Sample records for advanced virtual reality

  1. Virtual reality for dermatologic surgery: virtually a reality in the 21st century.

    PubMed

    Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M

    2000-01-01

    In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.

  2. Virtual reality simulators and training in laparoscopic surgery.

    PubMed

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Virtual Reality

    DTIC Science & Technology

    1993-04-01

    until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail

  4. Virtual Reality and Simulation in Neurosurgical Training.

    PubMed

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Virtual reality in surgery and medicine.

    PubMed

    Chinnock, C

    1994-01-01

    This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time

  6. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.

    PubMed

    Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S

    2017-11-01

    Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.

  7. Role of virtual reality simulation in endoscopy training

    PubMed Central

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-01-01

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895

  8. Role of virtual reality simulation in endoscopy training.

    PubMed

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-12-10

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.

  9. Telemedicine, virtual reality, and surgery

    NASA Technical Reports Server (NTRS)

    Mccormack, Percival D.; Charles, Steve

    1994-01-01

    Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.

  10. Virtual Reality and the Virtual Library.

    ERIC Educational Resources Information Center

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  11. Virtual Reality: You Are There

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Telepresence or "virtual reality," allows a person, with assistance from advanced technology devices, to figuratively project himself into another environment. This technology is marketed by several companies, among them Fakespace, Inc., a former Ames Research Center contractor. Fakespace developed a teleoperational motion platform for transmitting sounds and images from remote locations. The "Molly" matches the user's head motion and, when coupled with a stereo viewing device and appropriate software, creates the telepresence experience. Its companion piece is the BOOM-the user's viewing device that provides the sense of involvement in the virtual environment. Either system may be used alone. Because suits, gloves, headphones, etc. are not needed, a whole range of commercial applications is possible, including computer-aided design techniques and virtual reality visualizations. Customers include Sandia National Laboratories, Stanford Research Institute and Mattel Toys.

  12. Virtual reality for emergency training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altinkemer, K.

    1995-12-31

    Virtual reality is a sequence of scenes generated by a computer as a response to the five different senses. These senses are sight, sound, taste, touch, smell. Other senses that can be used in virtual reality include balance, pheromonal, and immunological senses. Many application areas include: leisure and entertainment, medicine, architecture, engineering, manufacturing, and training. Virtual reality is especially important when it is used for emergency training and management of natural disasters including earthquakes, floods, tornados and other situations which are hard to emulate. Classical training methods for these extraordinary environments lack the realistic surroundings that virtual reality can provide.more » In order for virtual reality to be a successful training tool the design needs to include certain aspects; such as how real virtual reality should be and how much fixed cost is entailed in setting up the virtual reality trainer. There are also pricing questions regarding the price per training session on virtual reality trainer, and the appropriate training time length(s).« less

  13. [Virtual + 1] * Reality

    NASA Astrophysics Data System (ADS)

    Beckhaus, Steffi

    Virtual Reality aims at creating an artificial environment that can be perceived as a substitute to a real setting. Much effort in research and development goes into the creation of virtual environments that in their majority are perceivable only by eyes and hands. The multisensory nature of our perception, however, allows and, arguably, also expects more than that. As long as we are not able to simulate and deliver a fully sensory believable virtual environment to a user, we could make use of the fully sensory, multi-modal nature of real objects to fill in for this deficiency. The idea is to purposefully integrate real artifacts into the application and interaction, instead of dismissing anything real as hindering the virtual experience. The term virtual reality - denoting the goal, not the technology - shifts from a core virtual reality to an “enriched” reality, technologically encompassing both the computer generated and the real, physical artifacts. Together, either simultaneously or in a hybrid way, real and virtual jointly provide stimuli that are perceived by users through their senses and are later formed into an experience by the user's mind.

  14. Interpretations of virtual reality.

    PubMed

    Voiskounsky, Alexander

    2011-01-01

    University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.

  15. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    ERIC Educational Resources Information Center

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  16. Molecular Rift: Virtual Reality for Drug Designers.

    PubMed

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  17. Virtual reality and telepresence for military medicine.

    PubMed

    Satava, R M

    1995-03-01

    The profound changes brought about by technology in the past few decades are leading to a total revolution in medicine. The advanced technologies of telepresence and virtual reality are but two of the manifestations emerging from our new information age; now all of medicine can be empowered because of this digital technology. The leading edge is on the digital battlefield, where an entire new concept in military medicine is evolving. Using remote sensors, intelligent systems, telepresence surgery and virtual reality surgical simulations, combat casualty care is prepared for the 21st century.

  18. Virtual Reality: An Overview.

    ERIC Educational Resources Information Center

    Franchi, Jorge

    1994-01-01

    Highlights of this overview of virtual reality include optics; interface devices; virtual worlds; potential applications, including medicine and archaeology; problems, including costs; current research and development; future possibilities; and a listing of vendors and suppliers of virtual reality products. (Contains 11 references.) (LRW)

  19. [Virtual reality in neurosurgery].

    PubMed

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  20. Virtual Reality in the Classroom.

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    1993-01-01

    Considers the concept of virtual reality; reviews its history; describes general uses of virtual reality, including entertainment, medicine, and design applications; discusses classroom uses of virtual reality, including a software program called Virtus WalkThrough for use with a computer monitor; and suggests future possibilities. (34 references)…

  1. Virtual reality for stroke rehabilitation.

    PubMed

    Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria

    2017-11-20

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large

  2. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation.

    PubMed

    Kiryu, Tohru; So, Richard H Y

    2007-09-25

    Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution.

  3. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation

    PubMed Central

    Kiryu, Tohru; So, Richard HY

    2007-01-01

    Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution. PMID:17894857

  4. Naval Applications of Virtual Reality,

    DTIC Science & Technology

    1993-01-01

    Expert Virtual Reality Special Report 󈨡, pp. 67- 72. 14. SUBJECT TERMS 15 NUMBER o0 PAGES man-machine interface virtual reality decision support...collective and individual performance. -" Virtual reality projects could help *y by Mark Gembicki Av-t-abilty CodesA Avafllat Idt Iofe and David Rousseau...alt- 67 VIRTUAL . REALITY SPECIAl, REPORT r-OPY avcriaikxb to DD)C qg .- 154,41X~~~~~~~~~~~~j 1411 iI..:41 T a].’ 1,1 4 1111 I 4 1 * .11 ~ 4 l.~w111511 I

  5. Virtual reality in surgical training.

    PubMed

    Lange, T; Indelicato, D J; Rosen, J M

    2000-01-01

    Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.

  6. Virtual reality: past, present and future.

    PubMed

    Gobbetti, E; Scateni, R

    1998-01-01

    This report provides a short survey of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. The report is organized as follows: section 1 presents the background and motivation of virtual environment research and identifies typical application domain, section 2 discusses the characteristics a virtual reality system must have in order to exploit the perceptual and spatial skills of users, section 3 surveys current input/output devices for virtual reality, section 4 surveys current software approaches to support the creation of virtual reality systems, and section 5 summarizes the report.

  7. Virtual Reality for Research in Social Neuroscience

    PubMed Central

    Parsons, Thomas D.; Gaggioli, Andrea; Riva, Giuseppe

    2017-01-01

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters—either driven by a human or by a computer—allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature. PMID:28420150

  8. Virtual Reality for Research in Social Neuroscience.

    PubMed

    Parsons, Thomas D; Gaggioli, Andrea; Riva, Giuseppe

    2017-04-16

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters-either driven by a human or by a computer-allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature.

  9. The Reality of Virtual Reality Product Development

    NASA Astrophysics Data System (ADS)

    Dever, Clark

    Virtual Reality and Augmented Reality are emerging areas of research and product development in enterprise companies. This talk will discuss industry standard tools and current areas of application in the commercial market. Attendees will gain insights into how to research, design, and (most importantly) ship, world class products. The presentation will recount the lessons learned to date developing a Virtual Reality tool to solve physics problems resulting from trying to perform aircraft maintenance on ships at sea.

  10. Virtual reality simulation in neurosurgery: technologies and evolution.

    PubMed

    Chan, Sonny; Conti, François; Salisbury, Kenneth; Blevins, Nikolas H

    2013-01-01

    Neurosurgeons are faced with the challenge of learning, planning, and performing increasingly complex surgical procedures in which there is little room for error. With improvements in computational power and advances in visual and haptic display technologies, virtual surgical environments can now offer potential benefits for surgical training, planning, and rehearsal in a safe, simulated setting. This article introduces the various classes of surgical simulators and their respective purposes through a brief survey of representative simulation systems in the context of neurosurgery. Many technical challenges currently limit the application of virtual surgical environments. Although we cannot yet expect a digital patient to be indistinguishable from reality, new developments in computational methods and related technology bring us closer every day. We recognize that the design and implementation of an immersive virtual reality surgical simulator require expert knowledge from many disciplines. This article highlights a selection of recent developments in research areas related to virtual reality simulation, including anatomic modeling, computer graphics and visualization, haptics, and physics simulation, and discusses their implication for the simulation of neurosurgery.

  11. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  12. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  13. Surgery applications of virtual reality

    NASA Technical Reports Server (NTRS)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  14. [Virtual reality in medical education].

    PubMed

    Edvardsen, O; Steensrud, T

    1998-02-28

    Virtual reality technology has found new applications in industry over the last few years. Medical literature has for several years predicted a break-through in this technology for medical education. Although there is a great potential for this technology in medical education, there seems to be a wide gap between expectations and actual possibilities at present. State of the technology was explored by participation at the conference "Medicine meets virtual reality V" (San Diego Jan. 22-25 1997) and a visit to one of the leading laboratories on virtual reality in medical education. In this paper we introduce some of the basic terminology and technology, review some of the topics covered by the conference, and describe projects running in one of the leading laboratories on virtual reality technology for medical education. With this information in mind, we discuss potential applications of the current technology in medical education. Current virtual reality systems are judged to be too costly and their usefulness in education too limited for routine use in medical education.

  15. Learning Science in a Virtual Reality Application: The Impacts of Animated-Virtual Actors' Visual Complexity

    ERIC Educational Resources Information Center

    Kartiko, Iwan; Kavakli, Manolya; Cheng, Ken

    2010-01-01

    As the technology in computer graphics advances, Animated-Virtual Actors (AVAs) in Virtual Reality (VR) applications become increasingly rich and complex. Cognitive Theory of Multimedia Learning (CTML) suggests that complex visual materials could hinder novice learners from attending to the lesson properly. On the other hand, previous studies have…

  16. Virtual Reality at the PC Level

    NASA Technical Reports Server (NTRS)

    Dean, John

    1998-01-01

    The main objective of my research has been to incorporate virtual reality at the desktop level; i.e., create virtual reality software that can be run fairly inexpensively on standard PC's. The standard language used for virtual reality on PC's is VRML (Virtual Reality Modeling Language). It is a new language so it is still undergoing a lot of changes. VRML 1.0 came out only a couple years ago and VRML 2.0 came out around last September. VRML is an interpreted language that is run by a web browser plug-in. It is fairly flexible in terms of allowing you to create different shapes and animations. Before this summer, I knew very little about virtual reality and I did not know VRML at all. I learned the VRML language by reading two books and experimenting on a PC. The following topics are presented: CAD to VRML, VRML 1.0 to VRML 2.0, VRML authoring tools, VRML browsers, finding virtual reality applications, the AXAF project, the VRML generator program, web communities and future plans.

  17. Virtual reality in ophthalmology training.

    PubMed

    Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian

    2006-01-01

    Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.

  18. Virtual reality for stroke rehabilitation.

    PubMed

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2015-02-12

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles have been rapidly adopted in clinical settings. This is an update of a Cochrane Review published in 2011. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance activity, global motor function, cognitive function, activity limitation, participation restriction and quality of life, voxels or regions of interest identified via imaging, and adverse events. Additionally, we aimed to comment on the feasibility of virtual reality for use with stroke patients by reporting on patient eligibility criteria and recruitment. We searched the Cochrane Stroke Group Trials Register (October 2013), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 11), MEDLINE (1950 to November 2013), EMBASE (1980 to November 2013) and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance function and activity, and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted investigators to obtain missing information. We included 37 trials that involved 1019 participants. Study sample sizes were generally small and interventions

  19. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    PubMed

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  20. Virtual reality in surgical skills training.

    PubMed

    Palter, Vanessa N; Grantcharov, Teodor P

    2010-06-01

    With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…

  2. Virtual Reality Hysteroscopy

    PubMed

    Levy

    1996-08-01

    New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.

  3. Virtual reality disaster training: translation to practice.

    PubMed

    Farra, Sharon L; Miller, Elaine T; Hodgson, Eric

    2015-01-01

    Disaster training is crucial to the mitigation of both mortality and morbidity associated with disasters. Just as clinical practice needs to be grounded in evidence, effective disaster education is dependent upon the development and use of andragogic and pedagogic evidence. Educational research findings must be transformed into useable education strategies. Virtual reality simulation is a teaching methodology that has the potential to be a powerful educational tool. The purpose of this article is to translate research findings related to the use of virtual reality simulation in disaster training into education practice. The Ace Star Model serves as a valuable framework to translate the VRS teaching methodology and improve disaster training of healthcare professionals. Using the Ace Star Model as a framework to put evidence into practice, strategies for implementing a virtual reality simulation are addressed. Practice guidelines, implementation recommendations, integration to practice and evaluation are discussed. It is imperative that health educators provide more exemplars of how research evidence can be moved through the various stages of the model to advance practice and sustain learning outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Virtual reality for stroke rehabilitation.

    PubMed

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2011-09-07

    Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness. To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke. We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers. Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information. We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. results were statistically significant for arm function (standardised

  5. Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles.

    PubMed

    Khanal, Prabal; Vankipuram, Akshay; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; Drumm-Gurnee, Denise; Josey, Karen; Tinker, Linda; Smith, Marshall

    2014-10-01

    Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. The major objective of the study is to describe, including the design, implementation, and evaluation of a novel approach of delivering ACLS training to care providers using the proposed virtual reality simulator that can overcome the challenges and drawbacks imposed by the traditional face-to-face training method. We compare the efficacy and performance outcomes associated with traditional ACLS training with the proposed novel approach of using a virtual reality (VR) based ACLS training simulator. One hundred and forty-eight (148) ACLS certified clinicians, translating into 26 care provider teams, were enrolled for this study. Each team was randomly assigned to one of the three treatment groups: control (traditional ACLS training), persuasive (VR ACLS training with comprehensive feedback components), or minimally persuasive (VR ACLS training with limited feedback components). The teams were tested across two different ACLS procedures that vary in the degree of task complexity: ventricular fibrillation or tachycardia (VFib/VTach) and pulseless electric activity (PEA). The difference in performance between control and persuasive groups was not statistically significant (P=.37 for PEA and P=.1 for VFib/VTach). However, the difference in performance between control and minimally persuasive groups was significant (P=.05 for PEA and P=.02 for VFib/VTach). The pre-post comparison of performances of the groups showed that control (P=.017 for PEA, P=.01 for VFib/VTach) and

  6. Efficacy of virtual reality in pedestrian safety research.

    PubMed

    Deb, Shuchisnigdha; Carruth, Daniel W; Sween, Richard; Strawderman, Lesley; Garrison, Teena M

    2017-11-01

    Advances in virtual reality technology present new opportunities for human factors research in areas that are dangerous, difficult, or expensive to study in the real world. The authors developed a new pedestrian simulator using the HTC Vive head mounted display and Unity software. Pedestrian head position and orientation were tracked as participants attempted to safely cross a virtual signalized intersection (5.5 m). In 10% of 60 trials, a vehicle violated the traffic signal and in 10.84% of these trials, a collision between the vehicle and the pedestrian was observed. Approximately 11% of the participants experienced simulator sickness and withdrew from the study. Objective measures, including the average walking speed, indicate that participant behavior in VR matches published real world norms. Subjective responses indicate that the virtual environment was realistic and engaging. Overall, the study results confirm the effectiveness of the new virtual reality technology for research on full motion tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Virtual reality in Latin American clinical psychology and the VREPAR project. Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation.

    PubMed

    Silva, Mauro Rubens

    2002-10-01

    Starting with the excellent collective work done by the European Community (EC)-funded Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation (VREPAR) projects, I try to indicate some possible pathways that would allow a better integration of this advanced technology into the reality of Latin American psychology. I myself use analyses that I did in my master's degree in the PUCSP-Catholic University in São Paulo, Brazil. I also include a brief description of the CD-ROM Clinical Psychology Uses of Virtual Reality (CPUVR) that accompanies my thesis. I point out the importance of collaboration between psychology and other disciplines, including computer science. I explain the method that I used to work with digital information, important for the formation of a critical mass of people thinking in Portuguese and Spanish to accelerate a technological jump.

  8. Fully Three-Dimensional Virtual-Reality System

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1994-01-01

    Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.

  9. Virtual reality for spherical images

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  10. [Virtual reality therapy in anxiety disorders].

    PubMed

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he

  11. Innovation Education Enabled through a Collaborative Virtual Reality Learning Environment

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli; Page, Tom; Lehtonen, Miika; Ha, Joong Gyu

    2006-01-01

    This article provides a descriptive account of the development of an approach to the support of design and technology education with 3D Virtual Reality (VR) technologies on an open and distance learning basis. This work promotes an understanding of the implications and possibilities of advanced virtual learning technologies in education for…

  12. Simulators and virtual reality in surgical education.

    PubMed

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  13. [Value of laparoscopic virtual reality simulator in laparoscopic suture ability training of catechumen].

    PubMed

    Cai, Jian-liang; Zhang, Yi; Sun, Guo-feng; Li, Ning-chen; Zhang, Xiang-hua; Na, Yan-qun

    2012-12-01

    To investigate the value of laparoscopic virtual reality simulator in laparoscopic suture ability training of catechumen. After finishing the virtual reality training of basic laparoscopic skills, 26 catechumen were divided randomly into 2 groups, one group undertook advanced laparoscopic skill (suture technique) training with laparoscopic virtual reality simulator (virtual group), another used laparoscopic box trainer (box group). Using our homemade simulations, before grouping and after training, every trainee performed nephropyeloureterostomy under laparoscopy, the running time, anastomosis quality and proficiency were recorded and assessed. For virtual group, the running time, anastomosis quality and proficiency scores before grouping were (98 ± 11) minutes, 3.20 ± 0.41, 3.47 ± 0.64, respectively, after training were (53 ± 8) minutes, 6.87 ± 0.74, 6.33 ± 0.82, respectively, all the differences were statistically significant (all P < 0.01). In box group, before grouping were (98 ± 10) minutes, 3.17 ± 0.39, 3.42 ± 0.67, respectively, after training were (52 ± 9) minutes, 6.08 ± 0.90, 6.33 ± 0.78, respectively, all the differences also were statistically significant (all P < 0.01). After training, the running time and proficiency scores of virtual group were similar to box group (all P > 0.05), however, anstomosis quality scores in virtual group were higher than in box group (P = 0.02). The laparoscopic virtual reality simulator is better than traditional box trainer in advanced laparoscopic suture ability training of catechumen.

  14. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  15. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  16. Learning Rationales and Virtual Reality Technology in Education.

    ERIC Educational Resources Information Center

    Chiou, Guey-Fa

    1995-01-01

    Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…

  17. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    ERIC Educational Resources Information Center

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  18. The Virtual Reality Roving Vehicle Project.

    ERIC Educational Resources Information Center

    Winn, William

    1995-01-01

    Describes the Virtual Reality Roving Vehicle project developed at the University of Washington to teach students in grades 4 through 12 about virtual reality. Topics include teacher workshops; virtual worlds created by students; learning outcomes compared with traditional instruction; and the effect of student characteristics, including gender, on…

  19. [Virtual reality and dementia].

    PubMed

    Diaz-Perez, E; Florez-Lozano, J A

    2018-05-16

    Virtual reality technology was first used in the treatment of psychological disorders in 1994. Since then, its application has aroused the interest of clinicians and researchers, and it has become a potential tool for use in psychological evaluation and neurorehabilitation. To review the different studies that have been published on the treatment of dementias in which virtual reality has been used, with the aim of evaluating its efficacy. A search was conducted over the last 10 years (2007-2017) in different databases (PubMed, PsycINFO and Dialnet), as well as in Google Scholar. Few studies were found and, judging by the results that were obtained, they cannot be said to be conclusive, although they do offer certain evidence suggesting that virtual reality is a promising field for intervention in persons with dementia. Virtual reality is a growing and very promising area for psychological intervention in general, and more particularly for the treatment of dementia. It seems to enjoy a very favourable acceptance among persons suffering from dementia. Nevertheless, it is important to understand the new technologies as a tool rather than as a substitute for the therapist. Likewise, there is a need for more rigorous and systematic research that determines the efficacy of this kind of intervention.

  20. Virtual Reality, Combat, and Communication.

    ERIC Educational Resources Information Center

    Thrush, Emily Austin; Bodary, Michael

    2000-01-01

    Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…

  1. A Virtual Reality-Based Simulation of Abdominal Surgery

    DTIC Science & Technology

    1994-06-30

    415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and

  2. When Rural Reality Goes Virtual.

    ERIC Educational Resources Information Center

    Husain, Dilshad D.

    1998-01-01

    In rural towns where sparse population and few business are barriers, virtual reality may be the only way to bring work-based learning to students. A partnership between a small-town high school, the Ohio Supercomputer Center, and a high-tech business will enable students to explore the workplace using virtual reality. (JOW)

  3. The Virtual Tablet: Virtual Reality as a Control System

    NASA Technical Reports Server (NTRS)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of

  4. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality.

    PubMed

    Lange, Belinda; Koenig, Sebastian; Chang, Chien-Yen; McConnell, Eric; Suma, Evan; Bolas, Mark; Rizzo, Albert

    2012-01-01

    This paper details a brief history and rationale for the use of virtual reality (VR) technology for clinical research and intervention, and then focuses on game-based VR applications in the area of rehabilitation. An analysis of the match between rehabilitation task requirements and the assets available with VR technology is presented. Low-cost camera-based systems capable of tracking user behavior at sufficient levels for game-based virtual rehabilitation activities are currently available for in-home use. Authoring software is now being developed that aims to provide clinicians with a usable toolkit for leveraging this technology. This will facilitate informed professional input on software design, development and application to ensure safe and effective use in the rehabilitation context. The field of rehabilitation generally stands to benefit from the continual advances in VR technology, concomitant system cost reductions and an expanding clinical research literature and knowledge base. Home-based activity within VR systems that are low-cost, easy to deploy and maintain, and meet the requirements for "good" interactive rehabilitation tasks could radically improve users' access to care, adherence to prescribed training and subsequently enhance functional activity in everyday life in clinical populations.

  5. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.

    PubMed

    Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J

    2011-11-01

    To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Immersive virtual reality simulations in nursing education.

    PubMed

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.

  7. Transduction between worlds: using virtual and mixed reality for earth and planetary science

    NASA Astrophysics Data System (ADS)

    Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.

    2017-12-01

    Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.

  8. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  9. Virtual Realities and the Future of Text.

    ERIC Educational Resources Information Center

    Marcus, Stephen

    1992-01-01

    Discusses issues surrounding virtual reality and "virtual books." Suggests that those who are exploring the territory of virtual realities are already helping to expand and enrich expectations and visions for integrating technology into reading and writing. (RS)

  10. The virtues of virtual reality in exposure therapy.

    PubMed

    Gega, Lina

    2017-04-01

    Virtual reality can be more effective and less burdensome than real-life exposure. Optimal virtual reality delivery should incorporate in situ direct dialogues with a therapist, discourage safety behaviours, allow for a mismatch between virtual and real exposure tasks, and encourage self-directed real-life practice between and beyond virtual reality sessions. © The Royal College of Psychiatrists 2017.

  11. Virtual reality for health care: the status of research.

    PubMed

    Riva, Giuseppe

    2002-06-01

    As information technology has advanced and costs have declined over the past decade, there has been a steady growth in the use of virtual reality (VR) in health care. According to the data of the two leading clinical databases--MEDLINE and PSYCINFO--the research in the virtual reality field is moving fast: under the "virtual reality" keyword, there are 739 papers listed in MEDLINE and 569 in PSYCINFO (accessed 6 December 2001). Much of this growth, however, has been in the form of feasibility studies and pilot trials. In fact, many researchers tried to use VR, but only a few were able to deepen their study. According to MEDLINE, only 16 research groups published more than three papers related to health care applications of VR. This number lowers to 12 for papers included in PSYCLIT. Therefore, apart from surgical training and some behavioral treatments, there is little convincing evidence coming from controlled studies of the clinical and economical advantages of this approach. This paper discusses recent evidence and outlines some guidelines for future research in this area.

  12. Virtual reality systems

    NASA Technical Reports Server (NTRS)

    Johnson, David W.

    1992-01-01

    Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.

  13. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  14. Virtual Reality in Schools: The Ultimate Educational Technology.

    ERIC Educational Resources Information Center

    Reid, Robert D.; Sykes, Wylmarie

    1999-01-01

    Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)

  15. Virtual reality and robotics for stroke rehabilitation: where do we go from here?

    PubMed

    Wade, Eric; Winstein, Carolee J

    2011-01-01

    Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.

  16. Virtual Reality Applications for Stress Management Training in the Military.

    PubMed

    Pallavicini, Federica; Argenton, Luca; Toniazzi, Nicola; Aceti, Luciana; Mantovani, Fabrizia

    2016-12-01

    Stress Management Training programs are increasingly being adopted in the military field for resilience empowerment and primary stress prevention. In the last several years, advanced technologies (virtual reality in particular) have been integrated in order to develop more innovative and effective stress training programs for military personnel, including soldiers, pilots, and other aircrew professionals. This systematic review describes experimental studies that have been conducted in recent years to test the effectiveness of virtual reality-based Stress Management Training programs developed for military personnel. This promising state-of-the-art technology has the potential to be a successful new approach in empowering soldiers and increasing their resilience to stress. To provide an overview from 2001 to 2016 of the application of virtual reality for Stress Management Training programs developed for the military, a computer-based search for relevant publications was performed in several databases. Databases used in the search were PsycINFO, Web of Science (Web of Knowledge), PubMed, and Medline. The search string was: ("Virtual Reality") AND ("Military") AND ["Stress Training" OR ("Stress Management")]. There were 14 studies that met the inclusion criteria and were included in the review. The main observation to be drawn from this review is that virtual reality can provide interactive Stress Management Training to decrease levels of perceived stress and negative affect in military personnel. This technology appears to be a promising tool for assessing individuals' resilience to stress and for identifying the impact that stress can have on physiological reactivity and performance.Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual realtiy applications for stress management training in the military. Aerosp Med Hum Perform. 2016; 87(12):1021-1030.

  17. Super-resolution optics for virtual reality

    NASA Astrophysics Data System (ADS)

    Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.

  18. Virtual reality training for health-care professionals.

    PubMed

    Mantovani, Fabrizia; Castelnuovo, Gianluca; Gaggioli, Andrea; Riva, Giuseppe

    2003-08-01

    Emerging changes in health-care delivery are having a significant impact on the structure of health-care professionals' education. Today it is recognized that medical knowledge doubles every 6-8 years, with new medical procedures emerging everyday. While the half-life of medical information is so short, the average physician practices 30 years and the average nurse 40 years. Continuing education thus represents an important challenge to face. Recent advances in educational technology are offering an increasing number of innovative learning tools. Among these, Virtual Reality represents a promising area with high potential of enhancing the training of health-care professionals. Virtual Reality Training can provide a rich, interactive, engaging educational context, thus supporting experiential learning-by-doing; it can, in fact, contribute to raise interest and motivation in trainees and to effectively support skills acquisition and transfer, since the learning process can be settled within an experiential framework. Current virtual training applications for health-care differ a lot as to both their technological/multimedia sophistication and to the types of skills trained, varying for example from telesurgical applications to interactive simulations of human body and brain, to virtual worlds for emergency training. Other interesting applications include the development of immersive 3D environments for training psychiatrists and psychologists in the treatment of mental disorders. This paper has the main aim of discussing the rationale and main benefits for the use of virtual reality in health-care education and training. Significant research and projects carried out in this field will also be presented, followed by discussion on key issues concerning current limitations and future development directions.

  19. Virtual and Augmented Reality Systems for Renal Interventions: A Systematic Review.

    PubMed

    Detmer, Felicitas J; Hettig, Julian; Schindele, Daniel; Schostak, Martin; Hansen, Christian

    2017-01-01

    Many virtual and augmented reality systems have been proposed to support renal interventions. This paper reviews such systems employed in the treatment of renal cell carcinoma and renal stones. A systematic literature search was performed. Inclusion criteria were virtual and augmented reality systems for radical or partial nephrectomy and renal stone treatment, excluding systems solely developed or evaluated for training purposes. In total, 52 research papers were identified and analyzed. Most of the identified literature (87%) deals with systems for renal cell carcinoma treatment. About 44% of the systems have already been employed in clinical practice, but only 20% in studies with ten or more patients. Main challenges remaining for future research include the consideration of organ movement and deformation, human factor issues, and the conduction of large clinical studies. Augmented and virtual reality systems have the potential to improve safety and outcomes of renal interventions. In the last ten years, many technical advances have led to more sophisticated systems, which are already applied in clinical practice. Further research is required to cope with current limitations of virtual and augmented reality assistance in clinical environments.

  20. French Military Applications of Virtual Reality

    DTIC Science & Technology

    2000-11-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10631 TITLE: French Military Applications of Virtual Reality...numbers comprise the compilation report: ADPO10609 thru ADP010633 UNCLASSIFIED 23-1 FRENCH MILITARY APPLICATIONS OF VIRTUAL REALITY Jean Paul Papin* and...Pascal Hue DGA/DCE/ETC4/ETAS Etablissement Technique d’ Angers BP 36 49460 MONTREUIL JUIGNE, France INTRODUCTION France is now applying virtual

  1. Virtual Reality: An Experiential Tool for Clinical Psychology

    ERIC Educational Resources Information Center

    Riva, Giuseppe

    2009-01-01

    Several Virtual Reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 15 years. Typically, in VR the patient learns to manipulate problematic situations related to his/her problem. In fact, VR can be described as an advanced form of human-computer interface that is able…

  2. Exploring Learning through Audience Interaction in Virtual Reality Dome Theaters

    NASA Astrophysics Data System (ADS)

    Apostolellis, Panagiotis; Daradoumis, Thanasis

    Informal learning in public spaces like museums, science centers and planetariums is increasingly popular during the last years. Recent advancements in large-scale displays allowed contemporary technology-enhanced museums to get equipped with digital domes, some with real-time capabilities like Virtual Reality systems. By conducting extensive literature review we have come to the conclusion that little to no research has been carried out on the leaning outcomes that the combination of VR and audience interaction can provide in the immersive environments of dome theaters. Thus, we propose that audience collaboration in immersive virtual reality environments presents a promising approach to support effective learning in groups of school aged children.

  3. Virtual Reality: Emerging Applications and Future Directions

    ERIC Educational Resources Information Center

    Ludlow, Barbara L.

