Sample records for advanced vehicular heat

  1. Cooperative Vehicular Networking: A Survey

    PubMed Central

    Ahmed, Ejaz

    2018-01-01

    With the remarkable progress of cooperative communication technology in recent years, its transformation to vehicular networking is gaining momentum. Such a transformation has brought a new research challenge in facing the realization of cooperative vehicular networking (CVN). This paper presents a comprehensive survey of recent advances in the field of CVN. We cover important aspects of CVN research, including physical, medium access control, and routing protocols, as well as link scheduling and security. We also classify these research efforts in a taxonomy of cooperative vehicular networks. A set of key requirements for realizing the vision of cooperative vehicular networks is then identified and discussed. We also discuss open research challenges in enabling CVN. Lastly, the paper concludes by highlighting key points of research and future directions in the domain of CVN. PMID:29881331

  2. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  3. Cooperative Vehicular Traffic Monitoring in Realistic Low Penetration Scenarios: The COLOMBO Experience

    PubMed Central

    Caselli, Federico; Corradi, Antonio

    2018-01-01

    The relevance of effective and efficient solutions for vehicle traffic surveillance is widely recognized in order to enable advanced strategies for traffic management, e.g., based on dynamically adaptive and decentralized traffic light management. However, most related solutions in the literature, based on the powerful enabler of cooperative vehicular communications, assume the complete penetration rate of connectivity/communication technologies (and willingness to participate in the collaborative surveillance service) over the targeted vehicle population, thus making them not applicable nowadays. The paper originally proposes an innovative solution for cooperative traffic surveillance based on vehicular communications capable of: (i) working with low penetration rates of the proposed technology and (ii) of collecting a large set of monitoring data about vehicle mobility in targeted areas of interest. The paper presents insights and lessons learnt from the design and implementation work of the proposed solution. Moreover, it reports extensive performance evaluation results collected on realistic simulation scenarios based on the usage of iTETRIS with real traces of vehicular traffic of the city of Bologna. The reported results show the capability of our proposal to consistently estimate the real vehicular traffic even with low penetration rates of our solution (only 10%). PMID:29522427

  4. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  5. Personal Cooling for Extra-Vehicular Activities on Mars

    NASA Technical Reports Server (NTRS)

    Pu, Zhengxiang; Kapat, Jay; Chow, Louis; Recio, Jose; Rini, Dan; Trevino, Luis

    2004-01-01

    Extra-vehicular activities (EVA) on Mars will require suits with sophisticated thermal control systems so that astronauts can work comfortably for extended periods of time. Any use of consumables such as water that cannot be easily replaced should be of particular concern. In this aspect the EVA suits for Mars environment need to be different from the current Space Shuttle Extra Vehicular Mobility Units (EMU) that depend on water sublimation into space for removing heat from suits. Moreover, Mars environment is quite different from what a typical EMU may be exposed to. These variations call for careful analysis and innovative engineering for design and fabrication of an appropriate thermal control system. This paper presents a thermal analysis of astronaut suits for EVA with medium metabolic intensity under a typical hot and a nominal cold environment on Mars. The paper also describes possible options that would allow conservation of water with low usage of electrical power. The paper then presents the conceptual design of a portable cooling unit for one such solution.

  6. 49 CFR 177.810 - Vehicular tunnels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... through any urban vehicular tunnel used for mass transportation. [Amdt. 177-52, 46 FR 5316, Jan. 19, 1981... 49 Transportation 2 2010-10-01 2010-10-01 false Vehicular tunnels. 177.810 Section 177.810 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  7. Location-Based Services in Vehicular Networks

    ERIC Educational Resources Information Center

    Wu, Di

    2013-01-01

    Location-based services have been identified as a promising communication paradigm in highly mobile and dynamic vehicular networks. However, existing mobile ad hoc networking cannot be directly applied to vehicular networking due to differences in traffic conditions, mobility models and network topologies. On the other hand, hybrid architectures…

  8. Evaluation of LED vehicular and pedestrian modules.

    DOT National Transportation Integrated Search

    2009-04-01

    This study was conducted to verify the compliance of vehicular and pedestrian LED traffic signal modules with the Institute : of Transportation Engineers specifications; and to assess drivers preferences of the LED modules. Four vehicular modules ...

  9. Latent heat of vehicular motion

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan

    2016-11-01

    We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.

  10. Advanced Gradient Heating Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  11. Hollow fiber membrane systems for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1976-01-01

    The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.

  12. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...

  13. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...

  14. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...

  15. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...

  16. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...

  17. Intra-Extra Vehicular Activity (IEVA) Russian and Gemini Spacesuits

    NASA Technical Reports Server (NTRS)

    Thomas, Kenneth S.

    2016-01-01

    Kenneth Thomas will discuss the Intra-Extra Vehicular Activity Russian and Gemini spacesuits. While the United States and Russia adapted to existing launch- and reentry-type suits to allow the first human ventures into the vacuum of space, there were differences in execution and capabilities. Mr. Thomas will discuss the advantages and disadvantages of this approach compared to exclusively intra-vehicular or extra-vehicular suit systems.

  18. Evaluation of H.264/AVC over IEEE 802.11p vehicular networks

    NASA Astrophysics Data System (ADS)

    Rozas-Ramallal, Ismael; Fernández-Caramés, Tiago M.; Dapena, Adriana; García-Naya, José Antonio

    2013-12-01

    The capacity of vehicular networks to offer non-safety services, like infotainment applications or the exchange of multimedia information between vehicles, have attracted a great deal of attention to the field of Intelligent Transport Systems (ITS). In particular, in this article we focus our attention on IEEE 802.11p which defines enhancements to IEEE 802.11 required to support ITS applications. We present an FPGA-based testbed developed to evaluate H.264/AVC (Advanced Video Coding) video transmission over vehicular networks. The testbed covers some of the most common situations in vehicle-to-vehicle and roadside-to-vehicle communications and it is highly flexible, allowing the performance evaluation of different vehicular standard configurations. We also show several experimental results to illustrate the quality obtained when H.264/AVC encoded video is transmitted over IEEE 802.11p networks. The quality is measured considering two important parameters: the percentage of recovered group of pictures and the frame quality. In order to improve performance, we propose to substitute the convolutional channel encoder used in IEEE 802.11p for a low-density parity-check code encoder. In addition, we suggest a simple strategy to decide the optimum number of iterations needed to decode each packet received.

  19. Virtual Induction Loops Based on Cooperative Vehicular Communications

    PubMed Central

    Gramaglia, Marco; Bernardos, Carlos J.; Calderon, Maria

    2013-01-01

    Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033

  20. 7 CFR 503.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Vehicular and pedestrian traffic. 503.12 Section 503.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.12 Vehicular and pedestrian...

  1. 7 CFR 503.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Vehicular and pedestrian traffic. 503.12 Section 503.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.12 Vehicular and pedestrian...

  2. 7 CFR 503.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Vehicular and pedestrian traffic. 503.12 Section 503.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.12 Vehicular and pedestrian...

  3. 7 CFR 503.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Vehicular and pedestrian traffic. 503.12 Section 503.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.12 Vehicular and pedestrian...

  4. Effect of vehicular size on chain-reaction crash

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2015-11-01

    We present the dynamic model of the chain-reaction crash to take account of the vehicular size. Drivers brake according to taillights of the forward vehicle. We investigate the effect of the vehicular size on the chain-reaction crash (multiple-vehicle collision) in the traffic flow controlled by taillights. In the multiple-vehicle collision, the first crash induces more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in the traffic flow of vehicles with finite sizes. We clarify the effect of the vehicular size on the multiple-vehicle collision.

  5. Brayton advanced heat receiver development program

    NASA Technical Reports Server (NTRS)

    Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.

    1989-01-01

    NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.

  6. 4 CFR 25.13 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OFFICE BUILDING AND ON ITS GROUNDS § 25.13 Vehicular and pedestrian traffic. (a) Drivers of all vehicles... at all times and shall comply with all posted traffic signs and with the signals and directions of... 4 Accounts 1 2010-01-01 2010-01-01 false Vehicular and pedestrian traffic. 25.13 Section 25.13...

  7. 7 CFR 502.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 502.12 Vehicular and pedestrian traffic. (a) Drivers of all vehicles whether or not motorized in or on BARC property shall drive in a careful and safe manner at all times and shall comply with the signals... 7 Agriculture 6 2010-01-01 2010-01-01 false Vehicular and pedestrian traffic. 502.12 Section 502...

  8. IECEC '84: Advanced energy systems - Their role in our future; Proceedings of the Nineteenth Intersociety Energy Conversion Engineering Conference, San Francisco, CA, August 19-24, 1984. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.

  9. Vehicular camera pedestrian detection research

    NASA Astrophysics Data System (ADS)

    Liu, Jiahui

    2018-03-01

    With the rapid development of science and technology, it has made great development, but at the same time of highway traffic more convenient in highway traffic and transportation. However, in the meantime, traffic safety accidents occur more and more frequently in China. In order to deal with the increasingly heavy traffic safety. So, protecting the safety of people's personal property and facilitating travel has become a top priority. The real-time accurate pedestrian and driving environment are obtained through a vehicular camera which are used to detection and track the preceding moving targets. It is popular in the domain of intelligent vehicle safety driving, autonomous navigation and traffic system research. Based on the pedestrian video obtained by the Vehicular Camera, this paper studies the trajectory of pedestrian detection and its algorithm.

  10. Infectious complications after vehicular trauma in the United States.

    PubMed

    Fraser, Douglas R; Dombrovskiy, Viktor Y; Vogel, Todd R

    2011-08-01

    The purpose of this analysis was to evaluate and define the rates of infectious complications (IC) after vehicular trauma. Secondary goals were to identify the injuries associated with the greatest risk of nosocomial infection and to measure the utilization of hospital resources associated with IC and vehicular trauma. A secondary analysis of the Nationwide Inpatient Sample (2003-2007) was performed to classify major vehicular trauma injuries utilizing International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Emergency (E) codes. The post-traumatic IC evaluated were pneumonia, urinary tract infection (UTI), sepsis, and surgical site infection (SSI). All data were analyzed by χ(2) analysis, multivariable logistic regression, and the Cochran-Armitage test for trends. A total of 784,037 vehicular trauma patients were identified (462,543 [59.0%] motor vehicle drivers, 142,283 [18.2%] motor vehicle passengers, 98,767 [12.6%] motorcyclists; 6,568 [<1%] motorcycle passengers, and 73,876 [9.4%] pedestrians). Of those sustaining injuries, 44,331 [5.7%] had post-traumatic IC. Pneumonia and UTI were most common after spinal cord injury (SCI), whereas sepsis and SSI were most common after colon injuries. After adjustment by age, sex, and co-morbidities, patients with SCI were 4.4 times as likely (95% confidence interval [CI] 4.20-4.63) and those with cranial injuries were 2.1 times as likely (95% CI 2.06-2.19) to develop IC as patients without these injuries. Secondary infection increased significantly the length of stay and hospital charges in all groups. Patients sustaining vehicular trauma in combination with SCI had the highest rate of IC. Infectious complications increased hospital resource utilization significantly after vehicular trauma. Future root-cause analysis of high-risk groups may decrease complications and hospital utilization.

  11. Intra-Extra Vehicular Activity Apollo Spacesuits

    NASA Technical Reports Server (NTRS)

    Thomas, Kenneth S.

    2016-01-01

    Kenneth Thomas will discuss the Apollo Intra-Extra Vehicular Activity (IEVA) spacesuits, which supported launch and reentry and extra-vehicular activity. This program was NASA's first attempt to develop a new suit design from requirements and concepts. Mr. Thomas will chronicle the challenges, developments, struggles, and solutions that culminated in the system that allowed the first human exploration of the Moon and deep space (outside low-Earth orbit). Apollo pressure suit designs allowed the heroic repair of the Skylab space station and supported the first U.S. and Russian spacecraft docking during the Apollo Soyuz Test Project. Mr. Thomas will also discuss the IEVA suits' successes and challenges associated with the IEVA developments of the 1960s.

  12. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  13. 40 CFR 247.11 - Vehicular products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROCUREMENT GUIDELINE FOR PRODUCTS CONTAINING RECOVERED MATERIALS Item Designations § 247.11 Vehicular... fluids, and gear oils, excluding marine and aviation oils. (b) Tires, excluding airplane tires. (c...

  14. 40 CFR 247.11 - Vehicular products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROCUREMENT GUIDELINE FOR PRODUCTS CONTAINING RECOVERED MATERIALS Item Designations § 247.11 Vehicular... fluids, and gear oils, excluding marine and aviation oils. (b) Tires, excluding airplane tires. (c...

  15. 40 CFR 247.11 - Vehicular products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROCUREMENT GUIDELINE FOR PRODUCTS CONTAINING RECOVERED MATERIALS Item Designations § 247.11 Vehicular... fluids, and gear oils, excluding marine and aviation oils. (b) Tires, excluding airplane tires. (c...

  16. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  17. Statistical physics of vehicular traffic and some related systems

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Santen, Ludger; Schadschneider, Andreas

    2000-05-01

    In the so-called “microscopic” models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a “particle”; the nature of the “interactions” among these particles is determined by the way the vehicles influence each others’ movement. Therefore, vehicular traffic, modeled as a system of interacting “particles” driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called “particle-hopping” models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.

  18. 78 FR 65594 - Vehicular Repeaters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 90 [PS Docket No. 13-229; RM-11635; FCC 13-121] Vehicular Repeaters AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: In this Order....regulations.gov . Follow the instructions for submitting comments. Federal Communications Commission's Web...

  19. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  20. Hollow fiber membranes for advanced life support systems. [permeable capillaries for medical filtration

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1977-01-01

    This paper describes an investigation of the practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing. Breadboard hardware has been manufactured and tested, and the physical properties of the three hollow fiber membrane assemblies applicable to use aboard future spacecraft have been characterized.

  1. 76 FR 13436 - NIJ Request for Comments on Draft Vehicular Digital Multimedia Evidence Recording System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... Comments on Draft Vehicular Digital Multimedia Evidence Recording System Certification Program Requirements for Law Enforcement and Draft Law Enforcement Vehicular Digital Multimedia Evidence Recording System... two draft documents: ``Vehicular Digital Multimedia Evidence Recording System Certification Program...

  2. The Vehicular Information Space Framework

    NASA Astrophysics Data System (ADS)

    Prinz, Vivian; Schlichter, Johann; Schweiger, Benno

    Vehicular networks are distributed, self-organizing and highly mobile ad hoc networks. They allow for providing drivers with up-to-the-minute information about their environment. Therefore, they are expected to be a decisive future enabler for enhancing driving comfort and safety. This article introduces the Vehicular Information Space framework (VIS). Vehicles running the VIS form a kind of distributed database. It enables them to provide information like existing hazards, parking spaces or traffic densities in a location aware and fully distributed manner. In addition, vehicles can retrieve, modify and delete these information items. The underlying algorithm is based on features derived from existing structured Peer-to-Peer algorithms and extended to suit the specific characteristics of highly mobile ad hoc networks. We present, implement and simulate the VIS using a motorway and an urban traffic environment. Simulation studies on VIS message occurrence show that the VIS implies reasonable traffic overhead. Also, overall VIS message traffic is independent from the number of information items provided.

  3. An energy-efficient failure detector for vehicular cloud computing.

    PubMed

    Liu, Jiaxi; Wu, Zhibo; Dong, Jian; Wu, Jin; Wen, Dongxin

    2018-01-01

    Failure detectors are one of the fundamental components for maintaining the high availability of vehicular cloud computing. In vehicular cloud computing, lots of RSUs are deployed along the road to improve the connectivity. Many of them are equipped with solar battery due to the unavailability or excess expense of wired electrical power. So it is important to reduce the battery consumption of RSU. However, the existing failure detection algorithms are not designed to save battery consumption RSU. To solve this problem, a new energy-efficient failure detector 2E-FD has been proposed specifically for vehicular cloud computing. 2E-FD does not only provide acceptable failure detection service, but also saves the battery consumption of RSU. Through the comparative experiments, the results show that our failure detector has better performance in terms of speed, accuracy and battery consumption.

  4. An energy-efficient failure detector for vehicular cloud computing

    PubMed Central

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Wen, Dongxin

    2018-01-01

    Failure detectors are one of the fundamental components for maintaining the high availability of vehicular cloud computing. In vehicular cloud computing, lots of RSUs are deployed along the road to improve the connectivity. Many of them are equipped with solar battery due to the unavailability or excess expense of wired electrical power. So it is important to reduce the battery consumption of RSU. However, the existing failure detection algorithms are not designed to save battery consumption RSU. To solve this problem, a new energy-efficient failure detector 2E-FD has been proposed specifically for vehicular cloud computing. 2E-FD does not only provide acceptable failure detection service, but also saves the battery consumption of RSU. Through the comparative experiments, the results show that our failure detector has better performance in terms of speed, accuracy and battery consumption. PMID:29352282

  5. Application environmental epidemiology to vehicular air pollution and health effects research

    PubMed Central

    Patil, Rajan R.; Chetlapally, Satish Kumar; Bagvandas, M.

    2015-01-01

    Vehicular pollution is one of the major contributors to the air pollution in urban areas and perhaps and accounts for the major share of anthropogenic green-house gases such as carbon dioxide, carbon monoxide, nitrogen oxides. Knowledge of human health risks related to environmental exposure to vehicular pollution is a current concern. Analyze the range health effects are attributed varied constituents of vehicular air pollution examine evidence for a causal association to specific health effect. In many instances scenario involves exposure to very low doses of putative agents for extended periods, sometimes the period could mean over a lifetime of an individual and yet may result in small increase in health risk that may be imperceptible. Secondary data analysis and literature review. In environmental exposures, traditional epidemiological approaches evaluating mortality and morbidity indicators display many limiting factors such as nonspecificity of biological effects latency time between exposure and magnitude of the effect. Long latency period between exposure and resultant disease, principally for carcinogenic effects and limitation of epidemiological studies for detecting small risk increments. The present paper discusses the methodological challenges in studying vehicular epidemiology and highlights issues that affect the validity of epidemiological studies in vehicular pollution. PMID:26023265

  6. Grassland plant composition alters vehicular disturbance effects in Kansas, USA.

    PubMed

    Dickson, Timothy L; Wilsey, Brian J; Busby, Ryan R; Gebhart, Dick L

    2008-05-01

    Many "natural" areas are exposed to military or recreational off-road vehicles. The interactive effects of different types of vehicular disturbance on vegetation have rarely been examined, and it has been proposed that some vegetation types are less susceptible to vehicular disturbance than others. At Fort Riley, Kansas, we experimentally tested how different plant community types changed after disturbance from an M1A1 Abrams tank driven at different speeds and turning angles during different seasons. The greatest vegetation change was observed because of driving in the spring in wet soils and the interaction of turning while driving fast (vegetation change was measured with Bray-Curtis dissimilarity). We found that less vegetation change occurred in communities with high amounts of native prairie vegetation than in communities with high amounts of introduced C(3) grasses, which is the first experimental evidence we are aware of that suggests plant communities dominated by introduced C(3) grasses changed more because of vehicular disturbance than communities dominated by native prairie grasses. We also found that vegetation changed linearly with vehicular disturbance intensity, suggesting that at least initially there was no catastrophic shift in vegetation beyond a certain disturbance intensity threshold. Overall, the intensity of vehicular disturbance appeared to play the greatest role in vegetation change, but the plant community type also played a strong role and this should be considered in land use planning. The reasons for greater vegetation change in introduced C(3) grass dominated areas deserve further study.

  7. An electricity consumption model for electric vehicular flow

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2016-09-01

    In this paper, we apply the relationships between the macro and micro variables of traffic flow to develop an electricity consumption model for electric vehicular flow. We use the proposed model to study the quantitative relationships between the electricity consumption/total power and speed/density under uniform flow, and the electricity consumptions during the evolution processes of shock, rarefaction wave and small perturbation. The numerical results indicate that the proposed model can perfectly describe the electricity consumption for electric vehicular flow, which shows that the proposed model is reasonable.

  8. Murder and robbery by vehicular impact: true vehicular homicide.

    PubMed

    Nadesan, K

    2000-06-01

    True vehicular homicides are defined as those occurrences in which a motor vehicle is intentionally used as a weapon in taking of a life. A case is presented in which the deceased was traveling in the front passenger seat of a motor car that was deliberately rammed by a heavy jeep that came in the opposite direction, resulting in a serious frontal collision. Immediately after the impact, while the occupants of the car were lying in a dazed condition, the two persons riding in the jeep escaped with a bag containing money that was in the car, leaving the jeep behind. The impact mainly involved the driver's sides of both vehicles. The driver of the car sustained serious injuries but was found to be alive, whereas the front-seat passenger, who did not show any serious external injuries, was found to be in a collapsed state and was pronounced dead on admission to the hospital within 30 minutes of the accident. The autopsy revealed that death was caused by closed hemopericardium from a ruptured right atrium. The evaluation of the external and internal injuries confirmed that the fatal injury and a few serious internal injuries were caused by the seat belt (tertiary-impact injuries). The ruptured right atrium was attributed to blunt abdominal trauma by impacting against the lap belt. The case was a true vehicular homicide in which a motor vehicle had been used as a weapon to kill a person. Various aspects pertaining to road accidents, the safety of the occupants, and the advantage and disadvantage of the safety devices are discussed.

  9. A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system

    NASA Astrophysics Data System (ADS)

    Erdinc, O.; Vural, B.; Uzunoglu, M.

    Due to increasing concerns on environmental pollution and depleting fossil fuels, fuel cell (FC) vehicle technology has received considerable attention as an alternative to the conventional vehicular systems. However, a FC system combined with an energy storage system (ESS) can display a preferable performance for vehicle propulsion. As the additional ESS can fulfill the transient power demand fluctuations, the fuel cell can be downsized to fit the average power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. This study focuses on a vehicular system powered by a fuel cell and equipped with two secondary energy storage devices: battery and ultra-capacitor (UC). However, an advanced energy management strategy is quite necessary to split the power demand of a vehicle in a suitable way for the on-board power sources in order to maximize the performance while promoting the fuel economy and endurance of hybrid system components. In this study, a wavelet and fuzzy logic based energy management strategy is proposed for the developed hybrid vehicular system. Wavelet transform has great capability for analyzing signals consisting of instantaneous changes like a hybrid electric vehicle (HEV) power demand. Besides, fuzzy logic has a quite suitable structure for the control of hybrid systems. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB ®, Simulink ® and SimPowerSystems ® environments.

  10. Vehicular emissions in China in 2006 and 2010.

    PubMed

    Tang, Guiqian; Chao, Na; Wang, Yuesi; Chen, Jiashan

    2016-10-01

    Vehicular emissions in China in 2006 and 2010 were calculated at a high spatial resolution based on the data released by the National Bureau of Statistics, by taking the emission standards into consideration. China's vehicular emissions of carbon monoxide (CO), nitrogen oxides (NO x ), volatile organic compounds (VOCs), ammonia (NH 3 ), fine particulate matters (PM 2.5 ), inhalable particulate matters (PM 10 ), black carbon (BC), and organic carbon (OC) were 30,113.9, 4593.7, 6838.0, 20.9, 400.2, 430.5, 285.6, and 105.1Gg, respectively, in 2006 and 34,175.2, 5167.5, 7029.4, 74.0, 386.4, 417.1, 270.9, and 106.2Gg, respectively, in 2010. CO, VOCs, and NH 3 emissions were mainly from motorcycles and light-duty gasoline vehicles, whereas NO X , PM 2.5 , PM 10 , and BC emissions were mainly from rural vehicles and heavy-duty diesel trucks. OC emissions were mainly from motorcycles and heavy-duty diesel trucks. Vehicles of pre-China I (vehicular emission standard of China before phase I) and China I (vehicular emission standard of China in phase I) were the primary contributors to all of the pollutant emissions except NH 3 , which was mainly from China III and China IV gasoline vehicles. The total emissions of all the pollutants except NH 3 changed little from 2006 to 2010. This finding can be attributed to the implementation of strict emission standards and to improvements in oil quality. Copyright © 2016. Published by Elsevier B.V.

  11. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE PAGES

    Bartel, N.; Chen, M.; Utgikar, V. P.; ...

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  12. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, N.; Chen, M.; Utgikar, V. P.

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  13. Metabolic assessments during extra-vehicular activity.

    PubMed

    Osipov YuYu; Spichkov, A N; Filipenkov, S N

    1998-01-01

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  14. Metabolic assessments during extra-vehicular activity

    NASA Astrophysics Data System (ADS)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  15. Vehicular-networking- and road-weather-related research in Sodankylä

    NASA Astrophysics Data System (ADS)

    Sukuvaara, Timo; Mäenpää, Kari; Ylitalo, Riika

    2016-10-01

    Vehicular-networking- and especially safety-related wireless vehicular services have been under intensive research for almost a decade now. Only in recent years has road weather information also been acknowledged to play an important role when aiming to reduce traffic accidents and fatalities via intelligent transport systems (ITSs). Part of the progress can be seen as a result of the Finnish Meteorological Institute's (FMI) long-term research work in Sodankylä within the topic, originally started in 2006. Within multiple research projects, the FMI Arctic Research Centre has been developing wireless vehicular networking and road weather services, in co-operation with the FMI meteorological services team in Helsinki. At the beginning the wireless communication was conducted with traditional Wi-Fi type local area networking, but during the development the system has evolved into a hybrid communication system of a combined vehicular ad hoc networking (VANET) system with special IEEE 802.11p protocol and supporting cellular networking based on a commercial 3G network, not forgetting support for Wi-Fi-based devices also. For piloting purposes and further research, we have established a special combined road weather station (RWS) and roadside unit (RSU), to interact with vehicles as a service hotspot. In the RWS-RSU we have chosen to build support to all major approaches, IEEE 802.11, traditional Wi-Fi and cellular 3G. We employ road weather systems of FMI, along with RWS and vehicle data gathered from vehicles, in the up-to-date localized weather data delivered in real time. IEEE 802.11p vehicular networking is supported with Wi-Fi and 3G communications. This paper briefly introduces the research work related to vehicular networking and road weather services conducted in Sodankylä, as well as the research project involved in this work. The current status of instrumentation, available services and capabilities are presented in order to formulate a clear general view of

  16. Vehicular emissions in China in 2006 and 2010

    NASA Astrophysics Data System (ADS)

    Chao, N.; Tang, G.; Wang, Y.; Wang, H.; Huang, J.; Chen, J.

