has been performed by the finite element method, firstly without considering the forming history, to find out the load paths that absorb the highest energy. The sheet metal forming simulations have been realized for each structural component of the load paths and the frontal crash analysis has been repeated by including forming history. The results of the simulations with and without forming effects have been compared with the physical crash test results available in literature.

  12. Modeling and simulation of a counter-rotating turbine system for underwater vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Xinping; Dang, Jianjun

    2016-12-01

    The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk after the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The experimental simulation of the lubricating oil loop, fuel loop, and seawater loop are completed right before the technology scheme of the counter-rotating turbine system is proposed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.

  13. Simulation of hypersonic scramjet exhaust. [pressure distribution on afterbody/nozzle sections of vehicle

    NASA Technical Reports Server (NTRS)

    Oman, R. A.; Foreman, K. M.; Leng, J.; Hopkins, H. B.

    1975-01-01

    A plan and some preliminary analysis for the accurate simulation of pressure distributions on the afterbody/nozzle portions of a hypersonic scramjet vehicle are described. The objectives fulfilled were to establish the standards of similitude for a hydrogen/air scramjet exhaust interacting with a vehicle afterbody, determine an experimental technique for validation of the procedures that will be used in conventional wind tunnel facilities, suggest a program of experiments for proof of the concept, and explore any unresolved problems in the proposed simulation procedures. It is shown that true enthalpy, Reynolds number, and nearly exact chemistry can be provided in the exhaust flow for the flight regime from Mach 4 to 10 by a detonation tube simulation. A detailed discussion of the required similarity parameters leads to the conclusion that substitute gases can be used as the simulated exhaust gas in a wind tunnel to achieve the correct interaction forces and moments.

  14. Simulation and Analyses of Stage Separation of Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, K. J.; Covell, Peter F.

    2007-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(Registerd TradeMark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  15. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less

  16. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.« less

  17. Further validation of artificial neural network-based emissions simulation models for conventional and hybrid electric vehicles.

    PubMed

    Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N

    2006-07-01

    With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.

  18. Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed.

    PubMed

    Yang, Jian; Li, Yongli; Feng, Jinfu; Hu, Junhua; Liu, An

    2017-01-01

    The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle's attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process.

  19. Simulation Credibility: Advances in Verification, Validation, and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Editor); Eklund, Dean R.; Romero, Vicente J.; Pearce, Jeffrey A.; Keim, Nicholas S.

    2016-01-01

    Decision makers and other users of simulations need to know quantified simulation credibility to make simulation-based critical decisions and effectively use simulations, respectively. The credibility of a simulation is quantified by its accuracy in terms of uncertainty, and the responsibility of establishing credibility lies with the creator of the simulation. In this volume, we present some state-of-the-art philosophies, principles, and frameworks. The contributing authors involved in this publication have been dedicated to advancing simulation credibility. They detail and provide examples of key advances over the last 10 years in the processes used to quantify simulation credibility: verification, validation, and uncertainty quantification. The philosophies and assessment methods presented here are anticipated to be useful to other technical communities conducting continuum physics-based simulations; for example, issues related to the establishment of simulation credibility in the discipline of propulsion are discussed. We envision that simulation creators will find this volume very useful to guide and assist them in quantitatively conveying the credibility of their simulations.

  20. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    NASA Astrophysics Data System (ADS)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  1. Coupled simulation of the propulsion system and vehicle using the ESPSS satellite library

    NASA Astrophysics Data System (ADS)

    Koppel, C. R.; Di Matteo, F.; Moral, J.; Steelant, J.

    2018-06-01

    The paper documents the implementation and validation of the coupled simulation of the propulsion system and vehicle performed during the 4th development phase of the ESPSS (European Space Propulsion System Simulation) library running on the existing platform EcosimPro®. This covers a significant update of the spacecraft propulsion system modeling: the Fluid flow, Tanks and Combustion chamber components are updated to allow coupling to the vehicle's motion, the Archimedes pressure coming from acceleration and rotations given by the vehicle or by any perturbation forces are taken into account, several new features are added to the Satellite library along with new components enabling full attitude control of a platform. A new powerful compact equation is presented for solving elegantly the Archimedes pressure coming from combined acceleration and rotation in the most general case (noncollinear). Eventually, a propulsion system is modeled to check the correct implementation of the new components especially those dealing with the effects of the mission on the propulsion subsystem.

  2. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    PubMed

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  3. An advanced terrain modeler for an autonomous planetary rover

    NASA Technical Reports Server (NTRS)

    Hunter, E. L.

    1980-01-01

    A roving vehicle capable of autonomously exploring the surface of an alien world is under development and an advanced terrain modeler to characterize the possible paths of the rover as hazardous or safe is presented. This advanced terrain modeler has several improvements over the Troiani modeler that include: a crosspath analysis, better determination of hazards on slopes, and methods for dealing with missing returns at the extremities of the sensor field. The results from a package of programs to simulate the roving vehicle are then examined and compared to results from the Troiani modeler.

  4. Tri-FAST Hardware-in-the-Loop Simulation. Volume I. Tri-FAST Hardware-in-the-Loop Simulation at the Advanced Simulation Center

    DTIC Science & Technology

    1979-03-28

    TECHNICAL REPORT T-79-43 TRI- FAST HARDWARE-IN-THE-LOOP SIMULATION Volume 1: Trn FAST Hardware-In-the. Loop Simulation at the Advanced Simulation...Identify by block number) Tri- FAST Hardware-in-the-Loop ACSL Advanced Simulation Center Simulation RF Target Models I a. AfIACT ( sin -oveme skit N nem...e n tdositr by block number) The purpose of this report is to document the Tri- FAST missile simulation development and the seeker hardware-in-the

  5. Simulating the value of electric-vehicle-grid integration using a behaviourally realistic model

    NASA Astrophysics Data System (ADS)

    Wolinetz, Michael; Axsen, Jonn; Peters, Jotham; Crawford, Curran

    2018-02-01

    Vehicle-grid integration (VGI) uses the interaction between electric vehicles and the electrical grid to provide benefits that may include reducing the cost of using intermittent renwable electricity or providing a financial incentive for electric vehicle ownerhip. However, studies that estimate the value of VGI benefits have largely ignored how consumer behaviour will affect the magnitude of the impact. Here, we simulate the long-term impact of VGI using behaviourally realistic and empirically derived models of vehicle adoption and charging combined with an electricity system model. We focus on the case where a central entity manages the charging rate and timing for participating electric vehicles. VGI is found not to increase the adoption of electric vehicles, but does have a a small beneficial impact on electricity prices. By 2050, VGI reduces wholesale electricity prices by 0.6-0.7% (0.7 MWh-1, 2010 CAD) relative to an equivalent scenario without VGI. Excluding consumer behaviour from the analysis inflates the value of VGI.

  6. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karner, D.; Francfort, J.E.

    2003-01-16

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.« less

  7. Biconic cargo return vehicle with an advanced recovery system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current space exploration initiative is focused around the development of the Space Station Freedom (SSF). Regular resupply missions must support a full crew on the station. The present mission capability of the shuttle is insufficient, making it necessary to find an alternative. One alternative is a reusable Cargo Return Vehicle (CRV). The suggested design is a biconic shaped, dry land recovery CRV with an advance recovery system (ARC). A liquid rocket booster will insert the CRV into a low Earth orbit. Three onboard liquid hydrogen/liquid oxygen engines are used to reach the orbit of the station. The CRV will dock to the station and cargo exchange will take place. Within the command and control zone (CCZ), the CRV will be controlled by a gaseous nitrogen reaction control system (RCS). The CRV will have the capability to exchange the payload with the Orbital Maneuvering Vehicle (OMV). The bent biconic shape will give the CRV sufficient crossrange to reach Edwards Air Force Base and several alternative sites. Near the landing site, a parafoil-shaped ARS is deployed. The CRV is designed to carry a payload of 40 klb, and has an unloaded weight of 35 klb.

  8. Vehicle Component Benchmarking Using a Chassis Dynamometer: Using a 2013 Chevrolet Malibu and a 2013 Mercedes E350 (SAE Paper 2015-01-0589)

    EPA Science Inventory

    Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012 -2025 are requiring vehicle powertrains to become much more efficient. The EPA is using a full vehicle simulation model, called the Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA), to ...

  9. Vehicle operation characteristic under different ramp entrance conditions in underground road: Analysis, simulation and modelling

    NASA Astrophysics Data System (ADS)

    Yao, Qiming; Liu, Shuo; Liu, Yang

    2018-05-01

    An experimental design was used to study the vehicle operation characteristics of different ramp entrance conditions in underground road. With driving simulator, the experimental scenarios include left or right ramp with first, second and third service level, respectively, to collect vehicle speed, acceleration, lateral displacement and location information at the ramp entrance section. By using paired t-test and ANOVA, the influence factors of vehicle operating characteristics are studied. The result shows that effects of ramp layout and mainline traffic environment on vehicle operation characteristics are significant. The regression model of vehicle traveling distance on acceleration lane is established. Suggestions are made for ramp entrance design of underground road.

  10. Man-vehicle systems research facility: Design and operating characteristics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.

  11. Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...

  12. A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation : Volume 1: Description and Analysis

    DOT National Transportation Integrated Search

    1981-09-01

    This report presents a description of a vehicle simulation program, which can determine the fuel economy and performance of a specified motor vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated by HEVSIM i...

  13. Improving Fidelity of Launch Vehicle Liftoff Acoustic Simulations

    NASA Technical Reports Server (NTRS)

    Liever, Peter; West, Jeff

    2016-01-01

    Launch vehicles experience high acoustic loads during ignition and liftoff affected by the interaction of rocket plume generated acoustic waves with launch pad structures. Application of highly parallelized Computational Fluid Dynamics (CFD) analysis tools optimized for application on the NAS computer systems such as the Loci/CHEM program now enable simulation of time-accurate, turbulent, multi-species plume formation and interaction with launch pad geometry and capture the generation of acoustic noise at the source regions in the plume shear layers and impingement regions. These CFD solvers are robust in capturing the acoustic fluctuations, but they are too dissipative to accurately resolve the propagation of the acoustic waves throughout the launch environment domain along the vehicle. A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed to improve such liftoff acoustic environment predictions. The framework combines the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin (DG) solver, Loci/THRUST, developed in the same computational framework. Loci/THRUST employs a low dissipation, high-order, unstructured DG method to accurately propagate acoustic waves away from the source regions across large distances. The DG solver is currently capable of solving up to 4th order solutions for non-linear, conservative acoustic field propagation. Higher order boundary conditions are implemented to accurately model the reflection and refraction of acoustic waves on launch pad components. The DG solver accepts generalized unstructured meshes, enabling efficient application of common mesh generation tools for CHEM and THRUST simulations. The DG solution is coupled with the CFD solution at interface boundaries placed near the CFD acoustic source regions. Both simulations are executed simultaneously with coordinated boundary condition data exchange.

  14. Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    NASA Technical Reports Server (NTRS)

    Christhilf, David m.; Bacon, Barton J.

    2006-01-01

    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.

  15. Apollo 15 crewmen riding lunar roving vehicle simulator during geology trip

    NASA Image and Video Library

    1970-11-02

    S70-53300 (2-3 Nov. 1970) --- Two Apollo 15 crew members, riding a Lunar Roving Vehicle (LRV) simulator, participate in geology training at the Cinder Lake crater field in Arizona. Astronaut David R. Scott, Apollo 15 commander, seated on the left; and to Scott's right is astronaut James B. Irwin, lunar module pilot. They have stopped at the rim of a 30-feet deep crater to look over the terrain. The simulator, called "Grover", was built by the United States Geological Survey.