    2015-01-01

    Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…

  4. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    PubMed

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  5. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    NASA Astrophysics Data System (ADS)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  6. Virtual Reality as Innovative Approach to the Interior Designing

    NASA Astrophysics Data System (ADS)

    Kaleja, Pavol; Kozlovská, Mária

    2017-06-01

    We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies

  7. Virtual Reality.

    ERIC Educational Resources Information Center

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  8. Smartphone applications for immersive virtual reality therapy for internet addiction and internet gaming disorder.

    PubMed

    Zhang, Melvyn W B; Ho, Roger C M

    2017-01-01

    There have been rapid advances in technologies over the past decade and virtual reality technology is an area which is increasingly utilized as a healthcare intervention in many disciplines including that of Medicine, Surgery and Psychiatry. In Psychiatry, most of the current interventions involving the usage of virtual reality technology is limited to its application for anxiety disorders. With the advances in technology, Internet addiction and Internet gaming disorders are increasingly prevalent. To date, these disorders are still being treated using conventional psychotherapy methods such as cognitive behavioural therapy. However, there is an increasing number of research combining various other therapies alongside with cognitive behavioural therapy, as an attempt possibly to reduce the drop-out rates and to make such interventions more relevant to the targeted group of addicts, who are mostly adolescents. To date, there has been a prior study done in Korea that has demonstrated the comparable efficacy of virtual reality therapy with that of cognitive behavioural therapy. However, the intervention requires the usage of specialized screens and devices. It is thus the objective of the current article to highlight how smartphone applications could be designed and be utilized for immersive virtual reality treatment, alongside low cost wearables.

  9. Virtual reality, augmented reality…I call it i-Reality.

    PubMed

    Grossmann, Rafael J

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  10. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  11. Visualizing Compound Rotations with Virtual Reality

    ERIC Educational Resources Information Center

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  12. Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.

    ERIC Educational Resources Information Center

    Thurman, Richard A.; Mattoon, Joseph S.

    1994-01-01

    Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…

  13. Cochrane review: virtual reality for stroke rehabilitation.

    PubMed

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2012-09-01

    Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.

  14. A virtual tour of virtual reality

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2018-03-01

    Virtual-reality glasses might still be on the starting blocks, but plenty of companies are working on the technology. Margaret Harris tries on some examples at the Photonics West show in San Francisco

  15. Virtual reality training for surgical trainees in laparoscopic surgery.

    PubMed

    Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R

    2013-08-27

    Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared

  16. Virtual reality-assisted robotic surgery simulation.

    PubMed

    Albani, Justin M; Lee, David I

    2007-03-01

    For more than a decade, advancing computer technologies have allowed incorporation of virtual reality (VR) into surgical training. This has become especially important in training for laparoscopic procedures, which often are complex and leave little room for error. With the advent of robotic surgery and the development and prevalence of a commercial surgical system (da Vinci robot; Intuitive Surgical, Sunnyvale, CA), a valid VR-assisted robotic surgery simulator could minimize the steep learning curve associated with many of these complex procedures and thus enable better outcomes. To date, such simulation does not exist; however, several agencies and corporations are involved in making this dream a reality. We review the history and progress of VR simulation in surgical training, its promising applications in robotic-assisted surgery, and the remaining challenges to implementation.

  17. Virtual reality welder training

    NASA Astrophysics Data System (ADS)

    White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.

    2010-01-01

    This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.

  18. Virtual Reality Exploration and Planning for Precision Colorectal Surgery.

    PubMed

    Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco

    2018-06-01

    Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could

  19. Review of virtual reality treatment for mental health.

    PubMed

    Gourlay, D; Lun, K C; Liya, G

    2001-01-01

    This paper describes recent research that proposes virtual reality techniques as a therapy for patients with cognitive and psychological problems. Specifically this applies to victims of conditions such as traumatic brain injury, Alzheimers and Parkinsons. Additionally virtual reality therapy offers an alternative to current desensitization techniques for the treatment of phobias Some important issues are examined including means of user interaction, skills transfer to the real world, and side-effects of virtual reality exposure.

  20. Laparoscopic baseline ability assessment by virtual reality.

    PubMed

    Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M

    2005-02-01

    Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P < 0.05) correlation between 11 of 16 possible relationships between the virtual reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.

  1. Virtual Reality and Its Potential Application in Education and Training.

    ERIC Educational Resources Information Center

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  2. VIRTUAL REALITY HYPNOSIS

    PubMed Central

    Askay, Shelley Wiechman; Patterson, David R.; Sharar, Sam R.

    2010-01-01

    Scientific evidence for the viability of hypnosis as a treatment for pain has flourished over the past two decades (Rainville, Duncan, Price, Carrier and Bushnell, 1997; Montgomery, DuHamel and Redd, 2000; Lang and Rosen, 2002; Patterson and Jensen, 2003). However its widespread use has been limited by factors such as the advanced expertise, time and effort required by clinicians to provide hypnosis, and the cognitive effort required by patients to engage in hypnosis. The theory in developing virtual reality hypnosis was to apply three-dimensional, immersive, virtual reality technology to guide the patient through the same steps used when hypnosis is induced through an interpersonal process. Virtual reality replaces many of the stimuli that the patients have to struggle to imagine via verbal cueing from the therapist. The purpose of this paper is to explore how virtual reality may be useful in delivering hypnosis, and to summarize the scientific literature to date. We will also explore various theoretical and methodological issues that can guide future research. In spite of the encouraging scientific and clinical findings, hypnosis for analgesia is not universally used in medical centres. One reason for the slow acceptance is the extensive provider training required in order for hypnosis to be an effective pain management modality. Training in hypnosis is not commonly offered in medical schools or even psychology graduate curricula. Another reason is that hypnosis requires far more time and effort to administer than an analgesic pill or injection. Hypnosis requires training, skill and patience to deliver in medical centres that are often fast-paced and highly demanding of clinician time. Finally, the attention and cognitive effort required for hypnosis may be more than patients in an acute care setting, who may be under the influence of opiates and benzodiazepines, are able to impart. It is a challenge to make hypnosis a standard part of care in this environment

  3. VIRTUAL REALITY HYPNOSIS.

    PubMed

    Askay, Shelley Wiechman; Patterson, David R; Sharar, Sam R

    2009-03-01

    Scientific evidence for the viability of hypnosis as a treatment for pain has flourished over the past two decades (Rainville, Duncan, Price, Carrier and Bushnell, 1997; Montgomery, DuHamel and Redd, 2000; Lang and Rosen, 2002; Patterson and Jensen, 2003). However its widespread use has been limited by factors such as the advanced expertise, time and effort required by clinicians to provide hypnosis, and the cognitive effort required by patients to engage in hypnosis.The theory in developing virtual reality hypnosis was to apply three-dimensional, immersive, virtual reality technology to guide the patient through the same steps used when hypnosis is induced through an interpersonal process. Virtual reality replaces many of the stimuli that the patients have to struggle to imagine via verbal cueing from the therapist. The purpose of this paper is to explore how virtual reality may be useful in delivering hypnosis, and to summarize the scientific literature to date. We will also explore various theoretical and methodological issues that can guide future research.In spite of the encouraging scientific and clinical findings, hypnosis for analgesia is not universally used in medical centres. One reason for the slow acceptance is the extensive provider training required in order for hypnosis to be an effective pain management modality. Training in hypnosis is not commonly offered in medical schools or even psychology graduate curricula. Another reason is that hypnosis requires far more time and effort to administer than an analgesic pill or injection. Hypnosis requires training, skill and patience to deliver in medical centres that are often fast-paced and highly demanding of clinician time. Finally, the attention and cognitive effort required for hypnosis may be more than patients in an acute care setting, who may be under the influence of opiates and benzodiazepines, are able to impart. It is a challenge to make hypnosis a standard part of care in this environment

  4. Fire training in a virtual-reality environment

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Jurgen; Bucken, Arno

    2005-03-01

    Although fire is very common in our daily environment - as a source of energy at home or as a tool in industry - most people cannot estimate the danger of a conflagration. Therefore it is important to train people in combating fire. Beneath training with propane simulators or real fires and real extinguishers, fire training can be performed in virtual reality, which means a pollution-free and fast way of training. In this paper we describe how to enhance a virtual-reality environment with a real-time fire simulation and visualisation in order to establish a realistic emergency-training system. The presented approach supports extinguishing of the virtual fire including recordable performance data as needed in teletraining environments. We will show how to get realistic impressions of fire using advanced particle-simulation and how to use the advantages of particles to trigger states in a modified cellular automata used for the simulation of fire-behaviour. Using particle systems that interact with cellular automata it is possible to simulate a developing, spreading fire and its reaction on different extinguishing agents like water, CO2 or oxygen. The methods proposed in this paper have been implemented and successfully tested on Cosimir, a commercial robot-and VR-simulation-system.

  5. Virtual reality measures in neuropsychological assessment: a meta-analytic review.

    PubMed

    Neguț, Alexandra; Matu, Silviu-Andrei; Sava, Florin Alin; David, Daniel

    2016-02-01

    Virtual reality-based assessment is a new paradigm for neuropsychological evaluation, that might provide an ecological assessment, compared to paper-and-pencil or computerized neuropsychological assessment. Previous research has focused on the use of virtual reality in neuropsychological assessment, but no meta-analysis focused on the sensitivity of virtual reality-based measures of cognitive processes in measuring cognitive processes in various populations. We found eighteen studies that compared the cognitive performance between clinical and healthy controls on virtual reality measures. Based on a random effects model, the results indicated a large effect size in favor of healthy controls (g = .95). For executive functions, memory and visuospatial analysis, subgroup analysis revealed moderate to large effect sizes, with superior performance in the case of healthy controls. Participants' mean age, type of clinical condition, type of exploration within virtual reality environments, and the presence of distractors were significant moderators. Our findings support the sensitivity of virtual reality-based measures in detecting cognitive impairment. They highlight the possibility of using virtual reality measures for neuropsychological assessment in research applications, as well as in clinical practice.

  6. Recent advances in head-mounted light field displays for virtual and augmented reality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hua, Hong

    2017-02-01

    Head-mounted light field displays render a true 3D scene by sampling either the projections of the 3D scene at different depths or the directions of the light rays apparently emitted by the 3D scene and viewed from different eye positions. They are capable of rendering correct or nearly correct focus cues and addressing the very well-known vergence-accommodation mismatch problem in conventional virtual and augmented reality displays. In this talk, I will focus on reviewing recent advancements of head-mounted light field displays for VR and AR applications. I will demonstrate examples of HMD systems developed in my group.

  7. The Perceptions of CEIT Postgraduate Students Regarding Reality Concepts: Augmented, Virtual, Mixed and Mirror Reality

    ERIC Educational Resources Information Center

    Taçgin, Zeynep; Arslan, Ahmet

    2017-01-01

    The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…

  8. Turning Virtual Reality into Reality: A Checklist to Ensure Virtual Reality Studies of Eating Behavior and Physical Activity Parallel the Real World

    PubMed Central

    Tal, Aner; Wansink, Brian

    2011-01-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088

  9. Turning virtual reality into reality: a checklist to ensure virtual reality studies of eating behavior and physical activity parallel the real world.

    PubMed

    Tal, Aner; Wansink, Brian

    2011-03-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.

  10. Astronaut Prepares for Mission With Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut John M. Grunsfeld, STS-109 payload commander, uses virtual reality hardware at Johnson Space Center to rehearse some of his duties prior to the STS-109 mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. This technology allows NASA astronauts to practice International Space Station work missions in advance. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  11. Virtual reality and hallucination: a technoetic perspective

    NASA Astrophysics Data System (ADS)

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  12. Recent advancements in medical simulation: patient-specific virtual reality simulation.

    PubMed

    Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E

    2012-07-01

    Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.

  13. Exploring Learner Acceptance of the Use of Virtual Reality in Medical Education: A Case Study of Desktop and Projection-Based Display Systems

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min

    2016-01-01

    Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…

  14. Importance of Virtual Reality to Virtual Reality Exposure Therapy, Study Design of a Randomized Trial.

    PubMed

    McLay, Robert N; Baird, Alicia; Murphy, Jennifer; Deal, William; Tran, Lily; Anson, Heather; Klam, Warren; Johnston, Scott

    2015-01-01

    Post Traumatic Stress Disorder (PTSD) can be a debilitating problem in service members who have served in Iraq or Afghanistan. Virtual Reality Exposure Therapy (VRET) is one of the few interventions demonstrated in randomized controlled trials to be effective for PTSD in this population. There are theoretical reasons to expect that Virtual Reality (VR) adds to the effectiveness of exposure therapy, but there is also added expense and difficulty in using VR. Described is a trial comparing outcomes from VRET and a control exposure therapy (CET) protocol in service members with PTSD.

  15. Sweaty Palms! Virtual Reality Applied to Training.

    ERIC Educational Resources Information Center

    Treiber, Karin

    A qualitative case study approach was used to identify the psychosocial effects of the high-fidelity, virtual reality simulation provided in the college-level air traffic control (ATC) training program offered at the Minnesota Air Traffic Control Training Center and to evaluate the applicability of virtual reality to academic/training situations.…

  16. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  17. Virtual reality applied to teletesting

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon

    2003-05-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.

  18. Open Source Meets Virtual Reality--An Instructor's Journey Unearths New Opportunities for Learning, Community, and Academia

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.

    2015-01-01

    Opening with the history, recent advances, and emerging ways to use avatar-based virtual reality, an instructor who has used virtual environments since 2007 shares how these environments bring more options to community building, teaching, and education. With the open-source movement, where the source code for virtual environments was made…

  19. Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit.

    PubMed

    Mateu, Juan; Lasala, María José; Alamán, Xavier

    2015-08-31

    In this paper, we present Virtual Touch, a toolkit that allows the development of educational activities through a mixed reality environment such that, using various tangible elements, the interconnection of a virtual world with the real world is enabled. The main goal of Virtual Touch is to facilitate the installation, configuration and programming of different types of technologies, abstracting the creator of educational applications from the technical details involving the use of tangible interfaces and virtual worlds. Therefore, it is specially designed to enable teachers to themselves create educational activities for their students in a simple way, taking into account that teachers generally lack advanced knowledge in computer programming and electronics. The toolkit has been used to develop various educational applications that have been tested in two secondary education high schools in Spain.

  20. Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit

    PubMed Central

    Mateu, Juan; Lasala, María José; Alamán, Xavier

    2015-01-01

    In this paper, we present Virtual Touch, a toolkit that allows the development of educational activities through a mixed reality environment such that, using various tangible elements, the interconnection of a virtual world with the real world is enabled. The main goal of Virtual Touch is to facilitate the installation, configuration and programming of different types of technologies, abstracting the creator of educational applications from the technical details involving the use of tangible interfaces and virtual worlds. Therefore, it is specially designed to enable teachers to themselves create educational activities for their students in a simple way, taking into account that teachers generally lack advanced knowledge in computer programming and electronics. The toolkit has been used to develop various educational applications that have been tested in two secondary education high schools in Spain. PMID:26334275

  1. Psychological benefits of virtual reality for patients in rehabilitation therapy.

    PubMed

    Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow

    2009-05-01

    Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.

  2. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.

    PubMed

    Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito

    2017-10-15

    Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.

  3. Therapists' perception of benefits and costs of using virtual reality treatments.

    PubMed

    Segal, Robert; Bhatia, Maneet; Drapeau, Martin

    2011-01-01

    Research indicates that virtual reality is effective in the treatment of many psychological difficulties and is being used more frequently. However, little is known about therapists' perception of the benefits and costs related to the use of virtual therapy in treatment delivery. In the present study, 271 therapists completed an online questionnaire that assessed their perceptions about the potential benefits and costs of using virtual reality in psychotherapy. Results indicated that therapists perceived the potential benefits as outweighing the potential costs. Therapists' self-reported knowledge of virtual reality, theoretical orientation, and interest in using virtual reality were found to be associated with perceptual measures. These findings contribute to the current knowledge of the perception of virtual reality amongst psychotherapists.

  4. Virtual Reality: A Dream Come True or a Nightmare.

    ERIC Educational Resources Information Center

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  5. Stepping into the virtual unknown: feasibility study of a virtual reality-based test of ocular misalignment.

    PubMed

    Nesaratnam, N; Thomas, P; Vivian, A

    2017-10-01

    IntroductionDissociated tests of strabismus provide valuable information for diagnosis and monitoring of ocular misalignment in patients with normal retinal correspondence. However, they are vulnerable to operator error and rely on a fixed head position. Virtual reality headsets obviate the need for head fixation, while providing other clear theoretical advantages, including complete control over the illumination and targets presented for the patient's interaction.PurposeWe compared the performance of a virtual reality-based test of ocular misalignment to that of the traditional Lees screen, to establish the feasibility of using virtual reality technology in ophthalmic settings in the future.MethodsThree patients underwent a traditional Lees screen test, and a virtual reality headset-based test of ocular motility. The virtual reality headset-based programme consisted of an initial test to measure horizontal and vertical deviation, followed by a test for torsion.ResultsThe pattern of deviation obtained using the virtual reality-based test showed agreement with that obtained from the Lees screen for patients with a fourth nerve palsy, comitant esotropia, and restrictive thyroid eye disease.ConclusionsThis study reports the first use of a virtual reality headset in assessing ocular misalignment, and demonstrates that it is a feasible dissociative test of strabismus.

  6. Sustained efficacy of virtual reality distraction.

    PubMed

    Rutter, Charles E; Dahlquist, Lynnda M; Weiss, Karen E

    2009-04-01

    The current study tested whether the effectiveness of distraction using virtual reality (VR) technology in reducing cold pressor pain would maintain over the course of 8 weekly exposures. Twenty-eight adults, 18 to 23 years of age, underwent 1 baseline cold pressor trial and 1 VR distraction trial in randomized order each week. VR distraction led to significant increases in pain threshold and pain tolerance and significant decreases in pain intensity, time spent thinking about pain, and self-reported anxiety, relative to baseline. Repeated exposure did not appear to affect the benefits of VR. Implications for the long-term use of VR distraction as a nonpharmacological analgesic are discussed. This article addresses the concern that the efficacy of virtual reality-assisted distraction from pain could potentially decrease with repeated exposure. The current finding that efficacy did not diminish over several repeated exposures provides support for the use of virtual reality as an adjuvant treatment of pain.

  7. Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.

    ERIC Educational Resources Information Center

    Regian, J. Wesley; And Others

    1992-01-01

    Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)

  8. The need for virtual reality simulators in dental education: A review.

    PubMed

    Roy, Elby; Bakr, Mahmoud M; George, Roy

    2017-04-01

    Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.

  9. Cognitive training on stroke patients via virtual reality-based serious games.

    PubMed

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  10. Optoelectronics technologies for Virtual Reality systems

    NASA Astrophysics Data System (ADS)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  11. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.

    PubMed

    Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-02-09

    Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.

  12. Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation

    PubMed Central

    Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary

    2016-01-01

    Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520

  13. Virtual reality in a children's hospital.

    PubMed

    Nihei, K; Shirakawa, K; Isshiki, N; Hirose, M; Iwata, H; Kobayashi, N

    1999-01-01

    We used virtual reality technology to improve the quality of life and amenity of in-patients in a children's hospital. Children in the hospital could enjoy a zoo, amusement park, and aquarium, in virtual. They played soccer, skiing and horse riding in virtual. They could communicate with persons who were out of the hospital and attend the school which they had gone to before entering hospital. They played music with children who had been admitted to other children's hospitals. By using this virtual technology, the quality of life of children who suffered from psychological and physiological stress in the hospital greatly improved. It is not only useful for their QOL but also for the healing of illness. However, these methods are very rare. Our systemic in our children's hospital is the first to be reported in Japan both software and hardware of virtual reality technology to increase the QOL of sick children need further development.

  14. Virtual reality simulation: using three-dimensional technology to teach nursing students.

    PubMed

    Jenson, Carole E; Forsyth, Diane McNally

    2012-06-01

    The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.

  15. Computer Vision Assisted Virtual Reality Calibration

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  16. The benefits of virtual reality simulator training for laparoscopic surgery.

    PubMed

    Hart, Roger; Karthigasu, Krishnan

    2007-08-01

    Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.

  17. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery.

    PubMed

    Pelargos, Panayiotis E; Nagasawa, Daniel T; Lagman, Carlito; Tenn, Stephen; Demos, Joanna V; Lee, Seung J; Bui, Timothy T; Barnette, Natalie E; Bhatt, Nikhilesh S; Ung, Nolan; Bari, Ausaf; Martin, Neil A; Yang, Isaac

    2017-01-01

    Neurosurgery has undergone a technological revolution over the past several decades, from trephination to image-guided navigation. Advancements in virtual reality (VR) and augmented reality (AR) represent some of the newest modalities being integrated into neurosurgical practice and resident education. In this review, we present a historical perspective of the development of VR and AR technologies, analyze its current uses, and discuss its emerging applications in the field of neurosurgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Physical Models and Virtual Reality Simulators in Otolaryngology.

    PubMed

    Javia, Luv; Sardesai, Maya G

    2017-10-01

    The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Virtual reality and brain computer interface in neurorehabilitation

    PubMed Central

    Dahdah, Marie; Driver, Simon; Parsons, Thomas D.; Richter, Kathleen M.

    2016-01-01

    The potential benefit of technology to enhance recovery after central nervous system injuries is an area of increasing interest and exploration. The primary emphasis to date has been motor recovery/augmentation and communication. This paper introduces two original studies to demonstrate how advanced technology may be integrated into subacute rehabilitation. The first study addresses the feasibility of brain computer interface with patients on an inpatient spinal cord injury unit. The second study explores the validity of two virtual environments with acquired brain injury as part of an intensive outpatient neurorehabilitation program. These preliminary studies support the feasibility of advanced technologies in the subacute stage of neurorehabilitation. These modalities were well tolerated by participants and could be incorporated into patients' inpatient and outpatient rehabilitation regimens without schedule disruptions. This paper expands the limited literature base regarding the use of advanced technologies in the early stages of recovery for neurorehabilitation populations and speaks favorably to the potential integration of brain computer interface and virtual reality technologies as part of a multidisciplinary treatment program. PMID:27034541

  20. [What do virtual reality tools bring to child and adolescent psychiatry?

    PubMed

    Bioulac, S; de Sevin, E; Sagaspe, P; Claret, A; Philip, P; Micoulaud-Franchi, J A; Bouvard, M P

    2018-06-01

    Virtual reality is a relatively new technology that enables individuals to immerse themselves in a virtual world. It offers several advantages including a more realistic, lifelike environment that may allow subjects to "forget" they are being assessed, allow a better participation and an increased generalization of learning. Moreover, the virtual reality system can provide multimodal stimuli, such as visual and auditory stimuli, and can also be used to evaluate the patient's multimodal integration and to aid rehabilitation of cognitive abilities. The use of virtual reality to treat various psychiatric disorders in adults (phobic anxiety disorders, post-traumatic stress disorder, eating disorders, addictions…) and its efficacy is supported by numerous studies. Similar research for children and adolescents is lagging behind. This may be particularly beneficial to children who often show great interest and considerable success on computer, console or videogame tasks. This article will expose the main studies that have used virtual reality with children and adolescents suffering from psychiatric disorders. The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by various studies. Most of the studies attest to the significant efficacy of the virtual reality exposure therapy (or in virtuo exposure). In children, studies have covered arachnophobia social anxiety and school refusal phobia. Despite the limited number of studies, results are very encouraging for treatment in anxiety disorders. Several studies have reported the clinical use of virtual reality technology for children and adolescents with autistic spectrum disorders (ASD). Extensive research has proven the efficiency of technologies as support tools for therapy. Researches are found to be focused on communication and on learning and social imitation skills. Virtual reality is also well accepted by subjects with ASD. The virtual environment offers

  1. The Potential of Using Virtual Reality Technology in Physical Activity Settings

    ERIC Educational Resources Information Center

    Pasco, Denis

    2013-01-01

    In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…

  2. Role of virtual reality for cerebral palsy management.

    PubMed

    Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy

    2014-08-01

    Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.

  3. E-virtual reality exposure therapy in acrophobia: A pilot study.

    PubMed

    Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Jouvent, Roland

    2016-06-01

    Virtual reality therapy is already used for anxiety disorders as an alternative to in vivo and in imagino exposure. To our knowledge, however, no one has yet proposed using remote virtual reality (e-virtual reality). The aim of the present study was to assess e-virtual reality in an acrophobic population. Six individuals with acrophobia each underwent six sessions (two sessions per week) of virtual reality exposure therapy. The first three were remote sessions, while the last three were traditional sessions in the physical presence of the therapist. Anxiety (STAI form Y-A, visual analog scale, heart rate), presence, technical difficulties and therapeutic alliance (Working Alliance Inventory) were measured. In order to control the conditions in which these measures were made, all the sessions were conducted in hospital. None of the participants dropped out. The remote sessions were well accepted. None of the participants verbalized reluctance. No major technical problems were reported. None of the sessions were cancelled or interrupted because of software incidents. Measures (anxiety, presence, therapeutic alliance) were comparable across the two conditions. e-Virtual reality can therefore be used to treat acrophobic disorders. However, control studies are needed to assess online feasibility, therapeutic effects and the mechanisms behind online presence. © The Author(s) 2015.

  4. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis.

    PubMed

    Bergeron, Mathieu; Lortie, Catherine L; Guitton, Matthieu J

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies.

  5. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis

    PubMed Central

    Bergeron, Mathieu; Lortie, Catherine L.; Guitton, Matthieu J.

    2015-01-01

    Classical peripheral vestibular disorders rehabilitation is a long and costly process. While virtual reality settings have been repeatedly suggested to represent possible tools to help the rehabilitation process, no systematic study had been conducted so far. We systematically reviewed the current literature to analyze the published protocols documenting the use of virtual reality settings for peripheral vestibular disorders rehabilitation. There is an important diversity of settings and protocols involving virtual reality settings for the treatment of this pathology. Evaluation of the symptoms is often not standardized. However, our results unveil a clear effect of virtual reality settings-based rehabilitation of the patients' symptoms, assessed by objectives tools such as the DHI (mean decrease of 27 points), changing symptoms handicap perception from moderate to mild impact on life. Furthermore, we detected a relationship between the duration of the exposure to virtual reality environments and the magnitude of the therapeutic effects, suggesting that virtual reality treatments should last at least 150 minutes of cumulated exposure to ensure positive outcomes. Virtual reality offers a pleasant and safe environment for the patient. Future studies should standardize evaluation tools, document putative side effects further, compare virtual reality to conventional physical therapy, and evaluate economical costs/benefits of such strategies. PMID:26556560

  6. Efficacy of standardized training on a virtual reality simulator to advance knee and shoulder arthroscopic motor skills.

    PubMed

    Rahm, Stefan; Wieser, Karl; Bauer, David E; Waibel, Felix Wa; Meyer, Dominik C; Gerber, Christian; Fucentese, Sandro F

    2018-05-16

    Most studies demonstrated, that training on a virtual reality based arthroscopy simulator leads to an improvement of technical skills in orthopaedic surgery. However, how long and what kind of training is optimal for young residents is unknown. In this study we tested the efficacy of a standardized, competency based training protocol on a validated virtual reality based knee- and shoulder arthroscopy simulator. Twenty residents and five experts in arthroscopy were included. All participants performed a test including knee -and shoulder arthroscopy tasks on a virtual reality knee- and shoulder arthroscopy simulator. The residents had to complete a competency based training program. Thereafter, the previously completed test was retaken. We evaluated the metric data of the simulator using a z-score and the Arthroscopic Surgery Skill Evaluation Tool (ASSET) to assess training effects in residents and performance levels in experts. The residents significantly improved from pre- to post training in the overall z-score: - 9.82 (range, - 20.35 to - 1.64) to - 2.61 (range, - 6.25 to 1.5); p < 0.001. The overall ASSET score improved from 55 (27 to 84) percent to 75 (48 to 92) percent; p < 0.001. The experts, however, achieved a significantly higher z-score in the shoulder tasks (p < 0.001 and a statistically insignificantly higher z-score in the knee tasks with a p = 0.921. The experts mean overall ASSET score (knee and shoulder) was significantly higher in the therapeutic tasks (p < 0.001) compared to the residents post training result. The use of a competency based simulator training with this specific device for 3-5 h is an effective tool to advance basic arthroscopic skills of resident in training from 0 to 5 years based on simulator measures and simulator based ASSET testing. Therefore, we conclude that this sort of training method appears useful to learn the handling of the camera, basic anatomy and the triangulation with instruments.

  7. The 'mad scientists': psychoanalysis, dream and virtual reality.

    PubMed

    Leclaire, Marie

    2003-04-01

    The author explores the concept of reality-testing as a means of assessing the relationship with reality that prevails in dream and in virtual reality. Based on a model developed by Jean Laplanche, she compares these activities in detail in order to determine their respective independence from the function of reality-testing. By carefully examining the concept of hallucination in the writings of Freud and Daniel Dennett, the author seeks to pinpoint the specific modalities of interaction between perceptions, ideas, wishes and actions that converge in the 'belief' and in the 'sense of reality'. The paper's main thesis consists of the distinction that it draws between immediacy-testing and reality-testing, with the further argument that this distinction not only dissipates the conceptual vagueness that generally surrounds the latter of the two concepts but also that it promotes a more precise analysis of the function of reality in dream and in virtual reality.

  8. Virtual Reality as an Educational and Training Tool for Medicine.

    PubMed

    Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo

    2018-02-01

    Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.

  9. [Neuropsychological evaluation of the executive functions by means of virtual reality].

    PubMed

    Climent-Martínez, Gema; Luna-Lario, Pilar; Bombín-González, Igor; Cifuentes-Rodríguez, Alicia; Tirapu-Ustárroz, Javier; Díaz-Orueta, Unai

    2014-05-16

    Executive functions include a wide range of self regulatory functions that allow control, organization and coordination of other cognitive functions, emotional responses and behaviours. The traditional approach to evaluate these functions, by means of paper and pencil neuropsychological tests, shows a greater than expected performance within the normal range for patients whose daily life difficulties would predict an inferior performance. These discrepancies suggest that classical neuropsychological tests may not adequately reproduce the complexity and dynamic nature of real life situations. Latest developments in the field of virtual reality offer interesting options for the neuropsychological assessment of many cognitive processes. Virtual reality reproduces three-dimensional environments with which the patient interacts in a dynamic way, with a sense of immersion in the environment similar to the presence and exposure to a real environment. Furthermore, the presentation of these stimuli, as well as distractors and other variables, may be controlled in a systematic way. Moreover, more consistent and precise answers may be obtained, and an in-depth analysis of them is possible. The present review shows current problems in neuropsychological evaluation of executive functions and latest advances in the consecution of higher preciseness and validity of the evaluation by means of new technologies and virtual reality, with special mention to some developments performed in Spain.