    2014-02-01

    Vehicular emissions are one of the most important sources of pollution in China, and they can increase the ambient concentrations of air pollutants and degrade the air quality. Using data released by the National Bureau of Statistics, vehicular emissions in China in 2006 and 2010 were calculated at a high spatial resolution, by taking the emission standards into consideration. The results show that China's vehicular emissions of CO, NOx, VOCs, NH3, PM2.5, PM10, black carbon (BC), and organic carbon (OC) were 30113.9, 4593.7, 6838.0, 20.9, 400.2, 430.5, 285.6, and 105.1 Gg, respectively, in 2006 and 34175.2, 5167.5, 7029.4, 74.0, 386.4, 417.1, 270.9, and 106.2 Gg, respectively, in 2010. CO, VOCs, and NH3 emissions were mainly from motorcycles and light-duty gasoline vehicles, whereas NOx, PM2.5, PM10, and BC emissions were mainly from rural vehicles and heavy-duty diesel trucks. OC emissions were mainly from motorcycles and heavy-duty diesel trucks. Euro 0 and Euro I vehicles were the primary contributors to all of the pollutant emissions except NH3, which was mainly from Euro III and Euro IV vehicles. The spatial distribution of vehicular emissions in China in 2006 and 2010 were developed at a high resolution of 0.25° × 0.25°, by using the road traffic density to characterize the busyness of a road. This method could overcome the problem of getting traffic flow information and make the spatial allocation more closed to the actual road emissions. The results showed that vehicular emissions presented significant regional spatial distribution, and emissions in the eastern and southern parts of China were much higher than those in western and northern China in both years. The North China Plain, Yangtze River Delta, and Pearl River Delta regions jointly accounted for nearly half of the emissions. NH3 emissions increased greatly in big cities from 2006 to 2010. Emissions of CO, NOx, and VOCs could increase 52%, 9%, and 68%, if the emission standard and oil quality

  17. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  18. 40 CFR 247.11 - Vehicular products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Vehicular products. 247.11 Section 247.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES COMPREHENSIVE... fluids, and gear oils, excluding marine and aviation oils. (b) Tires, excluding airplane tires. (c...

  19. 40 CFR 247.11 - Vehicular products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vehicular products. 247.11 Section 247.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES COMPREHENSIVE... fluids, and gear oils, excluding marine and aviation oils. (b) Tires, excluding airplane tires. (c...

  20. 76 FR 52350 - Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard, Certification Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1564] Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard, Certification Program Requirements, and Selection and... three draft documents related to Vehicular Digital Multimedia Evidence Recording Systems (VDMERSs) used...

  1. Analysis of state of vehicular scars on Arctic Tundra, Alaska

    NASA Technical Reports Server (NTRS)

    Lathram, E. H.

    1974-01-01

    Identification on ERTS images of severe vehicular scars in the northern Alaska tundra suggests that, if such scars are of an intensity or have spread to a dimension such that they can be resolved by ERTS sensors (20 meters), they can be identified and their state monitored by the use of ERTS images. Field review of the state of vehicular scars in the Umiat area indicates that all are revegetating at varying rates and are approaching a stable state.

  2. Vehicular impact absorption system

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Wilson, A. H. (Inventor)

    1978-01-01

    An improved vehicular impact absorption system characterized by a plurality of aligned crash cushions of substantially cubic configuration is described. Each consists of a plurality of voided aluminum beverage cans arranged in substantial parallelism within a plurality of superimposed tiers and a covering envelope formed of metal hardware cloth. A plurality of cables is extended through the cushions in substantial parallelism with an axis of alignment for the cushions adapted to be anchored at each of the opposite end thereof.

  3. Protection of HEVC Video Delivery in Vehicular Networks with RaptorQ Codes

    PubMed Central

    Martínez-Rach, Miguel; López, Otoniel; Malumbres, Manuel Pérez

    2014-01-01

    With future vehicles equipped with processing capability, storage, and communications, vehicular networks will become a reality. A vast number of applications will arise that will make use of this connectivity. Some of them will be based on video streaming. In this paper we focus on HEVC video coding standard streaming in vehicular networks and how it deals with packet losses with the aid of RaptorQ, a Forward Error Correction scheme. As vehicular networks are packet loss prone networks, protection mechanisms are necessary if we want to guarantee a minimum level of quality of experience to the final user. We have run simulations to evaluate which configurations fit better in this type of scenarios. PMID:25136675

  4. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks

    PubMed Central

    Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-01-01

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios. PMID:29415452

  5. An advanced technique for the prediction of decelerator system dynamics.

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Morris, W. D.; Whitlock, C. H.

    1973-01-01

    An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.

  6. Effects of online shopping on vehicular traffic

    DOT National Transportation Integrated Search

    2001-10-01

    The purpose of this research was to assess and project the effects of online shopping on vehicular traffic. As more people purchased more goods and services online, we anticipated that short-distance traffic would be reduced. Working against this tre...

  7. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks

    PubMed Central

    2017-01-01

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities’ authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol. PMID:28946633

  8. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks.

    PubMed

    Nkenyereye, Lewis; Kwon, Joonho; Choi, Yoon-Ho

    2017-09-23

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities' authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol.

  9. Privacy-Preserving Security for Vehicular Communications

    ERIC Educational Resources Information Center

    Weerasinghe, Hesiri Dhammika

    2011-01-01

    Because of the large number of deaths, severe injuries and huge financial loss due to auto accidents and poor traffic management, road safety and traffic management have become very important areas of interest among research community. As a result, Vehicular Ad-hoc Network (VANET) becomes a promising technology to improve road safety and quality…

  10. Do vehicular emissions dominate the source of C6-C8 aromatics in the megacity Shanghai of eastern China?

    PubMed

    Wang, Hongli; Wang, Qian; Chen, Jianmin; Chen, Changhong; Huang, Cheng; Qiao, Liping; Lou, Shengrong; Lu, Jun

    2015-01-01

    The characteristic ratios of volatile organic compounds (VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6-C8 aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08 (benzene), 0.70 ± 0.12 (toluene), 0.41 ± 0.09 (m,p-xylenes), 0.16 ± 0.04 (o-xylene), 0.023 ± 0.011 (styrene), and 0.15 ± 0.02 (ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6-C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals (kOH) was larger than that of the vehicular indicator, while for species with smaller kOH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios. Copyright © 2014. Published by Elsevier B.V.

  11. 76 FR 27355 - Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection and Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1553] Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection and Application Guide AGENCY: National... of Justice (NIJ) will make available, to the general public, the ``Law Enforcement Vehicular Digital...

  12. 75 FR 78269 - Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard for Law Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1538] Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard for Law Enforcement AGENCY: National Institute of... ``Vehicular Digital Multimedia Evidence Recording System Standard for Law Enforcement.'' The opportunity to...

  13. Low Emissions and Delay Optimization for an Isolated Signalized Intersection Based on Vehicular Trajectories.

    PubMed

    Lin, Ciyun; Gong, Bowen; Qu, Xin

    2015-01-01

    A traditional traffic signal control system is established based on vehicular delay, queue length, saturation and other indicators. However, due to the increasing severity of urban environmental pollution issues and the development of a resource-saving and environmentally friendly social philosophy, the development of low-carbon and energy-efficient urban transport is required. This paper first defines vehicular trajectories and the calculation of vehicular emissions based on VSP. Next, a regression analysis method is used to quantify the relationship between vehicular emissions and delay, and a traffic signal control model is established to reduce emissions and delay using the enumeration method combined with saturation constraints. Finally, one typical intersection of Changchun is selected to verify the model proposed in this paper; its performance efficiency is also compared using simulations in VISSIM. The results of this study show that the proposed model can significantly reduce vehicle delay and traffic emissions simultaneously.

  14. Estimation of Anthropogenic Heat Emissions in Delhi, India and Their Role in Urban Heat Island Effect

    NASA Astrophysics Data System (ADS)

    Bhati, S.; Mohan, M.

    2016-12-01

    Energy consumption in the urban environment impacts the urban surface energy budget and leads to the emission of anthropogenic sensible heat into the atmosphere. Anthropogenic heat (AH) can vary both in time and space, and are not readily measured. In present study, anthropogenic heat emissions have been estimated using an inventory approach for Delhi. The main sources that have been considered are electricity consumption, vehicular emissions, fuel consumption in domestic sector and waste heat from power plants. Total estimated anthropogenic heat is apportioned gridwise (2 km2) and incorporated in the WRF (version 3.5) model coupled with single-layer Urban canopy model (UCM) to assess the impact of these emissions on urban heat island effect in Delhi. Vehicular emissions have been found to be highest contributor to anthropogenic heat emissions (47%) followed by electricity consumption (28%), domestic fuel consumption (16%) and waste heat from power plants (9%). Highest annual average anthropogenic heat flux was estimated to be 25.2 Wm-2. High flux zones are observed in east Delhi and densely occupied and commercial zones of Sitaram Bazar and Connaught Place. Inclusion of anthropogenic heat emissions in the model improves model performance for near surface temperature as well as urban heat island intensities. Maximum simulated night-time UHI improves from 5.95°C (without AH) to 6.24°C (with AH) against observed value of 6.68°C, thereby indicating positive contribution of anthropogenic heat emissions along with urban canopy towards UHI effect in Delhi. Similarly, spatial distribution and UHI hotspots are found to be comparatively closer to corresponding observed distribution and hotspots with anthropogenic heat emissions being added to the WRF model. Overall, relatively improved model performance is indicative of the impact of anthropogenic heat emissions in local urban meteorology and urban heat island effect in Delhi. Hence, rising population and change in land

  15. Intrusion-Tolerant Location Information Services in Intelligent Vehicular Networks

    NASA Astrophysics Data System (ADS)

    Yan, Gongjun; Yang, Weiming; Shaner, Earl F.; Rawat, Danda B.

    Intelligent Vehicular Networks, known as Vehicle-to-Vehicle and Vehicle-to-Roadside wireless communications (also called Vehicular Ad hoc Networks), are revolutionizing our daily driving with better safety and more infortainment. Most, if not all, applications will depend on accurate location information. Thus, it is of importance to provide intrusion-tolerant location information services. In this paper, we describe an adaptive algorithm that detects and filters the false location information injected by intruders. Given a noisy environment of mobile vehicles, the algorithm estimates the high resolution location of a vehicle by refining low resolution location input. We also investigate results of simulations and evaluate the quality of the intrusion-tolerant location service.

  16. Assessment of the impacts of vehicular pollution on urban air quality.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, S K

    2004-01-01

    Air quality crisis in cities is mainly due to vehicular emissions. Owing to the expanding economic base Indian cities are growing at a faster rate. Transportation systems are increasing everywhere and the improved technology is insufficient to counteract growth. The effect of vehicular emission on urban air quality and human health has been described. A survey has been conducted in an Indian mega city to evaluate the status of air pollution at traffic intersections and the unique problem arising out of vehicular emissions in the study area has been narrated. Approach for the selection of the air monitoring stations, methodology adopted for data collection and the results have been discussed. Vulnerability analysis (VA) has been carried out to identify the zones at what pollution stress. Options for reducing mobile source emission have been discussed and a strategic air quality management plan has been proposed to mitigate the air pollution in the city.

  17. Low Emissions and Delay Optimization for an Isolated Signalized Intersection Based on Vehicular Trajectories

    PubMed Central

    2015-01-01

    A traditional traffic signal control system is established based on vehicular delay, queue length, saturation and other indicators. However, due to the increasing severity of urban environmental pollution issues and the development of a resource-saving and environmentally friendly social philosophy, the development of low-carbon and energy-efficient urban transport is required. This paper first defines vehicular trajectories and the calculation of vehicular emissions based on VSP. Next, a regression analysis method is used to quantify the relationship between vehicular emissions and delay, and a traffic signal control model is established to reduce emissions and delay using the enumeration method combined with saturation constraints. Finally, one typical intersection of Changchun is selected to verify the model proposed in this paper; its performance efficiency is also compared using simulations in VISSIM. The results of this study show that the proposed model can significantly reduce vehicle delay and traffic emissions simultaneously. PMID:26720095

  18. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  19. Advanced heat receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Saunders, Roger; Batchelder, Gary

    1988-01-01

    Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.

  20. Cognitive disorders in children associated with urban vehicular emissions.

    PubMed

    Annavarapu, Ramesh Naidu; Kathi, Srujana

    2016-01-01

    This review introduces recent advances in an emerging research area that is focussed on studying the effect of exposure to vehicular emissions on cognition, with specific attention to children from urban environments. Today, air pollution is a global environmental issue, especially in urban environments, emitting particulate matter (PM), nitrogen dioxide (NO2), carbon monoxide (CO), volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) into the surroundings. The association of exposure to urban air pollution and cognitive disorders in children is a major cause of concern. We review recent findings associated with exposure to air pollutants and explained the potential mechanisms driving oxidative stress in living systems. An attempt has been made to investigate the cognitive effects of air pollutants leading to neurodegeneration, neurodysfunction, attention deficit/hypersensitivity deficiencies and autism in children. Accumulating evidence suggests that urban air pollution may have significant impact on central nervous system (CNS) of the developing brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation and...

  2. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  3. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raade, Justin; Roark, Thomas; Vaughn, John

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when usedmore » with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.« less

  4. Efficient routing for safety applications in vehicular networks.

    DOT National Transportation Integrated Search

    2009-03-01

    Vehicular ad hoc networks have received a lot of attention in recent years. This attention is due to two reasons. : First and foremost, there are a number of real-life applications that become possible in the presence of : such an ad-hoc infrastructu...

  5. Impacts analysis of car following models considering variable vehicular gap policies

    NASA Astrophysics Data System (ADS)

    Xin, Qi; Yang, Nan; Fu, Rui; Yu, Shaowei; Shi, Zhongke

    2018-07-01

    Due to the important roles playing in the vehicles' adaptive cruise control system, variable vehicular gap polices were employed to full velocity difference model (FVDM) to investigate the traffic flow properties. In this paper, two new car following models were put forward by taking constant time headway(CTH) policy and variable time headway(VTH) policy into optimal velocity function, separately. By steady state analysis of the new models, an equivalent optimal velocity function was defined. To determine the linear stable conditions of the new models, we introduce equivalent expressions of safe vehicular gap, and then apply small amplitude perturbation analysis and long terms of wave expansion techniques to obtain the new models' linear stable conditions. Additionally, the first order approximate solutions of the new models were drawn at the stable region, by transforming the models into typical Burger's partial differential equations with reductive perturbation method. The FVDM based numerical simulations indicate that the variable vehicular gap polices with proper parameters directly contribute to the improvement of the traffic flows' stability and the avoidance of the unstable traffic phenomena.

  6. Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Bhaumik Kamlesh

    Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.

  7. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  8. Advanced heat pump for the recovery of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total U.S. VOC emissions. The 'Toxic-Release Inventory' of the U.S. Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing, refrigerant production, and wood products production. The U.S. Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase 1 report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. The Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient, and economically priced.

  9. 36 CFR 504.13 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... times and shall comply with the signals and directions of the guards and all posted traffic signs. (b... traffic. 504.13 Section 504.13 Parks, Forests, and Public Property SMITHSONIAN INSTITUTION RULES AND REGULATIONS GOVERNING SMITHSONIAN INSTITUTION BUILDINGS AND GROUNDS § 504.13 Vehicular and pedestrian traffic...

  10. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  11. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  12. Providing Location Security in Vehicular Ad Hoc Networks

    ERIC Educational Resources Information Center

    Yan, Gongjun

    2010-01-01

    Location is fundamental information in Vehicular Ad-hoc Networks (VANETs). Almost all VANET applications rely on location information. Therefore it is of importance to ensure location information integrity, meaning that location information is original (from the generator), correct (not bogus or fabricated) and unmodified (value not changed). We…

  13. 31 CFR 700.10 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Vehicular and pedestrian traffic. 700.10 Section 700.10 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FEDERAL LAW ENFORCEMENT TRAINING CENTER, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN OR ON...

  14. 31 CFR 700.10 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Vehicular and pedestrian traffic. 700.10 Section 700.10 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FEDERAL LAW ENFORCEMENT TRAINING CENTER, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN OR ON...

  15. 31 CFR 700.10 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Vehicular and pedestrian traffic. 700.10 Section 700.10 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FEDERAL LAW ENFORCEMENT TRAINING CENTER, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN OR ON...

  16. 31 CFR 700.10 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Vehicular and pedestrian traffic. 700.10 Section 700.10 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FEDERAL LAW ENFORCEMENT TRAINING CENTER, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN OR ON...

  17. 31 CFR 407.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Vehicular and pedestrian traffic. 407.12 Section 407.12 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) SECRET SERVICE, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN THE TREASURY BUILDING AND THE...

  18. 31 CFR 407.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Vehicular and pedestrian traffic. 407.12 Section 407.12 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) SECRET SERVICE, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN THE TREASURY BUILDING AND THE...

  19. 31 CFR 407.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Vehicular and pedestrian traffic. 407.12 Section 407.12 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) SECRET SERVICE, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN THE TREASURY BUILDING AND THE...

  20. 31 CFR 407.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Vehicular and pedestrian traffic. 407.12 Section 407.12 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) SECRET SERVICE, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN THE TREASURY BUILDING AND THE...

  1. 31 CFR 407.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Vehicular and pedestrian traffic. 407.12 Section 407.12 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) SECRET SERVICE, DEPARTMENT OF THE TREASURY REGULATIONS GOVERNING CONDUCT IN THE TREASURY BUILDING AND THE...

  2. Development of an Advanced Flameless Combustion Heat Source Utilizing Methanol

    DTIC Science & Technology

    2010-07-01

    effect until the fuel can receive energy from the flameless combustion elements, either by radiant or exhaust heat. Figure 22 and Figure 23 show one...fragments of dirt and debris reducing its effectiveness . This first prototype allowed useful engineering data to be generated but lacked some of the...DEVELOPMENT OF AN ADVANCED FLAMELESS COMBUSTION HEAT SOURCE UTILIZING METHANOL by Clifford G. Welles Catalytic Devices International, LLC

  3. Vehicular Traffic Flow Theory and Tunnel Traffic Flow Measurements

    DOT National Transportation Integrated Search

    1971-06-01

    Vehicular traffic flow has been investigated theoretically and experimentally in order that peak hour collective traffic flow dynamics can be understood and that the peak hour flow through the Callahan Tunnel can be improved by means of traffic flow ...

  4. 46 CFR 386.21 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... direction of posted signs or marked traffic areas, including yellow curbs. Vehicles parked in violation of... vehicle at the owner's risk and expense. The Superintendent may issue and post other specific traffic... 46 Shipping 8 2010-10-01 2010-10-01 false Vehicular and pedestrian traffic. 386.21 Section 386.21...

  5. Three methods for estimating a range of vehicular interactions

    NASA Astrophysics Data System (ADS)

    Krbálek, Milan; Apeltauer, Jiří; Apeltauer, Tomáš; Szabová, Zuzana

    2018-02-01

    We present three different approaches how to estimate the number of preceding cars influencing a decision-making procedure of a given driver moving in saturated traffic flows. The first method is based on correlation analysis, the second one evaluates (quantitatively) deviations from the main assumption in the convolution theorem for probability, and the third one operates with advanced instruments of the theory of counting processes (statistical rigidity). We demonstrate that universally-accepted premise on short-ranged traffic interactions may not be correct. All methods introduced have revealed that minimum number of actively-followed vehicles is two. It supports an actual idea that vehicular interactions are, in fact, middle-ranged. Furthermore, consistency between the estimations used is surprisingly credible. In all cases we have found that the interaction range (the number of actively-followed vehicles) drops with traffic density. Whereas drivers moving in congested regimes with lower density (around 30 vehicles per kilometer) react on four or five neighbors, drivers moving in high-density flows respond to two predecessors only.

  6. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  7. Advanced control for ground source heat pump systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick; Gehl, Anthony C.; Liu, Xiaobing

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market sharemore » of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.« less

  8. 36 CFR 520.14 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 520.14 Vehicular and pedestrian traffic. (a) Drivers of all vehicles in or on the premises shall drive in a careful and safe manner at all times and shall comply with the signals and directions of the... traffic. 520.14 Section 520.14 Parks, Forests, and Public Property SMITHSONIAN INSTITUTION RULES AND...

  9. 35. VIEW TO NORTHWEST; DETAIL, VOLUTE AT BASE OF VEHICULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW TO NORTHWEST; DETAIL, VOLUTE AT BASE OF VEHICULAR RAMP FROM LIGHTING PYLON (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  10. 31 CFR 700.10 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pedestrian traffic. (a) Drivers of all vehicles on the property shall drive in a careful and safe manner at all times and shall comply with the signals and directions of security officers and all posted traffic... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Vehicular and pedestrian traffic. 700...

  11. 7 CFR 503.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... traffic. Drivers of all vehicles on the PIADC Government-owned parking areas in PIADC shall drive in a careful and safe manner at all times and shall comply with the signals and directions of guards and all... 7 Agriculture 6 2010-01-01 2010-01-01 false Vehicular and pedestrian traffic. 503.12 Section 503...

  12. 11. REPRESENTATIVE VIEW OF DELL AVENUE VEHICULAR BRIDGES, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REPRESENTATIVE VIEW OF DELL AVENUE VEHICULAR BRIDGES, LOOKING WEST FROM SOUTH SIDE OF LINNIE CANAL. THIS PARTICULAR BRIDGE IS LOCATED OVER LINNIE CANAL. - Venice Canals, Community of Venice, Los Angeles, Los Angeles County, CA

  13. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  14. Advancement of Double Effect Absorption Cycle by Input of Low Temperature Waste Heat

    NASA Astrophysics Data System (ADS)

    Kojima, Hiroshi; Edera, Masaru; Nakamura, Makoto; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao

    Energy conservation is becoming important for global environmental protection. New simple techniques of more efficient1y using the waste heat of gas co-generation systems for refrigerationare required. In first report, a new method of using the low temperature waste heat for refrigeration was proposed, and the basic characteristics of the promising methods of recovering waste heat were c1arified. In this report, the more detailed simulation model of the series flow type double effect absorption refrigerator with auxiliary heat exchanger was constructed and the static characteristics were investigated. Then experiments on this advanced absorption refrigerator were carried out, and the results of the calculation and experiments were compared and discussed. Moreover, the betterment of the simulation model of this advanced absorption refrigerator was carried out.

  15. 31 CFR 91.12 - Vehicular and pedestrian traffic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... traffic. (a) Drivers of all vehicles in or on the property shall drive in a careful and safe manner at all times and shall comply with the signals and directions of guards and all posted traffic signs. (b) The... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Vehicular and pedestrian traffic. 91...

  16. Risk factors in cardiovascular disease mortality associated with high exposure to vehicular traffic.

    PubMed

    Rodrigues, Poliany Cristiny de Oliveira; Santos, Emerson Soares Dos; Hacon, Sandra de Souza; Ignotti, Eliane

    2017-01-01

    To identify areas and risk factors in cardiovascular disease (CD) mortality associated with air pollution from high exposure to vehicular traffic. Cross-sectional study of CD mortality in 2,617 individuals aged 45-85 years living in the urban area of Cuiabá and Várzea Grande, Mato Grosso State, Brazil, between 2009 and 2011. We used the residential proximity of up to 150 meters to a roadway of great vehicle flow as a proxy of high exposure to air pollution from vehicular traffic. The association between age, gender, income, and traffic intensity with vehicular traffic exposure was assessed through the multiple logistic regression. We conducted stratified analyses to observe the influence of seasons and groups of causes. We used Bernoulli's spatial model of probability to identify high-risk clusters. Risk factors for CD mortality associated with high exposure to vehicular traffic were: living in census tracts with very unequal income (OR = 1.78; 95%CI 1.36 - 2.33), heavy traffic (OR = 1.20; 95%CI 1.01 - 1.43), and female gender (OR = 1.18; 95%CI 1.01 - 1.38). The CD mortality risk increases about 10% during the dry season period. We identified nine areas of risk. High exposure to traffic is associated with CD mortality in Cuiabá and Várzea Grande. Income inequality, traffic intensity, and female gender presented as the main determiners for this exposure. The dry season period enhances the effects of traffic exposure.

  17. Mendenhall Glacier Visitor Center vehicular and pedestrian traffic congestion study

    DOT National Transportation Integrated Search

    2007-05-01

    The Mendenhall Glacier Visitor Center of Tongass National Forest in Juneau, Alaska is experiencing vehicular and pedestrian congestion. This study was initiated by the United States Forest Service, Alaska Region, in cooperation with Western Federal L...

  18. Questions and Answers for Ken Thomas' "Intra-Extra Vehicular Activity Russian and Gemini Spacesuits" Presentation

    NASA Technical Reports Server (NTRS)

    Thomas, Kenneth S.

    2016-01-01

    Kenneth Thomas will discuss the Intra-Extra Vehicular Activity Russian & Gemini spacesuits. While the United States and Russia adapted to existing launch- and reentry-type suits to allow the first human ventures into the vacuum of space, there were differences in execution and capabilities. Mr. Thomas will discuss the advantages and disadvantages of this approach compared to exclusively intravehicular or extra-vehicular suit systems.

  19. View looking from the Tenth Street vehicular entrance to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking from the Tenth Street vehicular entrance to the Justice Department Building to show the great court and fountain - United States Department of Justice, Constitution Avenue between Ninth & Tenth Streets, Northwest, Washington, District of Columbia, DC

  20. A Reinforcement Sensor Embedded Vertical Handoff Controller for Vehicular Heterogeneous Wireless Networks

    PubMed Central

    Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin

    2013-01-01

    Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience. PMID:24193101

  1. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of parking spaces per development; and (3) To encourage the use of public transportation by linking... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Vehicular circulation and storage systems. 910.18 Section 910.18 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT...