  16. The pattern of the electromagnetic field emitted by mobile phones in motor vehicle driving simulators.

    PubMed

    Politański, Piotr; Bortkiewicz, Alicja; Zmyślony, Marek

    2013-06-01

    The paper reports the results of the determinations of UMTS EMF distributions in the driver’s cab of motor vehicle simulators. The results will serve as the basis for future research on the influence of EMF emitted by mobile phones on driver physiology. Two motor vehicle driving simulators were monitored, while an EMF source was placed at the driver's head or on the dashboard of the motor vehicle driving simulator. For every applied configuration, the maximal electric field strength was measured, as were the values at 16 points corresponding to chosen locations on a driver's or passenger's body. When the power was set for the maximum (49 mW), a value of 27 V/m was measured in the vicinity of the driver's head when the phone was close to the head. With the same power, when the phone was placed on the dashboard, the measured maximum was 15.2 V/m in the vicinity of the driver's foot. Similar results were obtained for the passenger. Significant perturbations in EMF distribution and an increase in electric field strength values in the mo-tor vehicle driving simulator were also observed in comparison to free space measurements, and the electric field strength was up to 3 times higher inside the simulator. This study can act as the basis of future studies concerning the influence of the EMF emitted by mobile phones on the physiology of the driver. Additionally, the authors postulate that it is advisable to keep mobile phones at a distance from the head, i.e. use, whenever possible, hands-free kits to reduce EMF exposure, both for drivers and passengers.

  17. Advanced valve-regulated lead-acid batteries for hybrid vehicle applications

    NASA Astrophysics Data System (ADS)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Sánchez, A.; Valenciano, J.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. Work presented in this paper deals with the study of different design parameters, manufacturing process and charging conditions of spiral wound valve-regulated lead-acid (VRLA) batteries, in order to improve their reliability and cycle life for hybrid vehicle applications. Test results show that both electrolyte saturation and charge conditions have a strong effect on cycle life at HRPSoC performance, presumably because water loss finally accelerates battery failure, which is linked to irreversible sulphation in the upper part of the negative electrodes. By adding expanded graphite to the negative active mass formulation, increasing the electrolyte saturation degree (>95%) and controlling overcharge during regenerative braking periods (voltage limitation and occasional boosting) it is possible to achieve up to 220,000 cycles at 2.5% DOD, equivalent to 5500 capacity throughput. These results could make lead acid batteries a strong competitor for HEV applications versus other advanced systems such as Ni-MH or Li-ion batteries.

  18. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I &more » II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles

  19. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  20. On-Track Testing as a Validation Method of Computational Fluid Dynamic Simulations of a Formula SAE Vehicle

    NASA Astrophysics Data System (ADS)

    Weingart, Robert

    This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.

  1. The influence of track modelling options on the simulation of rail vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Di Gialleonardo, Egidio; Braghin, Francesco; Bruni, Stefano

    2012-09-01

    This paper investigates the effect of different models for track flexibility on the simulation of railway vehicle running dynamics on tangent and curved track. To this end, a multi-body model of the rail vehicle is defined including track flexibility effects on three levels of detail: a perfectly rigid pair of rails, a sectional track model and a three-dimensional finite element track model. The influence of the track model on the calculation of the nonlinear critical speed is pointed out and it is shown that neglecting the effect of track flexibility results in an overestimation of the critical speed by more than 10%. Vehicle response to stochastic excitation from track irregularity is also investigated, analysing the effect of track flexibility models on the vertical and lateral wheel-rail contact forces. Finally, the effect of the track model on the calculation of dynamic forces produced by wheel out-of-roundness is analysed, showing that peak dynamic loads are very sensitive to the track model used in the simulation.

  2. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  3. Advanced ST plasma scenario simulations for NSTX

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Synakowski, E. J.; Bell, M. E.; Gates, D. A.; Harvey, R. W.; Kaye, S. M.; Mau, T. K.; Menard, J.; Phillips, C. K.; Taylor, G.; Wilson, R.; NSTX Research Team

    2005-08-01

    Integrated scenario simulations are done for NSTX that address four primary objectives for developing advanced spherical torus (ST) configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high β regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX and non-solenoidal startup and plasma current rampup. The simulations done here use the tokamak simulation code and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam deposition profile and other characteristics. CURRAY is used to calculate the high harmonic fast wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with βT ap 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of four skin times. The resulting global energy confinement corresponds to a multiplier of H98(y),2 = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control and early heating/H-mode transition for producing and optimizing these plasma configurations.

  4. Electric vehicle traction motors - The development of an advanced motor concept

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  5. Advanced transportation system studies. Technical area 2: Heavy lift launch vehicle development. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.

  6. Experimental Evaluation of the Scale Model Method to Simulate Lunar Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Kyle; Asnani, Vivake; Polack, Jeff; Plant, Mark

    2016-01-01

    As compared to driving on Earth, the presence of lower gravity and uneven terrain on planetary bodies makes high speed driving difficult. In order to maintain ground contact and control vehicles need to be designed with special attention to dynamic response. The challenge of maintaining control on the Moon was evident during high speed operations of the Lunar Roving Vehicle (LRV) on Apollo 16, as at one point all four tires were off the ground; this event has been referred to as the Lunar Grand Prix. Ultimately, computer simulation should be used to examine these phenomena during the vehicle design process; however, experimental techniques are required for the validation and elucidation of key issues. The objectives of this study were to evaluate the methodology for developing a scale model of a lunar vehicle using similitude relationships and to test how vehicle configuration, six or eight wheel pods, and local tire compliance, soft or stiff, affect the vehicles dynamic performance. A wheel pod consists of a drive and steering transmission and wheel. The Lunar Electric Rover (LER), a human driven vehicle with a pressurized cabin, was selected as an example for which a scale model was built. The scaled vehicle was driven over an obstacle and the dynamic response was observed and then scaled to represent the full-size vehicle in lunar gravity. Loss of ground contact, in terms of vehicle travel distance with tires off the ground, was examined. As expected, local tire compliance allowed ground contact to be maintained over a greater distance. However, switching from a six-tire configuration to an eight-tire configuration with reduced suspension stiffness had a negative effect on ground contact. It is hypothesized that this was due to the increased number or frequency of impacts. The development and testing of this scale model provided practical lessons for future low-gravity vehicle development.

  7. Sliding Mode Control of Real-Time PNU Vehicle Driving Simulator and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Min Cheol; Park, Min Kyu; Yoo, Wan Suk; Son, Kwon; Han, Myung Chul

    This paper introduces an economical and effective full-scale driving simulator for study of human sensibility and development of new vehicle parts and its control. Real-time robust control to accurately reappear a various vehicle motion may be a difficult task because the motion platform is the nonlinear complex system. This study proposes the sliding mode controller with a perturbation compensator using observer-based fuzzy adaptive network (FAN). This control algorithm is designed to solve the chattering problem of a sliding mode control and to select the adequate fuzzy parameters of the perturbation compensator. For evaluating the trajectory control performance of the proposed approach, a tracking control of the developed simulator named PNUVDS is experimentally carried out. And then, the driving performance of the simulator is evaluated by using human perception and sensibility of some drivers in various driving conditions.

  8. Steering Control in a Low-Cost Driving Simulator: A Case for the Role of Virtual Vehicle Cab.

    PubMed

    Mecheri, Sami; Lobjois, Régis

    2018-04-01

    The aim of this study was to investigate steering control in a low-cost driving simulator with and without a virtual vehicle cab. In low-cost simulators, the lack of a vehicle cab denies driver access to vehicle width, which could affect steering control, insofar as locomotor adjustments are known to be based on action-scaled visual judgments of the environment. Two experiments were conducted in which steering control with and without a virtual vehicle cab was investigated in a within-subject design, using cornering and straight-lane-keeping tasks. Driving around curves without vehicle cab information made drivers deviate more from the lane center toward the inner edge in right (virtual cab = 4 ± 19 cm; no cab = 42 ± 28 cm; at the apex of the curve, p < .001) but not in left curves. More lateral deviation from the lane center toward the edge line was also found in driving without the virtual cab on straight roads (virtual cab = 21 ± 28 cm; no cab = 36 ± 27 cm; p < .001), whereas driving stability and presence ratings were not affected. In both experiments, the greater lateral deviation in the no-cab condition led to significantly more time driving off the lane. The findings strongly suggest that without cab information, participants underestimate the distance to the right edge of the car (in contrast to the left edge) and thus vehicle width. This produces considerable differences in the steering trajectory. Providing a virtual vehicle cab must be encouraged for more effectively capturing drivers' steering control in low-cost simulators.

  9. Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Holland, K. T.; Calantoni, J.; Slocum, D.

    2016-02-01

    Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.

  10. A computer program (VEHSIM) for vehicle fuel economy and performance simulation (automobiles and light trucks). Volume 2. Users guide

    DOT National Transportation Integrated Search

    1981-01-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  11. Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) : Vol. I: Description and Analysis

    DOT National Transportation Integrated Search

    1981-10-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  12. Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed

    PubMed Central

    Yang, Jian; Feng, Jinfu; Hu, Junhua; Liu, An

    2017-01-01

    The motion characteristics of trans-media vehicles during the water-entry process were explored in this study in an effort to obtain the optimal water-entry condition of the vehicle for developing a novel, single control strategy integrating underwater non-control and in-air control. A water-entry dynamics model is established by combining the water-entry motion characteristics of the vehicle in uncontrolled conditions at low speed with time-varying parameters (e.g. buoyancy, added mass). A water-entry experiment is designed to confirm the effectiveness of the established model. After that, by comparing the experimental results with the simulated results, the model is further modified to more accurately reflect water-entry motion. The change laws of the vehicle’s attitude and position during the water-entry process are also obtained by analyzing the simulation of the modified model under different velocity, angle, and angle of attack conditions. The results presented here have guiding significance for the future realization of reaching the stable underwater navigation state of the vehicle after water-entry process. PMID:28558012

  13. Survivability of a Propellant Fire Inside a Simulated Military Vehicle Crew Compartment: Part 1 - Baseline Study

    DTIC Science & Technology

    2013-06-01

    representative of those used in particular armoured military vehicles, were considered in this study: a top zone propelling charge module (TCM), an...representative of that used in the trial The layout of the hull of a representative armoured vehicle that was simulated in the trial is depicted in...AFESS) are almost universally employed in armoured vehicle crew compartments. Typically the fire suppressant used is a fluorocarbon- based chemical. As

  14. Design distributed simulation platform for vehicle management system

    NASA Astrophysics Data System (ADS)

    Wen, Zhaodong; Wang, Zhanlin; Qiu, Lihua

    2006-11-01

    Next generation military aircraft requires the airborne management system high performance. General modules, data integration, high speed data bus and so on are needed to share and manage information of the subsystems efficiently. The subsystems include flight control system, propulsion system, hydraulic power system, environmental control system, fuel management system, electrical power system and so on. The unattached or mixed architecture is changed to integrated architecture. That means the whole airborne system is regarded into one system to manage. So the physical devices are distributed but the system information is integrated and shared. The process function of each subsystem are integrated (including general process modules, dynamic reconfiguration), furthermore, the sensors and the signal processing functions are shared. On the other hand, it is a foundation for power shared. Establish a distributed vehicle management system using 1553B bus and distributed processors which can provide a validation platform for the research of airborne system integrated management. This paper establishes the Vehicle Management System (VMS) simulation platform. Discuss the software and hardware configuration and analyze the communication and fault-tolerant method.