  10. Virtual Reality Simulation as a Tool to Monitor Surgical Performance Indicators: VIRESI Observational Study.

    PubMed

    Muralha, Nuno; Oliveira, Manuel; Ferreira, Maria Amélia; Costa-Maia, José

    2017-05-31

    Virtual reality simulation is a topic of discussion as a complementary tool to traditional laparoscopic surgical training in the operating room. However, it is unclear whether virtual reality training can have an impact on the surgical performance of advanced laparoscopic procedures. Our objective was to assess the ability of the virtual reality simulator LAP Mentor to identify and quantify changes in surgical performance indicators, after LAP Mentor training for digestive anastomosis. Twelve surgeons from Centro Hospitalar de São João in Porto (Portugal) performed two sessions of advanced task 5: anastomosis in LAP Mentor, before and after completing the tutorial, and were evaluated on 34 surgical performance indicators. The results show that six surgical performance indicators significantly changed after LAP Mentor training. The surgeons performed the task significantly faster as the median 'total time' significantly reduced (p < 0.05) from 759.5 to 523.5 seconds. Significant decreases (p < 0.05) were also found in median 'total needle loading time' (303.3 to 107.8 seconds), 'average needle loading time' (38.5 to 31.0 seconds), 'number of passages in which the needle passed precisely through the entrance dots' (2.5 to 1.0), 'time the needle was held outside the visible field' (20.9 to 2.4 seconds), and 'total time the needle-holders' ends are kept outside the predefined operative field' (88.2 to 49.6 seconds). This study raises the possibility of using virtual reality training simulation as a benchmark tool to assess the surgical performance of Portuguese surgeons. LAP Mentor is able to identify variations in surgical performance indicators of digestive anastomosis.

  11. Subjective visual vertical assessment with mobile virtual reality system.

    PubMed

    Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus

    2017-01-01

    The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both

  12. Sensorimotor Training in Virtual Reality: A Review

    PubMed Central

    Adamovich, Sergei V.; Fluet, Gerard G.; Tunik, Eugene; Merians, Alma S.

    2010-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait, upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR approaches in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer into real-world functional improvements. PMID:19713617

  13. Intelligent virtual reality in the setting of fuzzy sets

    NASA Technical Reports Server (NTRS)

    Dockery, John; Littman, David

    1992-01-01

    The authors have previously introduced the concept of virtual reality worlds governed by artificial intelligence. Creation of an intelligent virtual reality was further proposed as a universal interface for the handicapped. This paper extends consideration of intelligent virtual realty to a context in which fuzzy set principles are explored as a major tool for implementing theory in the domain of applications to the disabled.

  14. Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.

    PubMed

    Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R

    2004-06-07

    This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins

  15. Current limitations into the application of virtual reality to mental health research.

    PubMed

    Huang, M P; Alessi, N E

    1998-01-01

    Virtual Reality (VR) environments have significant potential as a tool in mental health research, but are limited by technical factors and by mental health research factors. Technical difficulties include cost and complexity of virtual environment creation. Mental health research difficulties include current inadequacy of standards to specify needed details for virtual environment design. Technical difficulties are disappearing with technological advances, but the mental health research difficulties will take a concerted effort to overcome. Some of this effort will need to be directed at the formation of collaborative projects and standards for how such collaborations should proceed.

  16. Virtual Reality Calibration for Telerobotic Servicing

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1994-01-01

    A virtual reality calibration technique of matching a virtual environment of simulated graphics models in 3-D geometry and perspective with actual camera views of the remote site task environment has been developed to enable high-fidelity preview/predictive displays with calibrated graphics overlay on live video.

  17. Virtual Reality: A New Learning Environment.

    ERIC Educational Resources Information Center

    Ferrington, Gary; Loge, Kenneth

    1992-01-01

    Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…

  18. Virtual reality for intelligent and interactive operating, training, and visualization systems

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.

  19. A review of virtual reality based training simulators for orthopaedic surgery.

    PubMed

    Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G

    2016-02-01

    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Virtual Reality Enhanced Instructional Learning

    ERIC Educational Resources Information Center

    Nachimuthu, K.; Vijayakumari, G.

    2009-01-01

    Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…

  1. Researching Travel Behavior and Adaptability: Using a Virtual Reality Role-Playing Game

    ERIC Educational Resources Information Center

    Watcharasukarn, Montira; Krumdieck, Susan; Green, Richard; Dantas, Andre

    2011-01-01

    This article describes a virtual reality role-playing game that was developed as a survey tool to collect travel behavior data and explore and monitor travel behavior adaptation. The Advanced Energy and Material Systems Laboratory has designed, developed a prototype, and tested such a game platform survey tool, called Travel Activity Constraint…

  2. Application of virtual reality graphics in assessment of concussion.

    PubMed

    Slobounov, Semyon; Slobounov, Elena; Newell, Karl

    2006-04-01

    Abnormal balance in individuals suffering from traumatic brain injury (TBI) has been documented in numerous recent studies. However, specific mechanisms causing balance deficits have not been systematically examined. This paper demonstrated the destabilizing effect of visual field motion, induced by virtual reality graphics in concussed individuals but not in normal controls. Fifty five student-athletes at risk for concussion participated in this study prior to injury and 10 of these subjects who suffered MTBI were tested again on day 3, day 10, and day 30 after the incident. Postural responses to visual field motion were recorded using a virtual reality (VR) environment in conjunction with balance (AMTI force plate) and motion tracking (Flock of Birds) technologies. Two experimental conditions were introduced where subjects passively viewed VR scenes or actively manipulated the visual field motion. Long-lasting destabilizing effects of visual field motion were revealed, although subjects were asymptomatic when standard balance tests were introduced. The findings demonstrate that advanced VR technology may detect residual symptoms of concussion at least 30 days post-injury.

  3. A Physiologically Informed Virtual Reality Based Social Communication System for Individuals with Autism

    ERIC Educational Resources Information Center

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-01-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components…

  4. Development of a virtual reality training system for endoscope-assisted submandibular gland removal.

    PubMed

    Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru

    2016-11-01

    Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    ERIC Educational Resources Information Center

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  6. The Impact of Virtual Reality on Chronic Pain

    PubMed Central

    Jones, Ted; Moore, Todd; Choo, James

    2016-01-01

    The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0–10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p < .001 level. Three participants (10%) reported no change between pre and post pain ratings. Ten participants (33%) reported complete pain relief while doing the virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted. PMID:27997539

  7. The Impact of Virtual Reality on Chronic Pain.

    PubMed

    Jones, Ted; Moore, Todd; Choo, James

    2016-01-01

    The treatment of chronic pain could benefit from additional non-opioid interventions. Virtual reality (VR) has been shown to be effective in decreasing pain for procedural or acute pain but to date there have been few studies on its use in chronic pain. The present study was an investigation of the impact of a virtual reality application for chronic pain. Thirty (30) participants with various chronic pain conditions were offered a five-minute session using a virtual reality application called Cool! Participants were asked about their pain using a 0-10 visual analog scale rating before the VR session, during the session and immediately after the session. They were also asked about immersion into the VR world and about possible side effects. Pain was reduced from pre-session to post-session by 33%. Pain was reduced from pre-session during the VR session by 60%. These changes were both statistically significant at the p < .001 level. Three participants (10%) reported no change between pre and post pain ratings. Ten participants (33%) reported complete pain relief while doing the virtual reality session. All participants (100%) reported a decrease in pain to some degree between pre-session pain and during-session pain. The virtual reality experience was found here to provide a significant amount of pain relief. A head mounted display (HMD) was used with all subjects and no discomfort was experienced. Only one participant noted any side effects. VR seems to have promise as a non-opioid treatment for chronic pain and further investigation is warranted.

  8. Virtual Reality: Real Promises and False Expectations.

    ERIC Educational Resources Information Center

    Homan, Willem J.

    1994-01-01

    Examines virtual reality (VR), and discusses the dilemma of defining VR, the limitations of the current technology, and the implications of VR for education. Highlights include a VR experience; human factors and the interface; and altered reality versus VR. (Author/AEF)

  9. Sound For Animation And Virtual Reality

    NASA Technical Reports Server (NTRS)

    Hahn, James K.; Docter, Pete; Foster, Scott H.; Mangini, Mark; Myers, Tom; Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)

    1995-01-01

    Sound is an integral part of the experience in computer animation and virtual reality. In this course, we will present some of the important technical issues in sound modeling, rendering, and synchronization as well as the "art" and business of sound that are being applied in animations, feature films, and virtual reality. The central theme is to bring leading researchers and practitioners from various disciplines to share their experiences in this interdisciplinary field. The course will give the participants an understanding of the problems and techniques involved in producing and synchronizing sounds, sound effects, dialogue, and music. The problem spans a number of domains including computer animation and virtual reality. Since sound has been an integral part of animations and films much longer than for computer-related domains, we have much to learn from traditional animation and film production. By bringing leading researchers and practitioners from a wide variety of disciplines, the course seeks to give the audience a rich mixture of experiences. It is expected that the audience will be able to apply what they have learned from this course in their research or production.

  10. Virtual reality helmet display quality influences the magnitude of virtual reality analgesia.

    PubMed

    Hoffman, Hunter G; Seibel, Eric J; Richards, Todd L; Furness, Thomas A; Patterson, David R; Sharar, Sam R

    2006-11-01

    Immersive Virtual Reality (VR) distraction can be used in addition to traditional opioids to reduce procedural pain. The current study explored whether a High-Tech-VR helmet (ie, a 60-degree field-of-view head-mounted display) reduces pain more effectively than a Low-Tech-VR helmet (a 35-degree field-of-view head-mounted display). Using a double-blind between-groups design, 77 healthy volunteers (no patients) aged 18-23 were randomly assigned to 1 of 3 groups. Each subject received a brief baseline thermal pain stimulus, and the same stimulus again minutes later while in SnowWorld using a Low-Tech-VR helmet (Group 1), using a High-Tech-VR helmet (Group 2), or receiving no distraction (Group 3, control group). Each participant provided subjective 0-10 ratings of cognitive, sensory, and affective components of pain, and amount of fun during the pain stimulus. Compared to the Low-Tech-VR helmet group, subjects in the High-Tech-VR helmet group reported 34% more reduction in worst pain (P < .05), 46% more reduction in pain unpleasantness (P = .001), 29% more reduction in "time spent thinking about pain" (P < .05), and 32% more fun during the pain stimulus in VR (P < .05). Only 29% of participants in the Low-Tech helmet group, as opposed to 65% of participants in the High-Tech-VR helmet group, showed a clinically significant reduction in pain intensity during virtual reality. These results highlight the importance of using an appropriately designed VR helmet to achieve effective VR analgesia (see ). Pain during medical procedures (eg, burn wound care) is often excessive. Adjunctive virtual reality distraction can substantially reduce procedural pain. The results of the present study show that a higher quality VR helmet was more effective at reducing pain than a lower quality VR helmet.

  11. Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey

    ERIC Educational Resources Information Center

    Yellowlees, Peter M.; Cook, James N.

    2006-01-01

    Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…

  12. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    PubMed Central

    Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items. PMID:28656109

  13. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.

    PubMed

    Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  14. Alleviating travel anxiety through virtual reality and narrated video technology.

    PubMed

    Ahn, J C; Lee, O

    2013-01-01

    This study presents an empirical evidence of benefit of narrative video clips in embedded virtual reality websites of hotels for relieving travel anxiety. Even though it was proven that virtual reality functions do provide some relief in travel anxiety, a stronger virtual reality website can be built when narrative video clips that show video clips with narration about important aspects of the hotel. We posit that these important aspects are 1. Escape route and 2. Surrounding neighborhood information, which are derived from the existing research on anxiety disorder as well as travel anxiety. Thus we created a video clip that showed and narrated about the escape route from the hotel room, another video clip that showed and narrated about surrounding neighborhood. We then conducted experiments with this enhanced virtual reality website of a hotel by having human subjects play with the website and fill out a questionnaire. The result confirms our hypothesis that there is a statistically significant relationship between the degree of travel anxiety and psychological relief caused by the use of embedded virtual reality functions with narrative video clips of a hotel website (Tab. 2, Fig. 3, Ref. 26).

  15. Virtual Reality Educational Tool for Human Anatomy.

    PubMed

    Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto

    2017-05-01

    Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.

  16. Immersive virtual reality platform for medical training: a "killer-application".

    PubMed

    2000-01-01

    The Medical Readiness Trainer (MRT) integrates fully immersive Virtual Reality (VR), highly advanced medical simulation technologies, and medical data to enable unprecedented medical education and training. The flexibility offered by the MRT environment serves as a practical teaching tool today and in the near future the will serve as an ideal vehicle for facilitating the transition to the next level of medical practice, i.e., telepresence and next generation Internet-based collaborative learning.

  17. ViRPET--combination of virtual reality and PET brain imaging

    DOEpatents

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.

  18. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    PubMed

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.

  19. Introduction to Virtual Reality in Education

    ERIC Educational Resources Information Center

    Dede, Chris

    2009-01-01

    As an emerging technology for learning, virtual reality (VR) dates back four decades, to early work by Ivan Sutherland in the late 1960s. At long last, interactive media are emerging that offer the promise of VR in everyday settings. Quasi-VR already is commonplace in 2-1/2-D virtual environments like Second Life and in massively multiplayer…

  20. Virtual Reality: A Strategy for Training in Cross-Cultural Communication.

    ERIC Educational Resources Information Center

    Meyer, Catherine; Dunn-Roberts, Richard

    1992-01-01

    Defines virtual reality and explains terminology, theoretical concepts, and enabling technologies. Research and applications are described; limitations of current technology are considered; and future possibilities are discussed, including the use of virtual reality in training for cross-cultural communication. (22 references) (LRW)

  1. Virtual reality and paranoid ideations in people with an 'at-risk mental state' for psychosis.

    PubMed

    Valmaggia, Lucia R; Freeman, Daniel; Green, Catherine; Garety, Philippa; Swapp, David; Antley, Angus; Prescott, Corinne; Fowler, David; Kuipers, Elizabeth; Bebbington, Paul; Slater, Mel; Broome, Matthew; McGuire, Philip K

    2007-12-01

    Virtual reality provides a means of studying paranoid thinking in controlled laboratory conditions. However, this method has not been used with a clinical group. To establish the feasibility and safety of using virtual reality methodology in people with an at-risk mental state and to investigate the applicability of a cognitive model of paranoia to this group. Twenty-one participants with an at-risk mental state were assessed before and after entering a virtual reality environment depicting the inside of an underground train. Virtual reality did not raise levels of distress at the time of testing or cause adverse experiences over the subsequent week. Individuals attributed mental states to virtual reality characters including hostile intent. Persecutory ideation in virtual reality was predicted by higher levels of trait paranoia, anxiety, stress, immersion in virtual reality, perseveration and interpersonal sensitivity. Virtual reality is an acceptable experimental technique for use with individuals with at-risk mental states. Paranoia in virtual reality was understandable in terms of the cognitive model of persecutory delusions.

  2. Transforming Experience: The Potential of Augmented Reality and Virtual Reality for Enhancing Personal and Clinical Change

    PubMed Central

    Riva, Giuseppe; Baños, Rosa M.; Botella, Cristina; Mantovani, Fabrizia; Gaggioli, Andrea

    2016-01-01

    During life, many personal changes occur. These include changing house, school, work, and even friends and partners. However, the daily experience shows clearly that, in some situations, subjects are unable to change even if they want to. The recent advances in psychology and neuroscience are now providing a better view of personal change, the change affecting our assumptive world: (a) the focus of personal change is reducing the distance between self and reality (conflict); (b) this reduction is achieved through (1) an intense focus on the particular experience creating the conflict or (2) an internal or external reorganization of this experience; (c) personal change requires a progression through a series of different stages that however happen in discontinuous and non-linear ways; and (d) clinical psychology is often used to facilitate personal change when subjects are unable to move forward. Starting from these premises, the aim of this paper is to review the potential of virtuality for enhancing the processes of personal and clinical change. First, the paper focuses on the two leading virtual technologies – augmented reality (AR) and virtual reality (VR) – exploring their current uses in behavioral health and the outcomes of the 28 available systematic reviews and meta-analyses. Then the paper discusses the added value provided by VR and AR in transforming our external experience by focusing on the high level of personal efficacy and self-reflectiveness generated by their sense of presence and emotional engagement. Finally, it outlines the potential future use of virtuality for transforming our inner experience by structuring, altering, and/or replacing our bodily self-consciousness. The final outcome may be a new generation of transformative experiences that provide knowledge that is epistemically inaccessible to the individual until he or she has that experience, while at the same time transforming the individual’s worldview. PMID:27746747

  3. Transforming Experience: The Potential of Augmented Reality and Virtual Reality for Enhancing Personal and Clinical Change.

    PubMed

    Riva, Giuseppe; Baños, Rosa M; Botella, Cristina; Mantovani, Fabrizia; Gaggioli, Andrea

    2016-01-01

    During life, many personal changes occur. These include changing house, school, work, and even friends and partners. However, the daily experience shows clearly that, in some situations, subjects are unable to change even if they want to. The recent advances in psychology and neuroscience are now providing a better view of personal change, the change affecting our assumptive world: (a) the focus of personal change is reducing the distance between self and reality (conflict); (b) this reduction is achieved through (1) an intense focus on the particular experience creating the conflict or (2) an internal or external reorganization of this experience; (c) personal change requires a progression through a series of different stages that however happen in discontinuous and non-linear ways; and (d) clinical psychology is often used to facilitate personal change when subjects are unable to move forward. Starting from these premises, the aim of this paper is to review the potential of virtuality for enhancing the processes of personal and clinical change. First, the paper focuses on the two leading virtual technologies - augmented reality (AR) and virtual reality (VR) - exploring their current uses in behavioral health and the outcomes of the 28 available systematic reviews and meta-analyses. Then the paper discusses the added value provided by VR and AR in transforming our external experience by focusing on the high level of personal efficacy and self-reflectiveness generated by their sense of presence and emotional engagement. Finally, it outlines the potential future use of virtuality for transforming our inner experience by structuring, altering, and/or replacing our bodily self-consciousness. The final outcome may be a new generation of transformative experiences that provide knowledge that is epistemically inaccessible to the individual until he or she has that experience, while at the same time transforming the individual's worldview.

  4. Augmenting breath regulation using a mobile driven virtual reality therapy framework.

    PubMed

    Abushakra, Ahmad; Faezipour, Miad

    2014-05-01

    This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.

  5. Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application

    DTIC Science & Technology

    1993-05-01

    The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.

  6. [Application of virtual reality in surgical treatment of complex head and neck carcinoma].

    PubMed

    Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J

    2018-01-07

    Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.

  7. Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.

    PubMed

    Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan

    2016-05-01

    Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  8. A standardized set of 3-D objects for virtual reality research and applications.

    PubMed

    Peeters, David

    2018-06-01

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.

  9. [Parallel virtual reality visualization of extreme large medical datasets].

    PubMed

    Tang, Min

    2010-04-01

    On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.

  10. Modeling of luminance distribution in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Meironke, Michał; Mazikowski, Adam

    2017-08-01

    At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.

  11. Three-Dimensional User Interfaces for Immersive Virtual Reality

    NASA Technical Reports Server (NTRS)

    vanDam, Andries

    1997-01-01

    The focus of this grant was to experiment with novel user interfaces for immersive Virtual Reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. Our primary test application was a scientific visualization application for viewing Computational Fluid Dynamics (CFD) datasets. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past year, and extends last year's final report of the first three years of the grant.

  12. Virtual reality stimuli for force platform posturography.

    PubMed

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  13. Training for percutaneous renal access on a virtual reality simulator.

    PubMed

    Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun

    2013-01-01

    The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in

  14. Virtual reality exposure in the treatment of social phobia.

    PubMed

    Klinger, Evelyne; Légeron, Patrick; Roy, Stéphane; Chemin, Isabelle; Lauer, Françoise; Nugues, Pierre

    2004-01-01

    Social phobia is one of the most frequent psychiatric disorders and is accessible to two forms of scientifically validated treatments: anti-depressant drugs and cognitive-behavioral therapies. Graded exposure to feared social situations (either in vivo or by imagining the situations) is fundamental to obtain an improvement of the anxious symptoms. Virtual reality (VR) may be an alternative to these standard exposure techniques and seems to bring significant advantages by allowing exposures to numerous and varied situations. Moreover studies have shown that human subjects are appropriately sensitive to virtual environments. This chapter reports the definition of a VR-based clinical protocol and a study to treat social phobia using virtual reality techniques. The virtual environments used in the treatment reproduce four situations that social phobics feel the most threatening: performance, intimacy, scrutiny and assertiveness. With the help of the therapist, the patient learns adapted cognitions and behaviors when coping with social situations, with the aim of reducing her or his anxiety in the corresponding real life situations. Some studies have been carried out using virtual reality in the treatment of fear of public speaking, which is only a small part of the symptomatology of most of social phobic patients. The novelty of our work is to address a larger group of situations that the phobic patients experience with high anxiety. In our protocol, the efficacy of the virtual reality treatment is compared to well established and well validated group cognitive-behavioral treatment.

  15. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training.

    PubMed

    Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars

    2017-04-01

    To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Stereoscopic virtual reality models for planning tumor resection in the sellar region.

    PubMed

    Wang, Shou-sen; Zhang, Shang-ming; Jing, Jun-jie

    2012-11-28

    It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region. To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery. All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images. The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.

  17. Virtual reality: a reality for future military pilotage?

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Martinsen, Gary L.; Marasco, Peter L.; Havig, Paul R.

    2009-05-01

    Virtual reality (VR) systems provide exciting new ways to interact with information and with the world. The visual VR environment can be synthetic (computer generated) or be an indirect view of the real world using sensors and displays. With the potential opportunities of a VR system, the question arises about what benefits or detriments a military pilot might incur by operating in such an environment. Immersive and compelling VR displays could be accomplished with an HMD (e.g., imagery on the visor), large area collimated displays, or by putting the imagery on an opaque canopy. But what issues arise when, instead of viewing the world directly, a pilot views a "virtual" image of the world? Is 20/20 visual acuity in a VR system good enough? To deliver this acuity over the entire visual field would require over 43 megapixels (MP) of display surface for an HMD or about 150 MP for an immersive CAVE system, either of which presents a serious challenge with current technology. Additionally, the same number of sensor pixels would be required to drive the displays to this resolution (and formidable network architectures required to relay this information), or massive computer clusters are necessary to create an entirely computer-generated virtual reality with this resolution. Can we presently implement such a system? What other visual requirements or engineering issues should be considered? With the evolving technology, there are many technological issues and human factors considerations that need to be addressed before a pilot is placed within a virtual cockpit.

  18. Thermal feedback in virtual reality and telerobotic systems

    NASA Technical Reports Server (NTRS)

    Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars

    1994-01-01

    A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.

  19. Applying Virtual Reality to commercial Edutainment

    NASA Technical Reports Server (NTRS)

    Grissom, F.; Goza, Sharon P.; Goza, S. Michael

    1994-01-01

    Virtual reality (VR) when defined as a computer generated, immersive, three dimensional graphics environment which provides varying degrees of interactivity, remains an expensive, highly specialized application, yet to find its way into the school, home, or business. As a novel approach to a theme park-type attraction, though, its use can be justified. This paper describes how a virtual reality 'tour of the human digestive system' was created for the Omniplex Science Museum of Oklahoma City, Oklahoma. The customers main objectives were: (1) to educate; (2) to entertain; (3) to draw visitors; and (4) to generate revenue. The 'Edutainment' system ultimately delivered met these goals. As more such systems come into existence the resulting library of licensable programs will greatly reduce development costs to individual institutions.

  20. Using Virtual Reality Environment to Improve Joint Attention Associated with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Cheng, Yufang; Huang, Ruowen

    2012-01-01

    The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…

  1. Future Cyborgs: Human-Machine Interface for Virtual Reality Applications

    DTIC Science & Technology

    2007-04-01

    FUTURE CYBORGS : HUMAN-MACHINE INTERFACE FOR VIRTUAL REALITY APPLICATIONS Robert R. Powell, Major, USAF April 2007 Blue Horizons...SUBTITLE Future Cyborgs : Human-Machine Interface for Virtual Reality Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Nicholas Negroponte, Being Digital (New York: Alfred A Knopf, Inc, 1995), 123. 23 Ibid. 24 Andy Clark, Natural-Born Cyborgs (New York: Oxford

  2. Treatment of Complicated Grief Using Virtual Reality: A Case Report

    ERIC Educational Resources Information Center

    Botella, C.; Osma, J.; Palacios, A. Garcia; Guillen, V.; Banos, R.

    2008-01-01

    This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description…

  3. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review

    PubMed Central

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed “safely” to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user’s experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia. PMID:24624073

  4. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review.

    PubMed

    Baus, Oliver; Bouchard, Stéphane

    2014-01-01

    This paper reviews the move from virtual reality exposure-based therapy to augmented reality exposure-based therapy (ARET). Unlike virtual reality (VR), which entails a complete virtual environment (VE), augmented reality (AR) limits itself to producing certain virtual elements to then merge them into the view of the physical world. Although, the general public may only have become aware of AR in the last few years, AR type applications have been around since beginning of the twentieth century. Since, then, technological developments have enabled an ever increasing level of seamless integration of virtual and physical elements into one view. Like VR, AR allows the exposure to stimuli which, due to various reasons, may not be suitable for real-life scenarios. As such, AR has proven itself to be a medium through which individuals suffering from specific phobia can be exposed "safely" to the object(s) of their fear, without the costs associated with programing complete VEs. Thus, ARET can offer an efficacious alternative to some less advantageous exposure-based therapies. Above and beyond presenting what has been accomplished in ARET, this paper covers some less well-known aspects of the history of AR, raises some ARET related issues, and proposes potential avenues to be followed. These include the type of measures to be used to qualify the user's experience in an augmented reality environment, the exclusion of certain AR-type functionalities from the definition of AR, as well as the potential use of ARET to treat non-small animal phobias, such as social phobia.

  5. Virtual Reality: Ready or Not!

    ERIC Educational Resources Information Center

    Lewis, Joan E.

    1994-01-01

    Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)

  6. Controlled interaction: strategies for using virtual reality to study perception.

    PubMed

    Durgin, Frank H; Li, Zhi

    2010-05-01

    Immersive virtual reality systems employing head-mounted displays offer great promise for the investigation of perception and action, but there are well-documented limitations to most virtual reality systems. In the present article, we suggest strategies for studying perception/action interactions that try to depend on both scale-invariant metrics (such as power function exponents) and careful consideration of the requirements of the interactions under investigation. New data concerning the effect of pincushion distortion on the perception of surface orientation are presented, as well as data documenting the perception of dynamic distortions associated with head movements with uncorrected optics. A review of several successful uses of virtual reality to study the interaction of perception and action emphasizes scale-free analysis strategies that can achieve theoretical goals while minimizing assumptions about the accuracy of virtual simulations.

  7. Virtual Reality Simulation of the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  8. Designing 3 Dimensional Virtual Reality Using Panoramic Image

    NASA Astrophysics Data System (ADS)

    Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna

    The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.

  9. [Virtual reality in the treatment of mental disorders].

    PubMed

    Malbos, Eric; Boyer, Laurent; Lançon, Christophe

    2013-11-01

    Virtual reality is a media allowing users to interact in real time with computerized virtual environments. The application of this immersive technology to cognitive behavioral therapies is increasingly exploited for the treatment of mental disorders. The present study is a review of literature spanning from 1992 to 2012. It depicts the utility of this new tool for assessment and therapy through the various clinical studies carried out on subjects exhibiting diverse mental disorders. Most of the studies conducted on tested subjects attest to the significant efficacy of the Virtual Reality Exposure Therapy (VRET) for the treatment of distinct mental disorders. Comparative studies of VRET with the treatment of reference (the in vivo exposure component of the cognitive behavioral therapy) document an equal efficacy of the two methods and in some cases a superior therapeutic effect in favor of the VRET. Even though clinical experiments set on a larger scale, extended follow-up and studies about factors influencing presence are needed, virtual reality exposure represents an efficacious, confidential, affordable, flexible, interactive therapeutic method which application will progressively widened in the field of mental health. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Assessment of individual hand performance in box trainers compared to virtual reality trainers.

    PubMed

    Madan, Atul K; Frantzides, Constantine T; Shervin, Nina; Tebbit, Christopher L

    2003-12-01

    Training residents in laparoscopic skills is ideally initiated in an inanimate laboratory with both box trainers and virtual reality trainers. Virtual reality trainers have the ability to score individual hand performance although they are expensive. Here we compared the ability to assess dominant and nondominant hand performance in box trainers with virtual reality trainers. Medical students without laparoscopic experience were utilized in this study (n = 16). Each student performed tasks on the LTS 2000, an inanimate box trainer (placing pegs with both hands and transferring pegs from one hand to another), as well as a task on the MIST-VR, a virtual reality trainer (grasping a virtual object and placing it in a virtual receptable with alternating hands). A surgeon scored students for the inanimate box trainer exercises (time and errors) while the MIST-VR scored students (time, economy of movements, and errors for each hand). Statistical analysis included Pearson correlations. Errors and time for the one-handed tasks on the box trainer did not correlate with errors, time, or economy measured for each hand by the MIST-VR (r = 0.01 to 0.30; P = NS). Total errors on the virtual reality trainer did correlate with errors on transferring pege (r = 0.61; P < 0.05). Economy and time of both dominant and nondominant hand from the MIST-VR correlated with time of transferring pegs in the box trainer (r = 0.53 to 0.77; P < 0.05). While individual hand assessment by the box trainer during 2-handed tasks was related to assessment by the virtual reality trainer, individual hand assessment during 1-handed tasks did not correlate with the virtual reality trainer. Virtual reality trainers, such as the MIST-VR, allow assessment of individual hand skills which may lead to improved laparoscopic skill acquisition. It is difficult to assess individual hand performance with box trainers alone.

  11. Virtual reality exposure therapy for combat-related posttraumatic stress disorder.

    PubMed

    Rothbaum, Barbara O; Rizzo, Albert Skip; Difede, JoAnn

    2010-10-01

    Posttraumatic stress disorder (PTSD) is a chronic, debilitating, psychological condition that occurs in a subset of individuals who experience or witness life-threatening traumatic events. PTSD is highly prevalent in those who served in the military. In this paper, we present the underlying theoretical foundations and existing research on virtual reality exposure therapy, a recently emerging treatment for PTSD. Three virtual reality scenarios used to treat PTSD in active duty military and combat veterans and survivors of terrorism are presented: Virtual Vietnam, Virtual Iraq, and Virtual World Trade Center. Preliminary results of ongoing trials are presented. © 2010 Association for Research in Nervous and Mental Disease.

  12. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  13. A Desktop Virtual Reality Earth Motion System in Astronomy Education

    ERIC Educational Resources Information Center

    Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang

    2007-01-01

    In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…

  14. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis.

    PubMed

    Resnik, Linda; Etter, Katherine; Klinger, Shana Lieberman; Kambe, Charles

    2011-01-01

    Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE) program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.

  15. Comparing two types of navigational interfaces for Virtual Reality.

    PubMed

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  16. Virtual reality in radiology: virtual intervention

    NASA Astrophysics Data System (ADS)

    Harreld, Michael R.; Valentino, Daniel J.; Duckwiler, Gary R.; Lufkin, Robert B.; Karplus, Walter J.