  2. Propulsive Efficiencies of Magnetohydrodynamic Submerged Vehicular Propulsors

    DTIC Science & Technology

    1990-04-01

    TERMS (Con’we on mrae . neoaay and kWerty by back nLt.) FIELD GROUP SUB-GROUP Magnetohydrodynamic propulsion, marine propulsion, seawater pump ...propelling a vehicular structure by a seawater elec- tromagnetic pump . This propulsion system can be applied to a surface ship or a submerged vehicle; however...structure by a seawater electromagnetic pump . This propulsion system can be applied to a surface ship or a submerged vehicle; however, in this work only

  3. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution ofmore » single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.« less

  4. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  5. 41 CFR 102-74.430 - What is the policy concerning vehicular and pedestrian traffic on Federal property?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concerning vehicular and pedestrian traffic on Federal property? 102-74.430 Section 102-74.430 Public... Pedestrian Traffic § 102-74.430 What is the policy concerning vehicular and pedestrian traffic on Federal property? All vehicle drivers entering or while on Federal property— (a) Must drive in a careful and safe...

  6. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  7. Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks

    PubMed Central

    Yang, Fan; Su, Jinsong; Zhou, Qifeng; Wang, Tian; Zhang, Lu; Xu, Yifan

    2017-01-01

    Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data. PMID:29286320

  8. Advances in refrigeration and heat transfer engineering

    DOE PAGES

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  9. Advances in refrigeration and heat transfer engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  10. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  11. Decrease of VOC emissions from vehicular emissions in Hong Kong from 2003 to 2015: Results from a tunnel study

    NASA Astrophysics Data System (ADS)

    Cui, Long; Wang, Xiao Liang; Ho, Kin Fai; Gao, Yuan; Liu, Chang; Hang Ho, Steven Sai; Li, Hai Wei; Lee, Shun Cheng; Wang, Xin Ming; Jiang, Bo Qiong; Huang, Yu; Chow, Judith C.; Watson, John G.; Chen, Lung-Wen

    2018-03-01

    Vehicular emissions are one of major anthropogenic sources of ambient volatile organic compounds (VOCs) in Hong Kong. During the past twelve years, the government of the Hong Kong Special Administrative Region has undertaken a series of air pollution control measures to reduce vehicular emissions in Hong Kong. Vehicular emissions were characterized by repeated measurement in the same roadway tunnel in 2003 and 2015. The total net concentration of measured VOCs decreased by 44.7% from 2003 to 2015. The fleet-average VOC emission factor decreased from 107.1 ± 44.8 mg veh-1 km-1 in 2003 to 58.8 ± 50.7 mg veh-1 km-1 in 2015, and the total ozone (O3) formation potential of measured VOCs decreased from 474.1 mg O3 veh-1 km-1 to 190.8 mg O3 veh-1 km-1. The emission factor of ethene, which is one of the key tracers for diesel vehicular emissions, decreased by 67.3% from 2003 to 2015 as a result of the strict control measures on diesel vehicular emissions. Total road transport VOC emissions is estimated to be reduced by 40% as compared with 2010 by 2020, which will be an important contributor to achieve the goal of total VOC emission reduction in the Pearl River Delta region. The large decrease of VOC emissions from on-road vehicles demonstrates the effectiveness of past multi-vehicular emission control strategy in Hong Kong.

  12. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network.

    PubMed

    Gokulakrishnan, P; Ganeshkumar, P

    2015-01-01

    A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i) the Road Side Unit (RSU) constructs a Prediction Report (PR) based on the status of the vehicles and traffic in the highway roads, (ii) the RSU generates an Emergency Warning Message (EWM) based on an abnormal PR, (iii) the RSU forms a VBN structure and (iv) the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF) and travels in High Risk Zone (HRZ). These vehicles might reside either within the RSU's coverage area or outside RSU's coverage area (reached using VBN structure). The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs) by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads.

  13. Road Accident Prevention with Instant Emergency Warning Message Dissemination in Vehicular Ad-Hoc Network

    PubMed Central

    P, Gokulakrishnan; P, Ganeshkumar

    2015-01-01

    A Road Accident Prevention (RAP) scheme based on Vehicular Backbone Network (VBN) structure is proposed in this paper for Vehicular Ad-hoc Network (VANET). The RAP scheme attempts to prevent vehicles from highway road traffic accidents and thereby reduces death and injury rates. Once the possibility of an emergency situation (i.e. an accident) is predicted in advance, instantly RAP initiates a highway road traffic accident prevention scheme. The RAP scheme constitutes the following activities: (i) the Road Side Unit (RSU) constructs a Prediction Report (PR) based on the status of the vehicles and traffic in the highway roads, (ii) the RSU generates an Emergency Warning Message (EWM) based on an abnormal PR, (iii) the RSU forms a VBN structure and (iv) the RSU disseminates the EWM to the vehicles that holds the high Risk Factor (RF) and travels in High Risk Zone (HRZ). These vehicles might reside either within the RSU’s coverage area or outside RSU’s coverage area (reached using VBN structure). The RAP scheme improves the performance of EWM dissemination in terms of increase in notification and decrease in end-to-end delay. The RAP scheme also reduces infrastructure cost (number of RSUs) by formulating and deploying the VBN structure. The RAP scheme with VBN structure improves notification by 19 percent and end-to-end delay by 14.38 percent for a vehicle density of 160 vehicles. It is also proved from the simulation experiment that the performance of RAP scheme is promising in 4-lane highway roads. PMID:26636576

  14. A Review of Recent Advances in Research on Extreme Heat Events

    NASA Technical Reports Server (NTRS)

    Horton, Radley M.; Mankin, Justin S.; Lesk, Corey; Coffel, Ethan; Raymond, Colin

    2016-01-01

    Reviewing recent literature, we report that changes in extreme heat event characteristics such as magnitude, frequency, and duration are highly sensitive to changes in mean global-scale warming. Numerous studies have detected significant changes in the observed occurrence of extreme heat events, irrespective of how such events are defined. Further, a number of these studies have attributed present-day changes in the risk of individual heat events and the documented global-scale increase in such events to anthropogenic-driven warming. Advances in process-based studies of heat events have focused on the proximate land-atmosphere interactions through soil moisture anomalies, and changes in occurrence of the underlying atmospheric circulation associated with heat events in the mid-latitudes. While evidence for a number of hypotheses remains limited, climate change nevertheless points to tail risks of possible changes in heat extremes that could exceed estimates generated from model outputs of mean temperature. We also explore risks associated with compound extreme events and nonlinear impacts associated with extreme heat.

  15. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  16. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  17. 75 FR 52557 - Limiting of Vehicular Use of a Portion of Battery Caulfield Road; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... THE PRESIDIO TRUST Limiting of Vehicular Use of a Portion of Battery Caulfield Road; Extension of... limit vehicular use of a portion of Battery Caulfield Road in the Presidio of San Francisco: (1...: Battery[email protected] ; for such comments to be considered, the submitter must include his...

  18. Heat pipe systems using new working fluids

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.

  19. The Charlotte (TM) intra-vehicular robot

    NASA Technical Reports Server (NTRS)

    Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.

    1994-01-01

    NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.

  20. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  1. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  2. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  3. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight,more » 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).« less

  4. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    PubMed Central

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  5. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    PubMed

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  6. Evaluating infant core temperature response in a hot car using a heat balance model.

    PubMed

    Grundstein, Andrew J; Duzinski, Sarah V; Dolinak, David; Null, Jan; Iyer, Sujit S

    2015-03-01

    Using a 1-year old male infant as the model subject, the objectives of this study were to measure increased body temperature of an infant inside an enclosed vehicle during the work day (8:00 am-4:00 pm) during four seasons and model the time to un-compensable heating, heat stroke [>40 °C (>104 °F)], and critical thermal maximum [>42 °C (>107.6 °F)]. A human heat balance model was used to simulate a child's physiological response to extreme heat exposure within an enclosed vehicle. Environmental variables were obtained from the nearest National Weather Service automated surface observing weather station and from an observational vehicular temperature study conducted in Austin, Texas in 2012. In all four seasons, despite differences in starting temperature and solar radiation, the model infant reached heat stroke and demise before 2:00 pm. Time to heat stroke and demise occurred most rapidly in summer, at intermediate durations in fall and spring, and most slowly in the winter. In August, the model infant reached un-compensable heat within 20 min, heat stroke within 105 min, and demise within 125 min. The average rate of heating from un-compensable heat to heat stroke was 1.7 °C/h (3.0 °F/h) and from heat stroke to demise was 4.8 °C/h (8.5 °F/h). Infants left in vehicles during the workday can reach hazardous thermal thresholds quickly even with mild environmental temperatures. These results provide a seasonal analogue of infant heat stroke time course. Further effort is required to create a universally available forensic tool to predict vehicular hyperthermia time course to demise.

  7. The Local Integrity Approach for Urban Contexts: Definition and Vehicular Experimental Assessment

    PubMed Central

    Margaria, Davide; Falletti, Emanuela

    2016-01-01

    A novel cooperative integrity monitoring concept, called “local integrity”, suitable to automotive applications in urban scenarios, is discussed in this paper. The idea is to take advantage of a collaborative Vehicular Ad hoc NETwork (VANET) architecture in order to perform a spatial/temporal characterization of possible degradations of Global Navigation Satellite System (GNSS) signals. Such characterization enables the computation of the so-called “Local Protection Levels”, taking into account local impairments to the received signals. Starting from theoretical concepts, this paper describes the experimental validation by means of a measurement campaign and the real-time implementation of the algorithm on a vehicular prototype. A live demonstration in a real scenario has been successfully carried out, highlighting effectiveness and performance of the proposed approach. PMID:26821028

  8. Impacts of road conditions on the energy consumption of electric vehicular flow

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2017-04-01

    In this paper, we use the electricity consumption model for electric vehicular flow [H. Xiao, H. J. Huang and T. Q. Tang, Mod. Phys. Lett. B 30 (2016) 1650325] to study the effects of road conditions on the electricity consumption of electric vehicular flow during the evolutions of shock, rarefaction wave and small perturbation. The numerical results indicate that road conditions have negative influences on the electricity consumption during the evolutions of shock and rarefaction wave (i.e. the electricity consumption increases when road conditions become better) and positive impacts on the electricity consumption during the evolution of small perturbation when the traffic flow is unstable (i.e. the electricity consumption produces oscillation, but its amplitude decreases when road conditions become better).

  9. Influence of vehicular emissions on atmospheric CH4 and NMHC mixing ratios and its correlation with CO and other VOCs tracers in Mexico City

    NASA Astrophysics Data System (ADS)

    Solano-Murillo, M.; Torres-Jardón, R.; Ruiz-Suárez, L. G.; Barrera-Huertas, H.; Hernandez-Solis, J. M.

    2016-12-01

    The Mexico City Metropolitan Area (MCMA) is one of the world's largest and most polluted urban areas. A recent GHC emission inventory for MCMA suggests that vehicular emissions contribute with around 37% of CH4, followed by landfills and dump garbage areas (30%) and construction and manufacturing (27%). Contrary to other urban areas, natural gas is not the main fuel used in MCMA, neither for domestic and industrial heating, nor for transportation. Therefore, there is a great uncertainty about who is the main contributor of CH4 emissions. An intensive monitoring campaign of methane (CH4), Non-methane hydrocarbons (NMHC) and carbon monoxide (CO) was performed between February and March 2015 in southwest MCMA. Methane concentrations showed sometimes a diurnal pattern similar to those of CO and to NMHC but most of the time this similarity was lost (CH4 vs CO, R2 = 0.27; CH4 vs NMHC, R2 = 0.28). However, NMHC correlated well with CO (R2 = 0.75). The intercepts of the CH4-CO correlation resulted in [CH4] 1.8 ppm and that of the CO-NMHC correlation in [CO] 0.080 ppb. The lack of agreement between CH4 and CO indicates these species do not come from the same sources. The results suggest that vehicular emissions are not significant contributors to atmospheric CH4 and that the background methane concentration has not change significantly in 25 years. An attempt to correlate some tracers COVs tracers of vehicular and biomass burning with CH4, NMHC and CH4 is done.

  10. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing

    PubMed Central

    Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-01-01

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles. PMID:28786943

  11. Achieve Location Privacy-Preserving Range Query in Vehicular Sensing.

    PubMed

    Kong, Qinglei; Lu, Rongxing; Ma, Maode; Bao, Haiyong

    2017-08-08

    Modern vehicles are equipped with a plethora of on-board sensors and large on-board storage, which enables them to gather and store various local-relevant data. However, the wide application of vehicular sensing has its own challenges, among which location-privacy preservation and data query accuracy are two critical problems. In this paper, we propose a novel range query scheme, which helps the data requester to accurately retrieve the sensed data from the distributive on-board storage in vehicular ad hoc networks (VANETs) with location privacy preservation. The proposed scheme exploits structured scalars to denote the locations of data requesters and vehicles, and achieves the privacy-preserving location matching with the homomorphic Paillier cryptosystem technique. Detailed security analysis shows that the proposed range query scheme can successfully preserve the location privacy of the involved data requesters and vehicles, and protect the confidentiality of the sensed data. In addition, performance evaluations are conducted to show the efficiency of the proposed scheme, in terms of computation delay and communication overhead. Specifically, the computation delay and communication overhead are not dependent on the length of the scalar, and they are only proportional to the number of vehicles.

  12. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less

  13. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using

  14. Vehicular Visible Light Networks for Urban Mobile Crowd Sensing

    PubMed Central

    2018-01-01

    Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver. PMID:29649149

  15. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  16. A preliminary design and analysis of an advanced heat-rejection system for an extreme altitude advanced variable cycle diesel engine installed in a high-altitude advanced research platform

    NASA Technical Reports Server (NTRS)

    Johnston, Richard P.

    1992-01-01

    Satellite surveillance in such areas as the Antarctic indicates that from time to time concentration of ozone grows and shrinks. An effort to obtain useful atmospheric data for determining the causes of ozone depletion would require a flight capable of reaching altitudes of at least 100,000 ft and flying subsonically during the sampling portion of the mission. A study of a heat rejection system for an advanced variable cycle diesel (AVCD) engine was conducted. The engine was installed in an extreme altitude, high altitude advanced research platform. Results indicate that the waste heat from an AVCD engine propulsion system can be rejected at the maximum cruise altitude of 120,000 ft. Fifteen performance points, reflecting the behavior of the engine as the vehicle proceeded through the mission, were used to characterize the heat exchanger operation. That portion of the study is described in a appendix titled, 'A Detailed Study of the Heat Rejection System for an Extreme Altitude Atmospheric Sampling Aircraft,' by a consultant, Mr. James Bourne, Lytron, Incorporated.

  17. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozeman, Jeffrey; Chen, Kuo-Huey

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  18. AN/VRC 118 Mid-Tier Networking Vehicular Radio (MNVR) and Joint Enterprise Network Manager (JENM) Early Fielding Report

    DTIC Science & Technology

    2017-01-18

    1 AN/VRC 118 Mid-Tier Networking Vehicular Radio and Joint Enterprise Network Manager Early Fielding Report This report provides my assessment of...the AN/VRC-118 Mid-Tier Networking Vehicular Radio (MNVR) and the Joint Enterprise Network Manager (JENM) in support of the Army’s fielding of low...September 2016 ADM does not address the JENM, which must be fielded with MNVR to allow soldiers to configure and manage the software- defined radio

  19. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  20. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  1. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  2. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  3. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  4. A cooperative positioning algorithm for DSRC enabled vehicular networks

    NASA Astrophysics Data System (ADS)

    Efatmaneshnik, M.; Kealy, A.; Alam, N.; Dempster, A. G.

    2011-12-01

    Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an inter-vehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.

  5. An empirical relationship between mesoscale carbon monoxide concentrations and vehicular emission rates : final report.

    DOT National Transportation Integrated Search

    1979-01-01

    Presented is a relatively simple empirical equation that reasonably approximates the relationship between mesoscale carbon monoxide (CO) concentrations, areal vehicular CO emission rates, and the meteorological factors of wind speed and mixing height...

  6. An ultra-wide bandwidth-based range/GPS tight integration approach for relative positioning in vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Wayn Cheong, Joon; Dempster, Andrew G.

    2015-04-01

    Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively.

  7. Impacts of temporary traffic control measures on vehicular emissions during the Asian games in Guangzhou, China.

    PubMed

    Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Wang, Xintong; Wu, Ye; He, Kebin

    2013-01-01

    To guarantee good traffic and air quality during the 16th Asian Games in Guangzhou, China, the government carried out two traffic control Drills before the Games and adopted traffic control measures during the Games. Vehicle activities before and during the first and second Drills, and during the Games, were surveyed. Based on the data under investigation, the impacts of control measures on traffic volumes and driving characteristics were analyzed during the first and second Drills, and the Games. The emission reduction of traffic control measures was also evaluated during the three stages using the MOBILE-China model. The results show that there were significant effects of implementing temporary traffic control measures on transportation activity and vehicular emissions. During the first and second Drills, and the Games, the average traffic volumes in monitored roads decreased, and the average speed of vehicles increased significantly The co-effects of traffic flow reduction, traffic congestion improvement, and the banning of high-emitting vehicles helped to greatly reduce the estimated emissions from motor vehicles in Guangzhou during the first and second Drills, and the Games. Estimated vehicular emissions were reduced by 38-52% during the first Drill and 28-36% for the second Drill. During the Asian Games, vehicular emissions of carbon monoxide (CO), hydrocarbon (HC), oxides of nitrogen (NO), and particulate matter with an aerodynamic diameter < 10 microm (PM10) reduced by an estimated 42%, 46%, 26%, and 30%, respectively, compared with those before the Games. Both the banning of high-emitting vehicles and the travel restrictions imposed by use of odd-even licenses had significant effects on the reduction of vehicular emissions of CO, HC, NOx, and PM10. Motor vehicles have become the most prevalent source of emissions and subsequently air pollution within Chinese cities. Understanding the impacts that different control measures have on vehicular emissions is

  8. Integrating internet GPS vehicle tracking data into a bottom-up vehicular emissions inventory and atmospheric simulation in South-East, Brazil

    NASA Astrophysics Data System (ADS)

    Ibarra Espinosa, S.; Ynoue, R.; Giannotti, M., , Dr

    2017-12-01

    It has been shown the importance of emissions inventories for air quality studies and environmental planning at local, regional (REAS), hemispheric (CLRTAP) and global (IPCC) scales. It has been shown also that vehicules are becoming the most important sources in urban centers. Several efforts has been made in order to model vehicular emissions to obtain more accurate emission factors based on Vehicular Specific Power (VPS) with IVE and MOVES based on VSP, MOBILE, VERSIT and COPERT based on average speed, or ARTEMIS and HBEFA based on traffic situations. However, little effort has been made to improve traffic activity data. In this study we are proposing using a novel approach to develop vehicular emissions inventory including point data from MAPLINK a company that feeds with traffic data to Google. This includes working and transforming massive amount of data to generate traffic flow and speeds. The region of study is the south east of Brazil including São Paulo metropolitan areas. To estimate vehicular emissions we are using the open source model VEIN available at https://CRAN.R-project.org/package=vein. We generated hourly traffic between 2010-04-21 and 2010-10-22, totalizing 145 hours. This data consists GPS readings from vehicles with assurance policy, applications and other sources. This type data presents spacial bias meaning that only a part of the vehicles are tracked. We corrected this bias using the calculated speed as proxy of traffic flow using measurements of traffic flow and speed per lane made in São Paulo. Then we calibrated the total traffic estimating Fuel Consumption with VEIN and comparing Fuel Sales for the region. We estimated the hourly vehicular emissions and produced emission maps and data-bases. In addition, we simulated atmospheric simulations using WRF-Chem to identify which inventory produces better agreement with air pollutant observations. New technologies and big data provides opportunities to improve vehicular emissions

  9. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat

  10. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  11. Tapered slot antenna design for vehicular GPR applications

    NASA Astrophysics Data System (ADS)

    Bıçak, Emrullah; Yeǧin, Korkut; Nazlı, Hakki; Daǧ, Mahmut

    2014-05-01

    Vehicular applications of UWB GPR demand multiple GPR sensors operating in a harsh environment. One of the key elements of in the sensor is its UWB antenna which has minimal inter-element coupling, low group delay, high directivity and less prone to environmental conditions. Tapered slot antennas (TSA's) provide good impedance match, but they need to be modified for above specifications. Parasitic slot loaded TSA with balanced feed is proposed and a multi-channel antenna array structure is formed. Structural parameters are numerically analyzed and a prototype is built. Measurements show good performance for UWB GPR applications.

  12. Comparisons between vehicular emissions from real-world in-use testing and EPA moves estimation.

    DOT National Transportation Integrated Search

    2012-07-01

    "This research study developed a methodology to perform mandatory dynamometer vehicular emissions tests : on real roads, performed on-road emissions tests, and compared the test results to the estimates using the : current EPA emissions estimation mo...

  13. Alcohol-Related Vehicular Death Rates for College Students in the Commonwealth of Virginia

    ERIC Educational Resources Information Center

    Turner, James; Bauerle, Jennifer; Keller, Adrienne

    2011-01-01

    Objective: Determine rate of college student alcohol-related vehicular traffic fatalities in Virginia during 2007. Participants: Undergraduates at colleges and universities in Virginia. Methods: Institutions with membership in the American College Health Association were invited to participate in a survey. Data collected from institutional reports…

  14. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    PubMed Central

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-01-01

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807

  15. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.

    PubMed

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-11-28

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.

  16. Ceramic technology for advanced heat engines project. Semiannual progress report, October 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less

  17. Advanced Extra-Vehicular Activity Pressure Garment Requirements Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Rhodes, Richard

    2015-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the method by which the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun; in other cases no effort has been initiated to close the gap. Status of on-going efforts and potential approaches to open gaps are discussed.

  18. 17. NBS TOOL ROOM. MISCELLANEOUS TOOLS USED DURING EXTRA VEHICULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. NBS TOOL ROOM. MISCELLANEOUS TOOLS USED DURING EXTRA VEHICULAR ACTIVITY (EVA) MISSIONS AND NBS TRAINING. FROM LEFT TO RIGHT THE TOOLS ARE: SHUTTLE TRANSPORTATION SYSTEM (STS) PORTABLE FOOT RESTRAINT (PFR), ESSEX WRENCH, SOCKET WRENCH, SAFETY TETHER REEL (LEFT REAR), MINI WORKSTATION (CENTER REAR), TETHERS (FRONT CENTER), HUBBLE SPACE TELESCOPE (HST) POWER TOOL (FRONT RIGHT), HUBBLE SPACE TELESCOPE & PORTABLE FOOT RESTRAINT (REAR RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  19. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  20. Vehicular Traffic-Related Polycyclic Aromatic Hydrocarbon Exposure and Breast Cancer Incidence: The Long Island Breast Cancer Study Project (LIBCSP).

    PubMed

    Mordukhovich, Irina; Beyea, Jan; Herring, Amy H; Hatch, Maureen; Stellman, Steven D; Teitelbaum, Susan L; Richardson, David B; Millikan, Robert C; Engel, Lawrence S; Shantakumar, Sumitra; Steck, Susan E; Neugut, Alfred I; Rossner, Pavel; Santella, Regina M; Gammon, Marilie D

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants, known human lung carcinogens, and potent mammary carcinogens in laboratory animals. However, the association between PAHs and breast cancer in women is unclear. Vehicular traffic is a major ambient source of PAH exposure. Our study aim was to evaluate the association between residential exposure to vehicular traffic and breast cancer incidence. Residential histories of 1,508 participants with breast cancer (case participants) and 1,556 particpants with no breast cancer (control participants) were assessed in a population-based investigation conducted in 1996-1997. Traffic exposure estimates of benzo[a]pyrene (B[a]P), as a proxy for traffic-related PAHs, for the years 1960-1995 were reconstructed using a model previously shown to generate estimates consistent with measured soil PAHs, PAH-DNA adducts, and CO readings. Associations between vehicular traffic exposure estimates and breast cancer incidence were evaluated using unconditional logistic regression. The odds ratio (95% CI) was modestly elevated by 1.44 (0.78, 2.68) for the association between breast cancer and long-term 1960-1990 vehicular traffic estimates in the top 5%, compared with below the median. The association with recent 1995 traffic exposure was elevated by 1.14 (0.80, 1.64) for the top 5%, compared with below the median, which was stronger among women with low fruit/vegetable intake [1.46 (0.89, 2.40)], but not among those with high fruit/vegetable intake [0.92 (0.53, 1.60)]. Among the subset of women with information regarding traffic exposure and tumor hormone receptor subtype, the traffic-breast cancer association was higher for those with estrogen/progesterone-negative tumors [1.67 (0.91, 3.05) relative to control participants], but lower among all other tumor subtypes [0.80 (0.50, 1.27) compared with control participants]. In our population-based study, we observed positive associations between vehicular traffic

  1. A compact dual-band RF front-end and board design for vehicular platforms

    NASA Astrophysics Data System (ADS)

    Sharawi, Mohammad S.; Aloi, Daniel N.

    2012-03-01

    Modern vehicular platforms include several wireless systems that provide navigation, entertainment and road side assistance, among other services. These systems operate at different frequency bands and thus careful system-level design should be followed to minimise the interference between them. In this study, we present a compact dual-band RF front-end module for global positioning system (GPS) operating in the L1-band (1574.42-1576.42 MHz) and satellite digital audio radio system (SDARS) operating in the S-band (2320-2345 MHz). The module provides more than 26 dB of measured gain in both bands and low noise figure values of 0.9 and 1.2 dB in SDARS and GPS bands, respectively. The front-end has interference suppression capability from the advanced mobile phone system and personal communication service cellular bands. The module is designed on a low-cost FR-4 substrate material and occupies a small size of 62 × 29 × 1.3 mm3. It dissipates 235 mW in the SDARS section and 100 mW in the GPS section. Three prototypes have been built to verify a repeatable performance.