  15. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  16. Hypersonic vehicle simulation model: Winged-cone configuration

    NASA Technical Reports Server (NTRS)

    Shaughnessy, John D.; Pinckney, S. Zane; Mcminn, John D.; Cruz, Christopher I.; Kelley, Marie-Louise

    1990-01-01

    Aerodynamic, propulsion, and mass models for a generic, horizontal-takeoff, single-stage-to-orbit (SSTO) configuration are presented which are suitable for use in point mass as well as batch and real-time six degree-of-freedom simulations. The simulations can be used to investigate ascent performance issues and to allow research, refinement, and evaluation of integrated guidance/flight/propulsion/thermal control systems, design concepts, and methodologies for SSTO missions. Aerodynamic force and moment coefficients are given as functions of angle of attack, Mach number, and control surface deflections. The model data were estimated by using a subsonic/supersonic panel code and a hypersonic local surface inclination code. Thrust coefficient and engine specific impulse were estimated using a two-dimensional forebody, inlet, nozzle code and a one-dimensional combustor code and are given as functions of Mach number, dynamic pressure, and fuel equivalence ratio. Rigid-body mass moments of inertia and center of gravity location are functions of vehicle weight which is in turn a function of fuel flow.

  17. Pilot vehicle interface on the advanced fighter technology integration F-16

    NASA Technical Reports Server (NTRS)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  18. Advanced protection technology for ground combat vehicles.

    PubMed

    Bosse, Timothy G

    2012-01-01

    Just as highway drivers use radar detectors to attempt to stay ahead of police armed with the latest radar technology, the Armed Forces are locked in a spiral to protect combat vehicles and their crews against the latest threats in both the contemporary operating environment and the anticipated operating environment (ie, beyond 2020). In response to bigger, heavier, or better-protected vehicles, adversaries build and deploy larger explosive devices or bombs. However, making improvements to combat vehicles is much more expensive than deploying larger explosives. In addition, demand is increasing for lighter-weight vehicles capable of rapid deployment. Together, these two facts give the threat a clear advantage in the future. To protect vehicles and crews, technologies focusing on detection and hit avoidance, denial of penetration, and crew survivability must be combined synergistically to provide the best chance of survival on the modern battlefield.

  19. Astronaut John Young drives in One-G Lunar Roving Vehicle during simulation

    NASA Image and Video Library

    1971-03-04

    Astronaut John W. Young, Apollo 16 prime crew commander (right), takes a drive in the One-G Lunar Roving Vehicle (LRV) trainer in the Lunar Topgraphic Simulation area at the Manned Spacecraft Center (MSC). He is accompanied by John Omstead, with General Electric, MSC.

  20. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Science.gov Websites

    -sector vehicle fleets are the primary users for most of these fuels and vehicles, but individual conventional fuels and vehicles helps the United States conserve fuel and lower vehicle emissions. Biodiesel , animal fats, or recycled cooking grease for use in diesel vehicles. Icon of a vehicle Diesel Vehicles

  1. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  2. POGO ground simulation test of H-I launch vehicle's second stage

    NASA Astrophysics Data System (ADS)

    Ono, Yoshio; Kohsetsu, Yuji; Shibukawa, Kiwao

    This paper describes a POGO ground simulation test of the Japanese new second stage for the H-I launch vehicle. It was the final prelaunch verification test of a POGO prevention of the H-I. This test was planned to examine POGO stability and was conducted in a Captive Firing Test (CFT) by mounting a flight-type second stage by a soft suspension system on the CFT test stand which gave the vehicle a pseudo inflight boundary condition of free-free in terms of the vehicle's structural dynamics. There was no indication that implied POGO from the data measured during the CFT. Consequently, this test suggested that the new second stage of the H-I was POGO free. Therefore, it was decided that the first test flight (TF no. 1) of the H-I would be made without a POGO Suppression Device. TF no. 1 was launched successfully on August 13, 1986, and its telemetry data showed no evidence of POGO phenomenon.

  3. User's manual for the Simulated Life Analysis of Vehicle Elements (SLAVE) model

    NASA Technical Reports Server (NTRS)

    Paul, D. D., Jr.

    1972-01-01

    The simulated life analysis of vehicle elements model was designed to perform statistical simulation studies for any constant loss rate. The outputs of the model consist of the total number of stages required, stages successfully completing their lifetime, and average stage flight life. This report contains a complete description of the model. Users' instructions and interpretation of input and output data are presented such that a user with little or no prior programming knowledge can successfully implement the program.

  4. Simulation training in neurosurgery: advances in education and practice

    PubMed Central

    Konakondla, Sanjay; Fong, Reginald; Schirmer, Clemens M

    2017-01-01

    The current simulation technology used for neurosurgical training leaves much to be desired. Significant efforts are thoroughly exhausted in hopes of developing simulations that translate to give learners the “real-life” feel. Though a respectable goal, this may not be necessary as the application for simulation in neurosurgical training may be most useful in early learners. The ultimate uniformly agreeable endpoint of improved outcome and patient safety drives these investments. We explore the development, availability, educational taskforces, cost burdens and the simulation advancements in neurosurgical training. The technologies can be directed at achieving early resident milestones placed by the Accreditation Council for Graduate Medical Education. We discuss various aspects of neurosurgery disciplines with specific technologic advances of simulation software. An overview of the scholarly landscape of the recent publications in the realm of medical simulation and virtual reality pertaining to neurologic surgery is provided. We analyze concurrent concept overlap between PubMed headings and provide a graphical overview of the associations between these terms. PMID:28765716

  5. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  6. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopp, Sean; Wood, Eric; Duran, Adam

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grademore » in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.« less

  7. CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration

    NASA Technical Reports Server (NTRS)

    Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.

    1993-01-01

    This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion

  8. CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration

    NASA Astrophysics Data System (ADS)

    Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.

    1993-07-01

    This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion

  9. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Usemore » in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.« less

  10. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma

    PubMed Central

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-01-01

    Background/aims To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Methods Normal subjects and patients with glaucoma with mean deviation <–12 dB in both eyes (Humphrey Field Analyzer 24-2 SITA-S program) used a driving simulator (DS; Honda Motor, Tokyo). Two scenarios in which oncoming cars turned right crossing the driver's path were chosen. We compared the binocular integrated visual field (IVF) in the patients who were involved in collisions and those who were not. We performed a multivariate logistic regression analysis; the dependent parameter was collision involvement, and the independent parameters were age, visual acuity and mean sensitivity of the IVF subfields. Results The study included 43 normal subjects and 100 patients with advanced glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (p<0.001). The patients with advanced glaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (p<0.001) and had lower mean IVF sensitivity in the inferior hemifield, both 0°–12° and 13°–24° in comparison with who were not involved in collisions (p=0.012 and p=0.034). A logistic regression analysis revealed that collision involvement was significantly associated with decreased inferior IVF mean sensitivity from 13° to 24° (p=0.041), in addition to older age and lower visual acuity (p=0.018 and p<0.001). Conclusions Our data suggest that the inferior hemifield was associated with the incidence of motor vehicle collisions with oncoming cars in patients with advanced glaucoma. PMID:28400370

  11. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  12. Intelligent model-based diagnostics for vehicle health management

    NASA Astrophysics Data System (ADS)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  13. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  14. Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation

    NASA Astrophysics Data System (ADS)

    Chen, Jingxu; Li, Zhibin; Jiang, Hang; Zhu, Senlai; Wang, Wei

    2017-02-01

    In recent years, many bicycle lanes on urban streets are replaced with vehicle parking places. Spaces for bicycle riding are reduced, resulting in changes in bicycle and vehicle operational features. The objective of this study is to estimate the impacts of on-street parking on heterogeneous traffic operation on urban streets. A cellular automaton (CA) model is developed and calibrated to simulate bicycle lane-changing on streets with on-street parking. Two types of street segments with different bicycle lane width are considered. From the simulation, two types of conflicts between bicycles and vehicles are identified which are frictional conflicts and blocking conflicts. Factors affecting the frequency of conflicts are also identified. Based on the results, vehicle delay is estimated for various traffic situations considering the range of occupancy levels for on-street parking. Later, a numerical network example is analyzed to estimate the network impact of on-street parking on traffic assignment and operation. Findings of the study are helpful to policies and design regarding on-street vehicle parking to improve the efficiency of traffic operations.

  15. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Science.gov Websites

    -ethanol blends, many vehicle owners don't realize their car is an FFV and that they have a choice of fuels Turbocharged GDI Vehicle and Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Fuel and Advanced Vehicle Inventory Clean Cities Alternative Fuel and Advanced Vehicle Inventory AFV

  16. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  17. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Fogle, Frank (Technical Monitor)

    2002-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.

  18. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  19. Advanced vehicle systems assessment. Volume 5: Appendices

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    An appendix to the systems assessment for the electric hybrid vehicle project is presented. Included are battery design, battery cost, aluminum vehicle construction, IBM PC computer programs and battery discharge models.

  20. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.« less

  1. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less

  2. A computer program (VEHSIM) for vehicle fuel economy and performance simulation (automobiles and light trucks). Volume 3. Glossary and listings

    DOT National Transportation Integrated Search

    1981-01-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  3. A computer program (VEHSIM) for vehicle fuel economy and performance simulation (automobiles and light trucks). Volume 1. Description and analysis

    DOT National Transportation Integrated Search

    1981-01-01

    This report presents an updated description of a vehicle simulation program, VEHSIM, which can determine the fuel economy and performance of a specified vehicle over a defined route as it executes a given driving schedule. Vehicle input accommodated ...

  4. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine powermore » output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).« less

  5. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise

  6. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  7. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Rojahn, Josh

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  8. Simulation of vehicle acoustics in support of netted sensor research and development

    NASA Astrophysics Data System (ADS)

    Christou, Carol T.; Jacyna, Garry M.

    2005-05-01

    The MITRE Corporation has initiated a three-year internally-funded research program in netted sensors, the first-year effort focusing on vehicle detection for border monitoring. An important component is developing an understanding of the complex acoustic structure of vehicle noise to aid in netted sensor-based detection and classification. This presentation will discuss the design of a high-fidelity vehicle acoustic simulator to model the generation and transmission of acoustic energy from a moving vehicle to a collection of sensor nodes. Realistic spatially-dependent automobile sounds are generated from models of the engine cylinder firing rates, muffler and manifold resonances, and speed-dependent tire whine noise. Tire noise is the dominant noise source for vehicle speeds in excess of 30 miles per hour (MPH). As a result, we have developed detailed models that successfully predict the tire noise spectrum as a function of speed, road surface wave-number spectrum, tire geometry, and tire tread pattern. We have also included realistic descriptions of the spatial directivity patterns for the engine harmonics, muffler, and tire whine noise components. The acoustic waveforms are propagated to each sensor node using a simple phase-dispersive multi-path model. A brief description of the models and their corresponding outputs is provided.

  9. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developedmore » in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.« less

  10. Development of a Aerothermoelastic-Acoustics Simulation Capability of Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Choi, S. B.; Ibrahim, A.

    2010-01-01

    A novel numerical, finite element based analysis methodology is presented in this paper suitable for accurate and efficient simulation of practical, complex flight vehicles. An associated computer code, developed in this connection, is also described in some detail. Thermal effects of high speed flow obtained from a heat conduction analysis are incorporated in the modal analysis which in turn affects the unsteady flow arising out of interaction of elastic structures with the air. Numerical examples pertaining to representative problems are given in much detail testifying to the efficacy of the advocated techniques. This is a unique implementation of temperature effects in a finite element CFD based multidisciplinary simulation analysis capability involving large scale computations.