    1995-04-01

    Intracranial aneurysms are the primary cause of non-traumatic subarachnoid hemorrhage. Morbidity and mortality remain high even with current endovascular intervention techniques. It is presently impossible to identify which aneurysms will grow and rupture, however hemodynamics are thought to play an important role in aneurysm development. With this in mind, we have simulated blood flow in laboratory animals using three dimensional computational fluid dynamics software. The data output from these simulations is three dimensional, complex and transient. Visualization of 3D flow structures with standard 2D display is cumbersome, and may be better performed using a virtual reality system. We are developing a VR-based system for visualization of the computed blood flow and stress fields. This paper presents the progress to date and future plans for our clinical VR-based intervention simulator. The ultimate goal is to develop a software system that will be able to accurately model an aneurysm detected on clinical angiography, visualize this model in virtual reality, predict its future behavior, and give insight into the type of treatment necessary. An associated database will give historical and outcome information on prior aneurysms (including dynamic, structural, and categorical data) that will be matched to any current case, and assist in treatment planning (e.g., natural history vs. treatment risk, surgical vs. endovascular treatment risks, cure prediction, complication rates).

  17. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    PubMed

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  18. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    PubMed Central

    Rutkowski, Tomasz M.

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538

  19. Development and evaluation of a trauma decision-making simulator in Oculus virtual reality.

    PubMed

    Harrington, Cuan M; Kavanagh, Dara O; Quinlan, John F; Ryan, Donncha; Dicker, Patrick; O'Keeffe, Dara; Traynor, Oscar; Tierney, Sean

    2018-01-01

    Consumer-available virtual-reality technology was launched in 2016 with strong foundations in the entertainment-industry. We developed an innovative medical-training simulator on the Oculus™ Gear-VR platform. This novel application was developed utilising internationally recognised Advanced Trauma Life Support (ATLS) principles, requiring decision-making skills for critically-injured virtual-patients. Participants were recruited in June, 2016 at a single-centre trauma-course (ATLS, Leinster, Ireland) and trialled the platform. Simulator performances were correlated with individual expertise and course-performance measures. A post-intervention questionnaire relating to validity-aspects was completed. Eighteen(81.8%) eligible-candidates and eleven(84.6%) course-instructors voluntarily participated. The survey-responders mean-age was 38.9(±11.0) years with 80.8% male predominance. The instructor-group caused significantly less fatal-errors (p < 0.050) and proportions of incorrect-decisions (p < 0.050). The VR-hardware and trauma-application's mean ratings were 5.09 and 5.04 out of 7 respectively. Participants reported it was an enjoyable method of learning (median-6.0), the learning platform of choice (median-5.0) and a cost-effective training tool (median-5.0). Our research has demonstrated evidence of validity-criteria for a concept application on virtual-reality headsets. We believe that virtual-reality technology is a viable platform for medical-simulation into the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials.

    PubMed

    Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley; Danovitch, Itai

    2017-01-01

    Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality , VR therapy , treatment , and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78-0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness.

  1. Telemanipulation, telepresence, and virtual reality for surgery in the year 2000

    NASA Astrophysics Data System (ADS)

    Satava, Richard M.

    1995-12-01

    The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.

  2. Virtual reality for treatment compliance for people with serious mental illness.

    PubMed

    Välimäki, Maritta; Hätönen, Heli M; Lahti, Mari E; Kurki, Marjo; Hottinen, Anja; Metsäranta, Kiki; Riihimäki, Tanja; Adams, Clive E

    2014-10-08

    Virtual reality (VR) is computerised real-time technology, which can be used an alternative assessment and treatment tool in the mental health field. Virtual reality may take different forms to simulate real-life activities and support treatment. To investigate the effects of virtual reality to support treatment compliance in people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (most recent, 17th September 2013) and relevant reference lists. All relevant randomised studies comparing virtual reality with standard care for those with serious mental illnesses. We defined virtual reality as a computerised real-time technology using graphics, sound and other sensory input, which creates the interactive computer-mediated world as a therapeutic tool. All review authors independently selected studies and extracted data. For homogeneous dichotomous data the risk difference (RD) and the 95% confidence intervals (CI) were calculated on an intention-to-treat basis. For continuous data, we calculated mean differences (MD). We assessed risk of bias and created a 'Summary of findings' table using the GRADE approach. We identified three short-term trials (total of 156 participants, duration five to 12 weeks). Outcomes were prone to at least a moderate risk of overestimating positive effects. We found that virtual reality had little effects regarding compliance (3 RCTs, n = 156, RD loss to follow-up 0.02 CI -0.08 to 0.12, low quality evidence), cognitive functioning (1 RCT, n = 27, MD average score on Cognistat 4.67 CI -1.76 to 11.10, low quality evidence), social skills (1 RCT, n = 64, MD average score on social problem solving SPSI-R (Social Problem Solving Inventory - Revised) -2.30 CI -8.13 to 3.53, low quality evidence), or acceptability of intervention (2 RCTs, n = 92, RD 0.05 CI -0.09 to 0.19, low quality evidence). There were no data reported on mental state, insight, behaviour, quality of life, costs, service utilisation, or

  3. Design and development of a virtual reality simulator for advanced cardiac life support training.

    PubMed

    Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall

    2014-07-01

    The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.

  4. Research on three-dimensional visualization based on virtual reality and Internet

    NASA Astrophysics Data System (ADS)

    Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai

    2007-06-01

    To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.

  5. Modeling and computational simulation and the potential of virtual and augmented reality associated to the teaching of nanoscience and nanotechnology

    NASA Astrophysics Data System (ADS)

    Ribeiro, Allan; Santos, Helen

    With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.

  6. Simulation Of Assembly Processes With Technical Of Virtual Reality

    NASA Astrophysics Data System (ADS)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  7. Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: review and analysis.

    PubMed

    Tsirlin, Inna; Dupierrix, Eve; Chokron, Sylvie; Coquillart, Sabine; Ohlmann, Theophile

    2009-04-01

    Unilateral spatial neglect is a disabling condition frequently occurring after stroke. People with neglect suffer from various spatial deficits in several modalities, which in many cases impair everyday functioning. A successful treatment is yet to be found. Several techniques have been proposed in the last decades, but only a few showed long-lasting effects and none could completely rehabilitate the condition. Diagnostic methods of neglect could be improved as well. The disorder is normally diagnosed with pen-and-paper methods, which generally do not assess patients in everyday tasks and do not address some forms of the disorder. Recently, promising new methods based on virtual reality have emerged. Virtual reality technologies hold great opportunities for the development of effective assessment and treatment techniques for neglect because they provide rich, multimodal, and highly controllable environments. In order to stimulate advancements in this domain, we present a review and an analysis of the current work. We describe past and ongoing research of virtual reality applications for unilateral neglect and discuss the existing problems and new directions for development.

  8. Embodying compassion: a virtual reality paradigm for overcoming excessive self-criticism.

    PubMed

    Falconer, Caroline J; Slater, Mel; Rovira, Aitor; King, John A; Gilbert, Paul; Antley, Angus; Brewin, Chris R

    2014-01-01

    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.

  9. Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.

    PubMed

    Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk

    2013-08-01

    Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.

  10. The Impact of Virtual Reality Programs in Career and Technical Education

    ERIC Educational Resources Information Center

    Catterson, Anna J.

    2013-01-01

    Instructional technology has evolved from blackboards with chalk to in some cases three-dimensional virtual reality environments in which students are interacting and engaging with other students worldwide. The use of this new instructional methodology, known as "virtual reality," has experienced substantial growth in higher education…

  11. Assessment method of digital Chinese dance movements based on virtual reality technology

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Shao, Shuyuan; Wang, Shumin

    2008-03-01

    Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.

  12. Clinician perceptions of virtual reality to assess and treat returning veterans.

    PubMed

    Kramer, Teresa L; Pyne, Jeffrey M; Kimbrell, Timothy A; Savary, Patricia E; Smith, Jeffrey L; Jegley, Susan M

    2010-11-01

    Implementation of evidence-based, innovative treatments is necessary to address posttraumatic stress disorder (PTSD) and related mental health problems of Operation Enduring Freedom and Operation Iraqi Freedom (OEF-OIF) military service personnel. The purpose of this study was to characterize mental health clinicians' perceptions of virtual reality as an assessment tool or adjunct to exposure therapy. Focus groups were conducted with 18 prescribing and nonprescribing mental health clinicians within the Veterans Health Administration. Group discussion was digitally recorded, downloaded into Ethnograph software, and coded to arrive at primary, secondary, and tertiary themes. Most frequently mentioned barriers pertained to aspects of virtual reality, followed by veteran characteristics. Organizational barriers were more relevant when implementing virtual reality as a treatment adjunct. Although the study demonstrated that use of virtual reality as a therapy was feasible and acceptable to clinicians, successful implementation of the technology as an assessment and treatment tool will depend on consideration of the facilitators and barriers that were identified.

  13. A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals.

    PubMed

    Fertleman, Caroline; Aubugeau-Williams, Phoebe; Sher, Carmel; Lim, Ai-Nee; Lumley, Sophie; Delacroix, Sylvie; Pan, Xueni

    2018-01-01

    Virtual reality technology is an exciting and emerging field with vast applications. Our study sets out the viewpoint that virtual reality software could be a new focus of direction in the development of training tools in medical education. We carried out a panel discussion at the Center for Behavior Change 3rd Annual Conference, prompted by the study, "The Responses of Medical General Practitioners to Unreasonable Patient Demand for Antibiotics--A Study of Medical Ethics Using Immersive Virtual Reality" (1). In Pan et al.'s study, 21 general practitioners (GPs) and GP trainees took part in a videoed, 15-min virtual reality scenario involving unnecessary patient demands for antibiotics. This paper was discussed in-depth at the Center for Behavior Change 3rd Annual Conference; the content of this paper is a culmination of findings and feedback from the panel discussion. The experts involved have backgrounds in virtual reality, general practice, medicines management, medical education and training, ethics, and philosophy. Virtual reality is an unexplored methodology to instigate positive behavioral change among clinicians where other methods have been unsuccessful, such as antimicrobial stewardship. There are several arguments in favor of use of virtual reality in medical education: it can be used for "difficult to simulate" scenarios and to standardize a scenario, for example, for use in exams. However, there are limitations to its usefulness because of the cost implications and the lack of evidence that it results in demonstrable behavior change.

  14. Fundamental arthroscopic skill differentiation with virtual reality simulation.

    PubMed

    Rose, Kelsey; Pedowitz, Robert

    2015-02-01

    The purpose of this study was to investigate the use and validity of virtual reality modules as part of the educational approach to mastering arthroscopy in a safe environment by assessing the ability to distinguish between experience levels. Additionally, the study aimed to evaluate whether experts have greater ambidexterity than do novices. Three virtual reality modules (Swemac/Augmented Reality Systems, Linkoping, Sweden) were created to test fundamental arthroscopic skills. Thirty participants-10 experts consisting of faculty, 10 intermediate participants consisting of orthopaedic residents, and 10 novices consisting of medical students-performed each exercise. Steady and Telescope was designed to train centering and image stability. Steady and Probe was designed to train basic triangulation. Track and Moving Target was designed to train coordinated motions of arthroscope and probe. Metrics reflecting speed, accuracy, and efficiency of motion were used to measure construct validity. Steady and Probe and Track a Moving Target both exhibited construct validity, with better performance by experts and intermediate participants than by novices (P < .05), whereas Steady and Telescope did not show validity. There was an overall trend toward better ambidexterity as a function of greater surgical experience, with experts consistently more proficient than novices throughout all 3 modules. This study represents a new way to assess basic arthroscopy skills using virtual reality modules developed through task deconstruction. Participants with the most arthroscopic experience performed better and were more consistent than novices on all 3 virtual reality modules. Greater arthroscopic experience correlates with more symmetry of ambidextrous performance. However, further adjustment of the modules may better simulate fundamental arthroscopic skills and discriminate between experience levels. Arthroscopy training is a critical element of orthopaedic surgery resident training

  15. Mixed reality virtual pets to reduce childhood obesity.

    PubMed

    Johnsen, Kyle; Ahn, Sun Joo; Moore, James; Brown, Scott; Robertson, Thomas P; Marable, Amanda; Basu, Aryabrata

    2014-04-01

    Novel approaches are needed to reduce the high rates of childhood obesity in the developed world. While multifactorial in cause, a major factor is an increasingly sedentary lifestyle of children. Our research shows that a mixed reality system that is of interest to children can be a powerful motivator of healthy activity. We designed and constructed a mixed reality system that allowed children to exercise, play with, and train a virtual pet using their own physical activity as input. The health, happiness, and intelligence of each virtual pet grew as its associated child owner exercised more, reached goals, and interacted with their pet. We report results of a research study involving 61 children from a local summer camp that shows a large increase in recorded and observed activity, alongside observational evidence that the virtual pet was responsible for that change. These results, and the ease at which the system integrated into the camp environment, demonstrate the practical potential to impact the exercise behaviors of children with mixed reality.

  16. Astronauts Prepare for Mission With Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  17. Feedback from video for virtual reality Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less

  18. Could virtual reality be effective in treating children with phobias?

    PubMed

    Bouchard, Stéphane

    2011-02-01

    The use of virtual reality to treat anxiety disorders in adults is gaining popularity and its efficacy is supported by numerous outcome studies. Similar research for children is lagging behind. The outcome studies on the use of virtual reality to treat anxiety disorders in children currently address only specific phobias, and all of the available trials are reviewed in this article. Despite the limited number of studies, results are very encouraging for the treatment of school and spider phobias. A study with adolescents suggests that, at least for social anxiety, exposure stimuli would be more effective if they were developed specifically for younger populations. Virtual reality may not increase children's motivation towards therapy unless their fearful apprehension is addressed before initiating the treatment.

  19. [Image fusion, virtual reality, robotics and navigation. Effects on surgical practice].

    PubMed

    Maresceaux, J; Soler, L; Ceulemans, R; Garcia, A; Henri, M; Dutson, E

    2002-05-01

    In the new minimally invasive surgical era, virtual reality, robotics, and image merging have become topics on their own, offering the potential to revolutionize current surgical treatment and assessment. Improved patient care in the digital age seems to be the primary impetus for continued efforts in the field of telesurgery. The progress in endoscopic surgery with regard to telesurgery is manifested by digitization of the pre-, intra-, and postoperative interaction with the patients' surgical disease via computer system integration: so-called Computer Assisted Surgery (CAS). The preoperative assessment can be improved by 3D organ reconstruction, as in virtual colonoscopy or cholangiography, and by planning and practicing surgery using virtual or simulated organs. When integrating all of the data recorded during this preoperative stage, an enhanced reality can be made possible to improve intra-operative patient interactions. CAS allows for increased three-dimensional accuracy, improved precision and the reproducibility of procedures. The ability to store the actions of the surgeon as digitized information also allows for universal, rapid distribution: i.e., the surgeon's activity can be transmitted to the other side of the operating room or to a remote site via high-speed communications links, as was recently demonstrated by our own team during the Lindbergh operation. Furthermore, the surgeon will be able to share his expertise and skill through teleconsultation and telemanipulation, bringing the patient closer to the expert surgical team through electronic means and opening the way to advanced and continuous surgical learning. Finally, for postoperative interaction, virtual reality and simulation can provide us with 4 dimensional images, time being the fourth dimension. This should allow physicians to have a better idea of the disease process in evolution, and treatment modifications based on this view can be anticipated. We are presently determining the

  20. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    ERIC Educational Resources Information Center

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  1. Virtual reality study of paranoid thinking in the general population.

    PubMed

    Freeman, Daniel; Pugh, Katherine; Antley, Angus; Slater, Mel; Bebbington, Paul; Gittins, Matthew; Dunn, Graham; Kuipers, Elizabeth; Fowler, David; Garety, Philippa

    2008-04-01

    Judging whether we can trust other people is central to social interaction, despite being error-prone. A fear of others can be instilled by the contemporary political and social climate. Unfounded mistrust is called paranoia, and in severe forms is a central symptom of schizophrenia. To demonstrate that individuals without severe mental illness in the general population experience unfounded paranoid thoughts, and to determine factors predictive of paranoia using the first laboratory method of capturing the experience. Two hundred members of the general public were comprehensively assessed, and then entered a virtual reality train ride populated by neutral characters. Ordinal logistic regressions (controlling for age, gender, ethnicity, education, intellectual functioning, socio-economic status, train use, playing of computer games) were used to determine predictors of paranoia. The majority agreed that the characters were neutral, or even thought they were friendly. However, a substantial minority reported paranoid concerns. Paranoia was strongly predicted by anxiety, worry, perceptual anomalies and cognitive inflexibility. This is the most unambiguous demonstration of paranoid ideation in the general public so far. Paranoia can be understood in terms of cognitive factors. The use of virtual reality should lead to rapid advances in the understanding of paranoia.

  2. Virtual Reality and Engineering Education.

    ERIC Educational Resources Information Center

    Pantelidis, Veronica S.

    1997-01-01

    Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…

  3. Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0150 TITLE: Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool PRINCIPAL...AND SUBTITLE Improving Balance in TBI Using a Low-Cost Customized Virtual Reality Rehabilitation Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The proposed study will implement and evaluate a novel, low-cost, Virtual Reality (VR

  4. State-of-the-Art of Virtual Reality Technologies for Children on the Autism Spectrum

    ERIC Educational Resources Information Center

    Parsons, Sarah; Cobb, Sue

    2011-01-01

    In the past decade there has been a rapid advance in the use of virtual reality (VR) technologies for leisure, training and education. VR is argued to offer particular benefits for children on the autism spectrum, chiefly because it can offer simulations of authentic real-world situations in a carefully controlled and safe environment. Given the…

  5. Using Virtual Reality For Outreach Purposes in Planetology

    NASA Astrophysics Data System (ADS)

    Civet, François; Le Mouélic, Stéphane; Le Menn, Erwan; Beaunay, Stéphanie

    2016-10-01

    2016 has been a year marked by a technological breakthrough : the availability for the first time to the general public of technologically mature virtual reality devices. Virtual Reality consists in visually immerging a user in a 3D environment reproduced either from real and/or imaginary data, with the possibility to move and eventually interact with the different elements. In planetology, most of the places will remain inaccessible to the public for a while, but a fleet of dedicated spacecraft's such as orbiters, landers and rovers allow the possibility to virtually reconstruct the environments, using image processing, cartography and photogrammetry. Virtual reality can then bridge the gap to virtually "send" any user into the place and enjoy the exploration.We are investigating several type of devices to render orbital or ground based data of planetological interest, mostly from Mars. The most simple system consists of a "cardboard" headset, on which the user can simply use his cellphone as the screen. A more comfortable experience is obtained with more complex systems such as the HTC vive or Oculus Rift headsets, which include a tracking system important to minimize motion sickness. The third environment that we have developed is based on the CAVE concept, were four 3D video projectors are used to project on three 2x3m walls plus the ground. These systems can be used for scientific data analysis, but also prove to be perfectly suited for outreach and education purposes.

  6. Development of a low-cost virtual reality workstation for training and education

    NASA Technical Reports Server (NTRS)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.

  7. The role of presence in virtual reality exposure therapy

    PubMed Central

    Price, Matthew; Anderson, Page

    2013-01-01

    A growing body of literature suggests that virtual reality is a successful tool for exposure therapy in the treatment of anxiety disorders. Virtual reality (VR) researchers posit the construct of presence, defined as the interpretation of an artificial stimulus as if it were real, to be a presumed factor that enables anxiety to be felt during virtual reality exposure therapy (VRE). However, a handful of empirical studies on the relation between presence and anxiety in VRE have yielded mixed findings. The current study tested the following hypotheses about the relation between presence and anxiety in VRE with a clinical sample of fearful flyers: (1) presence is related to in-session anxiety; (2) presence mediates the extent that pre-existing (pre-treatment) anxiety is experienced during exposure with VR; (3) presence is positively related to the amount of phobic elements included within the virtual environment; (4) presence is related to treatment outcome. Results supported presence as a factor that contributes to the experience of anxiety in the virtual environment as well as a relation between presence and the phobic elements, but did not support a relation between presence and treatment outcome. The study suggests that presence may be a necessary but insufficient requirement for successful VRE. PMID:17145164

  8. The effect of virtual reality during dental treatment on child anxiety and behavior.

    PubMed

    Sullivan, C; Schneider, P E; Musselman, R J; Dummett, C O; Gardiner, D

    2000-01-01

    Virtual reality, a three-dimensional computer generated world, has been shown to relax adults during dental treatment. The purpose of this study was to investigate the effect of virtual reality on the behavior and anxiety of children during dental treatment. The behavior, anxiety and heart rate of twenty-six children, ages five to seven years were evaluated for the first five minutes of two restorative treatment visits. Thirteen children viewed virtual reality at their first restorative visit and not the second, and thirteen children viewed virtual reality at the second restorative visit and not the first. Before and immediately following the restorative visits, each child was instructed to draw a human figure. The restorative appointments were video recorded and heart rate monitored. The drawings and videotapes were rated independently by two examiners. The Koppitz method of evaluating drawings was used to measure anxiety. The Frankl behavior rating scale was used to evaluate behavior. Differences (ANOVA) in behavior (p < or = 0.50) and anxiety (p < or = 0.65) were not significant. The overall pulse rate was significantly lower (ANOVA p < or = 0.001) when the child was wearing glasses and viewing virtual reality. In conclusion, virtual reality during dental treatment had no significant effect on the behavior or anxiety but significantly reduced the pulse.

  9. Controlling social stress in virtual reality environments.

    PubMed

    Hartanto, Dwi; Kampmann, Isabel L; Morina, Nexhmedin; Emmelkamp, Paul G M; Neerincx, Mark A; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  10. Controlling Social Stress in Virtual Reality Environments

    PubMed Central

    Hartanto, Dwi; Kampmann, Isabel L.; Morina, Nexhmedin; Emmelkamp, Paul G. M.; Neerincx, Mark A.; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = −0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes. PMID:24671006

  11. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials

    PubMed Central

    Dascal, Julieta; Reid, Mark; IsHak, Waguih William; Spiegel, Brennan; Recacho, Jennifer; Rosen, Bradley

    2017-01-01

    Objective: We evaluated the evidence supporting the use of virtual reality among patients in acute inpatient medical settings. Method: We conducted a systematic review of randomized controlled trials conducted that examined virtual reality applications in inpatient medical settings between 2005 and 2015. We used PsycINFO, PubMed, and Medline databases to identify studies using the keywords virtual reality, VR therapy, treatment, and inpatient. Results: We identified 2,024 citations, among which 11 met criteria for inclusion. Studies addressed three general areas: pain management, eating disorders, and cognitive and motor rehabilitation. Studies were small and heterogeneous and utilized different designs and measures. Virtual reality was generally well tolerated by patients, and a majority of studies demonstrated clinical efficacy. Studies varied in quality, as measured by an evaluation metric developed by Reisch, Tyson, and Mize (average quality score=0.87; range=0.78–0.96). Conclusion: Virtual reality is a promising intervention with several potential applications in the inpatient medical setting. Studies to date demonstrate some efficacy, but there is a need for larger, well-controlled studies to show clinical and cost-effectiveness. PMID:28386517

  12. Virtual reality: Avatars in human spaceflight training

    NASA Astrophysics Data System (ADS)

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to

  13. Embodying Compassion: A Virtual Reality Paradigm for Overcoming Excessive Self-Criticism

    PubMed Central

    Falconer, Caroline J.; Slater, Mel; Rovira, Aitor; King, John A.; Gilbert, Paul; Antley, Angus; Brewin, Chris R.

    2014-01-01

    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions. PMID:25389766

  14. Virtual Application of Darul Arif Palace from Serdang Sultanate using Virtual Reality

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Annisa, T.; Rahmat, R. F.; Muchtar, M. A.

    2017-01-01

    Serdang Sultanate is one of Malay Sultanate in Sumatera Utara. In the 18th century, many Malay Aristocrats have developed in Sumatera Utara. Social revolution has happened in 1946, many sultanates were overthrown and member of PKI (Communist Party of Indonesia) did mass killing on members of the sultanate families. As the results of this incident, many cultural and historical heritage destroyed. The integration of heritage preservation and the digital technology has become recent trend. The digital technology is not only able to record, preserve detailed documents and information of heritage completely, but also effectively bring the value-added. In this research, polygonal modelling techniques from 3D modelling technology is used to reconstruct Darul Arif Palace of Serdang Sultanate. After modelling the palace, it will be combined with virtual reality technology to allow user to explore the palace and the environment around the palace. Virtual technology is simulation of real objects in virtual world. The results in this research is that virtual reality application can run using Head-Mounted Display.

  15. Applied virtual reality at the Research Triangle Institute

    NASA Technical Reports Server (NTRS)

    Montoya, R. Jorge

    1994-01-01

    Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.

  16. Detecting allocentric and egocentric navigation deficits in patients with schizophrenia and bipolar disorder using virtual reality.

    PubMed

    Mohammadi, Alireza; Hesami, Ehsan; Kargar, Mahmoud; Shams, Jamal

    2018-04-01

    Present evidence suggests that the use of virtual reality has great advantages in evaluating visuospatial navigation and memory for the diagnosis of psychiatric or other neurological disorders. There are a few virtual reality studies on allocentric and egocentric memories in schizophrenia, but studies on both memories in bipolar disorder are lacking. The objective of this study was to compare the performance of allocentric and egocentric memories in patients with schizophrenia and bipolar disorder. For this resolve, an advanced virtual reality navigation task (VRNT) was presented to distinguish the navigational performances of these patients. Twenty subjects with schizophrenia and 20 bipolar disorder patients were compared with 20 healthy-matched controls on the newly developed VRNT consisting of a virtual neighbourhood (allocentric memory) and a virtual maze (egocentric memory). The results demonstrated that schizophrenia patients were significantly impaired on all allocentric, egocentric, visual, and verbal memory tasks compared with patients with bipolar disorder and normal subjects. Dissimilarly, the performance of patients with bipolar disorder was slightly lower than that of control subjects in all these abilities, but no significant differences were observed. It was concluded that allocentric and egocentric navigation deficits are detectable in patients with schizophrenia and bipolar disorder using VRNT, and this task along with RAVLT and ROCFT can be used as a valid clinical tool for distinguishing these patients from normal subjects.

  17. [Virtual reality simulation training in gynecology: review and perspectives].

    PubMed

    Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean

    2016-10-26

    Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.

  18. Integrating Music into Math in a Virtual Reality Game: Learning Fractions

    ERIC Educational Resources Information Center

    Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng

    2016-01-01

    The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…

  19. Virtual reality training in neurosurgery: Review of current status and future applications

    PubMed Central

    Alaraj, Ali; Lemole, Michael G.; Finkle, Joshua H.; Yudkowsky, Rachel; Wallace, Adam; Luciano, Cristian; Banerjee, P. Pat; Rizzi, Silvio H.; Charbel, Fady T.

    2011-01-01

    Background: Over years, surgical training is changing and years of tradition are being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach and practice advanced techniques before attempting them on patients. Simulation training can be as straightforward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced virtual reality (VR) simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. Methods: A PubMed review of the literature was performed for the MESH words “Virtual reality, “Augmented Reality”, “Simulation”, “Training”, and “Neurosurgery”. Relevant articles were retrieved and reviewed. A review of the literature was performed for the history, current status of VR simulation in neurosurgery. Results: Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The number of published literature discussing the application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world. Conclusion: Fully immersive technology is starting to be applied to the practice of

  20. Virtual Superheroes: Using Superpowers in Virtual Reality to Encourage Prosocial Behavior

    PubMed Central

    Rosenberg, Robin S.; Baughman, Shawnee L.; Bailenson, Jeremy N.

    2013-01-01

    Background Recent studies have shown that playing prosocial video games leads to greater subsequent prosocial behavior in the real world. However, immersive virtual reality allows people to occupy avatars that are different from them in a perceptually realistic manner. We examine how occupying an avatar with the superhero ability to fly increases helping behavior. Principal Findings Using a two-by-two design, participants were either given the power of flight (their arm movements were tracked to control their flight akin to Superman’s flying ability) or rode as a passenger in a helicopter, and were assigned one of two tasks, either to help find a missing diabetic child in need of insulin or to tour a virtual city. Participants in the “super-flight” conditions helped the experimenter pick up spilled pens after their virtual experience significantly more than those who were virtual passengers in a helicopter. Conclusion The results indicate that having the “superpower” of flight leads to greater helping behavior in the real world, regardless of how participants used that power. A possible mechanism for this result is that having the power of flight primed concepts and prototypes associated with superheroes (e.g., Superman). This research illustrates the potential of using experiences in virtual reality technology to increase prosocial behavior in the physical world. PMID:23383029

  1. Evaluating the Effects of Immersive Embodied Interaction on Cognition in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Parmar, Dhaval

    Virtual reality is on its advent of becoming mainstream household technology, as technologies such as head-mounted displays, trackers, and interaction devices are becoming affordable and easily available. Virtual reality (VR) has immense potential in enhancing the fields of education and training, and its power can be used to spark interest and enthusiasm among learners. It is, therefore, imperative to evaluate the risks and benefits that immersive virtual reality poses to the field of education. Research suggests that learning is an embodied process. Learning depends on grounded aspects of the body including action, perception, and interactions with the environment. This research aims to study if immersive embodiment through the means of virtual reality facilitates embodied cognition. A pedagogical VR solution which takes advantage of embodied cognition can lead to enhanced learning benefits. Towards achieving this goal, this research presents a linear continuum for immersive embodied interaction within virtual reality. This research evaluates the effects of three levels of immersive embodied interactions on cognitive thinking, presence, usability, and satisfaction among users in the fields of science, technology, engineering, and mathematics (STEM) education. Results from the presented experiments show that immersive virtual reality is greatly effective in knowledge acquisition and retention, and highly enhances user satisfaction, interest and enthusiasm. Users experience high levels of presence and are profoundly engaged in the learning activities within the immersive virtual environments. The studies presented in this research evaluate pedagogical VR software to train and motivate students in STEM education, and provide an empirical analysis comparing desktop VR (DVR), immersive VR (IVR), and immersive embodied VR (IEVR) conditions for learning. This research also proposes a fully immersive embodied interaction metaphor (IEIVR) for learning of computational

  2. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    PubMed Central

    Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer

    2017-01-01

    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi)—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here

  3. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion.

    PubMed

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer

    2017-01-01

    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p  = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and

  4. Embedding speech into virtual realities

    NASA Technical Reports Server (NTRS)

    Bohn, Christian-Arved; Krueger, Wolfgang

    1993-01-01

    In this work a speaker-independent speech recognition system is presented, which is suitable for implementation in Virtual Reality applications. The use of an artificial neural network in connection with a special compression of the acoustic input leads to a system, which is robust, fast, easy to use and needs no additional hardware, beside a common VR-equipment.