  2. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  3. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Vehicular road influence areas

    NASA Astrophysics Data System (ADS)

    Huertas, María E.; Huertas, José I.; Valencia, Alexander

    2017-02-01

    Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities require a methodology to evaluate road impact areas, which enable managers to initiate counter-measures, particularly under circumstances where historic meteorological and/or air quality data is unavailable. The present study describes an analytical and experimental work developed to establish a simplified methodology to estimate the area influenced by vehicular roads. AERMOD was chosen to model pollutant dispersion generated by two roads of common attributes (straight road over flat terrain) under the effects of several arbitrary chosen weather conditions. The resulting pollutant concentration vs. Distance curves collapsed into a single curve when concentration and distance were expressed as dimensionless numbers and this curve can be described by a beta distribution function. This result implied that average concentration at a given distance was proportional to emission intensity and that it showed minor sensitivity to meteorological conditions. Therefore, road influence was defined by the area adjacent to the road limited by distance at which the beta distribution function equaled the limiting value specified by the national air quality standard for the pollutant under consideration.

  5. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less

  6. An innovative HVAC control system: Implementation and testing in a vehicular cabin.

    PubMed

    Fojtlín, Miloš; Fišer, Jan; Pokorný, Jan; Povalač, Aleš; Urbanec, Tomáš; Jícha, Miroslav

    2017-12-01

    Personal vehicles undergo rapid development in every imaginable way. However, a concept of managing a cabin thermal environment remains unchanged for decades. The only major improvement has been an automatic HVAC controller with one user's input - temperature. In this case, the temperature is often deceiving because of thermally asymmetric and dynamic nature of the cabins. As a result, the effects of convection and radiation on passengers are not captured in detail what also reduces the potential to meet thermal comfort expectations. Advanced methodologies are available to assess the cabin environment in a fine resolution (e.g. ISO 14505:2006), but these are used mostly in laboratory conditions. The novel idea of this work is to integrate equivalent temperature sensors into a vehicular cabin in proximity of an occupant. Spatial distribution of the sensors is expected to provide detailed information about the local environment that can be used for personalised, comfort driven HVAC control. The focus of the work is to compare results given by the implemented system and a Newton type thermal manikin. Three different ambient settings were examined in a climate chamber. Finally, the results were compared and a good match of equivalent temperatures was found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  8. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  9. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  10. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. 15.252 Section 15.252 Telecommunication FEDERAL..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz...

  11. Second law analysis of advanced power generation systems using variable temperature heat sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliem, C.J.; Mines, G.L.

    1990-01-01

    Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less

  12. Quantifying impacts on air quality of vehicular emissions in Sao Paulo and Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Godoy, José Marcus; Luiza Godoy, Maria; Junior, Djacinto

    2016-04-01

    Vehicular emissions in megacities such as Sao Paulo and Rio de Janeiro are increasingly becoming a global issue. The São Paulo Metropolitan Area (SPMA), located in Southeast of Brazil, is a megacity with a population of 18 million people, with 7 million cars and large-scale industrial emissions. Rio de Janeiro is also a large city with different meteorology than São Paulo. All cars in Brazil runs gasohol, with 23% ethanol in gasoline, and for the last 10 years, flex cars that can run on gasohol, ethanol or any mixture dominate the market. Overall ethanol accounts for about 30-40% of fuel burned in both cities. To improve the understanding of vehicular emission impacts on aerosol composition and life cycle in these two large megacities a source apportionment study, combining online and offline measurements, was performed. Aerosols were collected for one year to capture seasonal variability at 4 sites in each city, with inorganic and organic aerosol component being sampled. Organic and elemental carbon were measured using a Sunset Laboratory Dual Optics (transmission and reflectance) Carbon Analyzer and about 22 trace elements has been measured using polarized X-Ray Fluorescence (XRF). Aerosol mass and black carbon were also measured, as well as trace gases to help in aerosol source apportionment. In Sao Paulo, the average PM2.5 mass concentration obtained varied from 9.6 to 12.2 μg m-3 for the several sites, and similar concentrations were measured in Rio de Janeiro. At all sites, organic matter (OM) has dominated fine mode aerosol concentration with 42 to 60% of the aerosol mass. EC accounted for 21 to 31% of fine mode aerosol mass concentration. Sulfate accounted for 21 to 26% of PM2.5 for the sites. Aerosol source apportionment was done with receptor analysis and integration with online data such as PTR-MS, Aethalometers, Nephelometers and ACSM helped to apportion vehicular emissions. For the 8 sites operated in Sao Paulo and Rio de Janeiro, vehicular

  13. Robonaut 2 - Preparing for Intra-Vehicular Mobility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Badger, Julia; Diftler, Myron; Hulse, Aaron; Taylor, Ross

    2013-01-01

    Robonaut 2 (R2) has been undergoing experimental trials on board the International Space Station (ISS) for more than a year. This upper-body anthropomorphic robotic system shown in Figure 1 has been making steady progress after completing its initial checkout. R2 demonstrated free space motion, physically interacted with its human crew mates, manipulated interfaces on its task board and has even used its first tool. This steady growth in capability will lead R2 to its next watershed milestone. Developers are currently testing prototype robotic climbing appendages and a battery backpack in preparation of sending flight versions of both subsystems to the ISS in late 2013. Upon integration of its new components, R2 will be able to go mobile inside the space station with a twofold agenda. First, R2 will learn to maneuver in microgravity in the best possible laboratory for such a task. Second, it will start providing early payback to the ISS program by helping with intra-vehicular (IVA) maintenance tasks. The experience gained inside the ISS will be invaluable in reducing risk when R2 moves to its next stage and is deployed as an extra-vehicular (EVA) tool. Even on its current fixed base stanchion, R2 has already shown its capability of performing several maintenance tasks on the ISS. It has measured the air flow through one of the stations vents and provided previously unavailable real time flow data to ground operators. R2 has cleaned its first handrail, exciting some crew members that perhaps Saturday morning housekeeping on the station may someday become a task they can hand off to their robotic colleague. Other tasks, including using radio frequency identification (RFID) tools for inventory tasks or vacuuming air filters, have also been suggested and will be explored. Once mobile, R2 will take on these tasks and more to free up crew time for more important science and exploration pursuits. In addition to task exploration, research and testing is happening on orbit

  14. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  15. Emergency Situation Prediction Mechanism: A Novel Approach for Intelligent Transportation System Using Vehicular Ad Hoc Networks

    PubMed Central

    Gokulakrishnan, P.

    2015-01-01

    In Indian four-lane express highway, millions of vehicles are travelling every day. Accidents are unfortunate and frequently occurring in these highways causing deaths, increase in death toll, and damage to infrastructure. A mechanism is required to avoid such road accidents at the maximum to reduce the death toll. An Emergency Situation Prediction Mechanism, a novel and proactive approach, is proposed in this paper for achieving the best of Intelligent Transportation System using Vehicular Ad Hoc Network. ESPM intends to predict the possibility of occurrence of an accident in an Indian four-lane express highway. In ESPM, the emergency situation prediction is done by the Road Side Unit based on (i) the Status Report sent by the vehicles in the range of RSU and (ii) the road traffic flow analysis done by the RSU. Once the emergency situation or accident is predicted in advance, an Emergency Warning Message is constructed and disseminated to all vehicles in the area of RSU to alert and prevent the vehicles from accidents. ESPM performs well in emergency situation prediction in advance to the occurrence of an accident. ESPM predicts the emergency situation within 0.20 seconds which is comparatively less than the statistical value. The prediction accuracy of ESPM against vehicle density is found better in different traffic scenarios. PMID:26065014

  16. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  17. Vehicular headways on signalized intersections: theory, models, and reality

    NASA Astrophysics Data System (ADS)

    Krbálek, Milan; Šleis, Jiří

    2015-01-01

    We discuss statistical properties of vehicular headways measured on signalized crossroads. On the basis of mathematical approaches, we formulate theoretical and empirically inspired criteria for the acceptability of theoretical headway distributions. Sequentially, the multifarious families of statistical distributions (commonly used to fit real-road headway statistics) are confronted with these criteria, and with original empirical time clearances gauged among neighboring vehicles leaving signal-controlled crossroads after a green signal appears. Using three different numerical schemes, we demonstrate that an arrangement of vehicles on an intersection is a consequence of the general stochastic nature of queueing systems, rather than a consequence of traffic rules, driver estimation processes, or decision-making procedures.

  18. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr; Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr

    2015-03-10

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap schememore » is introduced to numerically approximate the model’s flow equations.« less

  19. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    PubMed

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  20. The study of heat flux for disruption on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  1. An Enhanced Secure Identity-Based Certificateless Public Key Authentication Scheme for Vehicular Sensor Networks

    PubMed Central

    Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng

    2018-01-01

    Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes. PMID:29324719

  2. An Enhanced Secure Identity-Based Certificateless Public Key Authentication Scheme for Vehicular Sensor Networks.

    PubMed

    Li, Congcong; Zhang, Xi; Wang, Haiping; Li, Dongfeng

    2018-01-11

    Vehicular sensor networks have been widely applied in intelligent traffic systems in recent years. Because of the specificity of vehicular sensor networks, they require an enhanced, secure and efficient authentication scheme. Existing authentication protocols are vulnerable to some problems, such as a high computational overhead with certificate distribution and revocation, strong reliance on tamper-proof devices, limited scalability when building many secure channels, and an inability to detect hardware tampering attacks. In this paper, an improved authentication scheme using certificateless public key cryptography is proposed to address these problems. A security analysis of our scheme shows that our protocol provides an enhanced secure anonymous authentication, which is resilient against major security threats. Furthermore, the proposed scheme reduces the incidence of node compromise and replication attacks. The scheme also provides a malicious-node detection and warning mechanism, which can quickly identify compromised static nodes and immediately alert the administrative department. With performance evaluations, the scheme can obtain better trade-offs between security and efficiency than the well-known available schemes.

  3. Advanced heat exchanger development for molten salts

    DOE PAGES

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; ...

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  4. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  5. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  6. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  7. Recent advances in coronal heating

    NASA Astrophysics Data System (ADS)

    De Moortel, Ineke; Browning, Philippa

    2015-04-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  8. Recent advances in coronal heating

    PubMed Central

    De Moortel, Ineke; Browning, Philippa

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This ‘coronal heating problem’ requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue. PMID:25897095

  9. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodiummore » heat pipe to the penetration of water.« less

  10. The study of heat flux for disruption on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhendong, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Fang, Jianan, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptionsmore » have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR{sub sep} = −2 cm, while it changes to upper single null (dR{sub sep} = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m{sup 2}.« less

  11. Italian law on the vehicular homicide: medical legal issues and comparative analysis.

    PubMed

    Montanari Vergallo, G; Marinelli, E; di Luca, N M; Masotti, V; Cecchi, R; Zaami, S

    2017-01-01

    Law no. 41/2016, enacted after a parliamentary debate characterized by a strong media pressure, intends to give a strong response to the growing social alarm caused by road accidents causing deaths. In this perspective, it introduced the categories of road homicide and road injuries within the Penal Code and the new hypotheses of mandatory and facultative arrest in flagrante delicto. This paper aims at comparing the rules by which the United Kingdom, France, Spain, Germany and Italy protect people's lives and safety of vehicular traffic in order to highlight strengths and weaknesses with a view to future reforms. A survey on the European legislature highlights that, while other countries tend to criminally sanction several dangerous driving conducts, Italy has preferred, on the one hand, to punish only with administrative sanctions some violations related to reckless driving (with the exception of driving under the influence of alcohol and drugs) and, on the other, to provide for particularly harsh prison sentences in the case of vehicular homicide. The authors criticize this approach and other aspects of the new law. Moreover, it seems that the legislator's aim has not been achieved because traffic accidents have not decreased. They also believe that better results could be obtained by increasing controls on the roads and developing a policy of economical investments which improves road safety.

  12. Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel

    NASA Astrophysics Data System (ADS)

    Avishan, Behzad

    2017-09-01

    The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.

  13. Ceramic Technology for Advanced Heat Engines Project. Semiannual progress report, October 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-01

    A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less

  14. A Freezable Heat Exchanger for Space Suit Radiator Systems

    NASA Technical Reports Server (NTRS)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  15. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    PubMed

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  16. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.

    PubMed

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-11-25

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  17. Vehicular traffic noise prediction using soft computing approach.

    PubMed

    Singh, Daljeet; Nigam, S P; Agrawal, V P; Kumar, Maneek

    2016-12-01

    A new approach for the development of vehicular traffic noise prediction models is presented. Four different soft computing methods, namely, Generalized Linear Model, Decision Trees, Random Forests and Neural Networks, have been used to develop models to predict the hourly equivalent continuous sound pressure level, Leq, at different locations in the Patiala city in India. The input variables include the traffic volume per hour, percentage of heavy vehicles and average speed of vehicles. The performance of the four models is compared on the basis of performance criteria of coefficient of determination, mean square error and accuracy. 10-fold cross validation is done to check the stability of the Random Forest model, which gave the best results. A t-test is performed to check the fit of the model with the field data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less

  19. An advanced model of heat and mass transfer in the protective clothing - verification

    NASA Astrophysics Data System (ADS)

    Łapka, P.; Furmański, P.

    2016-09-01

    The paper presents an advanced mathematical and numerical models of heat and mass transfer in the multi-layers protective clothing and in elements of the experimental stand subjected to either high surroundings temperature or high radiative heat flux emitted by hot objects. The model included conductive-radiative heat transfer in the hygroscopic porous fabrics and air gaps as well as conductive heat transfer in components of the stand. Additionally, water vapour diffusion in the pores and air spaces as well as phase transition of the bound water in the fabric fibres (sorption and desorption) were accounted for. The thermal radiation was treated in the rigorous way e.g.: semi-transparent absorbing, emitting and scattering fabrics were assumed a non-grey and all optical phenomena at internal or external walls were modelled. The air was assumed transparent. Complex energy and mass balance as well as optical conditions at internal or external interfaces were formulated in order to find exact values of temperatures, vapour densities and radiation intensities at these interfaces. The obtained highly non-linear coupled system of discrete equation was solve by the in-house iterative algorithm which was based on the Finite Volume Method. The model was then successfully partially verified against the results obtained from commercial software for simplified cases.

  20. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels.

    PubMed

    Qureshi, Muhammad Ahsan; Noor, Rafidah Md; Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86.

  1. A Lightweight Radio Propagation Model for Vehicular Communication in Road Tunnels

    PubMed Central

    Shamim, Azra; Shamshirband, Shahaboddin; Raymond Choo, Kim-Kwang

    2016-01-01

    Radio propagation models (RPMs) are generally employed in Vehicular Ad Hoc Networks (VANETs) to predict path loss in multiple operating environments (e.g. modern road infrastructure such as flyovers, underpasses and road tunnels). For example, different RPMs have been developed to predict propagation behaviour in road tunnels. However, most existing RPMs for road tunnels are computationally complex and are based on field measurements in frequency band not suitable for VANET deployment. Furthermore, in tunnel applications, consequences of moving radio obstacles, such as large buses and delivery trucks, are generally not considered in existing RPMs. This paper proposes a computationally inexpensive RPM with minimal set of parameters to predict path loss in an acceptable range for road tunnels. The proposed RPM utilizes geometric properties of the tunnel, such as height and width along with the distance between sender and receiver, to predict the path loss. The proposed RPM also considers the additional attenuation caused by the moving radio obstacles in road tunnels, while requiring a negligible overhead in terms of computational complexity. To demonstrate the utility of our proposed RPM, we conduct a comparative summary and evaluate its performance. Specifically, an extensive data gathering campaign is carried out in order to evaluate the proposed RPM. The field measurements use the 5 GHz frequency band, which is suitable for vehicular communication. The results demonstrate that a close match exists between the predicted values and measured values of path loss. In particular, an average accuracy of 94% is found with R2 = 0.86. PMID:27031989

  2. Non-methane hydrocarbon characteristics of motor vehicular emissions in the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tsai, Wai Yan

    2007-12-01

    Air pollution problem in Hong Kong and the Pearl River Delta (PRD) region has raised much concern from the public in recent years. The primary aim of this research is to use field measurement data to characterize non-methane hydrocarbons (NMHCs) in emission from motor vehicles. Fuel vapor compositions for several commonly used vehicular fuels in Hong Kong, Macau, Guangzhou and Zhuhai were analyzed in 2003, and they are believed to be the first one reported for the PRD region. These profiles were used to study the impact of evaporative loss of the fuels on air quality. From the roadside and tunnel samples collected in the four cities mentioned above from 2000 to 2003, results showed that vehicular engine combustion was a main NMHC source, while gasoline evaporative losses also contributed much to the total NMHC emission, besides, LPG leakage was also found to be significant from the tunnel measurement data collected in Hong Kong. Characteristics of vehicular engine exhaust emissions were also studied. Measurements of diesel emission showed a large influence on the emission profile due to the change of diesel compositions. The E/E ratios implied that gasoline-powered vehicles in Hong Kong were equipped with well functioning catalysts, while those in Guangzhou and Zhuhai, especially the motorcycles, were found dirtier in NMHC emission. Although the E/E ratios showed that private cars in Hong Kong had high combustion efficiency, the existence of significant amounts of unburned gasoline in their exhaust stream pointed out that they still had low fuel economy. From the results of a simple model, it was found that the evaporative losses of gasoline and LPG contributed much to the total NMHC pollution from vehicle. The preliminary results from the dynamometer study conducted in Hong Kong showed large variations of exhaust characteristics for private cars and taxis during different driving speeds. The results can be used as scientific basis for regulatory parties in

  3. 3VSR: Three Valued Secure Routing for Vehicular Ad Hoc Networks using Sensing Logic in Adversarial Environment

    PubMed Central

    Wang, Liangmin

    2018-01-01

    Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node’s transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical. PMID:29538314

  4. 3VSR: Three Valued Secure Routing for Vehicular Ad Hoc Networks using Sensing Logic in Adversarial Environment.

    PubMed

    Sohail, Muhammad; Wang, Liangmin

    2018-03-14

    Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node's transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical.

  5. Materials considerations in the design of a metal-hydride heat pump for an advanced extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Liebert, B. E.

    1986-01-01

    A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.

  6. Advanced radioisotope heat source for Stirling Engines

    NASA Astrophysics Data System (ADS)

    Dobry, T. J.; Walberg, G.

    2001-02-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .

  7. Air pollution in Latin America: Bottom-up Vehicular Emissions Inventory and Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Ibarra Espinosa, S.; Vela, A. V.; Calderon, M. G.; Carlos, G.; Ynoue, R.

    2016-12-01

    Air pollution is a global environmental and health problem. Population of Latin America are facing air quality risks due to high level of air pollution. According to World Health Organization (WHO; 2016), several Latin American cities have high level of pollution. Emissions inventories are a key tool for air quality, however they normally present lack of quality and adequate documentation in developing countries. This work aims to develop air quality assessments in Latin American countries by 1) develop a high resolution emissions inventory of vehicles, and 2) simulate air pollutant concentrations. The bottom-up vehicular emissions inventory used was obtained with the REMI model (Ibarra et al., 2016) which allows to interpolate traffic over road network of Open Street Map to estimate vehicular emissions 24-h, each day of the week. REMI considers several parameters, among them the average age of fleet which was associated with gross domestic product (GDP) per capita. The estimated pollutants are CO, NOx, HC, PM2.5, NO, NO2, CO2, N2O, COV, NH3 and Fuel Consumption. The emissions inventory was performed at the biggest cities, including every capital of Latin America's countries. Initial results shows that the cities with most CO emissions are Buenos Aires 162800 (t/year), São Paulo 152061 (t/year), Campinas 151567 (t/year) and Brasilia 144332 (t/year). The results per capita shows that the city with most CO emissions per capita is Campinas, with 130 (kgCO/hab/year), showed in figure 1. This study also cover high resolution air quality simulations with WRF-Chem main cities in Latin America. Results will be assessed comparing: fuel estimates with local fuel sales, traffic count interpolation with available traffic data set at each city, and comparison between air pollutant simulations with air monitoring observation data. Ibarra, S., R. Ynoue, and S. Mhartain. 2016: "High Resolution Vehicular Emissions Inventory for the Megacity of São Paulo." Manuscript submitted to

  8. Health benefit modelling and optimization of vehicular pollution control strategies

    NASA Astrophysics Data System (ADS)

    Sonawane, Nayan V.; Patil, Rashmi S.; Sethi, Virendra

    2012-12-01

    This study asserts that the evaluation of pollution reduction strategies should be approached on the basis of health benefits. The framework presented could be used for decision making on the basis of cost effectiveness when the strategies are applied concurrently. Several vehicular pollution control strategies have been proposed in literature for effective management of urban air pollution. The effectiveness of these strategies has been mostly studied as a one at a time approach on the basis of change in pollution concentration. The adequacy and practicality of such an approach is studied in the present work. Also, the assessment of respective benefits of these strategies has been carried out when they are implemented simultaneously. An integrated model has been developed which can be used as a tool for optimal prioritization of various pollution management strategies. The model estimates health benefits associated with specific control strategies. ISC-AERMOD View has been used to provide the cause-effect relation between control options and change in ambient air quality. BenMAP, developed by U.S. EPA, has been applied for estimation of health and economic benefits associated with various management strategies. Valuation of health benefits has been done for impact indicators of premature mortality, hospital admissions and respiratory syndrome. An optimization model has been developed to maximize overall social benefits with determination of optimized percentage implementations for multiple strategies. The model has been applied for sub-urban region of Mumbai city for vehicular sector. Several control scenarios have been considered like revised emission standards, electric, CNG, LPG and hybrid vehicles. Reduction in concentration and resultant health benefits for the pollutants CO, NOx and particulate matter are estimated for different control scenarios. Finally, an optimization model has been applied to determine optimized percentage implementation of specific

  9. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less

  10. Numerical modelling of vehicular pollution dispersion: The application of computational fluid dynamics techniques, a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderheyden, M.D.; Dajka, S.C.; Sinclair, R.

    1997-12-31

    Numerical modelling of vehicular emissions using the United States Environmental Protection Agency`s CALINE4 and CAL3QHC dispersion models to predict air quality impacts in the vicinity of roadways is a widely accepted means of evaluating vehicular emissions impacts. The numerical models account for atmospheric dispersion in both open or suburban terrains. When assessing roadways in urban areas with numerous large buildings, however, the models are unable to account for the complex airflows and therefore do not provide satisfactory estimates of pollutant concentrations. Either Wind Tunnel Modelling or Computational Fluid Dynamics (CFD) techniques can be used to assess the impact of vehiclemore » emissions in an urban core. This paper presents a case study where CFD is used to predict worst-case air quality impacts for two development configurations: an existing roadway configuration and a proposed configuration with an elevated pedestrian walkway. In assessing these configurations, worst-case meteorology and traffic conditions are modeled to allow for the prediction of pollutant concentrations due to vehicular emissions on two major streets in Hong Kong. The CFD modelling domain is divided up into thousands of control volumes. Each of these control volumes has a central point called a node where velocities, pollutant concentration and other auxiliary variables are calculated. The region of interest, the pedestrian link and its immediate surroundings, has a denser distribution of nodes in order to give a better resolution of local flow details. Separate CFD modelling runs were undertaken for each development configuration for wind direction increments of 15 degrees. For comparison of the development scenarios, pollutant concentrations (carbon monoxide, nitrogen dioxide and particulate matter) are predicted at up to 99 receptor nodes representing sensitive locations.« less

  11. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangong; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng; Gu, Weijun

    2017-11-01

    Effect of the AC (alternating current) pulse heating method on battery SoH (state of health) for large laminated power lithium-ion batteries at low temperature is investigated experimentally. Firstly, excitation current frequencies, amplitudes, and voltage limitations on cell temperature evolution are studied. High current amplitudes facilitate the heat accumulation and temperature rise. Low frequency region serves as a good innovation to heat the battery because of the large impedance. Wide voltage limitations also enjoy better temperature evolution owing to the less current modulation, but the temperature difference originated from various voltage limitations attenuates due to the decrement of impedance resulting from the temperature rise. Experiments with the thermocouple-embedded cell manifest good temperature homogeneity between the battery surface and interior during the AC heating process. Secondly, the cell capacity, Direct Current resistance and Electrochemical Impedance Spectroscopy are all calibrated to assess the battery SoH after the hundreds of AC pulse heating cycles. Also, all cells are disassembled to investigate the battery internal morphology with the employment of Scanning Electron Microscope and Energy-Dispersive x-ray Spectroscopy techniques. The results indicate that the AC heating method does not aggravate the cell degradation even in the low frequency range (0.5 Hz) under the normal voltage protection limitation.

  12. I-5/Gilman advanced technology bridge project

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder

    2000-04-01

    The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.

  13. VehiHealth: An Emergency Routing Protocol for Vehicular Ad Hoc Network to Support Healthcare System.

    PubMed

    Bhoi, S K; Khilar, P M

    2016-03-01

    Survival of a patient depends on effective data communication in healthcare system. In this paper, an emergency routing protocol for Vehicular Ad hoc Network (VANET) is proposed to quickly forward the current patient status information from the ambulance to the hospital to provide pre-medical treatment. As the ambulance takes time to reach the hospital, ambulance doctor can provide sudden treatment to the patient in emergency by sending patient status information to the hospital through the vehicles using vehicular communication. Secondly, the experienced doctors respond to the information by quickly sending a treatment information to the ambulance. In this protocol, data is forwarded through that path which has less link breakage problem between the vehicles. This is done by calculating an intersection value I v a l u e for the neighboring intersections by using the current traffic information. Then the data is forwarded through that intersection which has minimum I v a l u e . Simulation results show VehiHealth performs better than P-GEDIR, GyTAR, A-STAR and GSR routing protocols in terms of average end-to-end delay, number of link breakage, path length, and average response time.