  11. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    DTIC Science & Technology

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot,” Mechatronics ... Embedded Control Systems ], Control Engineering, 91–116, Birkhuser Boston (2005). [12] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H...Modeling and Simulation of an Unmanned Ground Vehicle Power System John Brodericka∗, Jack Hartnerb, Dawn Tilburya, and Ella Atkinsa aThe University

  12. A study of finite element modeling for simulation of vehicle rollover

    NASA Astrophysics Data System (ADS)

    Lin, Zhigui; Liu, Changye; Lv, Juncheng; Jia, Ligang; Sun, Haichao; Chen, Tao

    2017-04-01

    At present, the automobile ownership has been a very large figure, and growing rapidly with the social progress and development. Automobile has been one of the most important transportation in people's life. Accordingly, there are a large number of fatalities and serious injuries in traffic accident every year. Vehicle safety has been paid more and more attentions in recent years. There are several kinds of traffic accidents including frontal crash, side crash, etc., while rollover crash is a special kind. The vehicle rollover has the lowest incidence in the all kinds of traffic accidents but has the highest rate of seriously injuries, most of which lead to death. For these reasons, it is very necessary to study the vehicle rollover crash. However, it's so hard that there are a small amount of literatures studying rollover due to its variety, large degree of freedom, and difficulty to repeat and control. The method to investigate rollover crash contains experiment, the finite element method and rigid-body-based models. The finite element method contains many advantages such as low cost, repeatability, detailed data and so on, but the limitation is obvious. A test and simulation has been accomplished to study the FEM for vehicle rollover crash particularly in this paper.

  13. Advanced transportation system studies technical area 2(TA-2): Heavy lift launch vehicle development. volume 1; Executive summary

    NASA Technical Reports Server (NTRS)

    McCurry, J.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).

  14. Connected vehicles and cybersecurity.

    DOT National Transportation Integrated Search

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  15. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Advanced Simulation H Appendix H to Part... Simulation Link to an amendment published at 78 FR 67846, Nov. 12, 2013. This appendix provides guidelines... Simulation Training Program For an operator to conduct Level C or D training under this appendix all required...

  16. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  17. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  18. On the required complexity of vehicle dynamic models for use in simulation-based highway design.

    PubMed

    Brown, Alexander; Brennan, Sean

    2014-06-01

    This paper presents the results of a comprehensive project whose goal is to identify roadway design practices that maximize the margin of safety between the friction supply and friction demand. This study is motivated by the concern for increased accident rates on curves with steep downgrades, geometries that contain features that interact in all three dimensions - planar curves, grade, and superelevation. This complexity makes the prediction of vehicle skidding quite difficult, particularly for simple simulation models that have historically been used for road geometry design guidance. To obtain estimates of friction margin, this study considers a range of vehicle models, including: a point-mass model used by the American Association of State Highway Transportation Officials (AASHTO) design policy, a steady-state "bicycle model" formulation that considers only per-axle forces, a transient formulation of the bicycle model commonly used in vehicle stability control systems, and finally, a full multi-body simulation (CarSim and TruckSim) regularly used in the automotive industry for high-fidelity vehicle behavior prediction. The presence of skidding--the friction demand exceeding supply--was calculated for each model considering a wide range of vehicles and road situations. The results indicate that the most complicated vehicle models are generally unnecessary for predicting skidding events. However, there are specific maneuvers, namely braking events within lane changes and curves, which consistently predict the worst-case friction margins across all models. This suggests that any vehicle model used for roadway safety analysis should include the effects of combined cornering and braking. The point-mass model typically used by highway design professionals may not be appropriate to predict vehicle behavior on high-speed curves during braking in low-friction situations. However, engineers can use the results of this study to help select the appropriate vehicle dynamic

  19. Some criteria for teleoperators and virtual environments from experiences with vehicle/operator simulation

    NASA Technical Reports Server (NTRS)

    Jex, Henry R.

    1991-01-01

    A review is given of a wide range of simulations in which operator steering control of a vehicle is involved and the dominant-clues, closed-loop bandwidth, measured operator effective time-delay, and ratio of bandwidth-to-inverse delay are summarized. A correlation of kinetosis with dynamic scene field-of-view is shown. The use of moving base simulators to improve the validity of locomotion teleoperations is discussed. some rules-of-thumb for good 'feel-system' simulation, such as for control manipulanda are given. Finally, simulation tests of teleoperators and virtual environments should include three types of measures: system performance, operator (or robot) 'behavior', and mental workload evaluations.

  20. NASP guidance design for vehicle autonomy

    NASA Astrophysics Data System (ADS)

    Wagner, E. A.; Li, I.; Nguyen, D. D.; Nguyen, P. L.

    1990-10-01

    Vehicle guidance for General Dynamics' NASP vehicle is planned to be self-contained onboard the vehicle, and independent of any ground support during the mission. It will include real-time onboard abort and ascent trajectory optimization capability. Although these features should be considered a natural outgrowth of research in guidance and trajectory optimization and advances in computation, facilitating full vehicle autonomy for NASP represents a significant advance relative to any flight-demonstrated guidance. Algorithms and processing requirements for autonomous NASP vehicle guidance are considered.

  1. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in themore » further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.« less

  2. Assessing the ground vibrations produced by a heavy vehicle traversing a traffic obstacle.

    PubMed

    Ducarne, Loïc; Ainalis, Daniel; Kouroussis, Georges

    2018-01-15

    Despite advancements in alternative transport networks, road transport remains the dominant mode in many modern and developing countries. The ground-borne motions produced by the passage of a heavy vehicle over a geometric obstacle (e.g. speed hump, train tracks) pose a fundamental problem in transport annoyance in urban areas. In order to predict the ground vibrations generated by the passage of a heavy vehicle over a geometric obstacle, a two-step numerical model is developed. The first step involves simulating the dynamic loads generated by the heavy vehicle using a multibody approach, which includes the tyre-obstacle-ground interaction. The second step involves the simulation of the ground wave propagation using a three dimensional finite element model. The simulation is able to be decoupled due to the large difference in stiffness between the vehicle's tyres and the road. First, the two-step model is validated using an experimental case study available in the literature. A sensitivity analysis is then presented, examining the influence of various factors on the generated ground vibrations. Factors investigated include obstacle shape, obstacle dimensions, vehicle speed, and tyre stiffness. The developed model can be used as a tool in the early planning stages to predict the ground vibrations generated by the passage of a heavy vehicle over an obstacle in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biconic cargo return vehicle with an advanced recovery system. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The conceptual design of the biconic Cargo Return Vehicle (CRV) is presented. The CRV will be able to meet all of the Space Station Freedom (SSF's) resupply needs. Worth note is the absence of a backup recovery chute in case of Advanced Recovery System (ARS) failure. The high reliability of ram-air parachutes does not warrant the penalty weight that such a system would create on successful missions. The CRV will launch vertically integrated with an Liquid Rocket Booster (LRB) vehicle and meets all NASA restrictions on fuel type for all phases of the mission. Because of the downscaled Orbital Maneuvering Vehicle (OMV) program, the CRV has been designed to be able to transfer cargo by docking directly to the Space Station Freedom as well as with OMV assistance. The CRV will cover enough crossrange to reach its primary landing site, Edwards Airforce Base, and all secondary landing sites with the exception of one orbit. Transportation back to KSC will be via the Boeing Super Guppy. Due to difficulties with man-rating the CRV, it will not be used in a CERV role. A brief summary of the CRV's specifications is given.

  4. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  5. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  6. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less

  7. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth

    2016-05-02

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less

  8. Advanced Computer Simulations of Military Incinerators

    DTIC Science & Technology

    2004-12-01

    Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in

  9. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  10. Use of Heated Helium to Simulate Surface Pressure Fluctuations on the Launch Abort Vehicle During Abort Motor Firing

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.

    2011-01-01

    The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs

  11. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  12. Initial Stage Reference Search : Driver Simulators to Test Shared Controls, Limited Autonomy Vehicle Systems

    DOT National Transportation Integrated Search

    2015-09-01

    This literature review and reference scanning focuses on the use of driver simulators for semiautonomous (or shared control) vehicle systems (2012present), including related research from other modes of transportation (e.g., rail or aviation). Foc...

  13. Vehicle-to-vehicle communications in mixed passenger-freight convoys : [final report].

    DOT National Transportation Integrated Search

    2016-09-01

    Vehicle convoys (platoons) hold a promise for significant efficiency improvements of freight and : passenger transportation through better system integration. Through the use of advanced driver : assistance, vehicles in a convoy can keep shorter dist...

  14. Entry Vehicle Control System Design for the Mars Smart Lander

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Queen, Eric M.

    2002-01-01

    The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.

  15. Evaluating the effectiveness of active vehicle safety systems.

    PubMed

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results

  16. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  17. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Curran, Scott; Daw, C Stuart

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and loadmore » fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.« less

  18. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  19. Feasibility Study of Laboratory Simulation of Single-Stage-to-Orbit Vehicle Base Heating

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The feasibility of simulating in a laboratory the heating environment of the base region of the proposed reusable single-stage-to-orbit vehicle during its ascent is examined. The propellant is assumed to consist of hydrocarbon (RP1), liquid hydrogen (LH2), and liquid oxygen (LO2), which produces CO and H2 as the main combustible components of the exhaust effluent. Since afterburning in the recirculating region can dictate the temperature of the base flowfield and ensuing heating phenomena, laboratory simulation focuses on the thermochemistry of the afterburning. By extrapolating the Saturn V flight data, the Damkohler number, in the base region with afterburning for SSTO vehicle, is estimated to be between 30 and 140. It is shown that a flow with a Damkohler number of 1.8 to 25 can be produced in an impulse ground test facility. Even with such a reduced Damkohler number, the experiment can adequately reproduce the main features of the flight environment.

  20. Commercial Crew Vehicle Ascent Abort Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Gnam, Christopher

    2017-01-01

    SpaceX and Boeing have been selected to develop and operate crew vehicles to transport astronauts to and from the International Space Station. Their design work is to be analyzed to ensure that they are meeting all of the safety and operational requirements put forth by NASA. Throughout my time here, I worked familiarized myself with the SpaceX Dragon Abort system, as well as the NASA Human-Systems Integration Requirements (HSIR). This included understanding the different abort scenarios, and how each one could potentially impact the astronaut crew. In addition, I familiarized myself with the simulation developed my NASA to test and analyze the Guidance Navigation and Control (GN&C) systems developed by SpaceX and Boeing.

  1. Next Generation Vehicle Positioning and Simulation Solutions : Using GPS and Advanced Simulation Tools to Improve Highway Safety

    DOT National Transportation Integrated Search

    2013-06-03

    "Integrated Global Positioning System and Inertial Navigation Unit (GPS/INU) Simulator for Enhanced Traffic Safety," is a project awarded to Ohio State University to integrate different simulation models to accurately study the relationship between v...

  2. NASA Integrated Vehicle Health Management (NIVHM) A New Simulation Architecture. Part I; An Investigation

    NASA Technical Reports Server (NTRS)

    Sheppard, Gene

    2005-01-01

    The overall objective of this research is to explore the development of a new architecture for simulating a vehicle health monitoring system in support of NASA s on-going Integrated Vehicle Health Monitoring (IVHM) initiative. As discussed in NASA MSFC s IVHM workshop on June 29-July 1, 2004, a large number of sensors will be required for a robust IVHM system. The current simulation architecture is incapable of simulating the large number of sensors required for IVHM. Processing the data from the sensors into a format that a human operator can understand and assimilate in a timely manner will require a paradigm shift. Data from a single sensor is, at best, suspect and in order to overcome this deficiency, redundancy will be required for tomorrow s sensors. The sensor technology of tomorrow will allow for the placement of thousands of sensors per square inch. The major obstacle to overcome will then be how we can mitigate the torrent of data from raw sensor data to useful information to computer assisted decisionmaking.

  3. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Rojahn, Josh; Ruf, Joe

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state and in three dimensions with symmetric geometries, no freestream sideslip angle, and motors firing. The trajectory points at issue were in the transonic regime, at 0 and +/- 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC's Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  4. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  5. Energy scavenging using piezoelectric sensors to power in pavement intelligent vehicle detection systems

    NASA Astrophysics Data System (ADS)

    Parhad, Ashutosh

    Intelligent transportation systems use in-pavement inductive loop sensors to collect real time traffic data. This method is very expensive in terms of installation and maintenance. Our research is focused on developing advanced algorithms capable of generating high amounts of energy that can charge a battery. This electromechanical energy conversion is an optimal way of energy scavenging that makes use of piezoelectric sensors. The power generated is sufficient to run the vehicle detection module that has several sensors embedded together. To achieve these goals, we have developed a simulation module using software's like LabVIEW and Multisim. The simulation module recreates a practical scenario that takes into consideration vehicle weight, speed, wheel width and frequency of the traffic.