  5. Effect of virtual reality in Parkinson's disease: a prospective observational study.

    PubMed

    Severiano, Maria Izabel Rodrigues; Zeigelboim, Bianca Simone; Teive, Hélio Afonso Ghizoni; Santos, Geslaine Janaína Barbosa; Fonseca, Vinícius Ribas

    2018-02-01

    To assess the effectiveness of balance exercises by means of virtual reality games in Parkinson's disease. Sixteen patients were submitted to anamnesis, otorhinolaryngological and vestibular examinations, as well as the Dizziness Handicap Inventory, Berg Balance Scale, SF-36 questionnaire, and the SRT, applied before and after rehabilitation with virtual reality games. Final scoring for the Dizziness Handicap Inventory and Berg Balance Scale was better after rehabilitation. The SRT showed a significant result after rehabilitation. The SF-36 showed a significant change in the functional capacity for the Tightrope Walk and Ski Slalom virtual reality games (p < 0.05), as well as in the mental health aspect of the Ski Slalom game (p < 0.05). The Dizziness Handicap Inventory and Berg Balance Scale showed significant changes in the Ski Slalom game (p < 0.05). There was evidence of clinical improvement in patients in the final assessment after virtual rehabilitation. The Tightrope Walk and Ski Slalom virtual games were shown to be the most effective for this population.

  6. E-Learning Application of Tarsier with Virtual Reality using Android Platform

    NASA Astrophysics Data System (ADS)

    Oroh, H. N.; Munir, R.; Paseru, D.

    2017-01-01

    Spectral Tarsier is a primitive primate that can only be found in the province of North Sulawesi. To study these primates can be used an e-learning application with Augmented Reality technology that uses a marker to confronted the camera computer to interact with three dimensions Tarsier object. But that application only shows tarsier object in three dimensions without habitat and requires a lot of resources because it runs on a Personal Computer. The same technology can be shown three dimensions’ objects is Virtual Reality to excess can make the user like venturing into the virtual world with Android platform that requires fewer resources. So, put on Virtual Reality technology using the Android platform that can make users not only to view and interact with the tarsiers but also the habitat. The results of this research indicate that the user can learn the Tarsier and habitat with good. Thus, the use of Virtual Reality technology in the e-learning application of tarsiers can help people to see, know, and learn about Spectral Tarsier.

  7. Using Immersive Virtual Reality for Electrical Substation Training

    ERIC Educational Resources Information Center

    Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana

    2015-01-01

    Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…

  8. Theoretical Bases for Using Virtual Reality in Education

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2009-01-01

    This article elaborates on how the technical capabilities of virtual reality support the constructivist learning principles. It introduces VRID, a model for instructional design and development that offers explicit guidance on how to produce an educational virtual environment. The define phase of VRID consists of three main tasks: forming a…

  9. Virtual reality therapy in aid of senior citizens' psychological disorders.

    PubMed

    North, Max M; Rives, Jason

    2003-01-01

    The treatment for senior citizens suffering from psychological disorders seems to be different from therapeutic procedures used for other populations. This pilot study is the first known in-depth case study of the effectiveness of virtual reality therapy (VRT) as a treatment for senior citizens. The fear of flying treatment was chosen for this study. The subject of the study was a 62-year-old married female, whose anxiety and avoidance behavior was interfering with her normal activities. For treatment, she was placed in the cabin of a virtual commercial aircraft environment accompanied by a virtual therapist. After a few sessions in which she spent time in a virtual airport scene, she spent four sessions in which she was flown over a simulated city. While under the virtual reality treatment, the subject experienced a number of physical and emotional anxiety-related symptoms. These symptoms included sweaty palms, loss of balance, weakness in the knees, etc. In this study, the virtual reality treatment caused a significant reduction in the anxiety symptoms in the subject and enhanced her ability to face phobic situations in the real world. Since termination of the treatment, she has taken several flights to professional conferences and reported feeling more comfortable and has fewer symptoms than those experienced prior to the VRT treatment.

  10. Social Gaming and Learning Applications: A Driving Force for the Future of Virtual and Augmented Reality?

    NASA Astrophysics Data System (ADS)

    Dörner, Ralf; Lok, Benjamin; Broll, Wolfgang

    Backed by a large consumer market, entertainment and education applications have spurred developments in the fields of real-time rendering and interactive computer graphics. Relying on Computer Graphics methodologies, Virtual Reality and Augmented Reality benefited indirectly from this; however, there is no large scale demand for VR and AR in gaming and learning. What are the shortcomings of current VR/AR technology that prevent a widespread use in these application areas? What advances in VR/AR will be necessary? And what might future “VR-enhanced” gaming and learning look like? Which role can and will Virtual Humans play? Concerning these questions, this article analyzes the current situation and provides an outlook on future developments. The focus is on social gaming and learning.

  11. Investigation of virtual reality concept based on system analysis of conceptual series

    NASA Astrophysics Data System (ADS)

    Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.

    2018-05-01

    The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.

  12. Summer Students in Virtual Reality: A Pilot Study on Educational Applications of Virtual Reality Technology.

    ERIC Educational Resources Information Center

    Bricken, Meredith; Byrne, Chris M.

    The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…

  13. The challenge of using virtual reality in telerehabilitation.

    PubMed

    Rizzo, Albert A; Strickland, Dorothy; Bouchard, Stéphane

    2004-01-01

    Continuing advances in virtual reality (VR) technology along with concomitant system cost reductions have supported the development of more useful and accessible VR systems that can uniquely target a wide range of physical, psychological, and cognitive rehabilitation concerns and research questions. VR offers the potential to deliver systematic human testing, training, and treatment environments that allow for the precise control of complex dynamic three-dimensional stimulus presentations, within which sophisticated interaction, behavioral tracking, and performance recording is possible. The next step in this evolution will allow for Internet accessibility to libraries of VR scenarios as a likely form of distribution and use. VR applications that are Internet deliverable could open up new possibilities for home-based therapy and rehabilitation. If executed thoughtfully, they could increase client involvement, enhance outcomes and reduce costs. However, before this vision can be achieved, a number of significant challenges will need to be addressed and solved. This article will first present three fictional case vignettes that illustrate the ways that VR telerehabilitation might be implemented with varying degrees of success in the future. We then describe a system that is currently being used to deliver virtual worlds over the Internet for training safety skills to children with learning disabilities. From these illustrative fictional and reality-based applications, we will then briefly discuss the technical, practical, and user-based challenges for implementing VR telerehabilitation, along with views regarding the future of this emerging clinical application.

  14. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  15. The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review.

    PubMed

    Clus, Damien; Larsen, Mark Erik; Lemey, Christophe; Berrouiguet, Sofian

    2018-04-27

    Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for patients with eating disorders. ©Damien Clus

  16. The Use of Virtual Reality in Patients with Eating Disorders: Systematic Review

    PubMed Central

    Clus, Damien; Larsen, Mark Erik; Lemey, Christophe

    2018-01-01

    Background Patients with eating disorders are characterized by pathological eating habits and a tendency to overestimate their weight and body shape. Virtual reality shows promise for the evaluation and management of patients with eating disorders. This technology, when accepted by this population, allows immersion in virtual environments, assessment, and therapeutic approaches, by exposing users to high-calorie foods or changes in body shape. Objective To better understand the value of virtual reality, we conducted a review of the literature, including clinical studies proposing the use of virtual reality for the evaluation and management of patients with eating disorders. Methods We searched PubMed, PsycINFO, ScienceDirect, the Cochrane Library, Scopus, and Web of Science up to April 2017. We created the list of keywords based on two domains: virtual reality and eating disorders. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify, select, and critically appraise relevant research while minimizing bias. Results The initial database searches identified 311 articles, 149 of which we removed as duplicates. We analyzed the resulting set of 26 unique studies that met the inclusion criteria. Of these, 8 studies were randomized controlled trials, 13 were nonrandomized studies, and 5 were clinical trials with only 1 participant. Most articles focused on clinical populations (19/26, 73%), with the remainder reporting case-control studies (7/26, 27%). Most of the studies used visual immersive equipment (16/26, 62%) with a head-mounted display (15/16, 94%). Two main areas of interest emerged from these studies: virtual work on patients’ body image (7/26, 27%) and exposure to virtual food stimuli (10/26, 38%). Conclusions We conducted a broad analysis of studies on the use of virtual reality in patients with eating disorders. This review of the literature showed that virtual reality is an acceptable and promising therapeutic tool for

  17. Challenges to the development of complex virtual reality surgical simulations.

    PubMed

    Seymour, N E; Røtnes, J S

    2006-11-01

    Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.

  18. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction.

    PubMed

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M

    2016-07-01

    Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Cognitive therapy using virtual reality could prove highly effective in treating delusions. © The Royal College of Psychiatrists 2016.

  19. Virtual reality in the treatment of persecutory delusions: randomised controlled experimental study testing how to reduce delusional conviction

    PubMed Central

    Freeman, Daniel; Bradley, Jonathan; Antley, Angus; Bourke, Emilie; DeWeever, Natalie; Evans, Nicole; Černis, Emma; Sheaves, Bryony; Waite, Felicity; Dunn, Graham; Slater, Mel; Clark, David M.

    2016-01-01

    Background Persecutory delusions may be unfounded threat beliefs maintained by safety-seeking behaviours that prevent disconfirmatory evidence being successfully processed. Use of virtual reality could facilitate new learning. Aims To test the hypothesis that enabling patients to test the threat predictions of persecutory delusions in virtual reality social environments with the dropping of safety-seeking behaviours (virtual reality cognitive therapy) would lead to greater delusion reduction than exposure alone (virtual reality exposure). Method Conviction in delusions and distress in a real-world situation were assessed in 30 patients with persecutory delusions. Patients were then randomised to virtual reality cognitive therapy or virtual reality exposure, both with 30 min in graded virtual reality social environments. Delusion conviction and real-world distress were then reassessed. Results In comparison with exposure, virtual reality cognitive therapy led to large reductions in delusional conviction (reduction 22.0%, P = 0.024, Cohen's d = 1.3) and real-world distress (reduction 19.6%, P = 0.020, Cohen's d = 0.8). Conclusion Cognitive therapy using virtual reality could prove highly effective in treating delusions. PMID:27151071

  20. Can virtual reality be used to conduct mass prophylaxis clinic training? A pilot program.

    PubMed

    Yellowlees, Peter; Cook, James N; Marks, Shayna L; Wolfe, Daniel; Mangin, Elanor

    2008-03-01

    To create and evaluate a pilot bioterrorism defense training environment using virtual reality technology. The present pilot project used Second Life, an internet-based virtual world system, to construct a virtual reality environment to mimic an actual setting that might be used as a Strategic National Stockpile (SNS) distribution site for northern California in the event of a bioterrorist attack. Scripted characters were integrated into the system as mock patients to analyze various clinic workflow scenarios. Users tested the virtual environment over two sessions. Thirteen users who toured the environment were asked to complete an evaluation survey. Respondents reported that the virtual reality system was relevant to their practice and had potential as a method of bioterrorism defense training. Computer simulations of bioterrorism defense training scenarios are feasible with existing personal computer technology. The use of internet-connected virtual environments holds promise for bioterrorism defense training. Recommendations are made for public health agencies regarding the implementation and benefits of using virtual reality for mass prophylaxis clinic training.

  1. Integrated Data Visualization and Virtual Reality Tool

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  2. Special Experiences for Exceptional Students: Integrating Virtual Reality into Special Education Classrooms.

    ERIC Educational Resources Information Center

    Miller, Erez Cedric

    This paper discusses some of the potential benefits and hazards that virtual reality holds for exceptional children in the special education system. Topics addressed include (1) applications of virtual reality, including developing academic skills via cyberspace, vocational training, and social learning in cyberspace; (2) telepresence and distance…

  3. Head Mounted Displays for Virtual Reality

    DTIC Science & Technology

    1993-02-01

    Produce an Image of Infinity 9 3 The Naval Ocean Systems Center HMD with Front-Mounted CRTs 10 4 The VR Group HMD with Side-Mounted CRTs. The Image is...Convergence Angles 34 vii SECTION 1 INTRODUCTION One of the goals in the development of Virtual Reality ( VR ) is to achieve "total immersion" where one...become transported out of the real world and into the virtual world. The developers of VR have utilized the head mounted display (HMD) as a means of

  4. Collaboration and Dialogue in Virtual Reality

    ERIC Educational Resources Information Center

    Jensen, Camilla Gyldendahl

    2017-01-01

    "Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…

  5. Virtual reality at work

    NASA Technical Reports Server (NTRS)

    Brooks, Frederick P., Jr.

    1991-01-01

    The utility of virtual reality computer graphics in telepresence applications is not hard to grasp and promises to be great. When the virtual world is entirely synthetic, as opposed to real but remote, the utility is harder to establish. Vehicle simulators for aircraft, vessels, and motor vehicles are proving their worth every day. Entertainment applications such as Disney World's StarTours are technologically elegant, good fun, and economically viable. Nevertheless, some of us have no real desire to spend our lifework serving the entertainment craze of our sick culture; we want to see this exciting technology put to work in medicine and science. The topics covered include the following: testing a force display for scientific visualization -- molecular docking; and testing a head-mounted display for scientific and medical visualization.

  6. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review.

    PubMed

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2015-08-01

    Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation settings over the last ten years. The primary objective of this review was to determine the effectiveness of virtual reality on upper limb function and activity after stroke. The impact on secondary outcomes including gait, cognitive function and activities of daily living was also assessed. Randomized and quasi-randomized controlled trials comparing virtual reality with an alternative intervention or no intervention were eligible to be included in the review. The authors searched a number of electronic databases including: the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, clinical trial registers, reference lists, Dissertation Abstracts and contacted key researchers in the field. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. A total of 37 randomized or quasi randomized controlled trials with a total of 1019 participants were included in the review. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardized mean difference [SMD] 0.28, 95% confidence intervals [CI] 0.08 to 0.49) based on 12 studies and significantly more effective than no therapy in improving upper limber function (SMD 0.44 [95% CI 0.15 to 0.73]) based on nine studies. The use of virtual reality also significantly improved activities of daily living function when compared to more conventional therapy approaches (SMD 0.43 [95% CI 0.18 to 0.69]) based on eight studies. While there are a large number of studies assessing the efficacy of virtual reality they tend to be small and many are at risk of bias. While there is evidence to support the use of virtual reality intervention as part of upper limb training programs, more research is required to determine whether it

  7. Virtual reality applications in robotic simulations

    NASA Technical Reports Server (NTRS)

    Homan, David J.; Gott, Charles J.; Goza, S. Michael

    1994-01-01

    Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities.

  8. A systematic approach to parameter selection for CAD-virtual reality data translation using response surface methodology and MOGA-II.

    PubMed

    Abidi, Mustufa Haider; Al-Ahmari, Abdulrahman; Ahmad, Ali

    2018-01-01

    Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.

  9. Two-photon calcium imaging in mice navigating a virtual reality environment.

    PubMed

    Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B

    2014-02-20

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.

  10. Generating Contextual Descriptions of Virtual Reality (VR) Spaces

    NASA Astrophysics Data System (ADS)

    Olson, D. M.; Zaman, C. H.; Sutherland, A.

    2017-12-01

    Virtual reality holds great potential for science communication, education, and research. However, interfaces for manipulating data and environments in virtual worlds are limited and idiosyncratic. Furthermore, speech and vision are the primary modalities by which humans collect information about the world, but the linking of visual and natural language domains is a relatively new pursuit in computer vision. Machine learning techniques have been shown to be effective at image and speech classification, as well as at describing images with language (Karpathy 2016), but have not yet been used to describe potential actions. We propose a technique for creating a library of possible context-specific actions associated with 3D objects in immersive virtual worlds based on a novel dataset generated natively in virtual reality containing speech, image, gaze, and acceleration data. We will discuss the design and execution of a user study in virtual reality that enabled the collection and the development of this dataset. We will also discuss the development of a hybrid machine learning algorithm linking vision data with environmental affordances in natural language. Our findings demonstrate that it is possible to develop a model which can generate interpretable verbal descriptions of possible actions associated with recognized 3D objects within immersive VR environments. This suggests promising applications for more intuitive user interfaces through voice interaction within 3D environments. It also demonstrates the potential to apply vast bodies of embodied and semantic knowledge to enrich user interaction within VR environments. This technology would allow for applications such as expert knowledge annotation of 3D environments, complex verbal data querying and object manipulation in virtual spaces, and computer-generated, dynamic 3D object affordances and functionality during simulations.

  11. Future directions for the development of virtual reality within an automotive manufacturer.

    PubMed

    Lawson, Glyn; Salanitri, Davide; Waterfield, Brian

    2016-03-01

    Virtual Reality (VR) can reduce time and costs, and lead to increases in quality, in the development of a product. Given the pressure on car companies to reduce time-to-market and to continually improve quality, the automotive industry has championed the use of VR across a number of applications, including design, manufacturing, and training. This paper describes interviews with 11 engineers and employees of allied disciplines from an automotive manufacturer about their current physical and virtual properties and processes. The results guided a review of research findings and scientific advances from the academic literature, which formed the basis of recommendations for future developments of VR technologies and applications. These include: develop a greater range of virtual contexts; use multi-sensory simulation; address perceived differences between virtual and real cars; improve motion capture capabilities; implement networked 3D technology; and use VR for market research. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. The role of virtual reality in surgical training in otorhinolaryngology.

    PubMed

    Fried, Marvin P; Uribe, José I; Sadoughi, Babak

    2007-06-01

    This article reviews the rationale, current status and future directions for the development and implementation of virtual reality surgical simulators as training tools. The complexity of modern surgical techniques, which utilize advanced technology, presents a dilemma for surgical training. Hands-on patient experience - the traditional apprenticeship method for teaching operations - may not apply because of the learning curve for skill acquisition and patient safety expectation. The paranasal sinuses and temporal bone have intricate anatomy with a significant amount of vital structures either within the surgical field or in close proximity. The current standard of surgical care in these areas involves the use of endoscopes, cameras and microscopes, requiring additional hand-eye coordination, an accurate command of fine motor skills, and a thorough knowledge of the anatomy under magnified vision. A surgeon's disorientation or loss of perspective can lead to complications, often catastrophic and occasionally lethal. These considerations define the ideal environment for surgical simulation; not surprisingly, significant research and validation of simulators in these areas have occurred. Virtual reality simulators are demonstrating validity as training and skills assessment tools. Future prototypes will find application for routine use in teaching, surgical planning and the development of new instruments and computer-assisted devices.

  13. Virtual reality enhanced mannequin (VREM) that is well received by resuscitation experts.

    PubMed

    Semeraro, Federico; Frisoli, Antonio; Bergamasco, Massimo; Cerchiari, Erga L

    2009-04-01

    The objective of this study was to test acceptance of, and interest in, a newly developed prototype of virtual reality enhanced mannequin (VREM) on a sample of congress attendees who volunteered to participate in the evaluation session and to respond to a specifically designed questionnaire. A commercial Laerdal HeartSim 4000 mannequin was developed to integrate virtual reality (VR) technologies with specially developed virtual reality software to increase the immersive perception of emergency scenarios. To evaluate the acceptance of a virtual reality enhanced mannequin (VREM), we presented it to a sample of 39 possible users. Each evaluation session involved one trainee and two instructors with a standardized procedure and scenario: the operator was invited by the instructor to wear the data-gloves and the head mounted display and was briefly introduced to the scope of the simulation. The instructor helped the operator familiarize himself with the environment. After the patient's collapse, the operator was asked to check the patient's clinical conditions and start CPR. Finally, the patient started to recover signs of circulation and the evaluation session was concluded. Each participant was then asked to respond to a questionnaire designed to explore the trainee's perception in the areas of user-friendliness, realism, and interaction/immersion. Overall, the evaluation of the system was very positive, as was the feeling of immersion and realism of the environment and simulation. Overall, 84.6% of the participants judged the virtual reality experience as interesting and believed that its development could be very useful for healthcare training. The prototype of the virtual reality enhanced mannequin was well-liked, without interfence by interaction devices, and deserves full technological development and validation in emergency medical training.

  14. Use of virtual reality gaming systems for children who are critically ill.

    PubMed

    Salem, Yasser; Elokda, Ahmed

    2014-01-01

    Children who are critically ill are frequently viewed as "too sick" to tolerate physical activity. As a result, these children often fail to develop strength or cardiovascular endurance as compared to typically developing children. Previous reports have shown that early participation in physical activity in is safe and feasible for patients who are critically ill and may result in a shorter length of stay and improved functional outcomes. The use of the virtual reality gaming systems has become a popular form of therapy for children with disabilities and has been supported by a growing body of evidence substantiating its effectiveness with this population. The use of the virtual reality gaming systems in pediatric rehabilitation provides the children with opportunity to participate in an exercise program that is fun, enjoyable, playful, and at the same time beneficial. The integration of those systems in rehabilitation of children who are critically ill is appealing and has the potential to offer the possibility of enhancing physical activities. The lack of training studies involving children who are critically ill makes it difficult to set guidelines on the recommended physical activities and virtual reality gaming systems that is needed to confer health benefits. Several considerations should be taken into account before recommended virtual reality gaming systems as a training program for children who are critically ill. This article highlighted guidelines, limitations and challenges that need to be considered when designing exercise program using virtual reality gaming systems for critically ill children. This information is helpful given the popular use of virtual reality gaming systems in rehabilitation, particularly in children who are critically ill.

  15. Sensor supervision and multiagent commanding by means of projective virtual reality

    NASA Astrophysics Data System (ADS)

    Rossmann, Juergen

    1998-10-01

    When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.

  16. [Real patients in virtual reality: the link between phantom heads and clinical dentistry].

    PubMed

    Serrano, C M; Wesselink, P R; Vervoorn, J M

    2018-05-01

    Preclinical training in phantom heads has until now been considered the 'gold standard' for restorative dental education, but the transition from preclinic to the treatment of real patients has remained a challenge. With the introduction of the latest generation of virtual reality simulators, students and dental practitioners can make digital impressions of their patients in virtual reality models and practice procedures in virtual reality before clinically performing them. In this way, clinical decisions can be investigated and practiced prior to actual treatment, enhancing the safety of the treatment and the self-confidence to perform it. With the 3M™ True Definition Scanner and the Moog Simodont Dental Trainer, 3 masters students and a general dental practitioner practiced their procedures in virtual reality prior to performing them on real patients. They were very satisfied with this preparation and the result of the treatment.

  17. Virtual Reality as a Tool in the Education

    ERIC Educational Resources Information Center

    Piovesan, Sandra Dutra; Passerino, Liliana Maria; Pereira, Adriana Soares

    2012-01-01

    The virtual reality is being more and more used in the education, enabling the student to find out, to explore and to build his own knowledge. This paper presents an Educational Software for presence or distance education, for subjects of Formal Language, where the student can manipulate virtually the target that must be explored, analyzed and…

  18. Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis.

    PubMed

    Opriş, David; Pintea, Sebastian; García-Palacios, Azucena; Botella, Cristina; Szamosközi, Ştefan; David, Daniel

    2012-02-01

    Virtual reality exposure therapy (VRET) is a promising intervention for the treatment of the anxiety disorders. The main objective of this meta-analysis is to compare the efficacy of VRET, used in a behavioral or cognitive-behavioral framework, with that of the classical evidence-based treatments, in anxiety disorders. A comprehensive search of the literature identified 23 studies (n = 608) that were included in the final analysis. The results show that in the case of anxiety disorders, (1) VRET does far better than the waitlist control; (2) the post-treatment results show similar efficacy between the behavioral and the cognitive behavioral interventions incorporating a virtual reality exposure component and the classical evidence-based interventions, with no virtual reality exposure component; (3) VRET has a powerful real-life impact, similar to that of the classical evidence-based treatments; (4) VRET has a good stability of results over time, similar to that of the classical evidence-based treatments; (5) there is a dose-response relationship for VRET; and (6) there is no difference in the dropout rate between the virtual reality exposure and the in vivo exposure. Implications are discussed. © 2011 Wiley Periodicals, Inc.

  19. Effects of virtual reality programs on balance in functional ankle instability.

    PubMed

    Kim, Ki-Jong; Heo, Myoung

    2015-10-01

    [Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle's static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist.

  20. Exploring "Magic Cottage": A Virtual Reality Environment for Stimulating Children's Imaginative Writing

    ERIC Educational Resources Information Center

    Patera, Marianne; Draper, Steve; Naef, Martin

    2008-01-01

    This paper presents an exploratory study that created a virtual reality environment (VRE) to stimulate motivation and creativity in imaginative writing at primary school level. The main aim of the study was to investigate if an interactive, semi-immersive virtual reality world could increase motivation and stimulate pupils' imagination in the…

  1. Reactivity to Cannabis Cues in Virtual Reality Environments†

    PubMed Central

    Bordnick, Patrick S.; Copp, Hilary L.; Traylor, Amy; Graap, Ken M.; Carter, Brian L.; Walton, Alicia; Ferrer, Mirtha

    2014-01-01

    Virtual reality (VR) cue environments have been developed and successfully tested in nicotine, cocaine, and alcohol abusers. Aims in the current article include the development and testing of a novel VR cannabis cue reactivity assessment system. It was hypothesized that subjective craving levels and attention to cannabis cues would be higher in VR environments merits with cannabis cues compared to VR neutral environments. Twenty nontreatment-seeking current cannabis smokers participated in the VR cue trial. During the VR cue trial, participants were exposed to four virtual environments that contained audio, visual, olfactory, and vibrotactile sensory stimuli. Two VR environments contained cannabis cues that consisted of a party room in which people were smoking cannabis and a room containing cannabis paraphernalia without people. Two VR neutral rooms without cannabis cues consisted of a digital art gallery with nature videos. Subjective craving and attention to cues were significantly higher in the VR cannabis environments compared to the VR neutral environments. These findings indicate that VR cannabis cue reactivity may offer a new technology-based method to advance addiction research and treatment. PMID:19705672

  2. A randomized, controlled trial of immersive virtual reality analgesia, during physical therapy for pediatric burns.

    PubMed

    Schmitt, Yuko S; Hoffman, Hunter G; Blough, David K; Patterson, David R; Jensen, Mark P; Soltani, Maryam; Carrougher, Gretchen J; Nakamura, Dana; Sharar, Sam R

    2011-02-01

    This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6-19 years old) performed range-of-motion exercises under a therapist's direction for 1-5 days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects' perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27-44%) in pain ratings during virtual reality. They also reported improved affect ("fun") during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  3. Virtual Reality: Therapeutic Tool or Time Bomb?

    ERIC Educational Resources Information Center

    Cornell, Richard; And Others

    1994-01-01

    Examines the connection between symptoms commonly related to severe mental illness in individuals, and compares it to the presence of potential "psychic triggers" identified as attributes found in the design and use of virtual reality. (Author/AEF)

  4. [A new concept in digestive surgery: the computer assisted surgical procedure, from virtual reality to telemanipulation].

    PubMed

    Marescaux, J; Clément, J M; Nord, M; Russier, Y; Tassetti, V; Mutter, D; Cotin, S; Ayache, N

    1997-11-01

    Surgical simulation increasingly appears to be an essential aspect of tomorrow's surgery. The development of a hepatic surgery simulator is an advanced concept calling for a new writing system which will transform the medical world: virtual reality. Virtual reality extends the perception of our five senses by representing more than the real state of things by the means of computer sciences and robotics. It consists of three concepts: immersion, navigation and interaction. Three reasons have led us to develop this simulator: the first is to provide the surgeon with a comprehensive visualisation of the organ. The second reason is to allow for planning and surgical simulation that could be compared with the detailed flight-plan for a commercial jet pilot. The third lies in the fact that virtual reality is an integrated part of the concept of computer assisted surgical procedure. The project consists of a sophisticated simulator which has to include five requirements: visual fidelity, interactivity, physical properties, physiological properties, sensory input and output. In this report we will describe how to get a realistic 3D model of the liver from bi-dimensional 2D medical images for anatomical and surgical training. The introduction of a tumor and the consequent planning and virtual resection is also described, as are force feedback and real-time interaction.

  5. [Application of virtual reality in the motor aspects of neurorehabilitation].

    PubMed

    Peñasco-Martín, Benito; de los Reyes-Guzmán, Ana; Gil-Agudo, Ángel; Bernal-Sahún, Alberto; Pérez-Aguilar, Beatriz; de la Peña-González, Ana Isabel

    2010-10-16

    Virtual reality allows the user to interact with elements within a simulated scene. In recent times we have been witness to the introduction of virtual reality-based devices as one of the most significant novelties in neurorehabilitation. To review the clinical applications of the developments based on virtual reality for the neurorehabilitation treatment of the motor aspects of the most frequent disabling processes with a neurological origin. A review was carried out of the Medline, Physiotherapy Evidence Database, Ovid and Cochrane Library databases up until April 2009. This was completed with a web search using Google. No clinical trial conducted on its effectiveness has been found to date. The information that was collected is based on the description of the various prototypes produced by the different groups involved in their development. In most cases they are clinical trials conducted with a small number of patients, which have focused more on testing the validity of the device and checking whether it works correctly than on attempting to prove its clinical effectiveness. Although most of the clinical applications refer to patients with stroke, there were also several applications for patients with spinal cord injuries, multiple sclerosis, Parkinson's disease or balance disorders. Virtual reality is a novel tool with a promising future in neurorehabilitation. Further studies are needed to demonstrate its clinical effectiveness as compared to the traditional techniques.

  6. Virtual Reality: Is It for Real?

    ERIC Educational Resources Information Center

    Dowding, Tim J.

    1994-01-01

    Defines virtual reality and describes its application to psychomotor skills training. A description of a system that could be used to teach a college course in physical therapy, including the use of miniature computer workstation, sensory gloves, a programmable mannequin, and other existing technology, is provided. (Contains 10 references.) (KRN)

  7. Virtual reality therapy: an effective treatment for phobias.

    PubMed

    North, M M; North, S M; Coble, J R

    1998-01-01

    Behavioral therapy techniques for treating phobias often includes graded exposure of the patient to anxiety-producing stimuli (Systematic Desensitization). However, in utilizing systematic desensitization, research reviews demonstrate that many patients appear to have difficulty in applying imaginative techniques. This chapter describes the Virtual Reality Therapy (VRT), a new therapeutical approach that can be used to overcome some of the difficulties inherent in the traditional treatment of phobias. VRT, like current imaginal and in vivo modalities, can generate stimuli that could be utilized in desensitization therapy. Like systematic desensitization therapy, VRT can provide stimuli for patients who have difficulty in imagining scenes and/or are too phobic to experience real situations. As far as we know, the idea of using virtual reality technology to combat psychological disorders was first conceived within the Human-Computer Interaction Group at Clark Atlanta University in November 1992. Since then, we have successfully conducted the first known pilot experiments in the use of virtual reality technologies in the treatment of specific phobias: fear of flying, fear of heights, fear of being in certain situations (such as a dark barn, an enclosed bridge over a river, and in the presence of an animal [a black cat] in a dark room), and fear of public speaking. The results of these experiments are described.