  14. Practical Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.

  15. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  16. Distributed Task Offloading in Heterogeneous Vehicular Crowd Sensing

    PubMed Central

    Liu, Yazhi; Wang, Wendong; Ma, Yuekun; Yang, Zhigang; Yu, Fuxing

    2016-01-01

    The ability of road vehicles to efficiently execute different sensing tasks varies because of the heterogeneity in their sensing ability and trajectories. Therefore, the data collection sensing task, which requires tempo-spatial sensing data, becomes a serious problem in vehicular sensing systems, particularly those with limited sensing capabilities. A utility-based sensing task decomposition and offloading algorithm is proposed in this paper. The utility function for a task executed by a certain vehicle is built according to the mobility traces and sensing interfaces of the vehicle, as well as the sensing data type and tempo-spatial coverage requirements of the sensing task. Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities of the neighboring vehicles to the decomposed sensing tasks. Real trace-driven simulation shows that the proposed task offloading is able to collect much more comprehensive and uniformly distributed sensing data than other algorithms. PMID:27428967

  17. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    PubMed Central

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-01-01

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency. PMID:25429409

  18. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less

  19. Advanced Gradient Heating Facility (AGHF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the publication includes papers entitled: (1) Coupled growth in hypermonotectics; (2) Directional solidification of refined Al-4 wt.% Cu alloys; (3) Effects of convection on interface curvature during growth of concentrated ternary compounds; (4) Directional solidification of Al-1.5 wt.% Ni alloys; (5) Interactive response of advancing phase boundaries to particles; (6) INTeractive Response of Advancing Phase boundaries to Particles-INTRAPP; and (7) Particle engulfment and pushing by solidifying interfaces.

  20. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less

  1. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  2. Radiative properties of advanced spacecraft heat shield materials

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  3. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  4. Advanced two-phase heat transfer systems

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Future large spacecraft, such as the Earth Observing System (EOS) platforms, will require a significantly more capable thermal control system than is possible with current 'passive' technology. Temperatures must be controlled much more tightly over a larger surface area. Numerous heat load sources will often be located inside the body of the spacecraft without a good view to space. Power levels and flux densities may be higher than can be accommodated with traditional technology. Integration and ground testing will almost certainly be much more difficult with such larger, more complex spacecraft. For these and similar reasons, the Goddard Space Flight Center (GSFC) has been developing a new, more capable thermal control technology called capillary pumped loops (CPL's). CPL's represent an evolutionary improvement over heat pipes; they can transport much greater quantities of heat over much longer distances and can serve numerous heat load sources. In addition, CPL's can be fabricated into large cold plates that can be held to tight thermal gradients. Development of this technology began in the early 1980's and is now reaching maturity. CPL's have recently been baselined for the EOS-AM platform (1997 launch) and the COMET spacecraft (1992 launch). This presentation describes this new technology and its applications. Most of the viewgraphs are self descriptive. For those that are less clear additional comments are provided.

  5. QoS-Oriented High Dynamic Resource Allocation in Vehicular Communication Networks

    PubMed Central

    2014-01-01

    Vehicular ad hoc networks (VANETs) are emerging as new research area and attracting an increasing attention from both industry and research communities. In this context, a dynamic resource allocation policy that maximizes the use of available resources and meets the quality of service (QoS) requirement of constraining applications is proposed. It is a combination of a fair packet scheduling policy and a new adaptive QoS oriented call admission control (CAC) scheme based on the vehicle density variation. This scheme decides whether the connection request is to be admitted into the system, while providing fair access and guaranteeing the desired throughput. The proposed algorithm showed good performance in testing in real world environment. PMID:24616639

  6. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation

  7. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis was conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  8. Advanced sensible heat solar receiver for space power

    NASA Technical Reports Server (NTRS)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  9. Accurate Traffic Flow Prediction in Heterogeneous Vehicular Networks in an Intelligent Transport System Using a Supervised Non-Parametric Classifier.

    PubMed

    El-Sayed, Hesham; Sankar, Sharmi; Daraghmi, Yousef-Awwad; Tiwari, Prayag; Rattagan, Ekarat; Mohanty, Manoranjan; Puthal, Deepak; Prasad, Mukesh

    2018-05-24

    Heterogeneous vehicular networks (HETVNETs) evolve from vehicular ad hoc networks (VANETs), which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs). The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore, Quality of Service (QoS) improvement of HETVNETs is one of the topics attracting the attention of researchers and the manufacturing community. Several methodologies and frameworks have been devised by researchers to address QoS-prediction service issues. In this paper, to improve QoS, we evaluate various traffic characteristics of HETVNETs and propose a new supervised learning model to capture knowledge on all possible traffic patterns. This model is a refinement of support vector machine (SVM) kernels with a radial basis function (RBF). The proposed model produces better results than SVMs, and outperforms other prediction methods used in a traffic context, as it has lower computational complexity and higher prediction accuracy.

  10. Improved ceramic heat exchange material

    NASA Technical Reports Server (NTRS)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  11. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    NASA Astrophysics Data System (ADS)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  12. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  13. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  14. BCDP: Budget Constrained and Delay-Bounded Placement for Hybrid Roadside Units in Vehicular Ad Hoc Networks

    PubMed Central

    Li, Peng; Huang, Chuanhe; Liu, Qin

    2014-01-01

    In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656

  15. Advanced spacecraft thermal control techniques

    NASA Technical Reports Server (NTRS)

    Fritz, C. H.

    1977-01-01

    The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.

  16. An Advanced Loop Heat Pipe for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Hoang, Triem

    2017-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device that can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  17. An Advanced Loop Heat Pipe for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Hoang, Triem

    2016-01-01

    A loop heat pipe (LHP) is a very versatile heat transfer device which can transport a large heat load over a long distance with a small temperature difference. All LHPs currently servicing orbiting spacecraft are designed to operate in the room temperature range. Future space telescopes and space-based Earth resource imaging satellites require passive cryogenic heat transport devices that can thermally couple remote cryocoolers to sensor or instrument of interest while providing the capability of payload vibration/jitter isolation, implementation of redundant coolers, and coupling of multiple sensors to a common heat sink. All of these requirements can be satisfied by using a cryogenic LHP (CLHP). Although the development of CLHPs faces several technical challenges, NASA Goddard Space Flight Center has devoted extensive efforts in developing CLHP technology over the past decade and has made significant progress. In particular, the combination of the innovative ideas of using a secondary capillary pump to manage the parasitic heat gain and using a hot reservoir to reduce the system pressure under the ambient condition has led to the successful development of the CLHP. Several CLHPs charged with nitrogen and hydrogen were built and tested in thermal vacuum chambers. These CLHPs demonstrated reliable start-up and robust operation during power cycle and sink temperature cycle tests.

  18. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  19. The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.

  20. Boise, Idaho: Improving Air Quality through Alternative Fuels & Reduced Vehicular Travel (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    This fact sheet "Boise, Idaho: Improving Air Quality through Alternative Fuels & Reduced Vehicular Travel" explains how the City of Boise used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  1. General phase transition models for vehicular traffic with point constraints on the flow

    NASA Astrophysics Data System (ADS)

    Dal Santo, E.; Rosini, M. D.; Dymski, N.; Benyahia, M.

    2017-12-01

    We generalize the phase transition model studied in [R. Colombo. Hyperbolic phase transition in traffic flow.\\ SIAM J.\\ Appl.\\ Math., 63(2):708-721, 2002], that describes the evolution of vehicular traffic along a one-lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the \\emph{free-flow} phase and by a system of two conservation laws in the \\emph{congested} phase. In particular, we study the resulting Riemann problems in the case a local point constraint on the flux of the solutions is enforced.

  2. Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India

    NASA Astrophysics Data System (ADS)

    Mishra, Dhirendra; Goyal, P.

    2014-12-01

    The estimation of vehicular emissions depends mainly on the values of emission factors, which are used for the development of a comprehensive emission inventory of vehicles. In this study the variations of emission factors as well as the emission rates have been studied in Delhi. The implementation of compressed natural gas (CNG), in the diesel and petrol, public vehicles in the year 2001 has changed the complete air quality scenario of Delhi. The dynamic emission factors of criteria pollutants viz. carbon monoxide (CO), nitrogen oxide (NOx) and particulate matter (PM10) for all types of vehicles have been developed after, which are based on the several factors such as regulated emission limits, number of vehicle deterioration, vehicle increment, vehicle age etc. These emission factors are found to be decreased continuously throughout the study years 2003-2012. The International Vehicle Emissions (IVE) model is used to estimate the emissions of criteria pollutants by utilizing a dataset available from field observations at different traffic intersections in Delhi. Thus the vehicular emissions, based on dynamic emission factors have been estimated for the years 2003-2012, which are found to be comparable with the monitored concentrations at different locations in Delhi. It is noticed that the total emissions of CO, NOx, and PM10 are increased by 45.63%, 68.88% and 17.92%, respectively up to the year 2012 and the emissions of NOx and PM10 are grown continuously with an annual average growth rate of 5.4% and 1.7% respectively.

  3. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must bemore » researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  4. Vehicular volatile organic compounds losses due to refueling and diurnal process in China: 2010-2050.

    PubMed

    Yang, Xiaofan; Liu, Huan; Cui, Hongyang; Man, Hanyang; Fu, Mingliang; Hao, Jiming; He, Kebin

    2015-07-01

    Volatile organic compounds (VOCs) are crucial to control air pollution in major Chinese cities since VOCs are the dominant factor influencing ambient ozone level, and also an important precursor of secondary organic aerosols. Vehicular evaporative emissions have become a major and growing source of VOC emissions in China. This study consists of lab tests, technology evaluation, emissions modeling, policy projections and cost-benefit analysis to draw a roadmap for China for controlling vehicular evaporative emissions. The analysis suggests that evaporative VOC emissions from China's light-duty gasoline vehicles were approximately 185,000 ton in 2010 and would peak at 1,200,000 ton in 2040 without control. The current control strategy implemented in China, as shown in business as usual (BAU) scenario, will barely reduce the long-term growth in emissions. Even if Stage II gasoline station vapor control policies were extended national wide (BAU+extended Stage II), there would still be over 400,000 ton fuel loss in 2050. In contrast, the implementation of on-board refueling vapor recovery (ORVR) on new cars could reduce 97.5% of evaporative VOCs by 2050 (BAU+ORVR/BAU+delayed ORVR). According to the results, a combined Stage II and ORVR program is a comprehensive solution that provides both short-term and long-term benefits. The net cost to achieve the optimal total evaporative VOC control is approximately 62 billion CNY in 2025 and 149 billion CNY in 2050. Copyright © 2015. Published by Elsevier B.V.

  5. Impact of texting laws on motor vehicular fatalities in the United States.

    PubMed

    Ferdinand, Alva O; Menachemi, Nir; Sen, Bisakha; Blackburn, Justin L; Morrisey, Michael; Nelson, Leonard

    2014-08-01

    Using a panel study design, we examined the effects of different types of texting bans on motor vehicular fatalities. We used the Fatality Analysis Reporting System and a difference-in-differences approach to examine the incidence of fatal crashes in 2000 through 2010 in 48 US states with and without texting bans. Age cohorts were constructed to examine the impact of these bans on age-specific traffic fatalities. Primarily enforced laws banning all drivers from texting were significantly associated with a 3% reduction in traffic fatalities in all age groups, and those banning only young drivers from texting had the greatest impact on reducing deaths among those aged 15 to 21 years. Secondarily enforced restrictions were not associated with traffic fatality reductions in any of our analyses.

  6. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  7. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less

  8. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  9. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city

    NASA Astrophysics Data System (ADS)

    González, C. M.; Gómez, C. D.; Rojas, N. Y.; Acevedo, H.; Aristizábal, B. H.

    2017-03-01

    Cities in emerging countries are facing a fast growth and urbanization; however, the study of air pollutant emissions and its dynamics is scarce, making their populations vulnerable to potential effects of air pollution. This situation is critical in medium-sized urban areas built along the tropical Andean mountains. This work assesses the contribution of on-road vehicular and point-source industrial activities in the medium-sized Andean city of Manizales, Colombia. Annual fluxes of criteria pollutants, NMVOC, and greenhouse gases were estimated. Emissions were dominated by vehicular activity, with more than 90% of total estimated releases for the majority of air pollutants. On-road vehicular emissions for CO (43.4 Gg/yr) and NMVOC (9.6 Gg/yr) were mainly associated with the use of motorcycles (50% and 81% of total CO and NMVOC emissions respectively). Public transit buses were the main source of PM10 (47%) and NOx (48%). The per-capita emission index was significantly higher in Manizales than in other medium-sized cities, especially for NMVOC, CO, NOx and CO2. The unique mountainous terrain of Andean cities suggest that a methodology based on VSP model could give more realistic emission estimates, with additional model components that include slope and acceleration. Food and beverage facilities were the main contributors of point-source industrial emissions for PM10 (63%), SOx (55%) and NOx (45%), whereas scrap metal recycling had high emissions of CO (73%) and NMVOC (47%). Results provide the baseline for ongoing research in atmospheric modeling and urban air quality, in order to improve the understanding of air pollutant fluxes, transport and transformation in the atmosphere. In addition, this emission inventory could be used as a tool to identify areas of public health exposure and provide information for future decision makers.

  10. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    PubMed

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  11. Verification and validation of an advanced model of heat and mass transfer in the protective clothing

    NASA Astrophysics Data System (ADS)

    Łapka, Piotr; Furmański, Piotr

    2018-04-01

    The paper presents verification and validation of an advanced numerical model of heat and moisture transfer in the multi-layer protective clothing and in components of the experimental stand subjected to either high surroundings temperature or high radiative heat flux emitted by hot objects. The developed model included conductive-radiative heat transfer in the hygroscopic porous fabrics and air gaps as well as conductive heat transfer in components of the stand. Additionally, water vapour diffusion in the pores and air spaces as well as phase transition of the bound water in the fabric fibres (sorption and desorption) were accounted for. All optical phenomena at internal or external walls were modelled and the thermal radiation was treated in the rigorous way, i.e., semi-transparent absorbing, emitting and scattering fabrics with the non-grey properties were assumed. The air was treated as transparent. Complex energy and mass balances as well as optical conditions at internal or external interfaces were formulated in order to find values of temperatures, vapour densities and radiation intensities at these interfaces. The obtained highly non-linear coupled system of discrete equations was solved by the Finite Volume based in-house iterative algorithm. The developed model passed discretisation convergence tests and was successfully verified against the results obtained applying commercial software for simplified cases. Then validation was carried out using experimental measurements collected during exposure of the protective clothing to high radiative heat flux emitted by the IR lamp. Satisfactory agreement of simulated and measured temporal variation of temperature at external and internal surfaces of the multi-layer clothing was attained.

  12. Advanced k-epsilon modeling of heat transfer

    NASA Technical Reports Server (NTRS)

    Kwon, Okey; Ames, Forrest E.

    1995-01-01

    This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.

  13. Exertional heat illness: emerging concepts and advances in prehospital care.

    PubMed

    Pryor, Riana R; Roth, Ronald N; Suyama, Joe; Hostler, David

    2015-06-01

    Exertional heat illness is a classification of disease with clinical presentations that are not always diagnosed easily. Exertional heat stroke is a significant cause of death in competitive sports, and the increasing popularity of marathons races and ultra-endurance competitions will make treating many heat illnesses more common for Emergency Medical Services (EMS) providers. Although evidence is available primarily from case series and healthy volunteer studies, the consensus for treating exertional heat illness, coupled with altered mental status, is whole body rapid cooling. Cold or ice water immersion remains the most effective treatment to achieve this goal. External thermometry is unreliable in the context of heat stress and direct internal temperature measurement by rectal or esophageal probes must be used when diagnosing heat illness and during cooling. With rapid recognition and implementation of effective cooling, most patients suffering from exertional heat stroke will recover quickly and can be discharged home with instructions to rest and to avoid heat stress and exercise for a minimum of 48 hours; although, further research pertaining to return to activity is warranted.

  14. Impact of Texting Laws on Motor Vehicular Fatalities in the United States

    PubMed Central

    Ferdinand, Alva O.; Blackburn, Justin L.; Morrisey, Michael; Nelson, Leonard

    2014-01-01

    Using a panel study design, we examined the effects of different types of texting bans on motor vehicular fatalities. We used the Fatality Analysis Reporting System and a difference-in-differences approach to examine the incidence of fatal crashes in 2000 through 2010 in 48 US states with and without texting bans. Age cohorts were constructed to examine the impact of these bans on age-specific traffic fatalities. Primarily enforced laws banning all drivers from texting were significantly associated with a 3% reduction in traffic fatalities in all age groups, and those banning only young drivers from texting had the greatest impact on reducing deaths among those aged 15 to 21 years. Secondarily enforced restrictions were not associated with traffic fatality reductions in any of our analyses. PMID:24922151

  15. Gas-phase ammonia and water-soluble ions in particulate matter analysis in an urban vehicular tunnel.

    PubMed

    Vieira-Filho, Marcelo S; Ito, Debora T; Pedrotti, Jairo J; Coelho, Lúcia H G; Fornaro, Adalgiza

    2016-10-01

    Ammonia is a key alkaline species, playing an important role by neutralizing atmospheric acidity and inorganic secondary aerosol production. On the other hand, the NH3/NH4 (+) increases the acidity and eutrophication in natural ecosystems, being NH3 classified as toxic atmospheric pollutant. The present study aims to give a better comprehension of the nitrogen content species distribution in fine and coarse particulate matter (PM2.5 and PM2.5-10) and to quantify ammonia vehicular emissions from an urban vehicular tunnel experiment in the metropolitan area of São Paulo (MASP). MASP is the largest megacity in South America, with over 20 million inhabitants spread over 2000 km(2) of urbanized area, which faces serious environmental problems. The PM2.5 and PM2.5-10 median mass concentrations were 44.5 and 66.6 μg m(-3), respectively, during weekdays. In the PM2.5, sulfate showed the highest concentration, 3.27 ± 1.76 μg m(-3), followed by ammonium, 1.14 ± 0.71 μg m(-3), and nitrate, 0.80 ± 0.52 μg m(-3). Likewise, the dominance (30 % of total PM2.5) of solid species, mainly the ammonium salts, NH4HSO4, (NH4)2SO4, and NH4NO3, resulted from simulation of inorganic species. The ISORROPIA simulation was relevant to show the importance of environment conditions for the ammonium phase distribution (solid/aqueous), which was solely aqueous at outside and almost entirely solid at inside tunnel. Regarding gaseous ammonia concentrations, the value measured inside the tunnel (46.5 ± 17.5 μg m(-3)) was 3-fold higher than that outside (15.2 ± 11.3 μg m(-3)). The NH3 vehicular emission factor (EF) estimated by carbon balance for urban tunnel was 44 ± 22 mg km(-1). From this EF value and considering the MASP traffic characteristics, it was possible to estimate more than 7 Gg NH3 year(-1) emissions that along with NOx are likely to cause rather serious problems to natural ecosystems in the region.

  16. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  17. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    NASA Astrophysics Data System (ADS)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral

  18. The environmental heat flux routine, version 4 (EHFR-4) and Multiple Reflections Routine (MRR), volume 1

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1973-01-01

    The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.

  19. Heat pipes for wing leading edges of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Boman, B. L.; Citrin, K. M.; Garner, E. C.; Stone, J. E.

    1990-01-01

    Wing leading edge heat pipes were conceptually designed for three types of vehicle: an entry research vehicle, aero-space plane, and advanced shuttle. A full scale, internally instrumented sodium/Hastelloy X heat pipe was successfully designed and fabricated for the advanced shuttle application. The 69.4 inch long heat pipe reduces peak leading edge temperatures from 3500 F to 1800 F. It is internally instrumented with thermocouples and pressure transducers to measure sodium vapor qualities. Large thermal gradients and consequently large thermal stresses, which have the potential of limiting heat pipe life, were predicted to occur during startup. A test stand and test plan were developed for subsequent testing of this heat pipe. Heat pipe manufacturing technology was advanced during this program, including the development of an innovative technique for wick installation.

  20. Heat receivers for solar dynamic space power systems

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  1. Wireless Video System for Extra Vehicular Activity in the International Space Station and Space Shuttle Orbiter Environment

    NASA Technical Reports Server (NTRS)

    Loh, Yin C.; Boster, John; Hwu, Shian; Watson, John C.; deSilva, Kanishka; Piatek, Irene (Technical Monitor)

    1999-01-01

    The Wireless Video System (WVS) provides real-time video coverage of astronaut extra vehicular activities during International Space Station (ISS) assembly. The ISS wireless environment is unique due to the nature of the ISS structure and multiple RF interference sources. This paper describes how the system was developed to combat multipath, blockage, and interference using an automatic antenna switching system. Critical to system performance is the selection of receiver antenna installation locations determined using Uniform Geometrical Theory of Diffraction (GTD) techniques.

  2. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level

  3. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  4. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  5. Performance of an Embedded Platform Aggregating and Executing Core Vehicular Interation for C4ISR/EW Interoperability (VICTORY) Services

    DTIC Science & Technology

    2012-08-01

    ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM AUGUST 14-16, TROY MICHIGAN Performance of an Embedded Platform Aggregating and Executing...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UBT Technologies,3250 W. Big Beaver Rd.,Ste. 329, Troy ,MI...Technology Symposium August 14-16 Troy , Michigan 14. ABSTRACT The Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Standard adopts many

  6. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Vara-Vela, A.; Andrade, M. F.; Kumar, P.; Ynoue, R. Y.; Muñoz, A. G.

    2016-01-01

    The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5; ≤ 2.5 µm in diameter) in the Sao Paulo Metropolitan Area (SPMA) in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem) model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August-6 September 2012) to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State) project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt) contributed with 40-50 % of the total PM10 (i.e. those ≤ 10 µm in diameter) concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the number of small particles impaired the

  7. 802.16e System Profile for NASA Extra-Vehicular Activities

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Chelmins, David T.; Nguyen, Hung D.; Downey, Joseph A.; Finn, Gregory G.; Cagley, Richard E.; Bakula, Casey J.

    2009-01-01

    This report identifies an 802.16e system profile that is applicable to a lunar surface wireless network, and specifically for meeting extra-vehicular activity (EVA) data flow requirements. EVA suit communication needs are addressed. Design-driving operational scenarios are considered. These scenarios are then used to identify a configuration of the 802.16e system (system profile) that meets EVA requirements, but also aim to make the radio realizable within EVA constraints. Limitations of this system configuration are highlighted. An overview and development status is presented by Toyon Research Corporation concerning the development of an 802.16e compatible modem under NASA s Small Business Innovative Research (SBIR) Program. This modem is based on the recommended system profile developed as part of this report. Last, a path forward is outlined that presents an evolvable solution for the EVA radio system and lunar surface radio networks. This solution is based on a custom link layer, and 802.16e compliant physical layer compliant to the identified system profile, and a later progression to a fully interoperable 802.16e system.

  8. An Autonomous Control System for an Intra-Vehicular Spacecraft Mobile Monitor Prototype

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Desiano, Salvatore D.; Gawdiak, Yuri; Nicewarner, Keith

    2003-01-01

    This paper presents an overview of an ongoing research and development effort at the NASA Ames Research Center to create an autonomous control system for an internal spacecraft autonomous mobile monitor. It primary functions are to provide crew support and perform intra- vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the mission roles and high-level functional requirements for an autonomous mobile monitor. The mobile monitor prototypes, of which two are operational and one is actively being designed, physical test facilities used to perform ground testing, including a 3D micro-gravity test facility, and simulators are briefly described. We provide an overview of the autonomy framework and describe each of its components, including those used for automated planning, goal-oriented task execution, diagnosis, and fault recovery. A sample mission test scenario is also described.

  9. Testing of active heat sink for advanced high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Feeler, Ryan; Junghans, Jeremy

    2011-03-01

    We report on the development of a novel active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink employs convective heat transfer by a liquid metal flowing at high speed inside a miniature sealed flow loop. Liquid metal flow in the loop is maintained electromagnetically without any moving parts. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the laser light wavelength. This paper presents the principles and challenges of liquid metal cooling, and data from testing at high heat flux and high heat loads.

  10. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  11. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks.

    PubMed

    Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea

    2016-11-01

    Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.

  12. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks

    PubMed Central

    Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea

    2016-01-01

    Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well. PMID:27809285

  13. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network.

    PubMed

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.

  14. Advanced concepts and solutions for geothermal heating applied in Oradea, Romania

    NASA Astrophysics Data System (ADS)

    Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.

    2017-01-01

    Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.

  15. A Group Based Key Sharing and Management Algorithm for Vehicular Ad Hoc Networks

    PubMed Central

    Moharram, Mohammed Morsi; Azam, Farzana

    2014-01-01

    Vehicular ad hoc networks (VANETs) are one special type of ad hoc networks that involves vehicles on roads. Typically like ad hoc networks, broadcast approach is used for data dissemination. Blind broadcast to each and every node results in exchange of useless and irrelevant messages and hence creates an overhead. Unicasting is not preferred in ad-hoc networks due to the dynamic topology and the resource requirements as compared to broadcasting. Simple broadcasting techniques create several problems on privacy, disturbance, and resource utilization. In this paper, we propose media mixing algorithm to decide what information should be provided to each user and how to provide such information. Results obtained through simulation show that fewer number of keys are needed to share compared to simple broadcasting. Privacy is also enhanced through this approach. PMID:24587749

  16. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    NASA Technical Reports Server (NTRS)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture to where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publicatoin5, in 2006 development was started to baseline Extra- Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the

  17. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    NASA Technical Reports Server (NTRS)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publication, in 2006 development was started to baseline Extra-Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the Contingency

  18. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1992-07-01

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with 'conventional' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  19. VOC from Vehicular Evaporation Emissions: Status and Control Strategy.

    PubMed

    Liu, Huan; Man, Hanyang; Tschantz, Michael; Wu, Ye; He, Kebin; Hao, Jiming

    2015-12-15

    Vehicular evaporative emissions is an important source of volatile organic carbon (VOC), however, accurate estimation of emission amounts and scientific evaluation of control strategy for these emissions have been neglected outside of the United States. This study provides four kinds of basic emission factors: diurnal, hot soak, permeation, and refueling. Evaporative emissions from the Euro 4 vehicles (1.6 kg/year/car) are about four times those of U.S. vehicles (0.4 kg/year/car). Closing this emissions gap would have a larger impact than the progression from Euro 3 to Euro 6 tailpipe HC emission controls. Even in the first 24 h of parking, China's current reliance upon the European 24 h diurnal standard results in 508 g/vehicle/year emissions, higher than 32 g/vehicle/year from Tier 2 vehicles. The U.S. driving cycle matches Beijing real-world conditions much better on both typical trip length and average speed than current European driving cycles. At least two requirements should be added to the Chinese emissions standards: an onboard refueling vapor recovery to force the canister to be sized sufficiently large, and a 48-h evaporation test requirement to ensure that adequate purging occurs over a shorter drive sequence.