  6. Remote operation of an orbital maneuvering vehicle in simulated docking maneuvers

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.

    1990-01-01

    Simulated docking maneuvers were performed to assess the effect of initial velocity on docking failure rate, mission duration, and delta v (fuel consumption). Subjects performed simulated docking maneuvers of an orbital maneuvering vehicle (OMV) to a space station. The effect of the removal of the range and rate displays (simulating a ranging instrumentation failure) was also examined. Naive subjects were capable of achieving a high success rate in performing simulated docking maneuvers without extensive training. Failure rate was a function of individual differences; there was no treatment effect on failure rate. The amount of time subjects reserved for final approach increased with starting velocity. Piloting of docking maneuvers was not significantly affected in any way by the removal of range and rate displays. Radial impulse was significant both by subject and by treatment. NASA's 0.1 percent rule, dictating an approach rate no greater than 0.1 percent of the range, is seen to be overly conservative for nominal docking missions.

  7. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are highly...

  8. Autonomous underwater vehicle adaptive path planning for target classification

    NASA Astrophysics Data System (ADS)

    Edwards, Joseph R.; Schmidt, Henrik

    2002-11-01

    Autonomous underwater vehicles (AUVs) are being rapidly developed to carry sensors into the sea in ways that have previously not been possible. The full use of the vehicles, however, is still not near realization due to lack of the true vehicle autonomy that is promised in the label (AUV). AUVs today primarily attempt to follow as closely as possible a preplanned trajectory. The key to increasing the autonomy of the AUV is to provide the vehicle with a means to make decisions based on its sensor receptions. The current work examines the use of active sonar returns from mine-like objects (MLOs) as a basis for sensor-based adaptive path planning, where the path planning objective is to discriminate between real mines and rocks. Once a target is detected in the mine hunting phase, the mine classification phase is initialized with a derivative cost function to emphasize signal differences and enhance classification capability. The AUV moves adaptively to minimize the cost function. The algorithm is verified using at-sea data derived from the joint MIT/SACLANTCEN GOATS experiments and advanced acoustic simulation using SEALAB. The mission oriented operating system (MOOS) real-time simulator is then used to test the onboard implementation of the algorithm.

  9. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma.

    PubMed

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-07-01

    To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Normal subjects and patients with glaucoma with mean deviation <-12 dB in both eyes (Humphrey Field Analyzer 24-2 SITA-S program) used a driving simulator (DS; Honda Motor, Tokyo). Two scenarios in which oncoming cars turned right crossing the driver's path were chosen. We compared the binocular integrated visual field (IVF) in the patients who were involved in collisions and those who were not. We performed a multivariate logistic regression analysis; the dependent parameter was collision involvement, and the independent parameters were age, visual acuity and mean sensitivity of the IVF subfields. The study included 43 normal subjects and 100 patients with advanced glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (p<0.001). The patients with advanced glaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (p<0.001) and had lower mean IVF sensitivity in the inferior hemifield, both 0°-12° and 13°-24° in comparison with who were not involved in collisions (p=0.012 and p=0.034). A logistic regression analysis revealed that collision involvement was significantly associated with decreased inferior IVF mean sensitivity from 13° to 24° (p=0.041), in addition to older age and lower visual acuity (p=0.018 and p<0.001). Our data suggest that the inferior hemifield was associated with the incidence of motor vehicle collisions with oncoming cars in patients with advanced glaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  10. Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, Paul; Curran, Scott; Huff, Shean

    Rapid vehicle and powertrain development has become essential to for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer while keeping pace with reduced development cycle and more frequent product releases. Advances in large-scale additive manufacturing have provided the means to bridge hardware-in-the-loop (HIL) experimentation and preproduction mule chassis evaluation, recently. Our paper details the accelerated development of a printed range-extended electric vehicle (REEV) by Oak Ridge National Laboratory, by paralleling hardware-in-the-loop development of the powertrain with rapid chassis prototyping using big area additive manufacturing (BAAM). BAAM’s abilitymore » to accelerate the mule vehicle development from computer-aided design to vehicle build is explored. The use of a hardware-in-the-loop laboratory is described as it is applied to the design of a range-extended electric powertrain to be installed in a printed prototype vehicle. Furthermore, the integration of the powertrain and the opportunities and challenges it presents are described in this work. A comparison of offline simulation, HIL and chassis rolls results is presented to validate the development process. Chassis dynamometer results for battery electric and range extender operation are analyzed to show the benefits of the architecture.« less

  11. Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle

    DOE PAGES

    Chambon, Paul; Curran, Scott; Huff, Shean; ...

    2017-01-29

    Rapid vehicle and powertrain development has become essential to for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer while keeping pace with reduced development cycle and more frequent product releases. Advances in large-scale additive manufacturing have provided the means to bridge hardware-in-the-loop (HIL) experimentation and preproduction mule chassis evaluation, recently. Our paper details the accelerated development of a printed range-extended electric vehicle (REEV) by Oak Ridge National Laboratory, by paralleling hardware-in-the-loop development of the powertrain with rapid chassis prototyping using big area additive manufacturing (BAAM). BAAM’s abilitymore » to accelerate the mule vehicle development from computer-aided design to vehicle build is explored. The use of a hardware-in-the-loop laboratory is described as it is applied to the design of a range-extended electric powertrain to be installed in a printed prototype vehicle. Furthermore, the integration of the powertrain and the opportunities and challenges it presents are described in this work. A comparison of offline simulation, HIL and chassis rolls results is presented to validate the development process. Chassis dynamometer results for battery electric and range extender operation are analyzed to show the benefits of the architecture.« less

  12. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  13. A simulation for predicting potential cooling effect on LPG-fuelled vehicles

    NASA Astrophysics Data System (ADS)

    Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.

    2016-03-01

    Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.

  14. Display integration for ground combat vehicles

    NASA Astrophysics Data System (ADS)

    Busse, David J.

    1998-09-01

    The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.

  15. SSAGES: Software Suite for Advanced General Ensemble Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods, and that facilitates implementation of new techniquesmore » as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite.« less

  16. Integrated Vehicle Health Management Project-Modeling and Simulation for Wireless Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Mueller, Carl H.; Griner, James H., Jr.

    2009-01-01

    This paper describes the efforts in modeling and simulating electromagnetic transmission and reception as in a wireless sensor network through a realistic wing model for the Integrated Vehicle Health Management project at the Glenn Research Center. A computer model in a standard format for an S-3 Viking aircraft was obtained, converted to a Microwave Studio software format, and scaled to proper dimensions in Microwave Studio. The left wing portion of the model was used with two antenna models, one transmitting and one receiving, to simulate radio frequency transmission through the wing. Transmission and reception results were inconclusive.

  17. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less

  18. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  19. Operation and evaluation of the Terminal Configured Vehicle Mission Simulator in an automated terminal area metering and spacing ATC environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1980-01-01

    This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.

  20. An Injury Severity-, Time Sensitivity-, and Predictability-Based Advanced Automatic Crash Notification Algorithm Improves Motor Vehicle Crash Occupant Triage.

    PubMed

    Stitzel, Joel D; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Doud, Andrea N; Martin, R Shayn; Meredith, J Wayne

    2016-06-01

    Advanced Automatic Crash Notification algorithms use vehicle telemetry measurements to predict risk of serious motor vehicle crash injury. The objective of the study was to develop an Advanced Automatic Crash Notification algorithm to reduce response time, increase triage efficiency, and improve patient outcomes by minimizing undertriage (<5%) and overtriage (<50%), as recommended by the American College of Surgeons. A list of injuries associated with a patient's need for Level I/II trauma center treatment known as the Target Injury List was determined using an approach based on 3 facets of injury: severity, time sensitivity, and predictability. Multivariable logistic regression was used to predict an occupant's risk of sustaining an injury on the Target Injury List based on crash severity and restraint factors for occupants in the National Automotive Sampling System - Crashworthiness Data System 2000-2011. The Advanced Automatic Crash Notification algorithm was optimized and evaluated to minimize triage rates, per American College of Surgeons recommendations. The following rates were achieved: <50% overtriage and <5% undertriage in side impacts and 6% to 16% undertriage in other crash modes. Nationwide implementation of our algorithm is estimated to improve triage decisions for 44% of undertriaged and 38% of overtriaged occupants. Annually, this translates to more appropriate care for >2,700 seriously injured occupants and reduces unnecessary use of trauma center resources for >162,000 minimally injured occupants. The algorithm could be incorporated into vehicles to inform emergency personnel of recommended motor vehicle crash triage decisions. Lower under- and overtriage was achieved, and nationwide implementation of the algorithm would yield improved triage decision making for an estimated 165,000 occupants annually. Copyright © 2016. Published by Elsevier Inc.

  1. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    1999-01-01

    Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  2. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  3. Design and validation of a slender guideway for Maglev vehicle by simulation and experiment

    NASA Astrophysics Data System (ADS)

    Han, Jong-Boo; Han, Hyung-Suk; Kim, Sung-Soo; Yang, Seok-Jo; Kim, Ki-Jung

    2016-03-01

    Normally, Maglev (magnetic levitation) vehicles run on elevated guideways. The elevated guideway must satisfy various load conditions of the vehicle, and has to be designed to ensure ride quality, while ensuring that the levitation stability of the vehicle is not affected by the deflection of the guideway. However, because the elevated guideways of Maglev vehicles in South Korea and other countries fabricated so far have been based on over-conservative design criteria, the size of the structures has increased. Further, from the cost perspective, they are unfavourable when compared with other light rail transits such as monorail, rubber wheel, and steel wheel automatic guided transit. Therefore, a slender guideway that does have an adverse effect on the levitation stability of the vehicle is required through optimisation of design criteria. In this study, to predict the effect of various design parameters of the guideway on the dynamic behaviour of the vehicle, simulations were carried out using a dynamics model similar to the actual vehicle and guideway, and a limiting value of deflection ratio of the slender guideway to ensure levitation control is proposed. A guideway that meets the requirement as per the proposed limit for deflection ratio was designed and fabricated, and through a driving test of the vehicle, the validity of the slender guideway was verified. From the results, it was confirmed that although some increase in airgap and cabin acceleration was observed with the proposed slender guideway when compared with the conventional guideway, there was no notable adverse effect on the levitation stability and ride quality of the vehicle. Therefore, it can be inferred that the results of this study will become the basis for establishing design criteria for slender guideways of Maglev vehicles in future.

  4. Advanced automation for in-space vehicle processing

    NASA Technical Reports Server (NTRS)

    Sklar, Michael; Wegerif, D.

    1990-01-01

    The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.

  5. Incorporation of RAM techniques into simulation modeling

    NASA Astrophysics Data System (ADS)

    Nelson, S. C., Jr.; Haire, M. J.; Schryver, J. C.