  8. The Use of Virtual Reality Tools in the Reading-Language Arts Classroom

    ERIC Educational Resources Information Center

    Pilgrim, J. Michael; Pilgrim, Jodi

    2016-01-01

    This article presents virtual reality as a tool for classroom literacy instruction. Building on the traditional use of images as a way to scaffold prior knowledge, we extend this idea to share ways virtual reality enables experiential learning through field trip-like experiences. The use of technology tools such Google Street view, Google…

  9. Application of virtual reality GIS in urban planning: an example in Huangdao district

    NASA Astrophysics Data System (ADS)

    Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao

    2007-06-01

    As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.

  10. A computer-based training system combining virtual reality and multimedia

    NASA Technical Reports Server (NTRS)

    Stansfield, Sharon A.

    1993-01-01

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment. The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.

  11. STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  12. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    PubMed Central

    Kim, Youngjun; Kim, Hannah

    2017-01-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed. PMID:28573091

  13. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    PubMed

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  14. Virtual reality, disability and rehabilitation.

    PubMed

    Wilson, P N; Foreman, N; Stanton, D

    1997-06-01

    Virtual reality, or virtual environment computer technology, generates simulated objects and events with which people can interact. Existing and potential applications for this technology in the field of disability and rehabilitation are discussed. The main benefits identified for disabled people are that they can engage in a range of activities in a simulator relatively free from the limitations imposed by their disability, and they can do so in safety. Evidence that the knowledge and skills acquired by disabled individuals in simulated environments can transfer to the real world is presented. In particular, spatial information and life skills learned in a virtual environment have been shown to transfer to the real world. Applications for visually impaired people are discussed, and the potential for medical interventions and the assessment and treatment of neurological damage are considered. Finally some current limitations of the technology, and ethical concerns in relation to disability, are discussed.

  15. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.

    PubMed

    Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios

    2017-01-01

    To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient ( r =0.808, P <0.0001) was found between the virtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.

  16. Virtual Reality: Visualization in Three Dimensions.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Virtual reality is a newly emerging tool for scientific visualization that makes possible multisensory, three-dimensional modeling of scientific data. While the emphasis is on visualization, the other senses are added to enhance what the scientist can visualize. Researchers are working to extend the sensory range of what can be perceived in…

  17. Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.

    PubMed

    Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A

    2013-01-01

    Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.

  18. Virtual Reality-Enhanced Extinction of Phobias and Post-Traumatic Stress.

    PubMed

    Maples-Keller, Jessica L; Yasinski, Carly; Manjin, Nicole; Rothbaum, Barbara Olasov

    2017-07-01

    Virtual reality (VR) refers to an advanced technological communication interface in which the user is actively participating in a computer-generated 3-dimensional virtual world that includes computer sensory input devices used to simulate real-world interactive experiences. VR has been used within psychiatric treatment for anxiety disorders, particularly specific phobias and post-traumatic stress disorder, given several advantages that VR provides for use within treatment for these disorders. Exposure therapy for anxiety disorder is grounded in fear-conditioning models, in which extinction learning involves the process through which conditioned fear responses decrease or are inhibited. The present review will provide an overview of extinction training and anxiety disorder treatment, advantages for using VR within extinction training, a review of the literature regarding the effectiveness of VR within exposure therapy for specific phobias and post-traumatic stress disorder, and limitations and future directions of the extant empirical literature.

  19. The use of virtual reality tools in surgical education.

    PubMed

    Smith, Andrew

    2010-03-01

    Advances in computing, specifically those used for simulation and games technology has allowed for exciting developments in dental and surgical education. At the same time concerns are being raised that students with relatively little training, practise to improve their skill on patients with all of the inherent risks that may occur. Simulation in dentistry has been practised for many years and so the concept is not new to the profession. New tools have been developed that both enhance teaching and learning and are also useful for assessment of students and trainees. The challenge of virtual and simulated reality tools is to have the required fidelity to improve teaching and learning outcomes over the currently utilized methodology.

  20. Can virtual reality simulation be used for advanced bariatric surgical training?

    PubMed

    Lewis, Trystan M; Aggarwal, Rajesh; Kwasnicki, Richard M; Rajaretnam, Niro; Moorthy, Krishna; Ahmed, Ahmed; Darzi, Ara

    2012-06-01

    Laparoscopic bariatric surgery is a safe and effective way of treating morbid obesity. However, the operations are technically challenging and training opportunities for junior surgeons are limited. This study aims to assess whether virtual reality (VR) simulation is an effective adjunct for training and assessment of laparoscopic bariatric technical skills. Twenty bariatric surgeons of varying experience (Five experienced, five intermediate, and ten novice) were recruited to perform a jejuno-jejunostomy on both cadaveric tissue and on the bariatric module of the Lapmentor VR simulator (Simbionix Corporation, Cleveland, OH). Surgical performance was assessed using validated global rating scales (GRS) and procedure specific video rating scales (PSRS). Subjects were also questioned about the appropriateness of VR as a training tool for surgeons. Construct validity of the VR bariatric module was demonstrated with a significant difference in performance between novice and experienced surgeons on the VR jejuno-jejunostomy module GRS (median 11-15.5; P = .017) and PSRS (median 11-13; P = .003). Content validity was demonstrated with surgeons describing the VR bariatric module as useful and appropriate for training (mean Likert score 4.45/7) and they would highly recommend VR simulation to others for bariatric training (mean Likert score 5/7). Face and concurrent validity were not established. This study shows that the bariatric module on a VR simulator demonstrates construct and content validity. VR simulation appears to be an effective method for training of advanced bariatric technical skills for surgeons at the start of their bariatric training. However, assessment of technical skills should still take place on cadaveric tissue. Copyright © 2012. Published by Mosby, Inc.

  1. Virtual reality computer simulation.

    PubMed

    Grantcharov, T P; Rosenberg, J; Pahle, E; Funch-Jensen, P

    2001-03-01

    Objective assessment of psychomotor skills should be an essential component of a modern surgical training program. There are computer systems that can be used for this purpose, but their wide application is not yet generally accepted. The aim of this study was to validate the role of virtual reality computer simulation as a method for evaluating surgical laparoscopic skills. The study included 14 surgical residents. On day 1, they performed two runs of all six tasks on the Minimally Invasive Surgical Trainer, Virtual Reality (MIST VR). On day 2, they performed a laparoscopic cholecystectomy on living pigs; afterward, they were tested again on the MIST VR. A group of experienced surgeons evaluated the trainees' performance on the animal operation, giving scores for total performance error and economy of motion. During the tasks on the MIST VR, errors and noneconomy of movements for the left and right hand were also recorded. There were significant correlations between error scores in vivo and three of the six in vitro tasks (p < 0.05). In vivo economy scores correlated significantly with non-economy right-hand scores for five of the six tasks and with non-economy left-hand scores for one of the six tasks (p < 0.05). In this study, laparoscopic performance in the animal model correlated significantly with performance on the computer simulator. Thus, the computer model seems to be a promising objective method for the assessment of laparoscopic psychomotor skills.

  2. Augmented reality (AR) and virtual reality (VR) applied in dentistry.

    PubMed

    Huang, Ta-Ko; Yang, Chi-Hsun; Hsieh, Yu-Hsin; Wang, Jen-Chyan; Hung, Chun-Cheng

    2018-04-01

    The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Copyright © 2018. Published by Elsevier Taiwan.

  3. Virtual reality exposure therapy for social anxiety disorder: a randomized controlled trial.

    PubMed

    Anderson, Page L; Price, Matthew; Edwards, Shannan M; Obasaju, Mayowa A; Schmertz, Stefan K; Zimand, Elana; Calamaras, Martha R

    2013-10-01

    This is the first randomized trial comparing virtual reality exposure therapy to in vivo exposure for social anxiety disorder. Participants with a principal diagnosis of social anxiety disorder who identified public speaking as their primary fear (N = 97) were recruited from the community, resulting in an ethnically diverse sample (M age = 39 years) of mostly women (62%). Participants were randomly assigned to and completed 8 sessions of manualized virtual reality exposure therapy, exposure group therapy, or wait list. Standardized self-report measures were collected at pretreatment, posttreatment, and 12-month follow-up, and process measures were collected during treatment. A standardized speech task was delivered at pre- and posttreatment, and diagnostic status was reassessed at 3-month follow-up. Analysis of covariance showed that, relative to wait list, people completing either active treatment significantly improved on all but one measure (length of speech for exposure group therapy and self-reported fear of negative evaluation for virtual reality exposure therapy). At 12-month follow-up, people showed significant improvement from pretreatment on all measures. There were no differences between the active treatments on any process or outcome measure at any time, nor differences on achieving partial or full remission. Virtual reality exposure therapy is effective for treating social fears, and improvement is maintained for 1 year. Virtual reality exposure therapy is equally effective as exposure group therapy; further research with a larger sample is needed, however, to better control and statistically test differences between the treatments.

  4. Effects of virtual reality programs on balance in functional ankle instability

    PubMed Central

    Kim, Ki-Jong; Heo, Myoung

    2015-01-01

    [Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle’s static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist. PMID:26644652

  5. Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Tschirschwitz, F.; Deggim, S.

    2017-02-01

    In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.

  6. Mobile Virtual Reality : A Solution for Big Data Visualization

    NASA Astrophysics Data System (ADS)

    Marshall, E.; Seichter, N. D.; D'sa, A.; Werner, L. A.; Yuen, D. A.

    2015-12-01

    Pursuits in geological sciences and other branches of quantitative sciences often require data visualization frameworks that are in continual need of improvement and new ideas. Virtual reality is a medium of visualization that has large audiences originally designed for gaming purposes; Virtual reality can be captured in Cave-like environment but they are unwieldy and expensive to maintain. Recent efforts by major companies such as Facebook have focussed more on a large market , The Oculus is the first of such kind of mobile devices The operating system Unity makes it possible for us to convert the data files into a mesh of isosurfaces and be rendered into 3D. A user is immersed inside of the virtual reality and is able to move within and around the data using arrow keys and other steering devices, similar to those employed in XBox.. With introductions of products like the Oculus Rift and Holo Lens combined with ever increasing mobile computing strength, mobile virtual reality data visualization can be implemented for better analysis of 3D geological and mineralogical data sets. As more new products like the Surface Pro 4 and other high power yet very mobile computers are introduced to the market, the RAM and graphics card capacity necessary to run these models is more available, opening doors to this new reality. The computing requirements needed to run these models are a mere 8 GB of RAM and 2 GHz of CPU speed, which many mobile computers are starting to exceed. Using Unity 3D software to create a virtual environment containing a visual representation of the data, any data set converted into FBX or OBJ format which can be traversed by wearing the Oculus Rift device. This new method for analysis in conjunction with 3D scanning has potential applications in many fields, including the analysis of precious stones or jewelry. Using hologram technology to capture in high-resolution the 3D shape, color, and imperfections of minerals and stones, detailed review and

  7. Effect of Virtual Reality on Cognition in Stroke Patients

    PubMed Central

    Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young

    2011-01-01

    Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159

  8. Effect of virtual reality on cognition in stroke patients.

    PubMed

    Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young

    2011-08-01

    To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.

  9. Virtual reality exposure in the treatment of fear of flying.

    PubMed

    da Costa, Rafael T; Sardinha, Aline; Nardi, Antonio E

    2008-09-01

    Recently, a growing body of research has appeared on different aspects of virtual reality exposure (VRE) therapy applied to the treatment of anxiety disorders. The purpose of this article was to review with a systematic methodology the evidences that support the potential effectiveness of this therapy in the treatment of fear of flying (FOF), a problem that significantly affects patients' social functioning and personal welfare. Potential studies were identified via computerized search using the PubMed/Medline and Web of Science databases, and additional review of their references. Articles ranged from 1969 to 2007 and the keywords used in the search were: "virtual reality" and "fear of flying"; "virtual reality" and "flying phobia"; or "virtual reality" and "flight phobia." There were 40 studies using VRE in the treatment of FOF identified, mostly on the effectiveness of VRE therapy in group and case studies. Several components of the treatment protocols differed among the studies, which made the results comparison a challenging task. Nevertheless, controlled studies demonstrate that VRE treatment is effective with or without cognitive behavior therapy (CBT) and/or psychoeducation and that it is considered to be an effective component of the treatment of FOF. All studies that used cognitive and relaxation techniques in addition to VRE treatment were effective. More randomized clinical trials are required in which VRE therapy could be compared with standard exposure therapy. Thus, we suggest that CBT, psychoeducation, and VRE could be combined to treat FOF.

  10. Polymer-based actuators for virtual reality devices

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  11. Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.

    PubMed

    Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L

    2011-03-01

    Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.

  12. Ambient Intelligence in Multimeda and Virtual Reality Environments for the rehabilitation

    NASA Astrophysics Data System (ADS)

    Benko, Attila; Cecilia, Sik Lanyi

    This chapter presents a general overview about the use of multimedia and virtual reality in rehabilitation and assistive and preventive healthcare. This chapter deals with multimedia, virtual reality applications based AI intended for use by medical doctors, nurses, special teachers and further interested persons. It describes methods how multimedia and virtual reality is able to assist their work. These include the areas how multimedia and virtual reality can help the patients everyday life and their rehabilitation. In the second part of the chapter we present the Virtual Therapy Room (VTR) a realized application for aphasic patients that was created for practicing communication and expressing emotions in a group therapy setting. The VTR shows a room that contains a virtual therapist and four virtual patients (avatars). The avatars are utilizing their knowledge base in order to answer the questions of the user providing an AI environment for the rehabilitation. The user of the VTR is the aphasic patient who has to solve the exercises. The picture that is relevant for the actual task appears on the virtual blackboard. Patient answers questions of the virtual therapist. Questions are about pictures describing an activity or an object in different levels. Patient can ask an avatar for answer. If the avatar knows the answer the avatars emotion changes to happy instead of sad. The avatar expresses its emotions in different dimensions. Its behavior, face-mimic, voice-tone and response also changes. The emotion system can be described as a deterministic finite automaton where places are emotion-states and the transition function of the automaton is derived from the input-response reaction of an avatar. Natural language processing techniques were also implemented in order to establish highquality human-computer interface windows for each of the avatars. Aphasic patients are able to interact with avatars via these interfaces. At the end of the chapter we visualize the

  13. Virtual reality-based simulators for spine surgery: a systematic review.

    PubMed

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with

  14. Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review.

    PubMed

    Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel

    2014-08-01

    This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.

  15. A Randomized, Controlled Trial of Immersive Virtual Reality Analgesia during Physical Therapy for Pediatric Burn Injuries

    PubMed Central

    Schmitt, Yuko S.; Hoffman, Hunter G.; Blough, David K.; Patterson, David R.; Jensen, Mark P.; Soltani, Maryam; Carrougher, Gretchen J.; Nakamura, Dana; Sharar, Sam R.

    2010-01-01

    This randomized, controlled, within-subjects (crossover design) study examined the effects of immersive virtual reality as an adjunctive analgesic technique for hospitalized pediatric burn inpatients undergoing painful physical therapy. Fifty-four subjects (6–19 years old) performed range-of-motion exercises under a therapist’s direction for one to five days. During each session, subjects spent equivalent time in both the virtual reality and the control conditions (treatment order randomized and counterbalanced). Graphic rating scale scores assessing the sensory, affective, and cognitive components of pain were obtained for each treatment condition. Secondary outcomes assessed subjects’ perception of the virtual reality experience and maximum range-of-motion. Results showed that on study day one, subjects reported significant decreases (27–44%) in pain ratings during virtual reality. They also reported improved affect (“fun”) during virtual reality. The analgesia and affect improvements were maintained with repeated virtual reality use over multiple therapy sessions. Maximum range-of-motion was not different between treatment conditions, but was significantly greater after the second treatment condition (regardless of treatment order). These results suggest that immersive virtual reality is an effective nonpharmacologic, adjunctive pain reduction technique in the pediatric burn population undergoing painful rehabilitation therapy. The magnitude of the analgesic effect is clinically meaningful and is maintained with repeated use. PMID:20692769

  16. [Self-regulation and virtual reality in forensic psychiatry: An emphasis on theoretical underpinnings].

    PubMed

    Benbouriche, M; Renaud, P; Pelletier, J-F; De Loor, P

    2016-12-01

    Forensic psychiatry is the field whose expertise is the assessment and treatment of offending behaviours, in particular when offenses are related to mental illness. An underlying question for all etiological models concerns the manner in which an individual's behaviours are organized. Specifically, it becomes crucial to understand how certain individuals come to display maladaptive behaviours in a given environment, especially when considering issues such as offenders' responsibility and their ability to change their behaviours. Thanks to its ability to generate specific environments, associated with a high experimental control on generated simulations, virtual reality is gaining recognition in forensic psychiatry. Virtual reality has generated promising research data and may turn out to be a remarkable clinical tool in the near future. While research has increased, a conceptual work about its theoretical underpinnings is still lacking. However, no important benefit should be expected from the introduction of a new tool (as innovative as virtual reality) without an explicit and heuristic theoretical framework capable of clarifying its benefits in forensic psychiatry. Our paper introduces self-regulation perspective as the most suitable theoretical framework for virtual reality in forensic psychiatry. It will be argued that virtual reality does not solely help to increase ecological validity. However, it does allow one to grant access to an improved understanding of violent offending behaviours by probing into the underlying mechanisms involved in the self-regulation of behaviours in a dynamical environment. Illustrations are given as well as a discussion regarding perspectives in the use of virtual reality in forensic psychiatry. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  17. Mixed virtual reality simulation--taking endoscopic simulation one step further.

    PubMed

    Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U

    2011-01-01

    This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.

  18. The effects of virtual reality game exercise on balance and gait of the elderly

    PubMed Central

    Park, Eun-Cho; Kim, Seong-Gil; Lee, Chae-Woo

    2015-01-01

    [Purpose] The aim of this study was to examine the effects of ball exercise as a general exercise on the balance abilities of elderly individuals by comparing ball exercise with virtual reality exercise. [Subjects and Methods] Thirty elderly individuals residing in communities were randomly divided into a virtual reality game group and a ball exercise group and conducted exercise for 30 min 3 times a week for 8 weeks. [Results] Step length increased significantly, and the average sway speed and Timed Up and Go time significantly decreased in both groups. A comparison of sway length after the intervention between the two groups revealed that the virtual reality game exercise resulted in a reduction than the ball exercise. [Conclusion] The results of this study indicated that the virtual reality game exercise may improve balance and gait of elderly individuals in communities. PMID:25995578

  19. NASA employee utilizes Virtual Reality (VR) equipment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Bebe Ly of the Information Systems Directorate's Software Technology Branch at JSC gives virtual reality a try. The stero video goggles and headphones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects.

  20. Using Virtual Reality To Teach Disability Awareness.

    ERIC Educational Resources Information Center

    Pivik, Jayne; McComas, Joan; Macfarlane, Ian; Laflamme, Marc

    2002-01-01

    Describes the design and evaluation of a desktop virtual reality program that was developed to teach children about the accessibility and attitudinal barriers encountered by their peers with mobility impairments. Investigated attitudes, grade levels, familiarity with individuals with a disability, and gender. (Author/LRW)

  1. The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning

    ERIC Educational Resources Information Center

    Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar

    2017-01-01

    Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…

  2. Making Information Overload Work: The Dragon Software System on a Virtual Reality Responsive Workbench

    DTIC Science & Technology

    1998-03-01

    Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.

  3. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.

    PubMed

    Gaffary, Yoren; Le Gouis, Benoit; Marchal, Maud; Argelaguet, Ferran; Arnaldi, Bruno; Lecuyer, Anatole

    2017-11-01

    Does it feel the same when you touch an object in Augmented Reality (AR) or in Virtual Reality (VR)? In this paper we study and compare the haptic perception of stiffness of a virtual object in two situations: (1) a purely virtual environment versus (2) a real and augmented environment. We have designed an experimental setup based on a Microsoft HoloLens and a haptic force-feedback device, enabling to press a virtual piston, and compare its stiffness successively in either Augmented Reality (the virtual piston is surrounded by several real objects all located inside a cardboard box) or in Virtual Reality (the same virtual piston is displayed in a fully virtual scene composed of the same other objects). We have conducted a psychophysical experiment with 12 participants. Our results show a surprising bias in perception between the two conditions. The virtual piston is on average perceived stiffer in the VR condition compared to the AR condition. For instance, when the piston had the same stiffness in AR and VR, participants would select the VR piston as the stiffer one in 60% of cases. This suggests a psychological effect as if objects in AR would feel "softer" than in pure VR. Taken together, our results open new perspectives on perception in AR versus VR, and pave the way to future studies aiming at characterizing potential perceptual biases.

  4. The Effects of Virtual Reality Learning Environment on Student Cognitive and Linguistic Development

    ERIC Educational Resources Information Center

    Chen, Yu-Li

    2016-01-01

    Virtual reality (VR) has brought about numerous alternative learning opportunities in the last decade, and with modern products such as Oculus Rift and other wearable Virtual Reality technologies being introduced into society, VR will promisingly continue to provide yet unseen opportunities in the next few decades and therefore is a technology…

  5. Virtual Reality as Treatment for Fear of Flying: A Review of Recent Research

    ERIC Educational Resources Information Center

    Price, Matthew; Anderson, Page; Rothbaum, Barbara O.

    2008-01-01

    Virtual reality exposure has recently emerged as an important tool for exposure therapy in the treatment of fear of flying. There have been numerous empirical studies that have evaluated the effectiveness of virtual reality exposure as compared to other treatments including in vivo exposure, progressive muscle relaxation, cognitive therapy,…

  6. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.

    PubMed

    Seo, Na Jin; Arun Kumar, Jayashree; Hur, Pilwon; Crocher, Vincent; Motawar, Binal; Lakshminarayanan, Kishor

    2016-01-01

    The emergence of lower-cost motion tracking devices enables home-based virtual reality rehabilitation activities and increased accessibility to patients. Currently, little documentation on patients' expectations for virtual reality rehabilitation is available. This study surveyed 10 people with stroke for their expectations of virtual reality rehabilitation games. This study also evaluated the usability of three lower-cost virtual reality rehabilitation games using a survey and House of Quality analysis. The games (kitchen, archery, and puzzle) were developed in the laboratory to encourage coordinated finger and arm movements. Lower-cost motion tracking devices, the P5 Glove and Microsoft Kinect, were used to record the movements. People with stroke were found to desire motivating and easy-to-use games with clinical insights and encouragement from therapists. The House of Quality analysis revealed that the games should be improved by obtaining evidence for clinical effectiveness, including clinical feedback regarding improving functional abilities, adapting the games to the user's changing functional ability, and improving usability of the motion-tracking devices. This study reports the expectations of people with stroke for rehabilitation games and usability analysis that can help guide development of future games.

  7. Testing the continuum of delusional beliefs: an experimental study using virtual reality.

    PubMed

    Freeman, Daniel; Pugh, Katherine; Vorontsova, Natasha; Antley, Angus; Slater, Mel

    2010-02-01

    A key problem in studying a hypothesized spectrum of severity of delusional ideation is determining that ideas are unfounded. The first objective was to use virtual reality to validate groups of individuals with low, moderate, and high levels of unfounded persecutory ideation. The second objective was to investigate, drawing upon a cognitive model of persecutory delusions, whether clinical and nonclinical paranoia are associated with similar causal factors. Three groups (low paranoia, high nonclinical paranoia, persecutory delusions) of 30 participants were recruited. Levels of paranoia were tested using virtual reality. The groups were compared on assessments of anxiety, worry, interpersonal sensitivity, depression, anomalous perceptual experiences, reasoning, and history of traumatic events. Virtual reality was found to cause no side effects. Persecutory ideation in virtual reality significantly differed across the groups. For the clear majority of the theoretical factors there were dose-response relationships with levels of paranoia. This is consistent with the idea of a spectrum of paranoia in the general population. Persecutory ideation is clearly present outside of clinical groups and there is consistency across the paranoia spectrum in associations with important theoretical variables.

  8. Virtual reality as a screening tool for sports concussion in adolescents.

    PubMed

    Nolin, Pierre; Stipanicic, Annie; Henry, Mylène; Joyal, Christian C; Allain, Philippe

    2012-01-01

    There is controversy surrounding the cognitive effects of sports concussion. This study aimed to verify whether the technique of virtual reality could aid in the identification of attention and inhibition deficits in adolescents. A prospective design was used to assess 25 sports-concussed and 25 non-sports-concussed adolescents enrolled in a sport and education programme. Participants were evaluated in immersive virtual reality via ClinicaVR: Classroom-CPT and in real life via the traditional VIGIL-CPT. The neuropsychological assessment using virtual reality showed greater sensitivity to the subtle effects of sports concussion compared to the traditional test, which showed no difference between groups. The results also demonstrated that the sports concussion group reported more symptoms of cybersickness and more intense cybersickness than the control group. Sports concussion was associated with subtle deficits in attention and inhibition. However, further studies are needed to support these results.

  9. Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD.

    PubMed

    Rizzo, Albert 'Skip'; Shilling, Russell

    2017-01-01

    Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention.

  10. Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD

    PubMed Central

    Rizzo, Albert ‘Skip’; Shilling, Russell

    2017-01-01

    ABSTRACT Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention. PMID:29372007

  11. Capturing differences in dental training using a virtual reality simulator.

    PubMed

    Mirghani, I; Mushtaq, F; Allsop, M J; Al-Saud, L M; Tickhill, N; Potter, C; Keeling, A; Mon-Williams, M A; Manogue, M

    2018-02-01

    Virtual reality simulators are becoming increasingly popular in dental schools across the world. But to what extent do these systems reflect actual dental ability? Addressing this question of construct validity is a fundamental step that is necessary before these systems can be fully integrated into a dental school's curriculum. In this study, we examined the sensitivity of the Simodont (a haptic virtual reality dental simulator) to differences in dental training experience. Two hundred and eighty-nine participants, with 1 (n = 92), 3 (n = 79), 4 (n = 57) and 5 (n = 61) years of dental training, performed a series of tasks upon their first exposure to the simulator. We found statistically significant differences between novice (Year 1) and experienced dental trainees (operationalised as 3 or more years of training), but no differences between performance of experienced trainees with varying levels of experience. This work represents a crucial first step in understanding the value of haptic virtual reality simulators in dental education. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Psychology Student Opinion of Virtual Reality as a Tool to Educate about Schizophrenia

    ERIC Educational Resources Information Center

    Tichon, Jennifer; Loh, Jennifer; King, Robert

    2004-01-01

    Virtual Reality (VR) techniques are increasingly being used in e-health education, training and in trial clinical programs in the treatment of certain types of mental illness. Undergraduate psychology student opinion of the use of Virtual Reality (VR) to teach them about schizophrenia at the University of Queensland, was determined with reference…

  13. The effectiveness of virtual reality distraction for pain reduction: a systematic review.

    PubMed

    Malloy, Kevin M; Milling, Leonard S

    2010-12-01

    Virtual reality technology enables people to become immersed in a computer-simulated, three-dimensional environment. This article provides a comprehensive review of controlled research on the effectiveness of virtual reality (VR) distraction for reducing pain. To be included in the review, studies were required to use a between-subjects or mixed model design in which VR distraction was compared with a control condition or an alternative intervention in relieving pain. An exhaustive search identified 11 studies satisfying these criteria. VR distraction was shown to be effective for reducing experimental pain, as well as the discomfort associated with burn injury care. Studies of needle-related pain provided less consistent findings. Use of more sophisticated virtual reality technology capable of fully immersing the individual in a virtual environment was associated with greater relief. Overall, controlled research suggests that VR distraction may be a useful tool for clinicians who work with a variety of pain problems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The assessment of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  15. How virtual reality works: illusions of vision in "real" and virtual environments

    NASA Astrophysics Data System (ADS)

    Stark, Lawrence W.

    1995-04-01

    Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.

  16. Laparoscopic skill improvement after virtual reality simulator training in medical students as assessed by augmented reality simulator.

    PubMed

    Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji

    2015-11-01

    Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  17. Virtual reality: new method of teaching anorectal and pelvic floor anatomy.

    PubMed

    Dobson, Howard D; Pearl, Russell K; Orsay, Charles P; Rasmussen, Mary; Evenhouse, Ray; Ai, Zhuming; Blew, Gregory; Dech, Fred; Edison, Marcia I; Silverstein, Jonathan C; Abcarian, Herand

    2003-03-01

    A clear understanding of the intricate spatial relationships among the structures of the pelvic floor, rectum, and anal canal is essential for the treatment of numerous pathologic conditions. Virtual-reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereoscopic-vision, viewer-centered perspective, large angles of view, and interactivity. We describe a novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery. A static physical model depicting the pelvic floor and anorectum was created and digitized at 1-mm intervals in a CT scanner. Multiple software programs were used along with endoscopic images to generate a realistic interactive computer model, which was designed to be viewed on a networked, interactive, virtual-reality display (CAVE or ImmersaDesk). A standard examination of ten basic anorectal and pelvic floor anatomy questions was administered to third-year (n = 6) and fourth-year (n = 7) surgical residents. A workshop using the Virtual Pelvic Floor Model was then given, and the standard examination was readministered so that it was possible to evaluate the effectiveness of the Digital Pelvic Floor Model as an educational instrument. Training on the Virtual Pelvic Floor Model produced substantial improvements in the overall average test scores for the two groups, with an overall increase of 41 percent (P = 0.001) and 21 percent (P = 0.0007) for third-year and fourth-year residents, respectively. Resident evaluations after the workshop also confirmed the effectiveness of understanding pelvic anatomy using the Virtual Pelvic Floor Model. This model provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy. Using this collaborative, shared virtual-reality environment

  18. Virtual reality as a tool for cross-cultural communication: an example from military team training

    NASA Astrophysics Data System (ADS)

    Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.

    1992-06-01

    A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.

  19. Performance on a virtual reality angled laparoscope task correlates with spatial ability of trainees.

    PubMed

    Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A

    2010-08-01

    The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.

  20. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    NASA Astrophysics Data System (ADS)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  1. Surgery, virtual reality, and the future.

    PubMed

    Vosburgh, Kirby G; Golby, Alexandra; Pieper, Steven D

    2013-01-01

    MMVR has provided the leading forum for the multidisciplinary interaction and development of the use of Virtual Reality (VR) techniques in medicine, particularly in surgical practice. Here we look back at the foundations of our field, focusing on the use of VR in Surgery and similar interventional procedures, sum up the current status, and describe the challenges and opportunities going forward.

  2. The combined use of virtual reality exposure in the treatment of agoraphobia.

    PubMed

    Pitti, Carmen T; Peñate, Wenceslao; de la Fuente, Juan; Bethencourt, Juan M; Roca-Sánchez, María J; Acosta, Leopoldo; Villaverde, María L; Gracia, Ramón

    2015-01-01

    This study compares the differential efficacy of three groups of treatments for agoraphobia: paroxetine combined with cognitive-behavioral therapy, paroxetine combined with cognitive-behavioral therapy and virtual reality exposure, and a group with only paroxetine. 99 patients with agoraphobia were finally selected. Both combined treatment groups received 11 sessions of cognitive-behavioral therapy, and one of the groups was also exposed to 4 sessions of virtual reality treatment. Treatments were applied in individual sessions once a week for 3 months. The three treatment groups showed statistically significant improvements. In some measures, combined treatment groups showed greater improvements. The virtual reality exposure group showed greater improvement confronting phobic stimuli. Treatments combining psychopharmacological and psychological therapy showed greater efficacy. Although the use of new technologies led to greater improvement, treatment adherence problems still remain.