  20. Fuzzy Logic-based Intelligent Scheme for Enhancing QoS of Vertical Handover Decision in Vehicular Ad-hoc Networks

    NASA Astrophysics Data System (ADS)

    Azzali, F.; Ghazali, O.; Omar, M. H.

    2017-08-01

    The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.

  1. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    NASA Astrophysics Data System (ADS)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  2. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fundamental frequency following the provisions of § 15.31(m). (3) For systems operating in the 23.12-29.0 GHz... with the transmitter operating continuously at a fundamental frequency. The video bandwidth of the... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband vehicular radar systems...

  3. Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Souto-Oliveira, Carlos Eduardo; de Fátima Andrade, Maria; Kumar, Prashant; Juliano da Silva Lopes, Fábio; Babinski, Marly; Landulfo, Eduardo

    2016-11-01

    Atmospheric aerosol is the primary source of cloud condensation nuclei (CCN). The microphysics and chemical composition of aerosols can affect cloud development and the precipitation process. Among studies conducted in Latin America, only a handful have reported the impact of urban aerosol on CCN activation parameters such as activation ratio (AR) and activation diameter (Dact). With over 20 million inhabitants, the Metropolitan Area of São Paulo (MASP) is the largest megacity in South America. To our knowledge, this is the first study to assess the impact that remote sources and new particle formation (NPF) events have on CCN activation properties in a South American megacity. The measurements were conducted in the MASP between August and September 2014. We measured the CCN within the 0.2-1.0 % range of supersaturation, together with particle number concentration (PNC) and particle number distribution (PND), as well as trace-element concentrations and black carbon (BC). NPF events were identified on 35 % of the sampling days. Combining multivariate analysis in the form of positive matrix factorization (PMF) with an aerosol profile from lidar and HYSPLIT model analyses allowed us to identify the main contribution of vehicular traffic on all days and sea salt and biomass burning from remote regions on 28 and 21 % of the sampling days, respectively. The AR and Dact parameters showed distinct patterns for daytime with intense vehicular traffic and nighttime periods. For example, CCN activation was lower during the daytime than during the nighttime periods, a pattern that was found to be associated mainly with local road-traffic emissions. A decrease in CCN activation was observed on the NPF event days, mainly due to high concentrations of particles with smaller diameters. We also found that aerosols from sea salt, industrial emissions, and biomass burning had minor effects on Dact. For example, nights with biomass burning and vehicular emissions showed slightly lower

  4. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

    PubMed Central

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead. PMID:27855165

  5. Advanced Computational Methods for Thermal Radiative Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weaponmore » resp onse in fire environments.« less

  6. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  7. AHP-based spatial analysis of water quality impact assessment due to change in vehicular traffic caused by highway broadening in Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Banerjee, Polash; Ghose, Mrinal Kanti; Pradhan, Ratika

    2018-05-01

    Spatial analysis of water quality impact assessment of highway projects in mountainous areas remains largely unexplored. A methodology is presented here for Spatial Water Quality Impact Assessment (SWQIA) due to highway-broadening-induced vehicular traffic change in the East district of Sikkim. Pollution load of the highway runoff was estimated using an Average Annual Daily Traffic-Based Empirical model in combination with mass balance model to predict pollution in the rivers within the study area. Spatial interpolation and overlay analysis were used for impact mapping. Analytic Hierarchy Process-Based Water Quality Status Index was used to prepare a composite impact map. Model validation criteria, cross-validation criteria, and spatial explicit sensitivity analysis show that the SWQIA model is robust. The study shows that vehicular traffic is a significant contributor to water pollution in the study area. The model is catering specifically to impact analysis of the concerned project. It can be an aid for decision support system for the project stakeholders. The applicability of SWQIA model needs to be explored and validated in the context of a larger set of water quality parameters and project scenarios at a greater spatial scale.

  8. Use of heat pipes in electronic hardware

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1977-01-01

    A modular, multiple output power converter was developed in order to reduce costs of space hardware in future missions. The converter is of reduced size and weight, and utilizes advanced heat removal techniques, in the form of heat pipes which remove internally generated heat more effectively than conventional methods.

  9. The Effect of Stabilization Heat Treatments on the Tensile and Creep Behavior of an Advanced Nickel-Based Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.

  10. Sensible heat receiver for solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  11. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  12. Sensible heat receiver for solar dynamic space power system

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  13. Diaphragm Stirling engine heat-actuated heat pump development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.A.; Swenson, P.

    1981-01-01

    The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less

  14. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  15. Plasma promoted manufacturing of hydrogen and vehicular applications

    NASA Astrophysics Data System (ADS)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  16. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  17. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  18. Automated Heat-Flux-Calibration Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.

  19. Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaodong; Zhang, Xiaoqin; Christensen, Richard

    The goal of the proposed research is to demonstrate the thermal hydraulic performance of innovative surface geometries in compact heat exchangers used as intermediate heat exchangers (IHXs) and recuperators for the supercritical carbon dioxide (s-CO 2) Brayton cycle. Printed-circuit heat exchangers (PCHEs) are the primary compact heat exchangers of interest. The overall objectives are: To develop optimized PCHE designs for different working fluid combinations including helium to s-CO 2, liquid salt to s-CO 2, sodium to s-CO 2, and liquid salt to helium; To experimentally and numerically investigate thermal performance, thermal stress and failure mechanism of PCHEs under various transients;more » and To study diffusion bonding techniques for elevated-temperature alloys and examine post-test material integrity of the PCHEs. The project objectives were accomplished by defining and executing five different tasks corresponding to these specific objectives. The first task involved a thorough literature review and a selection of IHX candidates with different surface geometries as well as a summary of prototypic operational conditions. The second task involved optimization of PCHE design with numerical analyses of thermal-hydraulic performances and mechanical integrity. The subsequent task dealt with the development of testing facilities and engineering design of PCHE to be tested in s-CO 2 fluid conditions. The next task involved experimental investigation and validation of the thermal-hydraulic performances and thermal stress distribution of prototype PCHEs manufactured with particular surface geometries. The last task involved an investigation of diffusion bonding process and posttest destructive testing to validate mechanical design methods adopted in the design process. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed s-CO 2 test loop

  20. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  1. Performance Improvement in Geographic Routing for Vehicular Ad Hoc Networks

    PubMed Central

    Kaiwartya, Omprakash; Kumar, Sushil; Lobiyal, D. K.; Abdullah, Abdul Hanan; Hassan, Ahmed Nazar

    2014-01-01

    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed. PMID:25429415

  2. Performance improvement in geographic routing for Vehicular Ad Hoc Networks.

    PubMed

    Kaiwartya, Omprakash; Kumar, Sushil; Lobiyal, D K; Abdullah, Abdul Hanan; Hassan, Ahmed Nazar

    2014-11-25

    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.

  3. Autonomous Car Parking System through a Cooperative Vehicular Positioning Network.

    PubMed

    Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose

    2017-04-13

    The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car.

  4. Autonomous Car Parking System through a Cooperative Vehicular Positioning Network

    PubMed Central

    Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose

    2017-01-01

    The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car. PMID:28406426

  5. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation

    PubMed Central

    Broumandan, Ali; Lachapelle, Gérard

    2018-01-01

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated. PMID:29695064

  6. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation.

    PubMed

    Broumandan, Ali; Lachapelle, Gérard

    2018-04-24

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated.

  7. Combined Heat and Power Protocol for Uniform Methods Project | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Combined Heat and Power Protocol for Uniform Methods Project Combined Heat and Power Protocol for Uniform Methods Project NREL developed a protocol that provides a ; is consistent with the scope and other protocols developed for the Uniform Methods Project (UMP

  8. Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs.

  9. Establishing a link between vehicular PM sources and PM measurements in urban street canyons.

    PubMed

    Eisner, Alfred D; Richmond-Bryant, Jennifer; Wiener, Russell W; Hahn, Intaek; Drake-Richman, Zora E; Ellenson, William D

    2009-12-01

    The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study, conducted in Brooklyn, NY, USA, in 2005, was designed with multiple goals in mind, two of which were contaminant source characterization and street canyon transport and dispersion monitoring. In the portion of the study described here, synchronized wind velocity and azimuth as well as particulate matter (PM) concentrations at multiple locations along 33rd Street were used to determine the feasibility of using traffic emissions in a complex urban topography as a sole tracer for studying urban contaminant transport. We demonstrate in this paper that it is possible to link downwind concentrations of contaminants in an urban street canyon to the vehicular traffic cycle using Eigen-frequency analysis. In addition, multivariable circular histograms are used to establish directional frequency maxima for wind velocity and contaminant concentration.

  10. PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: passive and active sampling measurements near industrial and vehicular pollution sources.

    PubMed

    Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H

    2014-09-01

    Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  12. Impact of vehicular networks on emergency medical services in urban areas.

    PubMed

    Lee, Chun-Liang; Huang, Chung-Yuan; Hsiao, Tzu-Chien; Wu, Chun-Yen; Chen, Yaw-Chung; Wang, I-Cheng

    2014-10-31

    The speed with which emergency personnel can provide emergency treatment is crucial to reducing death and disability among acute and critically ill patients. Unfortunately, the rapid development of cities and increased numbers of vehicles are preventing emergency vehicles from easily reaching locations where they are needed. A significant number of researchers are experimenting with vehicular networks to address this issue, but in most studies the focus has been on communication technologies and protocols, with few efforts to assess how network applications actually support emergency medical care. Our motivation was to search the literature for suggested methods for assisting emergency vehicles, and to use simulations to evaluate them. Our results and evidence-based studies were cross-referenced to assess each method in terms of cumulative survival ratio (CSR) gains for acute and critically ill patients. Simulation results indicate that traffic light preemption resulted in significant CSR increases of between 32.4% and 90.2%. Route guidance was found to increase CSRs from 14.1% to 57.8%, while path clearing increased CSRs by 15.5% or less. It is our hope that this data will support the efforts of emergency medical technicians, traffic managers, and policy makers.

  13. Impact of Vehicular Networks on Emergency Medical Services in Urban Areas

    PubMed Central

    Lee, Chun-Liang; Huang, Chung-Yuan; Hsiao, Tzu-Chien; Wu, Chun-Yen; Chen, Yaw-Chung; Wang, I.-Cheng

    2014-01-01

    The speed with which emergency personnel can provide emergency treatment is crucial to reducing death and disability among acute and critically ill patients. Unfortunately, the rapid development of cities and increased numbers of vehicles are preventing emergency vehicles from easily reaching locations where they are needed. A significant number of researchers are experimenting with vehicular networks to address this issue, but in most studies the focus has been on communication technologies and protocols, with few efforts to assess how network applications actually support emergency medical care. Our motivation was to search the literature for suggested methods for assisting emergency vehicles, and to use simulations to evaluate them. Our results and evidence-based studies were cross-referenced to assess each method in terms of cumulative survival ratio (CSR) gains for acute and critically ill patients. Simulation results indicate that traffic light preemption resulted in significant CSR increases of between 32.4% and 90.2%. Route guidance was found to increase CSRs from 14.1% to 57.8%, while path clearing increased CSRs by 15.5% or less. It is our hope that this data will support the efforts of emergency medical technicians, traffic managers, and policy makers. PMID:25365059

  14. Intelligent power management in a vehicular system with multiple power sources

    NASA Astrophysics Data System (ADS)

    Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul

    This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.

  15. Surface extra-vehicular activity emergency scenario management: Tools, procedures, and geologically related implications

    NASA Astrophysics Data System (ADS)

    Zea, Luis; Diaz, Alejandro R.; Shepherd, Charles K.; Kumar, Ranganathan

    2010-07-01

    Extra-vehicular activities (EVAs) are an essential part of human space exploration, but involve inherently dangerous procedures which can put crew safety at risk during a space mission. To help mitigate this risk, astronauts' training programs spend substantial attention on preparing for surface EVA emergency scenarios. With the help of two Mars Desert Research Station (MDRS) crews (61 and 65), wearing simulated spacesuits, the most important of these emergency scenarios were examined at three different types of locations that geologically and environmentally resemble lunar and Martian landscapes. These three platforms were analyzed geologically as well as topographically (utilizing a laser range finder with slope estimation capabilities and a slope determination software). Emergency scenarios were separated into four main groups: (1) suit issues, (2) general physiological, (3) attacks and (4) others. Specific tools and procedures were developed to address each scenario. The tools and processes were tested in the field under Mars-analog conditions with the suited subjects for feasibility and speed of execution.

  16. Vehicular crash data used to rank intersections by injury crash frequency and severity.

    PubMed

    Liu, Yi; Li, Zongzhi; Liu, Jingxian; Patel, Harshingar

    2016-09-01

    This article contains data on research conducted in "A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability" (Liu et al., 2016) [1]. The crash counts were sorted out from comprehensive crash records of over one thousand major signalized intersections in the city of Chicago from 2004 to 2010. For each intersection, vehicular crashes were counted by crash severity levels, including fatal, injury Types A, B, and C for major, moderate, and minor injury levels, property damage only (PDO), and unknown. The crash data was further used to rank intersections by equivalent injury crash frequency. The top 200 intersections with the highest number of crash occurrences identified based on crash frequency- and severity-based scenarios are shared in this brief. The provided data would be a valuable source for research in urban traffic safety analysis and could also be utilized to examine the effectiveness of traffic safety improvement planning and programming, intersection design enhancement, incident and emergency management, and law enforcement strategies.

  17. When You Smoke, They Smoke: Children's Rights and Opinions about Vehicular Smoking Bans

    NASA Astrophysics Data System (ADS)

    Tymko, Morgan Anne

    International law guarantees every person the highest attainable standard of health, and this should include protection from the health risks of environmental tobacco smoke. As knowledge of these risks has increased, there has been an incremental expansion of smoking bans in public space. Since 2007, they have extended to the private space of the motor vehicle in an attempt to protect child passengers. This thesis aimed to understand the views and interests of children and youth on vehicular smoking bans, and the extent to which these have been sought after and considered in previous discussions of this policy initiative in Canada. A print media analysis found a lack of concern for children's perspectives. Rights, when considered, were generally those of adults. In focus groups, children discussed the unfairness of exposure to smoke in any space, but especially within the motor vehicle, and articulated a desire for increased participation in decision-making. Keywords: Smoking, smoking bans, rights, children's opinions, vehicles, Canada.

  18. Evaluating vehicular-induced bridge vibrations for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Reichenbach, Matthew; Fasl, Jeremiah; Samaras, Vasilis A.; Wood, Sharon; Helwig, Todd; Lindenberg, Richard

    2012-04-01

    Highway bridges are vital links in the transportation network in the United States. Identifying possible safety problems in the approximately 600,000 bridges across the country is generally accomplished through labor-intensive, visual inspections. Ongoing research sponsored by NIST seeks to improve inspection practices by providing real-time, continuous monitoring technology for steel bridges. A wireless sensor network with a service life of ten years that is powered by an integrated energy harvester is targeted. In order to achieve the target ten-year life for the monitoring system, novel approaches to energy harvesting for use in recharging batteries are investigated. Three main sources of energy are evaluated: (a) vibrational energy, (b) solar energy, and (c) wind energy. Assessing the energy produced from vehicular-induced vibrations and converted through electromagnetic induction is the focus of this paper. The goal of the study is to process acceleration data and analyze the vibrational response of steel bridges to moving truck loads. Through spectral analysis and harvester modeling, the feasibility of vibration-based energy harvesting for longterm monitoring can be assessed. The effects of bridge conditions, ambient temperature, truck traffic patterns, and harvester position on the power content of the vibrations are investigated. With sensor nodes continually recharged, the proposed real-time monitoring system will operate off the power grid, thus reducing life cycle costs and enhancing inspection practices for state DOTs. This paper will present the results of estimating the vibration energy of a steel bridge in Texas.

  19. The influence of EI-21 redox ion-exchange resins on the secondary-coolant circuit water chemistry of vehicular nuclear power installations

    NASA Astrophysics Data System (ADS)

    Moskvin, L. N.; Rakov, V. T.

    2015-06-01

    The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.

  20. Performance demonstration of hydrogen advanced loop heat pipe for 20-30K cryocooling of far infrared sensors

    NASA Astrophysics Data System (ADS)

    Hoang, Triem T.; O'Connell, Tamara A.; Ku, Jentung; Butler, C. D.; Swanson, Theodore D.

    2005-08-01

    The James Webb Space Telescope (JWST) program have identified the need for cryogenic cooling transport devices that (i) provide robust/reliable thermal management for Infrared (IR) sensors/detectors in the temperature range of 20-30K, (ii) minimize vibration effects of mechanical cryocoolers on the instruments, (iii) reduce spatial temperature gradients in cryogenic components, and (iv) afford long continuous service life of the telescope. Passive two-phase capillary cooling technologies such as heat pipes, Loop Heat Pipes (LHPs), and Capillary pumped Loops (CPLs) have proven themselves capable of performing necessary thermal control functions for room temperature applications. They have no mechanical moving part to wear out or to introduce unwanted vibration to the instruments and, hence, are reliable and maintenancefree. However, utilizing these capillary devices for cryogenic cooling still remains a challenge because of difficulties involving the system start-up and operation in a warm environment. An advanced concept of LHP using Hydrogen as the working fluid was recently developed to demonstrate the cryocooling transport capabilities in the temperature range of 20-30K. A full-size demonstration test loop - appropriately called H2-ALHP_2 - was constructed and performance tested extensively in a thermal vacuum chamber. It was designed specifically to manage "heat parasitics" from a warm surrounding, enabling it to start up from an initially supercritical state and operate without requiring a rigid heat shield. Like room temperature LHPs, the H2-ALHP transport lines were made of small-diameter stainless steel tubing that are flexible enough to isolate the cryocooler-induced vibration from the IR instruments. In addition, focus of the H2-ALHP research and development effort was also placed on the system weight saving for space-based applications.

  1. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  2. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  3. Transformation thermodynamics and heat cloaking: a review

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Liu, Yichao; Lee, El Hang; Ma, Yungui

    2016-04-01

    This article is a review of the advances and progresses in the field of heat cloaking which is being realized using metamaterials. Heat cloaking has been a particularly important subject of study due to its potential multidimensional applications. The process which manipulates the heat flux in such a way that it can neither enter into the cloaked region nor be distorted outside is called thermal cloaking. Transformation optics has made the hitherto inconceivable advancements in the field of thermodynamics possible with the remarkable assistance of metamaterials. In this article we present a review of the work done in the field of heat cloaking, its progress and outlook. We discuss the theoretical and experimental studies, models, design managements, implementations and behaviors of thermal invisibility cloaking and related devices. This review is intended to help further develop practical and applicable concepts, examine fabrication techniques for a variety of different invisibility cloaking devices and systems, and to pave a way for the new avenues leading to new future technologies.

  4. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  5. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  6. Advanced EMU Portable Life Support System (PLSS) and Shuttle/ISS EMU Schematics, a Comparison

    NASA Technical Reports Server (NTRS)

    Campbell, Colin

    2012-01-01

    In order to be able to adapt to differing vehicle interfaces such as suitport and airlock, adjust to varying vehicle pressure schedules, tolerate lower quality working fluids, and adapt to differing suit architectures as dictated by a range of mission architectures, the next generation space suit requires more adaptability and robustness over that of the current Shuttle/ISS Extra-vehicular Mobility Unit (EMU). While some features have been added to facilitate interfaces to differing vehicle and suit architectures, the key performance gains have been made via incorporation of new technologies such as the variable pressure regulators, Rapid Cycle Amine swing-bed, and Suit Water Membrane Evaporator. This paper performs a comparison between the Shuttle/ISS EMU PLSS schematic and the Advanced EMU PLSS schematic complete with a discussion for each difference.

  7. Vehicular air pollution, playgrounds, and youth athletic fields.

    PubMed

    Rundell, Kenneth W; Caviston, Renee; Hollenbach, Amanda M; Murphy, Kerri

    2006-07-01

    In spite of epidemiological evidence concerning vehicular air pollution and adverse respiratory/cardiovascular health, many athletic fields and school playgrounds are adjacent to high traffic roadways and could present long-term health risks for exercising children and young adults. Particulate matter (PM(1),0.02-1.0 microm diameter) number counts were taken serially at four elementary school athletic/playground fields and at one university soccer field. Elementary school PM1 measurements were taken over 17 days; measurements at the university soccer field were taken over 62 days. The high-traffic-location elementary school field demonstrated higher 17-day [PM1] than the moderate and 2 low traffic elementary school fields (48,890 +/- 34,260, 16,730 +/- 10,550, 11,960 +/- 6680, 10,030 +/- 6280, respective mean counts; p < .05). The 62-day mean PM1 values at the university soccer field ranged from 115,000 to 134,000 particles cm(-3). Lowest mean values were recorded at measurement sites furthest from the highway (approximately 34,000 particles cm(-3)) and followed a second-order logarithmic decay (R2 = .999) with distance away from the highway. Mean NO2 and SO2 levels were below 100 ppb, mean CO was 0.33 +/- 1.87 ppm, and mean O3 was 106 +/- 47 ppb. Ozone increased with rising temperature and was highest in the warmer afternoon hours (R = .61). Although the consequence of daily recess play and athletic activities by school children and young athletes in high ambient [PM1] conditions has not yet been clearly defined, this study is a critical component to evaluating functional effects of chronic combustion-derived PM exposure on these exercising schoolchildren and young adults. Future studies should examine threshold limits and mechanistic actions of real-world particle exposure.

  8. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, includingmore » commercial and residential buildings, data centers, and telecom facilities.« less

  9. Heating Structures Derived from Satellite

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.

    2004-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.

  10. Verifying Safety Messages Using Relative-Time and Zone Priority in Vehicular Ad Hoc Networks.

    PubMed

    Banani, Sam; Gordon, Steven; Thiemjarus, Surapa; Kittipiyakul, Somsak

    2018-04-13

    In high-density road networks, with each vehicle broadcasting multiple messages per second, the arrival rate of safety messages can easily exceed the rate at which digital signatures can be verified. Since not all messages can be verified, algorithms for selecting which messages to verify are required to ensure that each vehicle receives appropriate awareness about neighbouring vehicles. This paper presents a novel scheme to select important safety messages for verification in vehicular ad hoc networks (VANETs). The proposed scheme uses location and direction of the sender, as well as proximity and relative-time between vehicles, to reduce the number of irrelevant messages verified (i.e., messages from vehicles that are unlikely to cause an accident). Compared with other existing schemes, the analysis results show that the proposed scheme can verify messages from nearby vehicles with lower inter-message delay and reduced packet loss and thus provides high level of awareness of the nearby vehicles.

  11. Evaluating the performance of vehicular platoon control under different network topologies of initial states

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Li, Kezhi; Zheng, Taixiong; Hu, Xiangdong; Feng, Huizong; Li, Yinguo

    2016-05-01

    This study proposes a feedback-based platoon control protocol for connected autonomous vehicles (CAVs) under different network topologies of initial states. In particularly, algebraic graph theory is used to describe the network topology. Then, the leader-follower approach is used to model the interactions between CAVs. In addition, feedback-based protocol is designed to control the platoon considering the longitudinal and lateral gaps simultaneously as well as different network topologies. The stability and consensus of the vehicular platoon is analyzed using the Lyapunov technique. Effects of different network topologies of initial states on convergence time and robustness of platoon control are investigated. Results from numerical experiments demonstrate the effectiveness of the proposed protocol with respect to the position and velocity consensus in terms of the convergence time and robustness. Also, the findings of this study illustrate the convergence time of the control protocol is associated with the initial states, while the robustness is not affected by the initial states significantly.

  12. Verifying Safety Messages Using Relative-Time and Zone Priority in Vehicular Ad Hoc Networks

    PubMed Central

    Banani, Sam; Thiemjarus, Surapa; Kittipiyakul, Somsak

    2018-01-01

    In high-density road networks, with each vehicle broadcasting multiple messages per second, the arrival rate of safety messages can easily exceed the rate at which digital signatures can be verified. Since not all messages can be verified, algorithms for selecting which messages to verify are required to ensure that each vehicle receives appropriate awareness about neighbouring vehicles. This paper presents a novel scheme to select important safety messages for verification in vehicular ad hoc networks (VANETs). The proposed scheme uses location and direction of the sender, as well as proximity and relative-time between vehicles, to reduce the number of irrelevant messages verified (i.e., messages from vehicles that are unlikely to cause an accident). Compared with other existing schemes, the analysis results show that the proposed scheme can verify messages from nearby vehicles with lower inter-message delay and reduced packet loss and thus provides high level of awareness of the nearby vehicles. PMID:29652840

  13. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-01-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  14. Heat-transfer optimization of a high-spin thermal battery

    NASA Astrophysics Data System (ADS)

    Krieger, Frank C.

    Recent advancements in thermal battery technology have produced batteries incorporating a fusible material heat reservoir for operating temperature control that operate reliably under the high spin rates often encountered in ordnance applications. Attention is presently given to the heat-transfer optimization of a high-spin thermal battery employing a nonfusible steel heat reservoir, on the basis of a computer code that simulated the effect of an actual fusible material heat reservoir on battery performance. Both heat paper and heat pellet employing thermal battery configurations were considered.

  15. Preliminary Development of a Multifunctional Hot Structure Heat Shield

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V

    2014-01-01

    Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.

  16. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical optics sovereign phacoemulsification systems.