    1995-01-01

    This work concludes that reliability, availability, and maintainability (RAM) analytical techniques can be incorporated into computer network simulation modeling to yield an important new analytical tool. This paper describes the incorporation of failure and repair information into network simulation to build a stochastic computer model to represent the RAM Performance of two vehicles being developed for the US Army: The Advanced Field Artillery System (AFAS) and the Future Armored Resupply Vehicle (FARV). The AFAS is the US Army's next generation self-propelled cannon artillery system. The FARV is a resupply vehicle for the AFAS. Both vehicles utilize automation technologies to improve the operational performance of the vehicles and reduce manpower. The network simulation model used in this work is task based. The model programmed in this application requirements a typical battle mission and the failures and repairs that occur during that battle. Each task that the FARV performs--upload, travel to the AFAS, refuel, perform tactical/survivability moves, return to logistic resupply, etc.--is modeled. Such a model reproduces a model reproduces operational phenomena (e.g., failures and repairs) that are likely to occur in actual performance. Simulation tasks are modeled as discrete chronological steps; after the completion of each task decisions are programmed that determine the next path to be followed. The result is a complex logic diagram or network. The network simulation model is developed within a hierarchy of vehicle systems, subsystems, and equipment and includes failure management subnetworks. RAM information and other performance measures are collected which have impact on design requirements. Design changes are evaluated through 'what if' questions, sensitivity studies, and battle scenario changes.

  6. Crew Exploration Vehicle (CEV) Water Landing Simulation

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.

    2007-01-01

    Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.

  7. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2017-12-13

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  8. Center for Advanced Modeling and Simulation Intern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertman, Vanessa

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  9. Comparison of road load simulator test results with track tests on electric vehicle propulsion system

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  10. SSAGES: Software Suite for Advanced General Ensemble Simulations.

    PubMed

    Sidky, Hythem; Colón, Yamil J; Helfferich, Julian; Sikora, Benjamin J; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S; Reid, Daniel R; Sevgen, Emre; Thapar, Vikram; Webb, Michael A; Whitmer, Jonathan K; de Pablo, Juan J

    2018-01-28

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

  11. SSAGES: Software Suite for Advanced General Ensemble Simulations

    NASA Astrophysics Data System (ADS)

    Sidky, Hythem; Colón, Yamil J.; Helfferich, Julian; Sikora, Benjamin J.; Bezik, Cody; Chu, Weiwei; Giberti, Federico; Guo, Ashley Z.; Jiang, Xikai; Lequieu, Joshua; Li, Jiyuan; Moller, Joshua; Quevillon, Michael J.; Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Rathee, Vikramjit S.; Reid, Daniel R.; Sevgen, Emre; Thapar, Vikram; Webb, Michael A.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2018-01-01

    Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques—including adaptive biasing force, string methods, and forward flux sampling—that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

  12. Integrated thermal management of a hybrid electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traci, R.M.; Acebal, R.; Mohler, T.

    1999-01-01

    A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less

  13. Comparison of Vehicle Choice Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Thomas S.; Levinson, Rebecca S.; Brooker, Aaron

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception ofmore » ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.« less

  14. Effectiveness of mitigation measures in reducing future primary particulate matter emissions from on-road vehicle exhaust.

    PubMed

    Yan, Fang; Bond, Tami C; Streets, David G

    2014-12-16

    This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much as 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa.

  15. Effectiveness of Mitigation Measures in Reducing Future Primary Particulate Matter Emissions from On-Road Vehicle Exhaust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fang; Bond, Tami C.; Streets, David G.

    This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much asmore » 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa« less

  16. Development of a multi-media crew-training program for the Terminal Configured Vehicle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Markos, A. T.

    1980-01-01

    This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.

  17. Development of a multi-media crew-training program for the terminal configured vehicle mission simulator

    NASA Technical Reports Server (NTRS)

    Rhouck, J. A.; Markos, A. T.

    1980-01-01

    This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.

  18. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    NASA Astrophysics Data System (ADS)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  19. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  20. Simulation and Analyses of Multi-Body Separation in Launch Vehicle Staging Environment

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Hotchko, Nathaniel J.; Samareh, Jamshid; Covell, Peter F.; Tartabini, Paul V.

    2006-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of multi-body separation is critically needed for successful design and operation of next generation launch vehicles. As a part of this activity, ConSep simulation tool is being developed. ConSep is a generic MATLAB-based front-and-back-end to the commercially available ADAMS. solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the 3-body separation capability in ConSep and its application to the separation of the Shuttle Solid Rocket Boosters (SRBs) from the External Tank (ET) and the Orbiter. The results are compared with STS-1 flight data.

  1. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, Paul H.; Deter, Dean D.

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  2. Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Gudenkauf, Jared

    2017-01-01

    The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.

  3. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application

    NASA Technical Reports Server (NTRS)

    Kerr, James R.; Haskins, James F.

    1987-01-01

    Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.

  4. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming

    2016-08-01

    Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities

  5. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  6. Alignment and Initial Operation of an Advanced Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jefferies, Kent S.; Mason, Lee S.

    1996-01-01

    A solar simulator utilizing nine 30-kW xenon arc lamps was built to provide radiant power for testing a solar dynamic space power system in a thermal vacuum environment. The advanced solar simulator achieved the following values specific to the solar dynamic system: (1) a subtense angle of 1 deg; (2) the ability to vary solar simulator intensity up to 1.7 kW/sq m; (3) a beam diameter of 4.8 m; and (4) uniformity of illumination on the order of +/-10%. The flexibility of the solar simulator design allows for other potential uses of the facility.

  7. Advanced Helmet Mounted Display (AHMD) for simulator applications

    NASA Astrophysics Data System (ADS)

    Sisodia, Ashok; Riser, Andrew; Bayer, Michael; McGuire, James P.

    2006-05-01

    The Advanced Helmet Mounted Display (AHMD), augmented reality visual system first presented at last year's Cockpit and Future Displays for Defense and Security conference, has now been evaluated in a number of military simulator applications and by L-3 Link Simulation and Training. This paper presents the preliminary results of these evaluations and describes current and future simulator and training applications for HMD technology. The AHMD blends computer-generated data (symbology, synthetic imagery, enhanced imagery) with the actual and simulated visible environment. The AHMD is designed specifically for highly mobile deployable, minimum resource demanding reconfigurable virtual training systems to satisfy the military's in-theater warrior readiness objective. A description of the innovative AHMD system and future enhancements will be discussed.

  8. Saving lives through advanced vehicle safety technology : intelligent vehicle initiative

    DOT National Transportation Integrated Search

    2005-09-01

    This final report provides an overview of the intelligent vehicle initiative's (IVI) progress and accomplishments. Authorized in the 1998 Transportation Equity Act for the 21st Century (TEA-21) as part of the U.S. DOT's Intelligent Transportation Sys...

  9. Progress in Modeling and Simulation of Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilitiesmore » * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.« less

  10. Advanced vehicle concepts systems and design analysis studies

    NASA Technical Reports Server (NTRS)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  11. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1993-01-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  12. Man-Vehicle Systems Research Facility - Design and operating characteristics

    NASA Technical Reports Server (NTRS)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  13. Commercial Vehicle Technologies | Transportation Research | NREL

    Science.gov Websites

    Commercial Vehicle Technologies Commercial Vehicle Technologies Photo of medium-duty truck with the commercial vehicle technologies, comparing the performance of advanced medium- and heavy-duty fleet vehicles operational goals. Performed in partnership with commercial and government fleets across the nation, these

  14. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  15. Coupling vibration research on Vehicle-bridge system

    NASA Astrophysics Data System (ADS)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  16. Further Development of Verification Check-Cases for Six- Degree-of-Freedom Flight Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Madden, Michael M.; Shelton, Robert; Jackson, A. A.; Castro, Manuel P.; Noble, Deleena M.; Zimmerman, Curtis J.; Shidner, Jeremy D.; White, Joseph P.; Dutta, Doumyo; hide

    2015-01-01

    This follow-on paper describes the principal methods of implementing, and documents the results of exercising, a set of six-degree-of-freedom rigid-body equations of motion and planetary geodetic, gravitation and atmospheric models for simple vehicles in a variety of endo- and exo-atmospheric conditions with various NASA, and one popular open-source, engineering simulation tools. This effort is intended to provide an additional means of verification of flight simulations. The models used in this comparison, as well as the resulting time-history trajectory data, are available electronically for persons and organizations wishing to compare their flight simulation implementations of the same models.

  17. Comparison of transport properties models for numerical simulations of Mars entry vehicles

    NASA Astrophysics Data System (ADS)

    Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2017-01-01

    Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.

  18. Dynamic simulation of road vehicle door window regulator mechanism of cross arm type

    NASA Astrophysics Data System (ADS)

    Miklos, I. Zs; Miklos, C.; Alic, C.

    2017-01-01

    The paper presents issues related to the dynamic simulation of a motor-drive operating mechanism of cross arm type, for the manipulation of road vehicle door windows, using Autodesk Inventor Professional software. The dynamic simulation of the mechanism involves a 3D modelling, kinematic coupling, drive motion parameters and external loads, as well as the graphically view of the kinematic and kinetostatic results for the various elements and kinematic couplings of the mechanism, under real operating conditions. Also, based on the results, the analysis of the mechanism components has been carried out using the finite element method.

  19. Ground Contact Modeling for the Morpheus Test Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Cordova, Luis

    2014-01-01

    The Morpheus vertical test vehicle is an autonomous robotic lander being developed at Johnson Space Center (JSC) to test hazard detection technology. Because the initial ground contact simulation model was not very realistic, it was decided to improve the model without making it too computationally expensive. The first development cycle added capability to define vehicle attachment points (AP) and to keep track of their states in the lander reference frame (LFRAME). These states are used with a spring damper model to compute an AP contact force. The lateral force is then overwritten, if necessary, by the Coulomb static or kinetic friction force. The second development cycle added capability to use the PolySurface class as the contact surface. The class can load CAD data in STL (Stereo Lithography) format, and use the data to compute line of sight (LOS) intercepts. A polygon frame (PFRAME) is computed from the facet intercept normal and used to convert the AP state to PFRAME. Three flat plane tests validate the transitions from kinetic to static, static to kinetic, and vertical impact. The hazardous terrain test will be used to test for visual reasonableness. The improved model is numerically inexpensive, robust, and produces results that are reasonable.

  20. Ground Contact Modeling for the Morpheus Test Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Cordova, Luis

    2013-01-01

    The Morpheus vertical test vehicle is an autonomous robotic lander being developed at Johnson Space Center (JSC) to test hazard detection technology. Because the initial ground contact simulation model was not very realistic, it was decided to improve the model without making it too computationally expensive. The first development cycle added capability to define vehicle attachment points (AP) and to keep track of their states in the lander reference frame (LFRAME). These states are used with a spring damper model to compute an AP contact force. The lateral force is then overwritten, if necessary, by the Coulomb static or kinetic friction force. The second development cycle added capability to use the PolySurface class as the contact surface. The class can load CAD data in STL (Stereo Lithography) format, and use the data to compute line of sight (LOS) intercepts. A polygon frame (PFRAME) is computed from the facet intercept normal and used to convert the AP state to PFRAME. Three flat plane tests validate the transitions from kinetic to static, static to kinetic, and vertical impact. The hazardous terrain test will be used to test for visual reasonableness. The improved model is numerically inexpensive, robust, and produces results that are reasonable.

  1. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    PubMed Central

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  2. A survey of electric and hybrid vehicles simulation programs. Volume 2: Questionnaire responses

    NASA Technical Reports Server (NTRS)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    The data received in a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are presented. The survey was conducted for the Department of Energy by NASA's Jet Propulsion Laboratory. Volume 1 of this report summarizes and discusses the results contained in Volume 2.

  3. Potential for Electrified Vehicles to Contribute to U.S. Petroleum and Climate Goals and Implications for Advanced Biofuels.

    PubMed

    Meier, Paul J; Cronin, Keith R; Frost, Ethan A; Runge, Troy M; Dale, Bruce E; Reinemann, Douglas J; Detlor, Jennifer

    2015-07-21

    To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth.

  4. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporationmore » conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.« less

  5. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  6. The useful field of view assessment predicts simulated commercial motor vehicle driving safety.