  3. Virtual Reality and Computer-Enhanced Training Applied to Wheeled Mobility: An Overview of Work in Pittsburgh

    ERIC Educational Resources Information Center

    Cooper, Rory A.; Ding, Dan; Simpson, Richard; Fitzgerald, Shirley G.; Spaeth, Donald M.; Guo, Songfeng; Koontz, Alicia M.; Cooper, Rosemarie; Kim, Jongbae; Boninger, Michael L.

    2005-01-01

    Some aspects of assistive technology can be enhanced by the application of virtual reality. Although virtual simulation offers a range of new possibilities, learning to navigate in a virtual environment is not equivalent to learning to navigate in the real world. Therefore, virtual reality simulation is advocated as a useful preparation for…

  4. Virtual reality in mental health : a review of the literature.

    PubMed

    Gregg, Lynsey; Tarrier, Nicholas

    2007-05-01

    Several virtual reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 10 years. The purpose of this review is to outline the current state of virtual reality research in the treatment of mental health problems. PubMed and PsycINFO were searched for all articles containing the words "virtual reality". In addition a manual search of the references contained in the papers resulting from this search was conducted and relevant periodicals were searched. Studies reporting the results of treatment utilizing VR in the mental health field and involving at least one patient were identified. More than 50 studies using VR were identified, the majority of which were case studies. Seventeen employed a between groups design: 4 involved patients with fear of flying; 3 involved patients with fear of heights; 3 involved patients with social phobia/public speaking anxiety; 2 involved people with spider phobia; 2 involved patients with agoraphobia; 2 involved patients with body image disturbance and 1 involved obese patients. There are both advantages in terms of delivery and disadvantages in terms of side effects to using VR. Although virtual reality based therapy appears to be superior to no treatment the effectiveness of VR therapy over traditional therapeutic approaches is not supported by the research currently available. There is a lack of good quality research on the effectiveness of VR therapy. Before clinicians will be able to make effective use of this emerging technology greater emphasis must be placed on controlled trials with clinically identified populations.

  5. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  6. Integration of laparoscopic virtual-reality simulation into gynaecology training.

    PubMed

    Burden, C; Oestergaard, J; Larsen, C R

    2011-11-01

    Surgery carries the risk of serious harm, as well as benefit, to patients. For healthcare organisations, theatre time is an expensive commodity and litigation costs for surgical specialities are very high. Advanced laparoscopic surgery, now widely used in gynaecology for improved outcomes and reduced length of stay, involves longer operation times and a higher rate of complications for surgeons in training. Virtual-reality (VR) simulation is a relatively new training method that has the potential to promote surgical skill development before advancing to surgery on patients themselves. VR simulators have now been on the market for more than 10 years and, yet, few countries in the world have fully integrated VR simulation training into their gynaecology surgical training programmes. In this review, we aim to summarise the VR simulators currently available together with evidence of their effectiveness in gynaecology, to understand their limitations and to discuss their incorporation into national training curricula. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.

  7. Computer Based Training: Field Deployable Trainer and Shared Virtual Reality

    NASA Technical Reports Server (NTRS)

    Mullen, Terence J.

    1997-01-01

    Astronaut training has traditionally been conducted at specific sites with specialized facilities. Because of its size and nature the training equipment is generally not portable. Efforts are now under way to develop training tools that can be taken to remote locations, including into orbit. Two of these efforts are the Field Deployable Trainer and Shared Virtual Reality projects. Field Deployable Trainer NASA has used the recent shuttle mission by astronaut Shannon Lucid to the Russian space station, Mir, as an opportunity to develop and test a prototype of an on-orbit computer training system. A laptop computer with a customized user interface, a set of specially prepared CD's, and video tapes were taken to the Mir by Ms. Lucid. Based upon the feedback following the launch of the Lucid flight, our team prepared materials for the next Mir visitor. Astronaut John Blaha will fly on NASA/MIR Long Duration Mission 3, set to launch in mid September. He will take with him a customized hard disk drive and a package of compact disks containing training videos, references and maps. The FDT team continues to explore and develop new and innovative ways to conduct offsite astronaut training using personal computers. Shared Virtual Reality Training NASA's Space Flight Training Division has been investigating the use of virtual reality environments for astronaut training. Recent efforts have focused on activities requiring interaction by two or more people, called shared VR. Dr. Bowen Loftin, from the University of Houston, directs a virtual reality laboratory that conducts much of the NASA sponsored research. I worked on a project involving the development of a virtual environment that can be used to train astronauts and others to operate a science unit called a Biological Technology Facility (BTF). Facilities like this will be used to house and control microgravity experiments on the space station. It is hoped that astronauts and instructors will ultimately be able to share

  8. Validation of virtual reality as a tool to understand and prevent child pedestrian injury.

    PubMed

    Schwebel, David C; Gaines, Joanna; Severson, Joan

    2008-07-01

    In recent years, virtual reality has emerged as an innovative tool for health-related education and training. Among the many benefits of virtual reality is the opportunity for novice users to engage unsupervised in a safe environment when the real environment might be dangerous. Virtual environments are only useful for health-related research, however, if behavior in the virtual world validly matches behavior in the real world. This study was designed to test the validity of an immersive, interactive virtual pedestrian environment. A sample of 102 children and 74 adults was recruited to complete simulated road-crossings in both the virtual environment and the identical real environment. In both the child and adult samples, construct validity was demonstrated via significant correlations between behavior in the virtual and real worlds. Results also indicate construct validity through developmental differences in behavior; convergent validity by showing correlations between parent-reported child temperament and behavior in the virtual world; internal reliability of various measures of pedestrian safety in the virtual world; and face validity, as measured by users' self-reported perception of realism in the virtual world. We discuss issues of generalizability to other virtual environments, and the implications for application of virtual reality to understanding and preventing pediatric pedestrian injuries.

  9. Virtual Reality: Directions in Research and Development.

    ERIC Educational Resources Information Center

    Stuart, Rory

    1992-01-01

    Discussion of virtual reality (VR) focuses on research and development being carried out at NYNEX to solve business problems. Component technologies are described; design decisions are considered, including interactivity, connectivity, and locus of control; potential perils of VR are discussed, including user dissociation; and areas of promise are…

  10. Interactive voxel graphics in virtual reality

    NASA Astrophysics Data System (ADS)

    Brody, Bill; Chappell, Glenn G.; Hartman, Chris

    2002-06-01

    Interactive voxel graphics in virtual reality poses significant research challenges in terms of interface, file I/O, and real-time algorithms. Voxel graphics is not so new, as it is the focus of a good deal of scientific visualization. Interactive voxel creation and manipulation is a more innovative concept. Scientists are understandably reluctant to manipulate data. They collect or model data. A scientific analogy to interactive graphics is the generation of initial conditions for some model. It is used as a method to test those models. We, however, are in the business of creating new data in the form of graphical imagery. In our endeavor, science is a tool and not an end. Nevertheless, there is a whole class of interactions and associated data generation scenarios that are natural to our way of working and that are also appropriate to scientific inquiry. Annotation by sketching or painting to point to and distinguish interesting and important information is very significant for science as well as art. Annotation in 3D is difficult without a good 3D interface. Interactive graphics in virtual reality is an appropriate approach to this problem.

  11. Immersive Virtual Reality for Pediatric Pain.

    PubMed

    Won, Andrea Stevenson; Bailey, Jakki; Bailenson, Jeremy; Tataru, Christine; Yoon, Isabel A; Golianu, Brenda

    2017-06-23

    Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice.

  12. Enabling scientific workflows in virtual reality

    USGS Publications Warehouse

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  13. Evaluation of Virtual Reality Training Using Affect

    ERIC Educational Resources Information Center

    Tichon, Jennifer

    2012-01-01

    Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality (VR) where dangerous real world scenarios can be safely replicated. However, despite the growing popularity of VR to train cognitive skills such as decision-making and situation awareness, methods for evaluating their use rely…

  14. Virtual Reality Training Environments: Contexts and Concerns.

    ERIC Educational Resources Information Center

    Harmon, Stephen W.; Kenney, Patrick J.

    1994-01-01

    Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)

  15. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  16. Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait.

    PubMed

    Killane, Isabelle; Fearon, Conor; Newman, Louise; McDonnell, Conor; Waechter, Saskia M; Sons, Kristian; Lynch, Timothy; Reilly, Richard B

    2015-11-01

    Freezing of gait (FOG), an episodic gait disturbance characterized by the inability to generate effective stepping, occurs in more than half of Parkinson's disease patients. It is associated with both executive dysfunction and attention and becomes most evident during dual tasking (performing two tasks simultaneously). This study examined the effect of dual motor-cognitive virtual reality training on dual-task performance in FOG. Twenty community dwelling participants with Parkinson's disease (13 with FOG, 7 without FOG) participated in a pre-assessment, eight 20-minute intervention sessions, and a post-assessment. The intervention consisted of a virtual reality maze (DFKI, Germany) through which participants navigated by stepping-in-place on a balance board (Nintendo, Japan) under time pressure. This was combined with a cognitive task (Stroop test), which repeatedly divided participants' attention. The primary outcome measures were pre- and post-intervention differences in motor (stepping time, symmetry, rhythmicity) and cognitive (accuracy, reaction time) performance during single- and dual-tasks. Both assessments consisted of 1) a single cognitive task 2) a single motor task, and 3) a dual motor-cognitive task. Following the intervention, there was significant improvement in dual-task cognitive and motor parameters (stepping time and rhythmicity), dual-task effect for those with FOG and a noteworthy improvement in FOG episodes. These improvements were less significant for those without FOG. This is the first study to show benefit of a dual motor-cognitive approach on dual-task performance in FOG. Advances in such virtual reality interventions for home use could substantially improve the quality of life for patients who experience FOG.

  17. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training.

    PubMed

    Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching

    2014-02-01

    Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.

  18. Why Virtual, Why Environments? Implementing Virtual Reality Concepts in Computer-Assisted Language Learning.

    ERIC Educational Resources Information Center

    Schwienhorst, Klaus

    2002-01-01

    Discussion of computer-assisted language learning focuses on the benefits of virtual reality environments, particularly for foreign language contexts. Topics include three approaches to learner autonomy; supporting reflection, including self-awareness; supporting interaction, including collaboration; and supporting experimentation, including…

  19. History Educators and the Challenge of Immersive Pasts: A Critical Review of Virtual Reality "Tools" and History Pedagogy

    ERIC Educational Resources Information Center

    Allison, John

    2008-01-01

    This paper will undertake a critical review of the impact of virtual reality tools on the teaching of history. Virtual reality is useful in several different ways. History educators, elementary and secondary school teachers and professors, can all profit from the digital environment. Challenges arise quickly however. Virtual reality technologies…

  20. Virtual Reality for Training and Lifelong Learning

    ERIC Educational Resources Information Center

    Mellet-d'Huart, Daniel

    2009-01-01

    This article covers the application of virtual reality (VR) to training and lifelong learning. A number of considerations concerning the design of VR applications are included. The introduction is dedicated to the more general aspects of applying VR to training. From multiple perspectives, we will provide an overview of existing applications with…

  1. Are Learning Styles Relevant to Virtual Reality?

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan

    2005-01-01

    This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…

  2. Physics Education in Virtual Reality: An Example

    ERIC Educational Resources Information Center

    Kaufmann, Hannes; Meyer, Bernd

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…

  3. Using Virtual Reality to Help Students with Social Interaction Skills

    ERIC Educational Resources Information Center

    Beach, Jason; Wendt, Jeremy

    2015-01-01

    The purpose of this study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity to…

  4. Application of Virtual, Augmented, and Mixed Reality to Urology.

    PubMed

    Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun

    2016-09-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected.

  5. Application of Virtual, Augmented, and Mixed Reality to Urology

    PubMed Central

    2016-01-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected. PMID:27706017

  6. Virtual Reality Website of Indonesia National Monument and Its Environment

    NASA Astrophysics Data System (ADS)

    Wardijono, B. A.; Hendajani, F.; Sudiro, S. A.

    2017-02-01

    National Monument (Monumen Nasional) is an Indonesia National Monument building where located in Jakarta. This monument is a symbol of Jakarta and it is a pride monument of the people in Jakarta and Indonesia country. This National Monument also has a museum about the history of the Indonesian country. To provide information to the general public, in this research we created and developed models of 3D graphics from the National Monument and the surrounding environment. Virtual Reality technology was used to display the visualization of the National Monument and the surrounding environment in 3D graphics form. Latest programming technology makes it possible to display 3D objects via the internet browser. This research used Unity3D and WebGL to make virtual reality models that can be implemented and showed on a Website. The result from this research is the development of 3-dimensional Website of the National Monument and its objects surrounding the environment that can be displayed through the Web browser. The virtual reality of whole objects was divided into a number of scenes, so that it can be displayed in real time visualization.

  7. Virtual reality for mobility devices: training applications and clinical results: a review.

    PubMed

    Erren-Wolters, Catelijne Victorien; van Dijk, Henk; de Kort, Alexander C; Ijzerman, Maarten J; Jannink, Michiel J

    2007-06-01

    Virtual reality technology is an emerging technology that possibly can address the problems encountered in training (elderly) people to handle a mobility device. The objective of this review was to study different virtual reality training applications as well as their clinical implication for patients with mobility problems. Computerized literature searches were performed using the MEDLINE, Cochrane, CIRRIE and REHABDATA databases. This resulted in eight peer reviewed journal articles. The included studies could be divided into three categories, on the basis of their study objective. Five studies were related to training driving skills, two to physical exercise training and one to leisure activity. This review suggests that virtual reality is a potentially useful means to improve the use of a mobility device, in training one's driving skills, for keeping up the physical condition and also in a way of leisure time activity. Although this field of research appears to be in its early stages, the included studies pointed out a promising transfer of training in a virtual environment to the real-life use of mobility devices.

  8. Validation of virtual-reality-based simulations for endoscopic sinus surgery.

    PubMed

    Dharmawardana, N; Ruthenbeck, G; Woods, C; Elmiyeh, B; Diment, L; Ooi, E H; Reynolds, K; Carney, A S

    2015-12-01

    Virtual reality (VR) simulators provide an alternative to real patients for practicing surgical skills but require validation to ensure accuracy. Here, we validate the use of a virtual reality sinus surgery simulator with haptic feedback for training in Otorhinolaryngology - Head & Neck Surgery (OHNS). Participants were recruited from final-year medical students, interns, resident medical officers (RMOs), OHNS registrars and consultants. All participants completed an online questionnaire after performing four separate simulation tasks. These were then used to assess face, content and construct validity. anova with post hoc correlation was used for statistical analysis. The following groups were compared: (i) medical students/interns, (ii) RMOs, (iii) registrars and (iv) consultants. Face validity results had a statistically significant (P < 0.05) difference between the consultant group and others, while there was no significant difference between medical student/intern and RMOs. Variability within groups was not significant. Content validity results based on consultant scoring and comments indicated that the simulations need further development in several areas to be effective for registrar-level teaching. However, students, interns and RMOs indicated that the simulations provide a useful tool for learning OHNS-related anatomy and as an introduction to ENT-specific procedures. The VR simulations have been validated for teaching sinus anatomy and nasendoscopy to medical students, interns and RMOs. However, they require further development before they can be regarded as a valid tool for more advanced surgical training. © 2015 John Wiley & Sons Ltd.

  9. Leveraging Virtual Reality for the Benefit of Lunar Exploration

    NASA Astrophysics Data System (ADS)

    McCandless, R. S.; Burke, E. D.; McGinley, V. T.

    2017-10-01

    Virtual reality (VR) and related technologies will assist scientists with lunar exploration and public engagement. We will present the future exponential impact of VR on lunar activities over the coming decades.

  10. Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.

    PubMed

    Bashir, Gareth

    2010-01-01

    Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.

  11. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    PubMed

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.

  12. Tactile feedback for relief of deafferentation pain using virtual reality system: a pilot study.

    PubMed

    Sano, Yuko; Wake, Naoki; Ichinose, Akimichi; Osumi, Michihiro; Oya, Reishi; Sumitani, Masahiko; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo

    2016-06-28

    Previous studies have tried to relieve deafferentation pain (DP) by using virtual reality rehabilitation systems. However, the effectiveness of multimodal sensory feedback was not validated. The objective of this study is to relieve DP by neurorehabilitation using a virtual reality system with multimodal sensory feedback and to validate the efficacy of tactile feedback on immediate pain reduction. We have developed a virtual reality rehabilitation system with multimodal sensory feedback and applied it to seven patients with DP caused by brachial plexus avulsion or arm amputation. The patients executed a reaching task using the virtual phantom limb manipulated by their real intact limb. The reaching task was conducted under two conditions: one with tactile feedback on the intact hand and one without. The pain intensity was evaluated through a questionnaire. We found that the task with the tactile feedback reduced DP more (41.8 ± 19.8 %) than the task without the tactile feedback (28.2 ± 29.5 %), which was supported by a Wilcoxon signed-rank test result (p < 0.05). Overall, our findings indicate that the tactile feedback improves the immediate pain intensity through rehabilitation using our virtual reality system.

  13. The Use of Virtual Reality in the Study of People's Responses to Violent Incidents.

    PubMed

    Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel

    2009-01-01

    This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call 'plausibility' - including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents.

  14. The Use of Virtual Reality in the Study of People's Responses to Violent Incidents

    PubMed Central

    Rovira, Aitor; Swapp, David; Spanlang, Bernhard; Slater, Mel

    2009-01-01

    This paper reviews experimental methods for the study of the responses of people to violence in digital media, and in particular considers the issues of internal validity and ecological validity or generalisability of results to events in the real world. Experimental methods typically involve a significant level of abstraction from reality, with participants required to carry out tasks that are far removed from violence in real life, and hence their ecological validity is questionable. On the other hand studies based on field data, while having ecological validity, cannot control multiple confounding variables that may have an impact on observed results, so that their internal validity is questionable. It is argued that immersive virtual reality may provide a unification of these two approaches. Since people tend to respond realistically to situations and events that occur in virtual reality, and since virtual reality simulations can be completely controlled for experimental purposes, studies of responses to violence within virtual reality are likely to have both ecological and internal validity. This depends on a property that we call ‘plausibility’ – including the fidelity of the depicted situation with prior knowledge and expectations. We illustrate this with data from a previously published experiment, a virtual reprise of Stanley Milgram's 1960s obedience experiment, and also with pilot data from a new study being developed that looks at bystander responses to violent incidents. PMID:20076762

  15. The Elderly Perceived Meanings and Values of Virtual Reality Leisure Activities: A Means-End Chain Approach.

    PubMed

    Lin, Cheng-Shih; Jeng, Mei-Yuan; Yeh, Tsu-Ming

    2018-04-03

    This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating "good memories" as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers.

  16. The Elderly Perceived Meanings and Values of Virtual Reality Leisure Activities: A Means-End Chain Approach

    PubMed Central

    Lin, Cheng-Shih; Jeng, Mei-Yuan

    2018-01-01

    This study uses means-end chain (MEC) techniques to examine the awareness, decision-making procedure, and personal values of the elderly with regard to virtual reality leisure activities. The results of the study show that elderly respondents value virtual reality leisure activities that are fun, safe, and easy. In terms of outcome benefits, elderly respondents value feeling physically and mentally healthy, firsthand experience, and satisfied curiosity. In value terms, elderly respondents hope that their chosen virtual reality leisure activities improve not only their relationships with others, but also their enjoyment, quality of life, and sense of belonging. The results show that, while consumers with different awarenesses of virtual reality leisure activities have different decision-making processes, they share creating “good memories” as the terminal value with the most significant effect. This presents a potential opportunity to promote virtual reality leisure activities. Relevant bodies or enterprises can seek to create good memories in consumers by developing activities that are safe and fun, promote good health, and provide good service, thereby attracting the interest of elderly consumers. PMID:29614012

  17. Change Blindness Phenomena for Virtual Reality Display Systems.

    PubMed

    Steinicke, Frank; Bruder, Gerd; Hinrichs, Klaus; Willemsen, Pete

    2011-09-01

    In visual perception, change blindness describes the phenomenon that persons viewing a visual scene may apparently fail to detect significant changes in that scene. These phenomena have been observed in both computer-generated imagery and real-world scenes. Several studies have demonstrated that change blindness effects occur primarily during visual disruptions such as blinks or saccadic eye movements. However, until now the influence of stereoscopic vision on change blindness has not been studied thoroughly in the context of visual perception research. In this paper, we introduce change blindness techniques for stereoscopic virtual reality (VR) systems, providing the ability to substantially modify a virtual scene in a manner that is difficult for observers to perceive. We evaluate techniques for semiimmersive VR systems, i.e., a passive and active stereoscopic projection system as well as an immersive VR system, i.e., a head-mounted display, and compare the results to those of monoscopic viewing conditions. For stereoscopic viewing conditions, we found that change blindness phenomena occur with the same magnitude as in monoscopic viewing conditions. Furthermore, we have evaluated the potential of the presented techniques for allowing abrupt, and yet significant, changes of a stereoscopically displayed virtual reality environment.

  18. The LapSim virtual reality simulator: promising but not yet proven.

    PubMed

    Fairhurst, Katherine; Strickland, Andrew; Maddern, Guy

    2011-02-01

    The acquisition of technical skills using surgical simulators is an area of active research and rapidly evolving technology. The LapSim is a virtual reality simulator that currently allows practice of basic laparoscopic skills and some procedures. To date, no reviews have been published with reference to a single virtual reality simulator. A PubMed search was performed using the keyword "LapSim," with further papers identified from the citations of original search articles. Use of the LapSim to develop surgical skills has yielded overall results, although inconsistencies exist. Data regarding the transferability of learned skills to the operative environment are encouraging as is the validation work, particularly the use of a combination of measured parameters to produce an overall comparative performance score. Although the LapSim currently does not have any proven significant advantages over video trainers in terms of basic skills instruction and although the results of validation studies are variable, the potential for such technology to have a huge impact on surgical training is apparent. Work to determine standardized learning curves and proficiency criteria for different levels of trainees is incomplete. Moreover, defining which performance parameters measured by the LapSim accurately determine laparoscopic skill is complex. Further technological advances will undoubtedly improve the efficacy of the LapSim, and the results of large multicenter trials are anticipated.

  19. Immersion and the illusion of presence in virtual reality.

    PubMed

    Slater, Mel

    2018-05-21

    This commentary briefly reviews the history of virtual reality and its use for psychology research, and clarifies the concepts of immersion and the illusion of presence. © 2018 The British Psychological Society.

  20. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170878 (1 Oct. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  1. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170888 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  2. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170882 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration

  3. Consistency of performance of robot-assisted surgical tasks in virtual reality.

    PubMed

    Suh, I H; Siu, K-C; Mukherjee, M; Monk, E; Oleynikov, D; Stergiou, N

    2009-01-01

    The purpose of this study was to investigate consistency of performance of robot-assisted surgical tasks in a virtual reality environment. Eight subjects performed two surgical tasks, bimanual carrying and needle passing, with both the da Vinci surgical robot and a virtual reality equivalent environment. Nonlinear analysis was utilized to evaluate consistency of performance by calculating the regularity and the amount of divergence in the movement trajectories of the surgical instrument tips. Our results revealed that movement patterns for both training tasks were statistically similar between the two environments. Consistency of performance as measured by nonlinear analysis could be an appropriate methodology to evaluate the complexity of the training tasks between actual and virtual environments and assist in developing better surgical training programs.

  4. Low-Cost, Portable, Multi-Wall Virtual Reality

    NASA Technical Reports Server (NTRS)

    Miller, Samuel A.; Misch, Noah J.; Dalton, Aaron J.

    2005-01-01

    Virtual reality systems make compelling outreach displays, but some such systems, like the CAVE, have design features that make their use for that purpose inconvenient. In the case of the CAVE, the equipment is difficult to disassemble, transport, and reassemble, and typically CAVEs can only be afforded by large-budget research facilities. We implemented a system like the CAVE that costs less than $30,000, weighs about 500 pounds, and fits into a fifteen-passenger van. A team of six people have unpacked, assembled, and calibrated the system in less than two hours. This cost reduction versus similar virtual-reality systems stems from the unique approach we took to stereoscopic projection. We used an assembly of optical chopper wheels and commodity LCD projectors to create true active stereo at less than a fifth of the cost of comparable active-stereo technologies. The screen and frame design also optimized portability; the frame assembles in minutes with only two fasteners, and both it and the screen pack into small bundles for easy and secure shipment.

  5. Effects of virtual reality training on mobility and physical function in stroke.

    PubMed

    Malik, Arshad Nawaz; Masood, Tahir

    2017-10-01

    Stroke is a common disabling condition which declines the functional and mobility level. The purpose of the case series was to determine the effect of virtual reality training on sensorimotor function and mobility level in stroke patients. Ten male (40-60 year) patients of stroke (08 Infarction, 02 Haemorrhagic) were selected from Physiotherapy department of Pakistan Railway Hospital, Rawalpindi. The additional virtual reality training (15-20 minutes) was provided 03 days per week for 06weeks along with task oriented training. All patients were assessed through Fugl-Meyer Assessment-Lower Extremity (FMA-LE) and Timed Get Up and Go Test (TUG) at baseline and after 06 weeks of training. The results showed that there was significant improvement in mobility level of stroke patients. It is concluded that combination of task oriented and virtual reality training considerably improves the physical performance and mobility level in stroke patients.

  6. Technology advancing the study of animal cognition: using virtual reality to present virtually simulated environments to investigate nonhuman primate spatial cognition

    PubMed Central

    Schweller, Kenneth; Milne, Scott

    2017-01-01

    Abstract Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal’s sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species’ daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training

  7. Technology advancing the study of animal cognition: using virtual reality to present virtually simulated environments to investigate nonhuman primate spatial cognition.

    PubMed

    Dolins, Francine L; Schweller, Kenneth; Milne, Scott

    2017-02-01

    Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal's sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species' daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best

  8. Virtual reality: a proposal for pelvic floor muscle training.

    PubMed

    Botelho, Simone; Martinho, Natalia Miguel; Silva, Valéria Regina; Marques, Joseane; Carvalho, Leonardo C; Riccetto, Cássio

    2015-11-01

    This video's proposal was to present one of the pelvic floor muscle (PFM) training programs, used in our research, that we designed as a virtual reality intervention protocol and investigated its effects on PFM contractility. Two clinical, controlled and prospective studies were conducted, one with 19 nulliparous women without urinary symptoms, who were evaluated by both electromyography and digital palpation (DP) and another with 27 postmenopausal women with mixed urinary symptoms (assessed by both ICIQ UI-SF and ICIQ-OAB), evaluated by vaginal dynamometry and DP, with a total of 46 women in both studies. This protocol was designed so that the participant would play a video game, seated on a pressure base platform, while commanding it through her pelvic movements. Using a virtual reality game, five activities were performed during 30 min, twice a week, with a total of 10 sessions. A significant increase in PFM strength was found in both the nulliparous (p = 0.0001) and the postmenopausal (p = 0.0001) groups of women, as ascertained by DP. A significant increase in postmenopausal women's muscle strength and endurance assessed by dynamometry (p = 0.05) and a concomitant decrease in their urinary symptoms, were observed. This virtual reality program promoted an increase in PFM contractility and a decrease in postmenopausal urinary symptoms.

  9. Manually locating physical and virtual reality objects.

    PubMed

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  10. The impact of virtual reality on implicit racial bias and mock legal decisions

    PubMed Central

    Salmanowitz, Natalie

    2018-01-01

    Abstract Implicit racial biases are one of the most vexing problems facing current society. These split-second judgments are not only widely prevalent, but also are notoriously difficult to overcome. Perhaps most concerning, implicit racial biases can have consequential impacts on decisions in the courtroom, where scholars have been unable to provide a viable mitigation strategy. This article examines the influence of a short virtual reality paradigm on implicit racial biases and evaluations of legal scenarios. After embodying a black avatar in the virtual world, participants produced significantly lower implicit racial bias scores than those who experienced a sham version of the virtual reality paradigm. Additionally, these participants more conservatively evaluated an ambiguous legal case, rating vague evidence as less indicative of guilt and rendering more Not Guilty verdicts. As the first experiment of its kind, this study demonstrates the potential of virtual reality to address implicit racial bias in the courtroom setting. PMID:29707220

  11. The impact of virtual reality on implicit racial bias and mock legal decisions.

    PubMed

    Salmanowitz, Natalie

    2018-05-01

    Implicit racial biases are one of the most vexing problems facing current society. These split-second judgments are not only widely prevalent, but also are notoriously difficult to overcome. Perhaps most concerning, implicit racial biases can have consequential impacts on decisions in the courtroom, where scholars have been unable to provide a viable mitigation strategy. This article examines the influence of a short virtual reality paradigm on implicit racial biases and evaluations of legal scenarios. After embodying a black avatar in the virtual world, participants produced significantly lower implicit racial bias scores than those who experienced a sham version of the virtual reality paradigm. Additionally, these participants more conservatively evaluated an ambiguous legal case, rating vague evidence as less indicative of guilt and rendering more Not Guilty verdicts. As the first experiment of its kind, this study demonstrates the potential of virtual reality to address implicit racial bias in the courtroom setting.

  12. Virtual reality in multiple sclerosis - A systematic review.

    PubMed

    Massetti, Thais; Trevizan, Isabela Lopes; Arab, Claudia; Favero, Francis Meire; Ribeiro-Papa, Denise Cardoso; de Mello Monteiro, Carlos Bandeira

    2016-07-01

    Multiple sclerosis (MS) is an inflammatory disease in which the insulating cover of nerve cells in the brain and spinal cord are damaged. The methods used for motor rehabilitation of patients with neurological problems require the performance of several rehabilitation exercises. Recently, studies related to the use of video game consoles have proliferated in the field of motor rehabilitation. Virtual reality (VR) has been proposed as a potentially useful tool for motoring assessment and rehabilitation. The purpose of this study was to investigate the results shown in previous studies on "Multiple Sclerosis" and "Virtual Reality". A bibliographic review was performed without time limitations. The research was carried out using PubMed and BVS databases. Considering keywords, we included articles that showed the terms "Multiple Sclerosis" and "Virtual Reality". The review was according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines The initial search yielded 41 articles. After the duplicates were removed, two authors independently evaluated the title and abstract of each of the articles with the study inclusion criteria. From these, 31 articles were excluded based on the title and abstract. Finally, 10 articles were isolated that met the inclusion criteria. VR represents a motivational and effective alternative to traditional motor rehabilitation for MS patients. The results showed that VR programs could be an effective method of patients with MS rehabilitation in multiple cognitive and / or motor deficits. Additional research is needed to support the rehabilitation protocols with VR and increase the effects of treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Development of the McGill simulator for endoscopic sinus surgery: a new high-fidelity virtual reality simulator for endoscopic sinus surgery.