    PubMed

    Floyd, Michael S; Valentine, Jeremy R; Olson, Randall J

    2006-09-01

    To study heat generation, vacuum, and flow characteristics of the Alcon Infiniti and Bausch & Lomb Millennium with results compared with the Alcon Legacy and advanced medical optics (AMO) Sovereign machines previously studied. Experimental study. Heat generation with continuous ultrasound was determined with and without a 200-g weight. Flow and vacuum were determined from 12 to 40-ml/min in 2-ml/min steps. The impact of a STAAR Cruise Control was also tested. Millennium created the most heat/20% of power (5.67 +/- 0.51 degrees C unweighted and 6.80 +/- 0.80 degrees C weighted), followed by Sovereign (4.59 +/- 0.70 degrees C unweighted and 5.65 +/- 0.72 degrees C weighted), Infiniti (2.79 +/- 0.62 degrees C unweighted and 3.96 +/- 0.31 degrees C weighted), and Legacy (1.99 +/- 0.49 degrees C unweighted and 4.27 +/- 0.76 degrees C weighted; P < .0001 for all comparisons between machines except Infiniti vs Legacy, both weighted). Flow studies revealed that Millennium Peristaltic was 17% less than indicated (P < .0001 to all other machines), and all other machines were within 3.5% of indicated. Cruise Control decreased flow by 4.1% (P < .0001 for same machine without it). Millennium Venturi had the greatest vacuum (81% more than the least Sovereign; P < .0001), and Cruise Control increased vacuum in a peristaltic machine 35% more than the Venturi system (P < .0001). Percent power is not consistent in regard to heat generation, however, flow was accurate for all machines except Millennium Peristaltic. Restriction with Cruise Control elevates unoccluded vacuum to levels greater than the Venturi system tested.

  17. Metabolic heat production, heat loss and the circadian rhythm of body temperature in the rat.

    PubMed

    Refinetti, Roberto

    2003-05-01

    Metabolic heat production (calculated from oxygen consumption), dry heat loss (measured in a calorimeter) and body temperature (measured by telemetry) were recorded simultaneously at 6 min intervals over five consecutive days in rats maintained in constant darkness. Robust circadian rhythmicity (confirmed by chi square periodogram analysis) was observed in all three variables. The rhythm of heat production was phase-advanced by about half an hour in relation to the body temperature rhythm, whereas the rhythm of heat loss was phase-delayed by about half an hour. The balance of heat production and heat loss exhibited a daily oscillation 180 deg out of phase with the oscillation in body temperature. Computations indicated that the amount of heat associated with the generation of the body temperature rhythm (1.6 kJ) corresponds to less than 1 % of the total daily energy budget (172 kJ) in this species. Because of the small magnitude of the fraction of heat balance associated with the body temperature rhythm, it is likely that the daily oscillation in heat balance has a very slow effect on body temperature, thus accounting for the 180 deg phase difference between the rhythms of heat balance and body temperature.

  18. The Design and Testing of the LSSIF Advanced Thermal Control System

    NASA Technical Reports Server (NTRS)

    Henson, Robert A.; Keller, John R.

    1995-01-01

    The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.

  19. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  20. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  1. ASME Material Challenges for Advanced Reactor Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less

  2. Stirling Engine Heat Pump

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  3. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  4. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell; Schifer, Nicholas

    2011-01-01

    Test hardware used to validate net heat prediction models. Problem: Net Heat Input cannot be measured directly during operation. Net heat input is a key parameter needed in prediction of efficiency for convertor performance. Efficiency = Electrical Power Output (Measured) divided by Net Heat Input (Calculated). Efficiency is used to compare convertor designs and trade technology advantages for mission planning.

  5. Two-dimensional heat flow apparatus

    NASA Astrophysics Data System (ADS)

    McDougall, Patrick; Ayars, Eric

    2014-06-01

    We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.

  6. Provisioning Vehicular Services and Communications Based on a Bluetooth Sensor Network Deployment

    PubMed Central

    Perez-Diaz de Cerio, David; Valenzuela, José Luis

    2015-01-01

    It is very common to rule out Bluetooth as a suitable technology for vehicular communications. The reasons behind this decision usually result from misconceptions such as accepting that Bluetooth has a short application range, or assuming its connection setup is not fast enough to allow communication which involves high speed moving nodes. This paper refutes those assertions and proposes the use of Bluetooth not only for Infrastructure-to-Vehicle (I2V) or Road-to-Vehicle (R2V) communications, but also for Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communications. This novel proposal is based on using the remote name request procedure of the standard, combined with an adjustment and optimization of the parameters present in the inquiry and page procedures. The proposed modifications reduce the information exchange delay, thus making Bluetooth a suitable technology for high-speed vehicle communications. The feasibility of the proposed scheme has been validated through experimental tests conducted in different scenarios: laboratory, a real highway and a racing test circuit. There, the communication system was installed in a vehicle circulating at speeds of up to 250 km/h, whereas autonomous devices were disseminated throughout the road path to communicate with the on board devices obtaining satisfying results. PMID:26035350

  7. Provisioning vehicular services and communications based on a bluetooth sensor network deployment.

    PubMed

    de Cerio, David Perez-Diaz; Valenzuela, José Luis

    2015-05-29

    It is very common to rule out Bluetooth as a suitable technology for vehicular communications. The reasons behind this decision usually result from misconceptions such as accepting that Bluetooth has a short application range, or assuming its connection setup is not fast enough to allow communication which involves high speed moving nodes. This paper refutes those assertions and proposes the use of Bluetooth not only for Infrastructure-to-Vehicle (I2V) or Road-to-Vehicle (R2V) communications, but also for Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communications. This novel proposal is based on using the remote name request procedure of the standard, combined with an adjustment and optimization of the parameters present in the inquiry and page procedures. The proposed modifications reduce the information exchange delay, thus making Bluetooth a suitable technology for high-speed vehicle communications. The feasibility of the proposed scheme has been validated through experimental tests conducted in different scenarios: laboratory, a real highway and a racing test circuit. There, the communication system was installed in a vehicle circulating at speeds of up to 250 km/h, whereas autonomous devices were disseminated throughout the road path to communicate with the on board devices obtaining satisfying results.

  8. An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks

    PubMed Central

    Tan, Guozhen; Yu, Chao

    2017-01-01

    Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety (transport efficiency and infotainment) applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. Different types of applications require different levels Quality-of-Service (QoS) support. Recently, transport efficiency and infotainment applications (e.g., electronic map download and Internet access) have received more and more attention, and this kind of applications is expected to become a big market driver in a near future. In this paper, we propose an Efficient and QoS supported Multichannel Medium Access Control (EQM-MAC) protocol for VANETs in a highway environment. The EQM-MAC protocol utilizes the service channel resources for non-safety message transmissions during the whole synchronization interval, and it dynamically adjusts minimum contention window size for different non-safety services according to the traffic conditions. Theoretical model analysis and extensive simulation results show that the EQM-MAC protocol can support QoS services, while ensuring the high saturation throughput and low transmission delay for non-safety applications. PMID:28991217

  9. Thermal induced flow oscillations in heat exchangers for supercritical fluids

    NASA Technical Reports Server (NTRS)

    Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.

    1972-01-01

    Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.

  10. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress.

    PubMed

    Van Goor, Angelica; Bolek, Kevin J; Ashwell, Chris M; Persia, Mike E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2015-12-17

    Losses in poultry production due to heat stress have considerable negative economic consequences. Previous studies in poultry have elucidated a genetic influence on response to heat. Using a unique chicken genetic resource, we identified genomic regions associated with body temperature (BT), body weight (BW), breast yield, and digestibility measured during heat stress. Identifying genes associated with a favorable response during high ambient temperature can facilitate genetic selection of heat-resilient chickens. Generations F18 and F19 of a broiler (heat-susceptible) × Fayoumi (heat-resistant) advanced intercross line (AIL) were used to fine-map quantitative trait loci (QTL). Six hundred and thirty-one birds were exposed to daily heat cycles from 22 to 28 days of age, and phenotypes were measured before heat treatment, on the 1st day and after 1 week of heat treatment. BT was measured at these three phases and BW at pre-heat treatment and after 1 week of heat treatment. Breast muscle yield was calculated as the percentage of BW at day 28. Ileal feed digestibility was assayed from digesta collected from the ileum at day 28. Four hundred and sixty-eight AIL were genotyped using the 600 K Affymetrix chicken SNP (single nucleotide polymorphism) array. Trait heritabilities were estimated using an animal model. A genome-wide association study (GWAS) for these traits and changes in BT and BW was conducted using Bayesian analyses. Candidate genes were identified within 200-kb regions around SNPs with significant association signals. Heritabilities were low to moderate (0.03 to 0.35). We identified QTL for BT on Gallus gallus chromosome (GGA)14, 15, 26, and 27; BW on GGA1 to 8, 10, 14, and 21; dry matter digestibility on GGA19, 20 and 21; and QTL of very large effect for breast muscle yield on GGA1, 15, and 22 with a single 1-Mb window on GGA1 explaining more than 15% of the genetic variation. This is the first study to estimate heritabilities and perform GWAS using this

  11. Sound and heat revolutions in phononics

    NASA Astrophysics Data System (ADS)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  12. Using Hybrid Angle/Distance Information for Distributed Topology Control in Vehicular Sensor Networks

    PubMed Central

    Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu

    2014-01-01

    In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs. PMID:25350506

  13. Modelling and Simulation on Multibody Dynamics for Vehicular Cold Launch Systems Based on Subsystem Synthesis Method

    NASA Astrophysics Data System (ADS)

    Panyun, YAN; Guozhu, LIANG; Yongzhi, LU; Zhihui, QI; Xingdou, GAO

    2017-12-01

    The fast simulation of the vehicular cold launch system (VCLS) in the launch process is an essential requirement for practical engineering applications. In particular, a general and fast simulation model of the VCLS will help the designer to obtain the optimum scheme in the initial design phase. For these purposes, a system-level fast simulation model was established for the VCLS based on the subsystem synthesis method. Moreover, a comparison of the load of a seven-axis VCLS on the rigid ground through both theoretical calculations and experiments was carried out. It was found that the error of the load of the rear left outrigger is less than 7.1%, and the error of the total load of all the outriggers is less than 2.8%. Moreover, time taken for completion of the simulation model is only 9.5 min, which is 5% of the time taken by conventional algorithms.

  14. Heat-exchanger concepts for neutral-beam calorimeters

    NASA Astrophysics Data System (ADS)

    Thompson, C. C.; Polk, D. H.; McFarlin, D. J.; Stone, R.

    1981-10-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included: (1) smooth tube/straight flow; (2) smooth tube with swirl flow created by tangential injection of the coolant; and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/sq cm was obtained for the molybdenum tube swirl flow configuration.

  15. Spatial Manipulation of Heat Flow by Surface Boundaries at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Malhotra, Abhinav; Maldovan, Martin

    The precise manipulation of phonon transport properties is central to controlling thermal transport in semiconductor nanostructures. The physical understanding, prediction, and control of thermal phonon heat spectra and thermal conductivity accumulation functions - which establish the proportion of heat transported by phonons with different frequencies and mean-free-paths - has attracted significant attention in recent years. In this talk, we advance the possibilities of manipulating heat by spatially modulating thermal transport in nanostructures. We show that phonon scattering at interfaces impacts the most preferred physical pathway used by heat energy flow in thermal transport in nanostructures. The role of introducing boundaries with different surface conditions on resultant thermal flux is presented and methodologies to enhance these spatial modulations are discussed. This talk aims to advance the fundamental understanding on the nature of heat transport at nanoscale with potential applications in multiple research areas ranging from energy materials to optoelectronics.

  16. Heat exchangers in regenerative gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Nina, M. N. R.; Aguas, M. P. N.

    1985-09-01

    Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.

  17. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  18. Advanced solar box and flat plate collector cookers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grupp, M.; Bergler, H.

    Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.

  19. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be

  20. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  1. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    NASA Technical Reports Server (NTRS)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  2. Comparable Systems Analysis: Design and Operation of Advanced Control Centers

    DOT National Transportation Integrated Search

    2011-12-01

    This paper examines next generation wide-area cellular such as fourth generation (4G) will be able to support vehicular applications, and how transportation infrastructure may mesh with wireless networks. This report is part of the Connected Vehicle ...

  3. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.

    2016-10-01

    As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.

  4. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  5. Detecting Abnormal Vehicular Dynamics at Intersections Based on an Unsupervised Learning Approach and a Stochastic Model

    PubMed Central

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616

  6. Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model.

    PubMed

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems.

  7. Wave heating of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  8. Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss

    PubMed Central

    Nielsen, Merlyn K.; Thorn, Stephanie R.; Valdar, William; Pomp, Daniel

    2014-01-01

    Obesity in human populations, currently a serious health concern, is considered to be the consequence of an energy imbalance in which more energy in calories is consumed than is expended. We used interval mapping techniques to investigate the genetic basis of a number of energy balance traits in an F11 advanced intercross population of mice created from an original intercross of lines selected for increased and decreased heat loss. We uncovered a total of 137 quantitative trait loci (QTLs) for these traits at 41 unique sites on 18 of the 20 chromosomes in the mouse genome, with X-linked QTLs being most prevalent. Two QTLs were found for the selection target of heat loss, one on distal chromosome 1 and another on proximal chromosome 2. The number of QTLs affecting the various traits generally was consistent with previous estimates of heritabilities in the same population, with the most found for two bone mineral traits and the least for feed intake and several body composition traits. QTLs were generally additive in their effects, and some, especially those affecting the body weight traits, were sex-specific. Pleiotropy was extensive within trait groups (body weights, adiposity and organ weight traits, bone traits) and especially between body composition traits adjusted and not adjusted for body weight at sacrifice. Nine QTLs were found for one or more of the adiposity traits, five of which appeared to be unique. The confidence intervals among all QTLs averaged 13.3 Mb, much smaller than usually observed in an F2 cross, and in some cases this allowed us to make reasonable inferences about candidate genes underlying these QTLs. This study combined QTL mapping with genetic parameter analysis in a large segregating population, and has advanced our understanding of the genetic architecture of complex traits related to obesity. PMID:24918027

  9. Detecting driver fatigue through the use of advanced face monitoring techniques

    DOT National Transportation Integrated Search

    2001-09-01

    Driver fatigue is an important factor in many vehicular accidents.Reducing the number of fatigue-related accidents would save : society a significant amount financially,in addition to reducing personal suffering.The researchers developed a driver fat...

  10. Behaviour of tunnel lining material in road tunnel fire

    NASA Astrophysics Data System (ADS)

    Tomar, M.; Khurana, S.; Singh, R.

    2018-04-01

    The worldwide road tunnel linings are protected against possible fire scenarios to safeguard the structure and assist in occupant evacuation. There are various choices of active and passive protection available, passive protections includes calcium silicate boards, polypropylene fibers, vermiculite cement based sprays, and other intumescent materials. Tunnel fire is a complex phenomenon and researchers in the past has highlighted that there are various factors which affect the tunnel fires. The effect of passive protection techniques on tunnel fire is not well understood, especially for the insulation boards. It’s been understood from past research that for a heavy good vehicular (HGV) fire in the tunnel, the heat feedback effect is significant. Insulation boards may also affect the tunnel fires by altering the heat feedback effect in vehicular tunnels and hence this can affect the overall heat release rates and temperature profile inside a tunnel. This study focuses on studying the role of insulation boards in tunnel fires and evaluating its effect on overall heat release rate and tunnel temperatures.

  11. Development of advanced high heat flux and plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  12. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  13. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    PubMed

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  14. High-resolution hot-film measurement of surface heat flux to an impinging jet

    NASA Astrophysics Data System (ADS)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  15. Heat-Flux Sensor For Hot Engine Cylinders

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Barrows, Richard F.; Smith, Floyd A.; Koch, John

    1989-01-01

    Heat-flux sensor includes buried wire thermocouple and thin-film surface thermocouple, made of platinum and platinum with 13 percent rhodium. Sensor intended for use in ceramic-insulated, low-heat-rejection diesel engine at temperatures of about 1,000 K. Thermocouple junction resists environment in cylinder of advanced high-temperature diesel engine created by depositing overlapping films of Pt and 0.87 Pt/0.13 Rh on iron plug. Plug also contains internal thermocouple.

  16. SmartVeh: Secure and Efficient Message Access Control and Authentication for Vehicular Cloud Computing.

    PubMed

    Huang, Qinlong; Yang, Yixian; Shi, Yuxiang

    2018-02-24

    With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC.

  17. SmartVeh: Secure and Efficient Message Access Control and Authentication for Vehicular Cloud Computing

    PubMed Central

    Yang, Yixian; Shi, Yuxiang

    2018-01-01

    With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC. PMID:29495269

  18. TripSense: A Trust-Based Vehicular Platoon Crowdsensing Scheme with Privacy Preservation in VANETs

    PubMed Central

    Hu, Hao; Lu, Rongxing; Huang, Cheng; Zhang, Zonghua

    2016-01-01

    In this paper, we propose a trust-based vehicular platoon crowdsensing scheme, named TripSense, in VANET. The proposed TripSense scheme introduces a trust-based system to evaluate vehicles’ sensing abilities and then selects the more capable vehicles in order to improve sensing results accuracy. In addition, the sensing tasks are accomplished by platoon member vehicles and preprocessed by platoon head vehicles before the data are uploaded to server. Hence, it is less time-consuming and more efficient compared with the way where the data are submitted by individual platoon member vehicles. Hence it is more suitable in ephemeral networks like VANET. Moreover, our proposed TripSense scheme integrates unlinkable pseudo-ID techniques to achieve PM vehicle identity privacy, and employs a privacy-preserving sensing vehicle selection scheme without involving the PM vehicle’s trust score to keep its location privacy. Detailed security analysis shows that our proposed TripSense scheme not only achieves desirable privacy requirements but also resists against attacks launched by adversaries. In addition, extensive simulations are conducted to show the correctness and effectiveness of our proposed scheme. PMID:27258287

  19. A contemporary view of coronal heating.

    PubMed

    Parnell, Clare E; De Moortel, Ineke

    2012-07-13

    Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that 'coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.

  20. Wave heating of the solar atmosphere

    PubMed Central

    Arregui, Iñigo

    2015-01-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere. PMID:25897091

  1. Brayton-cycle heat exchanger technology program

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  2. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  3. Numerical simulations of loops heated to solar flare temperatures. III - Asymmetrical heating

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.; Doschek, G. A.; Karpen, J. T.

    1984-01-01

    A numerical model is defined for asymmetric full solar flare loop heating and comparisons are made with observational data. The Dynamic Flux Tube Model is used to describe the heating process in terms of one-dimensional, two fluid conservation equations of mass, energy and momentum. An adaptive grid allows for the downward movement of the transition region caused by an advancing conduction front. A loop 20,000 km long is considered, along with a flare heating system and the hydrodynamic evolution of the loop. The model was applied to generating line profiles and spatial X-ray and UV line distributions, which were compared with SMM, P78-1 and Hintori data for Fe, Ca and Mg spectra. Little agreement was obtained, and it is suggested that flares be treated as multi-loop phenomena. Finally, it is concluded that chromospheric evaporation is not an effective mechanism for generating the soft X-ray bursts associated with flares.

  4. Passive Solar still: Recent advancement in design and related Performance.

    PubMed

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  5. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  6. Evaluating the impacts of grades on vehicular speeds on interstate highways.

    PubMed

    Chen, Xinqiang; Li, Zhibin; Wang, Yinhai; Cui, Zhiyong; Shi, Chaojian; Wu, Huafeng

    2017-01-01

    Grade variation on interstate highways affects the roadway geometric design, vehicle performance and driver behavior, thus possibly exerting an unexpected effect on vehicular speed. Hence, determining the internal relationship between grade and speed is important and useful for drivers, traffic regulators and other traffic participants. However, the problem with performing this research is the lack of large-scale gradient and speed data. Google Earth (GE) provides an application programming interface for extracting elevation data worldwide. The elevation dataset from GE can be easily converted to grade data. In addition, our team has collected and stored speed series data for different freeways over several years. Based on the above obtainable grade and speed datasets, we conducted research on the effect of grades on free flow speeds from two perspectives. First, the influence of grades on speed was analyzed from both quantitative and qualitative aspects. The analysis of the distributions of four typical types of speeds demonstrated a decreasing tendency as the speed increased. Steeper grades generated a more intense speed fluctuation in terms of the four types of speeds. Second, a model based on the Student's t-test was developed to evaluate the level of significant difference among speed series under neighboring grades. The Student's t-test demonstrated that adjacent grades do not significantly influence the speeds. In summary, speeds under different grades showed obviously different tendencies. The findings of this study can help transport authorities set more reasonable speed limits and improve the geometric design of interstates with grade variation constraints.

  7. Evaluating the impacts of grades on vehicular speeds on interstate highways

    PubMed Central

    Li, Zhibin; Wang, Yinhai; Cui, Zhiyong; Shi, Chaojian; Wu, Huafeng

    2017-01-01

    Grade variation on interstate highways affects the roadway geometric design, vehicle performance and driver behavior, thus possibly exerting an unexpected effect on vehicular speed. Hence, determining the internal relationship between grade and speed is important and useful for drivers, traffic regulators and other traffic participants. However, the problem with performing this research is the lack of large-scale gradient and speed data. Google Earth (GE) provides an application programming interface for extracting elevation data worldwide. The elevation dataset from GE can be easily converted to grade data. In addition, our team has collected and stored speed series data for different freeways over several years. Based on the above obtainable grade and speed datasets, we conducted research on the effect of grades on free flow speeds from two perspectives. First, the influence of grades on speed was analyzed from both quantitative and qualitative aspects. The analysis of the distributions of four typical types of speeds demonstrated a decreasing tendency as the speed increased. Steeper grades generated a more intense speed fluctuation in terms of the four types of speeds. Second, a model based on the Student’s t-test was developed to evaluate the level of significant difference among speed series under neighboring grades. The Student’s t-test demonstrated that adjacent grades do not significantly influence the speeds. In summary, speeds under different grades showed obviously different tendencies. The findings of this study can help transport authorities set more reasonable speed limits and improve the geometric design of interstates with grade variation constraints. PMID:28863157

  8. Keith Wipke | NREL

    Science.gov Websites

    Drivetrain Hybridization, SAE Technical Papers (2001) Modeling Grid-Connected Hybrid Electric Vehicles Using -Friendly Advanced Powertrain Simulation using a Combined Backward/Forward Approach, IEEE Transactions on Vehicular Technology (1999) Using an Advanced Vehicle Simulator (ADVISOR) to Guide Hybrid Vehicle Propulsion

  9. Improving Process Heating System Performance v3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  10. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.

    1986-01-01

    Silicon nitride is a high temperature material currently under consideration for heat engine and other applications. The objective is to improve the net shape fabrication technology of Si3N4 by injection molding. This is to be accomplished by optimizing the process through a series of statistically designed matrix experiments. To provide input to the matrix experiments, a wide range of alternate materials and processing parameters was investigated throughout the whole program. The improvement in the processing is to be demonstrated by a 20 percent increase in strength and a 100 percent increase in the Weibull modulus over that of the baseline material. A full characterization of the baseline process was completed. Material properties were found to be highly dependent on each step of the process. Several important parameters identified thus far are the starting raw materials, sinter/hot isostatic pressing cycle, powder bed, mixing methods, and sintering aid levels.

  11. Advanced Divertor Design and Application under Modern Superconducting Tokamak Constraints

    NASA Astrophysics Data System (ADS)

    Covele, Brent; Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant

    2013-10-01

    With current ITER projections already predicting divertor exhaust heat loads in the 5-10 MW/m2 range, i.e. at the maximum tolerance, it is clear that the divertor heat load problem will only be exacerbated for future superconducting tokamaks, as well as perhaps some modern tokamaks today. Thus, an advanced divertor, such as the X-Divertor (XD), Super-X Divertor (SXD), or Snowflake (SF) will become a virtual necessity to reduce incident heat flux at the target plates. Using the 2D magnetic equilibrium code CORSICA, we explore the possibilities of creating an advanced divertor for a next-generation superconducting tokamak (Ip = 15 MA, BT = 5.3 T, R = 6.2 m) under nominal engineering constraints. Advanced divertors were achieved with no in-vessel PF coils, PF current densities below 30 MA/m2, and vertical maintenance access, all of which are favorable conditions for tokamaks today. Both the XD and SF divertors are readily achievable while maintaining core plasma performance, and the advantages and disadvantages of each are discussed in turn. Some thought is given as to how the divertor cassette will need to be modified to accommodate advanced divertors. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.

  12. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  13. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  14. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub

  15. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Peter; Gillespie, Andrew; Stalla, David

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H 2) by adsorption in quantities and at conditions that outperform current compressed-gas H 2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H 2 tanks operate at pressures between 350 and 700 bar at ambient temperature and storemore » 3-4 percent of H 2 by weight (wt%) and less than 25 grams of H 2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H 2 at pressures less than 350 bar. Adsorption holds H 2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank (high pressure), or other tank shape without any waste of volume.« less

  16. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  17. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  18. Development of heat flux sensors for turbine airfoils

    NASA Astrophysics Data System (ADS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  19. Development of heat flux sensors for turbine airfoils

    NASA Technical Reports Server (NTRS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  20. Advanced subsystems development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.

  1. Advanced ST plasma scenario simulations for NSTX

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Synakowski, E. J.; Bell, M. E.; Gates, D. A.; Harvey, R. W.; Kaye, S. M.; Mau, T. K.; Menard, J.; Phillips, C. K.; Taylor, G.; Wilson, R.; NSTX Research Team

    2005-08-01

    Integrated scenario simulations are done for NSTX that address four primary objectives for developing advanced spherical torus (ST) configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high β regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX and non-solenoidal startup and plasma current rampup. The simulations done here use the tokamak simulation code and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam deposition profile and other characteristics. CURRAY is used to calculate the high harmonic fast wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with βT ap 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of four skin times. The resulting global energy confinement corresponds to a multiplier of H98(y),2 = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control and early heating/H-mode transition for producing and optimizing these plasma configurations.

  2. Stiffness monitoring and damage assessment of bridges under moving vehicular loads using spatially-distributed optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Wu, Bitao; Wu, Gang; Lu, Huaxi; Feng, De-chen

    2017-03-01

    Fiber optic sensing technology has been widely used in civil infrastructure health monitoring due to its various advantages, e.g., anti-electromagnetic interference, corrosion resistance, etc. This paper investigates a new method for stiffness monitoring and damage identification of bridges under moving vehicle loads using spatially-distributed optical fiber sensors. The relationship between the element stiffness of the bridge and the long-gauge strain history is firstly studied, and a formula which is expressed by the long-gauge strain history is derived for the calculation of the bridge stiffness. Meanwhile, the stiffness coefficient from the formula can be used to identify the damage extent of the bridge. In order to verify the proposed method, a model test of a 1:10 scale bridge-vehicle system is conducted and the long-gauge strain history is obtained through fiber Bragg grating sensors. The test results indicate that the proposed method is suitable for stiffness monitoring and damage assessment of bridges under moving vehicular loads.