    PubMed

    McManus, Benjamin; Heaton, Karen; Vance, David E; Stavrinos, Despina

    2016-10-02

    The Useful Field of View (UFOV) assessment, a measure of visual speed of processing, has been shown to be a predictive measure of motor vehicle collision (MVC) involvement in an older adult population, but it remains unknown whether UFOV predicts commercial motor vehicle (CMV) driving safety during secondary task engagement. The purpose of this study is to determine whether the UFOV assessment predicts simulated MVCs in long-haul CMV drivers. Fifty licensed CMV drivers (Mage = 39.80, SD = 8.38, 98% male, 56% Caucasian) were administered the 3-subtest version of the UFOV assessment, where lower scores measured in milliseconds indicated better performance. CMV drivers completed 4 simulated drives, each spanning approximately a 22.50-mile distance. Four secondary tasks were presented to participants in a counterbalanced order during the drives: (a) no secondary task, (b) cell phone conversation, (c) text messaging interaction, and (d) e-mailing interaction with an on-board dispatch device. The selective attention subtest significantly predicted simulated MVCs regardless of secondary task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC in the simulated drive. The e-mail interaction secondary task significantly predicted simulated MVCs with a 4.14 times greater risk of an MVC compared to the no secondary task condition. Subtest 3, a measure of visual speed of processing, significantly predicted MVCs in the email interaction task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC during the email interaction task. The UFOV subtest 3 may be a promising measure to identify CMV drivers who may be at risk for MVCs or in need of cognitive training aimed at improving speed of processing. Subtest 3 may also identify CMV drivers who are particularly at risk when engaged in secondary tasks while driving.

  7. Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu

    Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less

  8. Cooperative and Integrated Vehicle and Intersection Control for Energy Efficiency (CIVIC-E²)

    DOE PAGES

    Hou, Yunfei; Seliman, Salaheldeen M. S.; Wang, Enshu; ...

    2018-02-15

    Recent advances in connected vehicle technologies enable vehicles and signal controllers to cooperate and improve the traffic management at intersections. This paper explores the opportunity for cooperative and integrated vehicle and intersection control for energy efficiency (CIVIC-E 2) to contribute to a more sustainable transportation system. We propose a two-level approach that jointly optimizes the traffic signal timing and vehicles' approach speed, with the objective being to minimize total energy consumption for all vehicles passing through an isolated intersection. More specifically, at the intersection level, a dynamic programming algorithm is designed to find the optimal signal timing by explicitly consideringmore » the arrival time and energy profile of each vehicle. At the vehicle level, a model predictive control strategy is adopted to ensure that vehicles pass through the intersection in a timely fashion. Our simulation study has shown that the proposed CIVIC-E 2 system can significantly improve intersection performance under various traffic conditions. Compared with conventional fixed-time and actuated signal control strategies, the proposed algorithm can reduce energy consumption and queue length by up to 31% and 95%, respectively.« less

  9. INL Fleet Vehicle Characterization Study for the U.S. Department of Navy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Brion Dale; Francfort, James Edward; Smart, John Galloway

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC collected and evaluated data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate use of advanced plug-in electric vehicle (PEV) transportation. This report focuses on US Department of Navy's fleet to identify daily operational characteristics of select vehicles and report findings onmore » vehicle and mission characterizations to support the successful introduction of PEVs into the agency’s fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less

  10. Simulation of an electric vehicle model on the new WLTC test cycle using AVL CRUISE software

    NASA Astrophysics Data System (ADS)

    Cristian Cioroianu, Constantin; Marinescu, Dănuţ Gabriel; Iorga, Adrian; Răzvan Sibiceanu, Adrian

    2017-10-01

    Nowadays, environmental pollution has become a general issue and the automotive industry is probably the most affected. The principal air-quality pollutant emissions from petrol, diesel and LPG engines are carbon dioxide, oxides of nitrogen, un-burnt hydrocarbons. Modern cars produce only quite small quantities of the air quality pollutants, but the emissions from large numbers of cars add to a significant air quality problem. Electric vehicles are an answer to this problem because they have absolutely no emissions. These vehicles have some major disadvantages regarding cost and range. In this paper, an electric vehicle model will be created in the AVL Cruise software. The constructed model is based on the existing Dacia Sandero. Also unlike the real car, the model presented has different characteristics since it is a full electric vehicle. It has an electric motor instead of the petrol engine and a battery pack placed in the trunk. The model will be simulated in order to obtain data regarding vehicle performance, energy consumption and range on the new WLTC test cycle. The obtained know-how will help on later improvements of the electric model regarding methods to increase the vehicle range on the new WLTC test cycle.

  11. Novel biofuel formulations for enhanced vehicle performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbonmore » sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal

  12. Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.

    2011-02-01

    To respond to the advent of more lethal threats, recently designed aluminum-armor-based military-vehicle systems have resorted to an increasing use of higher strength aluminum alloys (with superior ballistic resistance against armor piercing (AP) threats and with high vehicle-light weighing potential). Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle structures is not straight forward and entails a comprehensive multi-step approach. One such (three-step) approach is developed in the present work. Within the first step, experimental and computational techniques are utilized to determine the optimal tool design and the optimal FSW process parameters which result in maximal productivity of the joining process and the highest quality of the weld. Within the second step, techniques are developed for the identification and qualification of the optimal weld joint designs in different sections of a prototypical military vehicle structure. In the third step, problems associated with the fabrication of a sub-scale military vehicle test structure and the blast survivability of the structure are assessed. The results obtained and the lessons learned are used to judge the potential of the current approach in shortening the development time and in enhancing reliability and blast survivability of military vehicle structures.

  13. Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering

    NASA Astrophysics Data System (ADS)

    Joost, William J.

    2012-09-01

    Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.

  14. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  15. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  16. Optimizing STEM Education with Advanced ICTs and Simulations

    ERIC Educational Resources Information Center

    Levin, Ilya, Ed.; Tsybulsky, Dina, Ed.

    2017-01-01

    The role of technology in educational settings has become increasingly prominent in recent years. When utilized effectively, these tools provide a higher quality of learning for students. "Optimizing STEM Education With Advanced ICTs and Simulations" is an innovative reference source for the latest scholarly research on the integration…

  17. Advanced Traveler Information Systems and Commercial Vehicle Operations Components of the Intelligent Transportation Systems: On-road Evaluation of ATIS Messages

    DOT National Transportation Integrated Search

    1998-03-01

    This report describes the results of an on-road study that examined how Advanced Traveler Information Systems (ATIS) information influences driver behavior. The objective of the study was to develop ATIS design guidelines, primarily for In-Vehicle Si...

  18. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  19. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  20. Finite element method for optimal guidance of an advanced launch vehicle

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin

    1992-01-01

    A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.

  1. Adapting the RoboCup Simulation for Autonomous Vehicle Team Information Fusion and Decision Making Experimentation

    DTIC Science & Technology

    2010-06-01

    researchers outside the government to produce the kinds of algorithms and software that would easily transition into solutions for teams of autonomous ... vehicles for military scenarios. To accomplish this, we began modifying the RoboCup soccer game step-by-step to incorporate rules that simulate these

  2. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  3. Advanced Vehicles and Fuels Basics | NREL

    Science.gov Websites

    different ways. For example, we can create designs that will lower a vehicle's weight and aerodynamic drag tires. We can improve the combustion efficiency of the engine. And we can use a different propulsion

  4. Big data analytics : predicting traffic flow regimes from simulated connected vehicle messages using data analytics and machine learning.

    DOT National Transportation Integrated Search

    2016-12-25

    The key objectives of this study were to: 1. Develop advanced analytical techniques that make use of a dynamically configurable connected vehicle message protocol to predict traffic flow regimes in near-real time in a virtual environment and examine ...

  5. Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.

    2017-05-01

    Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.

  6. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  7. Damage accumulation in titanium matrix composites under generic hypersonic vehicle flight simulation and sustained loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.S.; Mirdamadi, M.; Bakuckas, J.G. Jr.

    1996-12-31

    Titanium matrix composites (TMC), such as Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6), are being evaluated for use in hypersonic vehicles and advanced gas turbine engines where high strength-to-weight and high stiffness-to-weight ratios at elevated temperatures are critical. Such applications expose the composite to mechanical fatigue loading as well as thermally induced cycles. The damage accumulation behavior of a [0/90]2s laminate made of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a simulated generic hypersonic flight profile, portions of the flight profile, and sustained loads was evaluated experimentally. Portions of the flight profile were used separately tomore » isolate combinations of load and time at temperature that influenced the fatigue behavior of the composite. Sustained load tests were also conducted and the results were compared with the fatigue results under the flight profile and its portions. The test results indicated that the fatigue strength of this materials system is considerably reduced by a combination of load and time at temperature.« less

  8. Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.

    2015-01-01

    The rise of innovative unmanned aeronautical systems and the emergence of commercial space activities have resulted in a number of relatively new aerospace organizations that are designing innovative systems and solutions. These organizations use a variety of commercial off-the-shelf and in-house-developed simulation and analysis tools including 6-degree-of-freedom (6-DOF) flight simulation tools. The increased affordability of computing capability has made highfidelity flight simulation practical for all participants. Verification of the tools' equations-of-motion and environment models (e.g., atmosphere, gravitation, and geodesy) is desirable to assure accuracy of results. However, aside from simple textbook examples, minimal verification data exists in open literature for 6-DOF flight simulation problems. This assessment compared multiple solution trajectories to a set of verification check-cases that covered atmospheric and exo-atmospheric (i.e., orbital) flight. Each scenario consisted of predefined flight vehicles, initial conditions, and maneuvers. These scenarios were implemented and executed in a variety of analytical and real-time simulation tools. This tool-set included simulation tools in a variety of programming languages based on modified flat-Earth, round- Earth, and rotating oblate spheroidal Earth geodesy and gravitation models, and independently derived equations-of-motion and propagation techniques. The resulting simulated parameter trajectories were compared by over-plotting and difference-plotting to yield a family of solutions. In total, seven simulation tools were exercised.

  9. Transportation vehicle energy intensities. A joint DOT/NASA reference paper. [energy consumption of air and ground vehicles

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Paullin, R. L.

    1974-01-01

    A compilation of data on the energy consumption of air and ground vehicles is presented. The ratio BTU/ASM, British Thermal Units/Available Seat Mile, is used to express vehicle energy intensiveness, and related to the energy consumed directly in producing seat-mile or ton-mile productivity. Data is presented on passenger and freight vehicles which are in current use or which are about to enter service, and advanced vehicles which may be operational in the 1980's and beyond. For the advanced vehicles, an estimate is given of the date of initial operational service, and the performance characteristics. Other key considerations in interpreting energy intensiveness for a given mode are discussed, such as: load factors, operations, overhead energy consumption, and energy investments in new structure and equipment.

  10. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  11. Development of High Fidelity Mobility Simulation of an Autonomous Vehicle in an Off-Road Scenario Using Integrated Sensor, Controller, and Multi-Body Dynamics

    DTIC Science & Technology

    2011-08-01

    VEHICLE IN AN OFF-ROAD SCENARIO USING INTEGRATED SENSOR, CONTROLLER, AND MULTI-BODY DYNAMICS Paramsothy Jayakumar , PhD William Smith US Army...environment for a control system, mechanical system dynamics , and sensor simulation for an improved assessment of the vehicle system performance...improve vehicle dynamic performance; we must also evaluate and improve the sensor suite employed on the vehicle, and the controller used to operate

  12. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, E.; Burton, E.; Duran, A.

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digitalmore » elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.« less

  13. Occupant-vehicle dynamics and the role of the internal model

    NASA Astrophysics Data System (ADS)

    Cole, David J.