  3. High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.

    2007-01-01

    Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.

  4. Advances in Explosively Formed Fuse Opening Switches

    DTIC Science & Technology

    1987-06-01

    ADVANCES IN EXPLOSIVELY FORMED FUSE OPENING SWITCHES* J. H. Goforth, R. S. Caird, A. E. Greene, I. R. Lindemuth, S. P. Marsh, H. Oona, and R. E...conductor into a series of thin sections. Augmented by an undetermined amount of heating due to the extrusion process, Joule heating in the thin...with initial field fed directly into the generator by a capacitor bank. As described in Ref. 2, these tests demonstrated that the switch would

  5. Development of Advanced Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  6. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and

  7. Heat transfer in space systems; Proceedings of the Symposium, AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18-20, 1990

    NASA Technical Reports Server (NTRS)

    Chan, S. H. (Editor); Anderson, E. E. (Editor); Simoneau, R. J. (Editor); Chan, C. K. (Editor); Pepper, D. W. (Editor)

    1990-01-01

    Theoretical and experimental studies of heat-tranfer in a space environment are discussed in reviews and reports. Topics addressed include a small-scale two-phase thermosiphon to cool high-power electronics, a low-pressure-drop heat exchanger with integral heat pipe, an analysis of the thermal performance of heat-pipe radiators, measurements of temperature and concentration fields in a rectangular heat pipe, and a simplified aerothermal heating method for axisymmetric blunt bodies. Consideration is given to entropy production in a shock wave, bubble-slug transition in a two-phase liquid-gas flow under microgravity, plasma arc welding under normal and zero gravity, the Microgravity Thaw Experiment, the flow of a thin film on stationary and rotating disks, an advanced ceramic fabric body-mounted radiator for Space Station Freedom phase 0 design, and lunar radiators with specular reflectors.

  8. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.

    PubMed

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-15

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  9. Ohmic Heating: An Emerging Concept in Organic Synthesis.

    PubMed

    Silva, Vera L M; Santos, Luis M N B F; Silva, Artur M S

    2017-06-12

    The ohmic heating also known as direct Joule heating, is an advanced thermal processing method, mainly used in the food industry to rapidly increase the temperature for either cooking or sterilization purposes. Its use in organic synthesis, in the heating of chemical reactors, is an emerging method that shows great potential, the development of which has started recently. This Concept article focuses on the use of ohmic heating as a new tool for organic synthesis. It presents the fundamentals of ohmic heating and makes a qualitative and quantitative comparison with other common heating methods. A brief description of the ohmic reactor prototype in operation is presented as well as recent examples of its use in organic synthesis at laboratory scale, thus showing the current state of the research. The advantages and limitations of this heating method, as well as its main current applications are also discussed. Finally, the prospects and potential implications of ohmic heating in future research in chemical synthesis are proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Stange, Torsten; Laqua, Heinrich Peter; Beurskens, Marc; Bosch, Hans-Stephan; Bozhenkov, Sergey; Brakel, Rudolf; Braune, Harald; Brunner, Kai Jakob; Cappa, Alvaro; Dinklage, Andreas; Erckmann, Volker; Fuchert, Golo; Gantenbein, Gerd; Gellert, Florian; Grulke, Olaf; Hartmann, Dirk; Hirsch, Matthias; Höfel, Udo; Kasparek, Walter; Knauer, Jens; Langenberg, Andreas; Marsen, Stefan; Marushchenko, Nikolai; Moseev, Dmitry; Pablant, Novomir; Pasch, Ekkehard; Rahbarnia, Kian; Mora, Humberto Trimino; Tsujimura, Toru; Turkin, Yuriy; Wauters, Tom; Wolf, Robert

    2017-10-01

    During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2.

  11. Support of NASA ADR/ Cross-Enterprise NRA Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10K to 50mK, Development of a Heat Switch

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    2005-01-01

    Mechanical heat switches are used in conjunction with sorption refrigerators, adiabatic demagnetization refrigerators and for other cryogenic tasks including the pre-cooling cryogenic systems. They use a mechanical actuator which closes Au plated Cu jaws on an Au plated Cu bar. The thermal conductance in the closed position is essentially independent of the area of the jaws and proportional to the force applied. It varies linearly with T. It is approximately 10mW/K for 200 N at 1.5K. In some applications, the heat switch can be driven from outside the cryostat by a rotating rod and a screw. Such heat switches are available commercially from several sources. In other applications, including systems for space, it is desirable to drive the switch using a cold linear motor, or solenoid. Superconducting windings are used at temperatures s 4.2K to minimize power dissipation, but are not appropriate for pre-cooling a system at higher temperatures. This project was intended to improve the design of solenoid activated mechanical heat switches and to provide such switches as required to support the development of Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10 K to 50 mK at GSFC. By the time funding began in 5/1/01, the immediate need for mechanical heat switches at GSFC had subsided but, at the same time, the opportunity had arisen to improve the design of mechanical heat switching by incorporating a "latching solenoid". In this device, the solenoid current is required only for changing the state of the switch and not during the whole time that the switch is closed.

  12. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  13. Dual-stroke heat pump field performance

    NASA Astrophysics Data System (ADS)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  14. Testing of a single graded groove variable conductance heat pipe

    NASA Astrophysics Data System (ADS)

    Kapolnek, Michael R.; Holmes, H. R.; Hager, Brian

    1992-07-01

    Variable conductance heat pipes (VCHPs) with transport capacities in the 50,000 to 100,000 Watt-inch range will be required to transport the large heat loads anticipated for advanced spacecraft. A high-reliability, nonarterial constant conductance heat pipe with this capacity, the Single Graded Groove (SGG) heat pipe, was developed for NASA's Space Station Freedom. The design and testing of a variable conductance SGG heat pipe are described. Response of the pipe to startup and heat load changes was excellent. After correcting for condenser temperature changes, the evaporator temperature varied by only +/- 4 F for large evaporator heat load changes. The surface tension difference between ends of the gas blocked region was found to measurably affect the performance of the pipe. Performance was negligibly affected by Marangoni flow in the gas blocked region.

  15. Production and uses of liquefied atmosphere (CO2) on Mars

    NASA Technical Reports Server (NTRS)

    Waldron, R. D.

    1991-01-01

    Carbon dioxide is universally accessible on Mars, and can be liquefied and separated from residual atmospheric gases by various compress-refrigeration cycles. Liquid CO2, stored under elevated pressures, can be used as a source of high pressure gas for nighttime power generation at a Martian base powered by solar energy during the daytime. Carbon dioxide can also be used for vehicular power. The extractable energy per unit mass of CO2 can exceed that of commercial lead-acid batteries for operating cycles without heat addition. Improved performance is possible using heat input from the ambient atmosphere or thermochemical agents. A unique vehicular application uses pressurized CO2 as a non-combustion low performance propellant for intermediate distance surface transportation. The thermodynamic properties of CO2 are presented with typical operating cycles for the application classes described above.

  16. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan; Lee, Steve; He, Hung

    2008-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed and reported in the current document.

  17. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  18. "Vehicular homicide", a new Italian offence: law provisions and comparison with some other European countries.

    PubMed

    Marinelli, E; Pichini, S; Zaami, S; Giorgetti, R; Busardò, F P; Pacifici, R

    2016-07-01

    According to the most recent World Health Organization report, road accidents represent a very serious public health issue, claiming each year more than 1.2 million lives worldwide and being the leading cause of death among young people aged between 15 and 29 years. Up to now, the policies to reduce this issue are different, unbalanced and often inadequate not only in Italy, but also in the other European Countries. Specifically, the Italian Parliament has recently introduced a new law (n. 41 of March 23rd, 2016), making vehicular homicide together with road traffic injuries a criminal offense, both to be punished as a result of negligence. The measure came into force on March 25th, 2016. In this paper, the provisions of the above-reported law have been assessed, taking into account the modifications introduced in the Penal Code by this law and the impact it is having and will have on drivers on a day-to-day basis. Similarities and differences with legislative framework of some other European countries were also examined. Finally, some open questions to be solved are named as an open eye for future considerations.

  19. Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee

    2010-01-01

    Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.

  20. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  1. HOST turbine heat transfer program summary

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Simoneau, Robert J.

    1988-01-01

    The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding with the remainder going to analytical efforts. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  2. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  3. Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2016-01-01

    High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.

  4. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can lastmore » up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.« less

  5. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    PubMed

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  6. In-Vehicle Safety Advisory And Warning System (Ivsaws), Volume I: Executive Summary

    DOT National Transportation Integrated Search

    1996-03-01

    THE INVEHICLE SAFETY ADVISORY AND WARNING SYSTEM (IVSAWS) IS A FEDERAL HIGHWAY ADMINISTRATION EFFORT TO DEVELOP A NATIONWIDE VEHICULAR INFORMATION SYSTEM THAT PROVIDES DRIVERS WITH ADVANCE, SUPPLEMENTAL NOTIFICATION OF DANGEROUS ROAD CONDITIONS USING...

  7. Assessment of the Adequacy of U.S.-Canadian Infrastructure to Accommodate Trade through Eastern Border Crossings. Appendix 4. Niagara Frontier.

    DOT National Transportation Integrated Search

    1996-03-01

    THE INVEHICLE SAFETY ADVISORY AND WARNING SYSTEM (IVSAWS) IS A FEDERAL HIGHWAY ADMINISTRATION EFFORT TO DEVELOP' A NATIONWIDE VEHICULAR INFORMATION SYSTEM THAT PROVIDES DRIVERS WITH ADVANCE, SUPPLEMENTAL NOTIFICATION OF DANGEROUS ROAD CONDITIONS USIN...

  8. Shared Resources: Sharing Right-Of-Way For Telecommunications, Guidance On Legal And Institutional Issues

    DOT National Transportation Integrated Search

    1996-03-01

    THE INVEHICLE SAFETY ADVISORY AND WARNING SYSTEM (IVSAWS) IS A FEDERAL HIGHWAY ADMINISTRATION EFFORT TO DEVELOP A NATIONWIDE VEHICULAR INFORMATION SYSTEM THAT PROVIDES DRIVERS WITH ADVANCE, SUPPLEMENTAL NOTIFICATION OF DANGEROUS ROAD CONDITIONS USING...

  9. TravTek evaluation Orlando test network study

    DOT National Transportation Integrated Search

    1996-03-01

    THE INVEHICLE SAFETY ADVISORY AND WARNING SYSTEM (IVSAWS) IS A FEDERAL HIGHWAY ADMINISTRATION EFFORT TO DEVELOP A NATIONWIDE VEHICULAR INFORMATION SYSTEM THAT PROVIDES DRIVERS WITH ADVANCE, SUPPLEMENTAL NOTIFICATION OF DANGEROUS ROAD CONDITIONS USING...

  10. EU-US standards harmonization task group report : testing for ITS security.

    DOT National Transportation Integrated Search

    1996-03-01

    THE INVEHICLE SAFETY ADVISORY AND WARNING SYSTEM (IVSAWS) IS A FEDERAL HIGHWAY ADMINISTRATION EFFORT TO DEVELOP' A NATIONWIDE VEHICULAR INFORMATION SYSTEM THAT PROVIDES DRIVERS WITH ADVANCE, SUPPLEMENTAL NOTIFICATION OF DANGEROUS ROAD CONDITIONS USIN...

  11. International Energy Agency's Heat Pump Centre (IEA-HPC) Annual National Team Working Group Meeting

    NASA Astrophysics Data System (ADS)

    Broders, M. A.

    1992-09-01

    The traveler, serving as Delegate from the United States Advanced Heat Pump National Team, participated in the activities of the fourth IEA-HPC National Team Working Group meeting. Highlights of this meeting included review and discussion of 1992 IEA-HPC activities and accomplishments, introduction of the Switzerland National Team, and development of the 1993 IEA-HPC work program. The traveler also gave a formal presentation about the Development and Activities of the IEA Advanced Heat Pump U.S. National Team.

  12. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  13. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  14. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  15. Performance and heat transfer characteristics of the laser-heated rocket - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.; Larson, V. R.

    1976-01-01

    The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.

  16. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl; Anderson William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  17. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Tim; Beck, Griffin; Bennett, Jeffrey

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO 2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and testmore » new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  18. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  19. Advanced Heat Exchangers for Dry Cooling Systems, Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortini, Arthur J.; Horwath, Joseph

    Dry cooling systems are an option for industrial and utility power plants that cannot obtain permits for cooling water or where cooling water is unavailable. Currently available dry cooling systems are more expensive and less efficient than wet cooling systems, so significant improvements in efficiency are needed to make them economically viable. Previous attempts at using foams as cooling fin materials for power generating systems have focused on high thermal conductivity graphite foams made via the Oak Ridge process. Because these materials have high flow restrictions and hence low permeability with respect to air flow, their internal volume and surfacemore » area were not effectively used. Consequently, they performed poorly and offered no advantage over aluminum fins. A foam with a more open structure would provide increased permeability, enable greater airflow through the bulk material, increase the rate of heat transfer, and enable the material to outperform traditional fin structures. In this project, Ultramet designed, fabricated, and tested low flow restriction, high-efficiency foam-based heat exchangers. Calculations based on existing thermal and hydraulic data for Ultramet’s high-performance open-cell foams indicated that 65-ppi (pores per linear inch) pyrolytic graphite foam with a relative density of 15 vol%, produced by chemical vapor infiltration (CVI), would have an effectiveness significantly greater than that of a state-of-the-art Hamon/Balcke-Durr aluminum fin system and greater than that of the POCO graphite foams previously tested for the DOE National Energy Technology Laboratory. Using the same chevron design, test setup, and run conditions as were used with the Hamon/Balcke-Durr fin system and the POCO foams, Ultramet tested graphite foams with air flow velocities of 0.07–3.2 m/sec and pressure drops of 0.03–9.7 inH2O. The best-performing graphite foam architectures had air velocities in excess of 2.5 m/sec when the pressure drop was

  20. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2002-01-01

    Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  1. Responses of Roadside Soil Cation Pools to Vehicular Emission Deposition in Southern California

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Bain, D. J.; Jenerette, D.; Clarke, L. W.; Wilson, K.

    2013-12-01

    Roadside soils are heavily loaded with NO3- due to vehicular emissions. This deposition likely acidifies these soils, potentially mobilizing cationic species from soil exchange sites. Acidification driven mobilization is well documented in forest soils, but poorly understood in roadside soils. Metal concentrations in park and garden soils collected from Southern California were examined across gradients of soil chemistry, road network density, climate, and geology to examine cation mobilization effects. In our samples, soil pH is not clearly related to distance from the roadside or underlying geology. However, the depletion of several elements (Al, K) is clearly observed in near-road environments. These depletion trends occur despite contrary trends, including increased soil surface areas and soil organic matter in near-road environments. Additionally, inputs from the weathering of road building materials appear to affect soil chemistry. For example, soil Ca patterns remain relatively consistent relative to roads, suggesting Ca bearing weathering products replenish soil Ca pools in near-road areas. Simple mixing models constructed using elemental ratios are consistent with road material Ca source contributions. Observed near-road patterns in soil chemistry likely influence local ecological function, shifting plant communities and soil functions. Clear understanding of these shifts is essential to the effective use of green infrastructure and other strategies utilized to control road-sourced nutrients. This analytical framework can be applied globally as road networks continue to expand and affect larger ecosystems.

  2. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    PubMed Central

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-01

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels. PMID:26784204

  3. A heat receiver design for solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  4. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  5. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  6. Effect of ozone and distance from a major roadway on nitrogen oxides concentrations.

    DOT National Transportation Integrated Search

    2011-02-28

    Despite recent advances in the automobile industry in reducing emissions from individual vehicles, air pollution in localities, where there are regional increases in the traffic volumes, still persist at problematic levels. Vehicular emissions are th...

  7. Advanced space solar dynamic receivers

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Coombs, Murray G.; Lacy, Dovie E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability (to enable power production during the substantial eclipse period which accompanies typical orbits) and are lighter and smaller than state-of-the-art systems, such as the Brayton solar receiver being designed and developed by AiResearch for the NASA Space Station. Two receiver concepts have been developed in detail: a packed bed receiver and a heat pipe receiver. The packed bed receiver is appropriate for a Brayton engine; the heat pipe receiver is applicable for either a Brayton or Stirling engine. The thermal storage for both concepts is provided by the melting and freezing of a salt. Both receiver concepts offer substantial improvements in size and weight compared to baseline receivers.

  8. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    NASA Astrophysics Data System (ADS)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert

    2017-06-01

    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  9. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  10. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochau, Gary E.

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  11. Impacts of extreme heat on emergency medical service calls in King County, Washington, 2007-2012: relative risk and time series analyses of basic and advanced life support.

    PubMed

    Calkins, Miriam M; Isaksen, Tania Busch; Stubbs, Benjamin A; Yost, Michael G; Fenske, Richard A

    2016-01-28

    Exposure to excessive heat kills more people than any other weather-related phenomenon, aggravates chronic diseases, and causes direct heat illness. Strong associations between extreme heat and health have been identified through increased mortality and hospitalizations and there is growing evidence demonstrating increased emergency department visits and demand for emergency medical services (EMS). The purpose of this study is to build on an existing regional assessment of mortality and hospitalizations by analyzing EMS demand associated with extreme heat, using calls as a health metric, in King County, Washington (WA), for a 6-year period. Relative-risk and time series analyses were used to characterize the association between heat and EMS calls for May 1 through September 30 of each year for 2007-2012. Two EMS categories, basic life support (BLS) and advanced life support (ALS), were analyzed for the effects of heat on health outcomes and transportation volume, stratified by age. Extreme heat was model-derived as the 95th (29.7 °C) and 99th (36.7 °C) percentile of average county-wide maximum daily humidex for BLS and ALS calls respectively. Relative-risk analyses revealed an 8 % (95 % CI: 6-9 %) increase in BLS calls, and a 14 % (95 % CI: 9-20 %) increase in ALS calls, on a heat day (29.7 and 36.7 °C humidex, respectively) versus a non-heat day for all ages, all causes. Time series analyses found a 6.6 % increase in BLS calls, and a 3.8 % increase in ALS calls, per unit-humidex increase above the optimum threshold, 40.7 and 39.7 °C humidex respectively. Increases in "no" and "any" transportation were found in both relative risk and time series analyses. Analysis by age category identified significant results for all age groups, with the 15-44 and 45-64 year old age groups showing some of the highest and most frequent increases across health conditions. Multiple specific health conditions were associated with increased risk of an EMS call including abdominal

  12. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  13. Micro-scale thermal imaging of advanced organic and polymeric materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2012-10-01

    Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.

  14. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  15. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network

    PubMed Central

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-01-01

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272

  16. Analysis of vehicular traffic flow in the major areas of Kuala Lumpur utilizing open-traffic

    NASA Astrophysics Data System (ADS)

    Manogaran, Saargunawathy; Ali, Muhammad; Yusof, Kamaludin Mohamad; Suhaili, Ramdhan

    2017-09-01

    Vehicular traffic congestion occurs when a large number of drivers are overcrowded on the road and the traffic flow does not run smoothly. Traffic congestion causes chaos on the road and interruption to daily activities of users. Time consumed on road give lots of negative effects on productivity, social behavior, environmental and cost to economy. Congestion is worsens and leads to havoc during the emergency such as flood, accidents, road maintenance and etc., where behavior of traffic flow is always unpredictable and uncontrollable. Real-time and historical traffic data are critical inputs for most traffic flow analysis applications. Researcher attempt to predict traffic using simulations as there is no exact model of traffic flow exists due to its high complexity. Open Traffic is an open source platform available for traffic data analysis linked to Open Street Map (OSM). This research is aimed to study and understand the Open Traffic platform. The real-time traffic flow pattern in Kuala Lumpur area was successfully been extracted and analyzed using Open Traffic. It was observed that the congestion occurs on every major road in Kuala Lumpur and most of it owes to the offices and the economic and commercial centers during rush hours. At some roads the congestion occurs at night due to the tourism activities.

  17. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.

    PubMed

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-02-19

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  18. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their helpmore » and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.« less

  19. Advanced spacecraft: What will they look like and why

    NASA Technical Reports Server (NTRS)

    Price, Humphrey W.

    1990-01-01

    The next century of spaceflight will witness an expansion in the physical scale of spacecraft, from the extreme of the microspacecraft to the very large megaspacecraft. This will respectively spawn advances in highly integrated and miniaturized components, and also advances in lightweight structures, space fabrication, and exotic control systems. Challenges are also presented by the advent of advanced propulsion systems, many of which require controlling and directing hot plasma, dissipating large amounts of waste heat, and handling very high radiation sources. Vehicle configuration studies for a number of theses types of advanced spacecraft were performed, and some of them are presented along with the rationale for their physical layouts.

  20. Performance and Reliability of Exhaust Gas Waste Heat Recovery Units

    DTIC Science & Technology

    2014-09-01

    transfer in an annulus with an externally enhanced inner tube. International Journal of Heat and Fluid Flow, 14(1), 54‒63. Akpinar, E. K. (2006...from http://www.energy-tech.com/article.cfm?id=17567 Masliyah, J., & Nandakumar, K. (1976). Heat transfer in internally finned tubes. Journal of...exchanger by using turbulator. International Journal of Engineering Science & Advanced Technology, 2(4), 881‒885. Patankar, S. V. (1980). The

  1. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    NASA Astrophysics Data System (ADS)

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-03-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.

  2. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites.

    PubMed

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-03-02

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.

  3. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  4. Upgraded automotive gas turbine engine design and development program, volume 2

    NASA Technical Reports Server (NTRS)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Results are presented for the design and development of an upgraded engine. The design incorporated technology advancements which resulted from development testing on the Baseline Engine. The final engine performance with all retro-fitted components from the development program showed a value of 91 HP at design speed in contrast to the design value of 104 HP. The design speed SFC was 0.53 versus the goal value of 0.44. The miss in power was primarily due to missing the efficiency targets of small size turbomachinery. Most of the SFC deficit was attributed to missed goals in the heat recovery system relative to regenerator effectiveness and expected values of heat loss. Vehicular fuel consumption, as measured on a chassis dynamometer, for a vehicle inertia weight of 3500 lbs., was 15 MPG for combined urban and highway driving cycles. The baseline engine achieved 8 MPG with a 4500 lb. vehicle. Even though the goal of 18.3 MPG was not achieved with the upgraded engine, there was an improvement in fuel economy of 46% over the baseline engine, for comparable vehicle inertia weight.

  5. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis

    PubMed Central

    Lin, Jeng-Shane; Kuo, Chia-Chia; Yang, I-Chu; Tsai, Wei-An; Shen, Yu-Hsing; Lin, Chih-Ching; Liang, Yi-Chen; Li, Yu-Chi; Kuo, Yun-Wei; King, Yu-Chi; Lai, Hsi-Mei; Jeng, Shih-Tong

    2018-01-01

    Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs) are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE) and artificial miR160 (MIM160), which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT) plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress. PMID:29449855

  6. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Clear, T. D.; Weibel, R. T.

    An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.

  7. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  8. Study of Improved Aluminum Materials for Vehicular Armor

    DTIC Science & Technology

    1977-04-07

    and along cell walls. Dislocations generated during deformation cf the 17 -------------- recrystallized structure interacted with the grain...unrecrystallized (HR) 7475 plate containing dislocations within subgrains and along cell walls. Hot rolling the recrystallized structure at 750OF produced...a structure after solution heat treatment that consisted of elongated recrystallized grains containing polygonized cells . This structure developed

  9. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    PubMed Central

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-01-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites. PMID:28251985

  10. Determining temperature and thermal properties for heat-based studies of surface-water ground-water interactions: Appendix A of Heat as a tool for studying the movement of ground water near streams (Cir1260)

    USGS Publications Warehouse

    Stonestrom, David A.; Blasch, Kyle W.; Stonestrom, David A.; Constantz, Jim

    2003-01-01

    Advances in electronics leading to improved sensor technologies, large-scale circuit integration, and attendant miniaturization have created new opportunities to use heat as a tracer of subsurface flow. Because nature provides abundant thermal forcing at the land surface, heat is particularly useful in studying stream-groundwater interactions. This appendix describes methods for obtaining the thermal data needed in heat-based investigations of shallow subsurface flow.

  11. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    NASA Technical Reports Server (NTRS)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  12. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  13. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  14. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  15. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  16. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  17. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14

    Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1),more » which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current

  18. Genetics of heat tolerance for milk yield and quality in Holsteins.

    PubMed

    Santana, M L; Bignardi, A B; Pereira, R J; Stefani, G; El Faro, L

    2017-01-01

    Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature-humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (-0.22 to -0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality

  19. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat

    USDA-ARS?s Scientific Manuscript database

    Eco-friendly approaches to postharvest disease management in harvested commodities, such as heat treatments and biological control utilizing antagonistic yeasts, is an active research field. The current review focuses on the physiological and molecular aspects of heat treatment on all the major par...

  20. Pilot plant test of the advanced flash stripper for CO2 capture.

    PubMed

    Lin, Yu-Jeng; Chen, Eric; Rochelle, Gary T

    2016-10-20

    Alternative stripping processes have been proposed to reduce energy use for CO 2 capture, but only a few have been applied to pilot-scale experiments. This paper presents the first pilot plant test results of one of the most promising stripper configurations, the advanced flash stripper with cold and warm rich solvent bypass. The campaign using aqueous piperazine was carried out at UT Austin in 2015. The advanced flash stripper improves the heat duty by over 25% compared to previous campaigns using the two-stage flash, achieving 2.1 GJ per tonne CO 2 of heat duty and 32 kJ mol -1 CO 2 of total equivalent work. The bypass control strategy proposed minimized the heat duty. The test successfully demonstrated the remarkable energy performance and the operability of this advanced system. An Aspen Plus® model was validated using the pilot plant data and used to explore optimum operating and design conditions. The irreversibility analysis showed that the pilot plant performance has attained 50% thermodynamic efficiency and further energy improvement should focus on the absorber and the cross exchanger by increasing absorption rate and solvent capacity.