    2018-05-01

    With the increasing need to reduce time and cost of vehicle development there is increasing advantage in simulating mathematically the dynamic interaction of a vehicle and its occupant. The larger design space arising from the introduction of automated vehicles further increases the potential advantage. The aim of the paper is to outline the role of the internal model hypothesis in understanding and modelling occupant-vehicle dynamics, specifically the dynamics associated with direction and speed control of the vehicle. The internal model is the driver's or passenger's understanding of the vehicle dynamics and is thought to be employed in the perception, cognition and action processes of the brain. The internal model aids the estimation of the states of the vehicle from noisy sensory measurements. It can also be used to optimise cognitive control action by predicting the consequence of the action; thus model predictive control (MPC) theory provides a foundation for modelling the cognition process. The stretch reflex of the neuromuscular system also makes use of the prediction of the internal model. Extensions to the MPC approach are described which account for: interaction with an automated vehicle; robust control; intermittent control; and cognitive workload. Further work to extend understanding of occupant-vehicle dynamic interaction is outlined. This paper is based on a keynote presentation given by the author to the 13th International Symposium on Advanced Vehicle Control (AVEC) conference held in Munich, September 2016.

  14. Motion-mode energy method for vehicle dynamics analysis and control

    NASA Astrophysics Data System (ADS)

    Zhang, Nong; Wang, Lifu; Du, Haiping

    2014-01-01

    Vehicle motion and vibration control is a fundamental motivation for the development of advanced vehicle suspension systems. In a vehicle-fixed coordinate system, the relative motions of the vehicle between body and wheel can be classified into several dynamic stages based on energy intensity, and can be decomposed into sets of uncoupled motion-modes according to modal parameters. Vehicle motions are coupled, but motion-modes are orthogonal. By detecting and controlling the predominating vehicle motion-mode, the system cost and energy consumption of active suspensions could be reduced. A motion-mode energy method (MEM) is presented in this paper to quantify the energy contribution of each motion-mode to vehicle dynamics in real time. The control of motion-modes is prioritised according to the level of motion-mode energy. Simulation results on a 10 degree-of-freedom nonlinear full-car model with the magic-formula tyre model illustrate the effectiveness of the proposed MEM. The contribution of each motion-mode to the vehicle's dynamic behaviour is analysed under different excitation inputs from road irregularities, directional manoeuvres and braking. With the identified dominant motion-mode, novel cost-effective suspension systems, such as active reconfigurable hydraulically interconnected suspension, can possibly be used to control full-car motions with reduced energy consumption. Finally, discussion, conclusions and suggestions for future work are provided.

  15. Development of human factors guidelines for advanced traveler information systems and commercial vehicle operations : task analysis of ATIS/CVO functions

    DOT National Transportation Integrated Search

    1996-11-01

    This working paper documents Task E of the present project, Task Analyses for Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO) systems. The goal of Task E is to conduct detailed analyses of the influence of using A...

  16. Advances in free-energy-based simulations of protein folding and ligand binding.

    PubMed

    Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A

    2016-02-01

    Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  18. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  19. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  20. Monte Carlo simulation models of breeding-population advancement.

    Treesearch

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  1. Intelligent Vehicle Initiative Forum : proceedings

    DOT National Transportation Integrated Search

    1997-08-05

    This event, jointly sponsored by ITS Americas Advanced Vehicle Control and Safety Systems (AVCSS) and Safety and Human Factors (S&HF) Committees, was designed to review and discuss the U.S. Department of Transportations Intelligent Vehicle Init...

  2. Predicting Motor Vehicle Collisions in a Driving Simulator in Young Adults Using the Useful Field of View Assessment.

    PubMed

    McManus, Benjamin; Cox, Molly K; Vance, David E; Stavrinos, Despina

    2015-01-01

    Being involved in motor vehicle collisions is the leading cause of death in 1- to 34-year-olds, and risk is particularly high in young adults. The Useful Field of View (UFOV) task, a cognitive measure of processing speed, divided attention, and selective attention, has been shown to be predictive of motor vehicle collisions in older adults, but its use as a predictor of driving performance in a young adult population has not been investigated. The present study examined whether UFOV was a predictive measure of motor vehicle collisions in a driving simulator in a young adult population. The 3-subtest version of UFOV (lower scores measured in milliseconds indicate better performance) was administered to 60 college students. Participants also completed an 11-mile simulated drive to provide driving performance metrics. Findings suggested that subtests 1 and 2 suffered from a ceiling effect. UFOV subtest 3 significantly predicted collisions in the simulated drive. Each 30 ms slower on the subtest was associated with nearly a 10% increase in the risk of a simulated collision. Post hoc analyses revealed a small partially mediating effect of subtest 3 on the relationship between driving experience and collisions. The selective attention component of UFOV subtest 3 may be a predictive measure of crash involvement in a young adult population. Improvements in selective attention may be the underlying mechanism in how driving experience improves driving performance.

  3. Knowledge/geometry-based Mobile Autonomous Robot Simulator (KMARS)

    NASA Technical Reports Server (NTRS)

    Cheng, Linfu; Mckendrick, John D.; Liu, Jeffrey

    1990-01-01

    Ongoing applied research is focused on developing guidance system for robot vehicles. Problems facing the basic research needed to support this development (e.g., scene understanding, real-time vision processing, etc.) are major impediments to progress. Due to the complexity and the unpredictable nature of a vehicle's area of operation, more advanced vehicle control systems must be able to learn about obstacles within the range of its sensor(s). A better understanding of the basic exploration process is needed to provide critical support to developers of both sensor systems and intelligent control systems which can be used in a wide spectrum of autonomous vehicles. Elcee Computek, Inc. has been working under contract to the Flight Dynamics Laboratory, Wright Research and Development Center, Wright-Patterson AFB, Ohio to develop a Knowledge/Geometry-based Mobile Autonomous Robot Simulator (KMARS). KMARS has two parts: a geometry base and a knowledge base. The knowledge base part of the system employs the expert-system shell CLIPS ('C' Language Integrated Production System) and necessary rules that control both the vehicle's use of an obstacle detecting sensor and the overall exploration process. The initial phase project has focused on the simulation of a point robot vehicle operating in a 2D environment.

  4. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov Websites

    Management Facilities Vehicle Thermal Management Facilities Image of a building with two semi truck evaluation facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and apparatus. Combined fluid loops bench research apparatus in the Vehicle Thermal Management Laboratory. Photo

  5. State of the Art Assessment of Simulation in Advanced Materials Development

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher E.

    2008-01-01

    Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.

  6. Simulation analysis of the EUSAMA Plus suspension testing method including the impact of the vehicle untested side

    NASA Astrophysics Data System (ADS)

    Dobaj, K.

    2016-09-01

    The work deals with the simulation analysis of the half car vehicle model parameters on the suspension testing results. The Matlab simulation software was used. The considered model parameters are involved with the shock absorber damping coefficient, the tire radial stiffness, the car width and the rocker arm length. The consistent vibrations of both test plates were considered. Both wheels of the car were subjected to identical vibration, with frequency changed similar to the EUSAMA Plus principle. The shock absorber damping coefficient (for several values of the car width and rocker arm length) was changed on one and both sides of the vehicle. The obtained results are essential for the new suspension testing algorithm (basing on the EUSAMA Plus principle), which will be the aim of the further author's work.

  7. Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng; Lu, Xinghua

    2018-05-01

    The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.

  8. Psychometric and Evidentiary Advances, Opportunities, and Challenges for Simulation-Based Assessment

    ERIC Educational Resources Information Center

    Levy, Roy

    2013-01-01

    This article characterizes the advances, opportunities, and challenges for psychometrics of simulation-based assessments through a lens that views assessment as evidentiary reasoning. Simulation-based tasks offer the prospect for student experiences that differ from traditional assessment. Such tasks may be used to support evidentiary arguments…

  9. Evaluation of the Inertial Response of Variable-Speed Wind Turbines Using Advanced Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, Andrew K; Muljadi, Eduard; Gevorgian, Vahan

    In this paper, we focus on the temporary frequency support effect provided by wind turbine generators (WTGs) through the inertial response. With the implemented inertial control methods, the WTG is capable of increasing its active power output by releasing parts of the stored kinetic energy when the frequency excursion occurs. The active power can be boosted temporarily above the maximum power points, but the rotor speed deceleration follows and an active power output deficiency occurs during the restoration of rotor kinetic energy. We evaluate and compare the inertial response induced by two distinct inertial control methods using advanced simulation. Inmore » the first stage, the proposed inertial control methods are analyzed in offline simulation. Using an advanced wind turbine simulation program, FAST with TurbSim, the response of the researched wind turbine is comprehensively evaluated under turbulent wind conditions, and the impact on the turbine mechanical components are assessed. In the second stage, the inertial control is deployed on a real 600kW wind turbine - Controls Advanced Research Turbine, 3-bladed (CART3), which further verifies the inertial control through a hardware-in-the-loop (HIL) simulation. Various inertial control methods can be effectively evaluated based on the proposed two-stage simulation platform, which combines the offline simulation and real-time HIL simulation. The simulation results also provide insights in designing inertial control for WTGs.« less

  10. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando

    This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal

  11. Intelligent Vehicle Initiative : needs assessment

    DOT National Transportation Integrated Search

    1999-11-01

    The aim of the Intelligent Vehicle Initiative (IVI) is to accelerate the development and availability of advanced safety and information systems for a variety of vehicle types. Public transit, through the Federal Transit Administration (FTA), is an a...

  12. Simulation verification techniques study. Subsystem simulation validation techniques

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1974-01-01

    Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.

  13. Using driver simulators to measure the impact of distracted driving on commercial motor vehicle operators : [research brief].

    DOT National Transportation Integrated Search

    2015-06-01

    This study addresses the impact of various distractions on commercial motor vehicle (CMV) operators. Using state-of-the-art driving simulators in realistic traffic, this project focused on CMV operator performance as drivers experienced distractions ...

  14. 40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and the equivalent non-hybrid systems as described in § 1037.550. Test the vehicles as specified in...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance... include regenerative braking (or the equivalent) and energy storage systems, fuel cell vehicles, and...

  15. Feasibility of advanced vehicle control systems for transit buses

    DOT National Transportation Integrated Search

    1997-01-01

    In the course of developing automated vehicle-roadway systems, opportunities to deploy vehicle control systems at intermediate stages of development may emerge. Some of these systems may provide a significant efficiency or safety enhancement to exist...

  16. VTI Driving Simulator: Mathematical Model of a Four-wheeled Vehicle for Simulation in Real Time. VTI Rapport 267A.

    ERIC Educational Resources Information Center

    Nordmark, Staffan

    1984-01-01

    This report contains a theoretical model for describing the motion of a passenger car. The simulation program based on this model is used in conjunction with an advanced driving simulator and run in real time. The mathematical model is complete in the sense that the dynamics of the engine, transmission and steering system is described in some…

  17. Numerical characterization of landing gear aeroacoustics using advanced simulation and analysis techniques

    NASA Astrophysics Data System (ADS)

    Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.

    2017-09-01

    With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.

  18. Co-Simulation for Advanced Process Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen E. Zitney

    2009-01-01

    Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelitymore » process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.« less

  19. Design of an autonomous lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to prepare a site for a lunar base, an autonomously operated construction vehicle is necessary. Discussed here is a Lunar Construction Utility Vehicle (LCUV), which uses interchangeable construction implements. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device has been designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and a computer interface. A study of hydrogen-oxygen fuel cells produced estimates of reactant and product requirements and identified multilayer insulation needs. Research on the 100-kW heat rejection system determined that it is necessary to transport the radiator panel on a utility trailer. Extensive logistical support for the 720 hour use cycle requires further study.

  20. Heavy vehicle driver workload assessment. Task 7B, in-cab text message system and cellular phone use by heavy vehicle drivers in a part-task driving simulator

    DOT National Transportation Integrated Search

    This report contains the results of a simulator study conducted to serve as a supplement to a National Highway Traffic Safety Administration (NHTSA) heavy vehicle driver workload field study. Its purpose was the evaluation of effects of cellular phon...