    PubMed

    Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A

    2014-01-01

    The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.

  14. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis.

    PubMed

    Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F

    2014-01-01

    To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.

  15. Revolutionizing Education: The Promise of Virtual Reality

    ERIC Educational Resources Information Center

    Gadelha, Rene

    2018-01-01

    Virtual reality (VR) has the potential to revolutionize education, as it immerses students in their learning more than any other available medium. By blocking out visual and auditory distractions in the classroom, it has the potential to help students deeply connect with the material they are learning in a way that has never been possible before.…

  16. Virtual Reality: The Future of Animated Virtual Instructor, the Technology and Its Emergence to a Productive E-Learning Environment.

    ERIC Educational Resources Information Center

    Jiman, Juhanita

    This paper discusses the use of Virtual Reality (VR) in e-learning environments where an intelligent three-dimensional (3D) virtual person plays the role of an instructor. With the existence of this virtual instructor, it is hoped that the teaching and learning in the e-environment will be more effective and productive. This virtual 3D animated…

  17. Immersive Virtual Reality for Pediatric Pain

    PubMed Central

    Won, Andrea Stevenson; Bailey, Jakki; Bailenson, Jeremy; Tataru, Christine; Yoon, Isabel A.; Golianu, Brenda

    2017-01-01

    Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice. PMID:28644422

  18. Hybrid Reality Lab Capabilities - Video 2

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2016-01-01

    Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created

  19. Development of a cognitive function test using virtual reality technology: examination in healthy participants.

    PubMed

    Sakai, Hiromi; Nagano, Akinori; Seki, Keiko; Okahashi, Sayaka; Kojima, Maki; Luo, Zhiwei

    2018-07-01

    We developed a virtual reality test to assess the cognitive function of Japanese people in near-daily-life environment, namely, a virtual shopping test (VST). In this test, participants were asked to execute shopping tasks using touch panel operations in a "virtual shopping mall." We examined differences in VST performances among healthy participants of different ages and correlations between VST and screening tests, such as the Mini-Mental State Examination (MMSE) and Everyday Memory Checklist (EMC). We included 285 healthy participants between 20 and 86 years of age in seven age groups. Therefore, each VST index tended to decrease with advancing age; differences among age groups were significant. Most VST indices had a significantly negative correlation with MMSE and significantly positive correlation with EMC. VST may be useful for assessing general cognitive decline; effects of age must be considered for proper interpretation of the VST scores.

  20. Virtual reality in laparoscopic surgery.

    PubMed

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.

  1. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    ERIC Educational Resources Information Center

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  2. Virtual Reality and Computer-Enhanced Training Devices Equally Improve Laparoscopic Surgical Skill in Novices

    PubMed Central

    Kanumuri, Prathima; Ganai, Sabha; Wohaibi, Eyad M.; Bush, Ronald W.; Grow, Daniel R.

    2008-01-01

    Background: The study aim was to compare the effectiveness of virtual reality and computer-enhanced video-scopic training devices for training novice surgeons in complex laparoscopic skills. Methods: Third-year medical students received instruction on laparoscopic intracorporeal suturing and knot tying and then underwent a pretraining assessment of the task using a live porcine model. Students were then randomized to objectives-based training on either the virtual reality (n=8) or computer-enhanced (n=8) training devices for 4 weeks, after which the assessment was repeated. Results: Posttraining performance had improved compared with pretraining performance in both task completion rate (94% versus 18%; P<0.001*) and time [181±58 (SD) versus 292±24*]. Performance of the 2 groups was comparable before and after training. Of the subjects, 88% thought that haptic cues were important in simulators. Both groups agreed that their respective training systems were effective teaching tools, but computer-enhanced device trainees were more likely to rate their training as representative of reality (P<0.01). Conclusions: Training on virtual reality and computer-enhanced devices had equivalent effects on skills improvement in novices. Despite the perception that haptic feedback is important in laparoscopic simulation training, its absence in the virtual reality device did not impede acquisition of skill. PMID:18765042

  3. Virtual reality for automotive design evaluation

    NASA Technical Reports Server (NTRS)

    Dodd, George G.

    1995-01-01

    A general description of Virtual Reality technology and possible applications was given from publicly available material. A video tape was shown demonstrating the use of multiple large-screen stereoscopic displays, configured in a 10' x 10' x 10' room, to allow a person to evaluate and interact with a vehicle which exists only as mathematical data, and is made only of light. The correct viewpoint of the vehicle is maintained by tracking special glasses worn by the subject. Interior illumination was changed by moving a virtual light around by hand; interior colors are changed by pointing at a color on a color palette, then pointing at the desired surface to change. We concluded by discussing research needed to move this technology forward.

  4. Augmented Virtual Reality: How to Improve Education Systems

    ERIC Educational Resources Information Center

    Fernandez, Manuel

    2017-01-01

    This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students' learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students' knowledge acquisition.…

  5. PC-Based Virtual Reality for CAD Model Viewing

    ERIC Educational Resources Information Center

    Seth, Abhishek; Smith, Shana S.-F.

    2004-01-01

    Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…

  6. Virtual reality gaming in the rehabilitation of the upper extremities post-stroke.

    PubMed

    Yates, Michael; Kelemen, Arpad; Sik Lanyi, Cecilia

    2016-01-01

    Occurrences of strokes often result in unilateral upper limb dysfunction. Dysfunctions of this nature frequently persist and can present chronic limitations to activities of daily living. Research into applying virtual reality gaming systems to provide rehabilitation therapy have seen resurgence. Themes explored in stroke rehab for paretic limbs are action observation and imitation, versatility, intensity and repetition and preservation of gains. Fifteen articles were ultimately selected for review. The purpose of this literature review is to compare the various virtual reality gaming modalities in the current literature and ascertain their efficacy. The literature supports the use of virtual reality gaming rehab therapy as equivalent to traditional therapies or as successful augmentation to those therapies. While some degree of rigor was displayed in the literature, small sample sizes, variation in study lengths and therapy durations and unequal controls reduce generalizability and comparability. Future studies should incorporate larger sample sizes and post-intervention follow-up measures.

  7. Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis.

    PubMed

    Lamargue-Hamel, Delphine; Deloire, Mathilde; Saubusse, Aurore; Ruet, Aurélie; Taillard, Jacques; Philip, Pierre; Brochet, Bruno

    2015-12-15

    The assessment of cognitive impairment in multiple sclerosis (MS) requires large neuropsychological batteries that assess numerous domains. The relevance of these assessments to daily cognitive functioning is not well established. Cognitive ecological evaluation has not been frequently studied in MS. The aim of this study was to determine the interest of cognitive evaluation in a virtual reality environment in a sample of persons with MS with cognitive deficits. Thirty persons with MS with at least moderate cognitive impairment were assessed with two ecological evaluations, an in-house developed task in a virtual reality environment (Urban DailyCog®) and a divided attention task in a driving simulator. Classical neuropsychological testing was also used. Fifty-two percent of the persons with MS failed the driving simulator task and 80% failed the Urban DailyCog®. Virtual reality assessments are promising in identifying cognitive impairment in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Probabilistic motor sequence learning in a virtual reality serial reaction time task.

    PubMed

    Sense, Florian; van Rijn, Hedderik

    2018-01-01

    The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.

  9. Model of Illusions and Virtual Reality

    PubMed Central

    Gonzalez-Franco, Mar; Lanier, Jaron

    2017-01-01

    In Virtual Reality (VR) it is possible to induce illusions in which users report and behave as if they have entered into altered situations and identities. The effect can be robust enough for participants to respond “realistically,” meaning behaviors are altered as if subjects had been exposed to the scenarios in reality. The circumstances in which such VR illusions take place were first introduced in the 80's. Since then, rigorous empirical evidence has explored a wide set of illusory experiences in VR. Here, we compile this research and propose a neuroscientific model explaining the underlying perceptual and cognitive mechanisms that enable illusions in VR. Furthermore, we describe the minimum instrumentation requirements to support illusory experiences in VR, and discuss the importance and shortcomings of the generic model. PMID:28713323

  10. Augmented Reality versus Virtual Reality for 3D Object Manipulation.

    PubMed

    Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu

    2018-02-01

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  11. The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique.

    PubMed

    Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz

    2016-03-01

    Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.

  12. Social interactions in virtual reality exposure therapy: A proof-of-concept pilot study.

    PubMed

    Morina, Nexhmedin; Brinkman, Willem-Paul; Hartanto, Dwi; Kampmann, Isabel L; Emmelkamp, Paul M G

    2015-01-01

    Research on virtual reality exposure therapy (VRET) has demonstrated good treatment efficacy with regards to several anxiety disorders. Yet, there is lack of knowledge about the value of integrating interaction between clients and virtual humans in VRET. Such interaction might prove effective in treating psychological complaints that involve social interactions, such as social anxiety. A VRET system specifically designed to expose clients with social anxiety disorder to anxiety provoking social situations was applied to 16 and 18 individuals with high and low levels of social anxiety, respectively. Participants engaged in two exposure sessions in several free speech dialogues with virtual humans while being monitored by a therapist. Participants with high levels of social anxiety reported significantly lower levels of social anxiety three months after exposure to two virtual reality interaction sessions than before treatment (p < 0.01). In the group with low levels of social anxiety, no significant change of social anxiety was reported between pre-treatment and follow-up. Additionally, participants in both groups reported higher self-efficacy three months after treatment than before treatment (ps ≤ 0.001). These findings indicate that virtual reality technology that incorporates social interactions may be successfully applied for therapeutic purposes.

  13. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    PubMed Central

    Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442

  14. The co-definition of self: conversations in virtual reality.

    PubMed

    Cantamesse, Matteo

    2009-01-01

    Conversation analysis can take the form of a qualitative methodology for the exploration of discursive productions, whose main goal is the formulation of hypotheses for reading psychosocial interaction through descriptive models of interlocution. Therefore, in this study, conversations in a shared Virtual Environment have been analyzed in order to understand the specific structure, dynamics, and phenomenology of Virtual Reality effects on the "interactive micro-chains" that constitute the communicative thread of daily experience.

  15. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  16. Initial validation of a virtual-reality robotic simulator.

    PubMed

    Lendvay, Thomas S; Casale, Pasquale; Sweet, Robert; Peters, Craig

    2008-09-01

    Robotic surgery is an accepted adjunct to minimally invasive surgery, but training is restricted to console time. Virtual-reality (VR) simulation has been shown to be effective for laparoscopic training and so we seek to validate a novel VR robotic simulator. The American Urological Association (AUA) Office of Education approved this study. Subjects enrolled in a robotics training course at the 2007 AUA annual meeting underwent skills training in a da Vinci dry-lab module and a virtual-reality robotics module which included a three-dimensional (3D) VR robotic simulator. Demographic and acceptability data were obtained, and performance metrics from the simulator were compared between experienced and nonexperienced roboticists for a ring transfer task. Fifteen subjects-four with previous robotic surgery experience and 11 without-participated. Nine subjects were still in urology training and nearly half of the group had reported playing video games. Overall performance of the da Vinci system and the simulator were deemed acceptable by a Likert scale (0-6) rating of 5.23 versus 4.69, respectively. Experienced subjects outperformed nonexperienced subjects on the simulator on three metrics: total task time (96 s versus 159 s, P < 0.02), economy of motion (1,301 mm versus 2,095 mm, P < 0.04), and time the telemanipulators spent outside of the center of the platform's workspace (4 s versus 35 s, P < 0.02). This is the first demonstration of face and construct validity of a virtual-reality robotic simulator. Further studies assessing predictive validity are ultimately required to support incorporation of VR robotic simulation into training curricula.

  17. Laparoscopic varicocelectomy: virtual reality training and learning curve.

    PubMed

    Wang, Zheng; Ni, Yuhua; Zhang, Yinan; Jin, Xunbo; Xia, Qinghua; Wang, Hanbo

    2014-01-01

    To explore the role that virtual reality training might play in the learning curve of laparoscopic varicocelectomy. A total of 1326 laparoscopic varicocelectomy cases performed by 16 participants from July 2005 to June 2012 were retrospectively analyzed. The participants were divided into 2 groups: group A was trained by laparoscopic trainer boxes; group B was trained by a virtual reality training course preoperatively. The operation time curves were drafted, and the learning, improving, and platform stages were divided and statistically confirmed. The operation time and number of cases in the learning and improving stages of both groups were compared. Testicular artery sparing failure and postoperative hydroceles rate were statistically analyzed for the confirmation of the learning curve. The learning curve of laparoscopic varicocelectomy was 15 cases, and with 14 cases more, it came into the platform stage. The number of cases for the learning stages of both groups showed no statistical difference (P=.49), but the operation time of group B for the learning stage was less than that of group A (P<.00001). The number of cases of group B for the improving stage was significantly less than that of group A (P=.005), but the operation time of both groups in the improving stage showed no difference (P=.30). The difference of testicular artery sparing failure rates among these 3 stages was proved significant (P<.0001), the postoperative hydroceles rate showed no statistical difference (P=.60). The virtual reality training shortened the operation time in the learning stage and hastened the trainees' steps in the improving stage, but did not shorten the learning curve as expected to.

  18. Virtual Reality for Traumatic Brain Injury.

    PubMed

    Zanier, Elisa R; Zoerle, Tommaso; Di Lernia, Daniele; Riva, Giuseppe

    2018-01-01

    In this perspective, we discuss the potential of virtual reality (VR) in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.

  19. Virtual reality and consciousness inference in dreaming.

    PubMed

    Hobson, J Allan; Hong, Charles C-H; Friston, Karl J

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that - through experience-dependent plasticity - becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep - and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis - evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  20. Assessing Unilateral Spatial Neglect using advanced technologies: The potentiality of mobile virtual reality.

    PubMed

    Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Dell'Isola, Andrea; Cipresso, Pietro; Cisari, Carlo; Riva, Giuseppe

    2015-01-01

    Unilateral Spatial Neglect, or neglect, is a common behavioral syndrome in patients following unilateral brain damage, such as stroke. In recent years, new technologies, such as computer-based tools and virtual reality have been used in order to solve some limitations of the traditional neglect evaluation. Within this perspective, also mobile devices such as tablets seems to be promising tools, being able to support interactive virtual environments and, at the same time, allowing to easily reproduce traditional paper-and-pencil test. In this context, the aim of our study was to investigate the potentiality of a new mobile application (Neglect App) designed and developed for tablet (iPad) for screening neglect symptoms. To address this objective, we divided a sample of 16 right-damaged patients according to the presence or absence of neglect and we administered assessment test in their traditional and Neglect App version. Results showed that the cancellation tests developed within Neglect App were equally effective to traditional paper-and-pencil tests (Line cancellation test and Star Cancellation test) in detecting neglect symptoms. Secondly, according to our results, the Neglect App Card Dealing task was more sensitive in detecting neglect symptoms than traditional functional task. Globally, results gives preliminary evidences supporting the feasibility of Neglect App for the screening of USN symptoms.

  1. First Person Experience of Body Transfer in Virtual Reality

    PubMed Central

    Slater, Mel; Spanlang, Bernhard; Sanchez-Vives, Maria V.; Blanke, Olaf

    2010-01-01

    Background Altering the normal association between touch and its visual correlate can result in the illusory perception of a fake limb as part of our own body. Thus, when touch is seen to be applied to a rubber hand while felt synchronously on the corresponding hidden real hand, an illusion of ownership of the rubber hand usually occurs. The illusion has also been demonstrated using visuomotor correlation between the movements of the hidden real hand and the seen fake hand. This type of paradigm has been used with respect to the whole body generating out-of-the-body and body substitution illusions. However, such studies have only ever manipulated a single factor and although they used a form of virtual reality have not exploited the power of immersive virtual reality (IVR) to produce radical transformations in body ownership. Principal Findings Here we show that a first person perspective of a life-sized virtual human female body that appears to substitute the male subjects' own bodies was sufficient to generate a body transfer illusion. This was demonstrated subjectively by questionnaire and physiologically through heart-rate deceleration in response to a threat to the virtual body. This finding is in contrast to earlier experimental studies that assume visuotactile synchrony to be the critical contributory factor in ownership illusions. Our finding was possible because IVR allowed us to use a novel experimental design for this type of problem with three independent binary factors: (i) perspective position (first or third), (ii) synchronous or asynchronous mirror reflections and (iii) synchrony or asynchrony between felt and seen touch. Conclusions The results support the notion that bottom-up perceptual mechanisms can temporarily override top down knowledge resulting in a radical illusion of transfer of body ownership. The research also illustrates immersive virtual reality as a powerful tool in the study of body representation and experience, since it supports

  2. 3D Flow visualization in virtual reality

    NASA Astrophysics Data System (ADS)

    Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa

    2017-11-01

    By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.

  3. New Desktop Virtual Reality Technology in Technical Education

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.; Ausburn, Floyd B.

    2008-01-01

    Virtual reality (VR) that immerses users in a 3D environment through use of headwear, body suits, and data gloves has demonstrated effectiveness in technical and professional education. Immersive VR is highly engaging and appealing to technically skilled young Net Generation learners. However, technical difficulty and very high costs have kept…

  4. Are Spatial Visualization Abilities Relevant to Virtual Reality?

    ERIC Educational Resources Information Center

    Chen, Chwen Jen

    2006-01-01

    This study aims to investigate the effects of virtual reality (VR)-based learning environment on learners of different spatial visualization abilities. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the Guided VR mode, irrespective of their spatial visualization abilities. This indicates that…

  5. Application of Virtual Reality Technology in Biology Education.

    ERIC Educational Resources Information Center

    Shim, Kew-Cheol; Park, Jong-Seok; Kim, Hyun-Sup; Kim, Jae-Hyun; Park, Young-Chul; Ryu, Hai-Il

    2003-01-01

    Reports on the findings of a study designed to develop three-dimensional virtual reality technology (VRT) learning programs for middle school students and evaluate the program's educational value. Focuses on the topic of structure and function of the eye. Concludes that VRT simulations allow comfortable interaction with computers and increase the…

  6. Virtual Reality in Pediatric Psychology.

    PubMed

    Parsons, Thomas D; Riva, Giuseppe; Parsons, Sarah; Mantovani, Fabrizia; Newbutt, Nigel; Lin, Lin; Venturini, Eva; Hall, Trevor

    2017-11-01

    Virtual reality (VR) technologies allow for controlled simulations of affectively engaging background narratives. These virtual environments offer promise for enhancing emotionally relevant experiences and social interactions. Within this context, VR can allow instructors, therapists, neuropsychologists, and service providers to offer safe, repeatable, and diversifiable interventions that can benefit assessments and learning in both typically developing children and children with disabilities. Research has also pointed to VR's capacity to reduce children's experience of aversive stimuli and reduce anxiety levels. Although there are a number of purported advantages of VR technologies, challenges have emerged. One challenge for this field of study is the lack of consensus on how to do trials. A related issue is the need for establishing the psychometric properties of VR assessments and interventions. This review investigates the advantages and challenges inherent in the application of VR technologies to pediatric assessments and interventions. Copyright © 2017 by the American Academy of Pediatrics.

  7. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170892 (1 Oct. 2010) --- NASA astronaut Alvin Drew, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  8. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170897 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  9. A systematic review of phacoemulsification cataract surgery in virtual reality simulators.

    PubMed

    Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri

    2013-01-01

    The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.

  10. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.

    PubMed

    Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y

    2009-05-01

    To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.

  11. Treatment of complicated grief using virtual reality: a case report.

    PubMed

    Botella, C; Osma, J; Palacios, A García; Guillén, V; Baños, R

    2008-01-01

    This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description of EMMA's World, the clinical protocol, and a case report. The treatment program was applied in eight sessions. We present a brief description of the session agendas including the techniques used. We offer short-term (from pre-test to post-test) and long-term (2-, 6- and 12-month follow-ups) efficacy data. Our results offer preliminary support of the use of EMMA's World for the treatment of Complicated Grief.

  12. A Practical Guide, with Theoretical Underpinnings, for Creating Effective Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.; Domingo, Jelia

    2017-01-01

    With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…

  13. Virtual reality and 3D visualizations in heart surgery education.

    PubMed

    Friedl, Reinhard; Preisack, Melitta B; Klas, Wolfgang; Rose, Thomas; Stracke, Sylvia; Quast, Klaus J; Hannekum, Andreas; Gödje, Oliver

    2002-01-01

    Computer assisted teaching plays an increasing role in surgical education. The presented paper describes the development of virtual reality (VR) and 3D visualizations for educational purposes concerning aortocoronary bypass grafting and their prototypical implementation into a database-driven and internet-based educational system in heart surgery. A multimedia storyboard has been written and digital video has been encoded. Understanding of these videos was not always satisfying; therefore, additional 3D and VR visualizations have been modelled as VRML, QuickTime, QuickTime Virtual Reality and MPEG-1 applications. An authoring process in terms of integration and orchestration of different multimedia components to educational units has been started. A virtual model of the heart has been designed. It is highly interactive and the user is able to rotate it, move it, zoom in for details or even fly through. It can be explored during the cardiac cycle and a transparency mode demonstrates coronary arteries, movement of the heart valves, and simultaneous blood-flow. Myocardial ischemia and the effect of an IMA-Graft on myocardial perfusion is simulated. Coronary artery stenoses and bypass-grafts can be interactively added. 3D models of anastomotique techniques and closed thrombendarterectomy have been developed. Different visualizations have been prototypically implemented into a teaching application about operative techniques. Interactive virtual reality and 3D teaching applications can be used and distributed via the World Wide Web and have the power to describe surgical anatomy and principles of surgical techniques, where temporal and spatial events play an important role, in a way superior to traditional teaching methods.

  14. Truck driver fatigue assessment using a virtual reality system.

    DOT National Transportation Integrated Search

    2016-10-17

    In this study, a fully immersive Virtual Reality (VR) based driving simulator was developed to serve : as a proof-of-concept that VR can be utilized to assess the level of fatigue (or drowsiness) truck : drivers typically experience during real...

  15. Virtual reality triage training provides a viable solution for disaster-preparedness.

    PubMed

    Andreatta, Pamela B; Maslowski, Eric; Petty, Sean; Shim, Woojin; Marsh, Michael; Hall, Theodore; Stern, Susan; Frankel, Jen

    2010-08-01

    The objective of this study was to compare the relative impact of two simulation-based methods for training emergency medicine (EM) residents in disaster triage using the Simple Triage and Rapid Treatment (START) algorithm, full-immersion virtual reality (VR), and standardized patient (SP) drill. Specifically, are there differences between the triage performances and posttest results of the two groups, and do both methods differentiate between learners of variable experience levels? Fifteen Postgraduate Year 1 (PGY1) to PGY4 EM residents were randomly assigned to two groups: VR or SP. In the VR group, the learners were effectively surrounded by a virtual mass disaster environment projected on four walls, ceiling, and floor and performed triage by interacting with virtual patients in avatar form. The second group performed likewise in a live disaster drill using SP victims. Setting and patient presentations were identical between the two modalities. Resident performance of triage during the drills and knowledge of the START triage algorithm pre/post drill completion were assessed. Analyses included descriptive statistics and measures of association (effect size). The mean pretest scores were similar between the SP and VR groups. There were no significant differences between the triage performances of the VR and SP groups, but the data showed an effect in favor of the SP group performance on the posttest. Virtual reality can provide a feasible alternative for training EM personnel in mass disaster triage, comparing favorably to SP drills. Virtual reality provides flexible, consistent, on-demand training options, using a stable, repeatable platform essential for the development of assessment protocols and performance standards.

  16. Virtual reality simulator training for laparoscopic colectomy: what metrics have construct validity?

    PubMed

    Shanmugan, Skandan; Leblanc, Fabien; Senagore, Anthony J; Ellis, C Neal; Stein, Sharon L; Khan, Sadaf; Delaney, Conor P; Champagne, Bradley J

    2014-02-01

    Virtual reality simulation for laparoscopic colectomy has been used for training of surgical residents and has been considered as a model for technical skills assessment of board-eligible colorectal surgeons. However, construct validity (the ability to distinguish between skill levels) must be confirmed before widespread implementation. This study was designed to specifically determine which metrics for laparoscopic sigmoid colectomy have evidence of construct validity. General surgeons that had performed fewer than 30 laparoscopic colon resections and laparoscopic colorectal experts (>200 laparoscopic colon resections) performed laparoscopic sigmoid colectomy on the LAP Mentor model. All participants received a 15-minute instructional warm-up and had never used the simulator before the study. Performance was then compared between each group for 21 metrics (procedural, 14; intraoperative errors, 7) to determine specifically which measurements demonstrate construct validity. Performance was compared with the Mann-Whitney U-test (p < 0.05 was significant). Fifty-three surgeons; 29 general surgeons, and 24 colorectal surgeons enrolled in the study. The virtual reality simulators for laparoscopic sigmoid colectomy demonstrated construct validity for 8 of 14 procedural metrics by distinguishing levels of surgical experience (p < 0.05). The most discriminatory procedural metrics (p < 0.01) favoring experts were reduced instrument path length, accuracy of the peritoneal/medial mobilization, and dissection of the inferior mesenteric artery. Intraoperative errors were not discriminatory for most metrics and favored general surgeons for colonic wall injury (general surgeons, 0.7; colorectal surgeons, 3.5; p = 0.045). Individual variability within the general surgeon and colorectal surgeon groups was not accounted for. The virtual reality simulators for laparoscopic sigmoid colectomy demonstrated construct validity for 8 procedure-specific metrics. However, using virtual

  17. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    PubMed

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  18. New perspectives and limitations in the use of virtual reality in the rehabilitation of motor disorders

    NASA Astrophysics Data System (ADS)

    De Mauro, Alessandro; Ardanza, Aitor; Monge, Esther; Molina Rueda, Francisco

    2013-03-01

    Several studies have shown that both virtual and augmented reality are technologies suitable for rehabilitation therapy due to the inherent ability of simulating real daily life activities while improving patient motivation. In this paper we will first present the state of the art in the use of virtual and augmented reality applications for rehabilitation of motor disorders and second we will focus on the analysis of the results of our project. In particular, requirements of patients with cerebrovascular accidents, spinal cord injuries and cerebral palsy to the use of virtual and augmented reality systems will be detailed.

  19. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients.

    PubMed

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-06-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.

  20. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients

    PubMed Central

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-01-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341

  1. Implementing virtual reality interfaces for the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, W.; Jacobsen, J.; Austin, A.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter threemore » or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.« less

  2. Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.

    PubMed

    Walsh, Catharine M; Sherlock, Mary E; Ling, Simon C; Carnahan, Heather

    2012-06-13

    Traditionally, training in gastrointestinal endoscopy has been based upon an apprenticeship model, with novice endoscopists learning basic skills under the supervision of experienced preceptors in the clinical setting. Over the last two decades, however, the growing awareness of the need for patient safety has brought the issue of simulation-based training to the forefront. While the use of simulation-based training may have important educational and societal advantages, the effectiveness of virtual reality gastrointestinal endoscopy simulators has yet to be clearly demonstrated. To determine whether virtual reality simulation training can supplement and/or replace early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. Health professions, educational and computer databases were searched until November 2011 including The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Scopus, Web of Science, Biosis Previews, CINAHL, Allied and Complementary Medicine Database, ERIC, Education Full Text, CBCA Education, Career and Technical Education @ Scholars Portal, Education Abstracts @ Scholars Portal, Expanded Academic ASAP @ Scholars Portal, ACM Digital Library, IEEE Xplore, Abstracts in New Technologies and Engineering and Computer & Information Systems Abstracts. The grey literature until November 2011 was also searched. Randomised and quasi-randomised clinical trials comparing virtual reality endoscopy (oesophagogastroduodenoscopy, colonoscopy and sigmoidoscopy) simulation training versus any other method of endoscopy training including conventional patient-based training, in-job training, training using another form of endoscopy simulation (e.g. low-fidelity simulator), or no training (however defined by authors) were included.  Trials comparing one method of virtual reality training versus

  3. Immersive Virtual Reality Therapy with Myoelectric Control for Treatment-resistant Phantom Limb Pain: Case Report.

    PubMed

    Chau, Brian; Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc

    2017-01-01

    Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain.

  4. Immersive Virtual Reality Therapy with Myoelectric Control for Treatment-resistant Phantom Limb Pain: Case Report

    PubMed Central

    Phelan, Ivan; Ta, Phillip; Humbert, Sarah; Hata, Justin; Tran, Duc

    2017-01-01

    Objective: Phantom limb pain is a condition frequently experienced after amputation. One treatment for phantom limb pain is traditional mirror therapy, yet some patients do not respond to this intervention, and immersive virtual reality mirror therapy offers some potential advantages. We report the case of a patient with severe phantom limb pain following an upper limb amputation and successful treatment with therapy in a custom virtual reality environment. Methods: An interactive 3-D kitchen environment was developed based on the principles of mirror therapy to allow for control of virtual hands while wearing a motion-tracked, head-mounted virtual reality display. The patient used myoelectric control of a virtual hand as well as motion-tracking control in this setting for five therapy sessions. Pain scale measurements and subjective feedback was elicited at each session. Results: Analysis of the measured pain scales showed statistically significant decreases per session [Visual Analog Scale, Short Form McGill Pain Questionnaire, and Wong-Baker FACES pain scores decreased by 55 percent (p=0.0143), 60 percent (p=0.023), and 90 percent (p=0.0024), respectively]. Significant subjective pain relief persisting between sessions was also reported, as well as marked immersion within the virtual environments. On followup at six weeks, the patient noted continued decrease in phantom limb pain symptoms. Conclusions: Currently available immersive virtual reality technology with myolectric and motion tracking control may represent a possible therapy option for treatment-resistant phantom limb pain. PMID:29616149

  5. Virtual Reality in Psychological, Medical and Pedagogical Applications

    ERIC Educational Resources Information Center

    Eichenberg, Christiane, Ed.

    2012-01-01

    This book has an aim to present latest applications, trends and developments of virtual reality technologies in three humanities disciplines: in medicine, psychology and pedagogy. Studies show that people in both educational as well as in the medical therapeutic range expect more and more that modern media are included in the corresponding demand…

  6. The Future of Virtual Reality in the Classroom

    ERIC Educational Resources Information Center

    Vance, Amelia

    2016-01-01

    As state boards of education and other state policymakers consider the future of schools, sorting fad technology from technology that accelerates learning is key. Virtual reality (VR) is one such technology with promise that seems unlikely to fizzle. Hailed as potentially transformative for education and still in the early stages of application,…

  7. Virtual reality environments for post-stroke arm rehabilitation.

    PubMed

    Subramanian, Sandeep; Knaut, Luiz A; Beaudoin, Christian; McFadyen, Bradford J; Feldman, Anatol G; Levin, Mindy F

    2007-06-22

    Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions. A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback. The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments. We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments.

  8. Does virtual reality simulation have a role in training trauma and orthopaedic surgeons?

    PubMed

    Bartlett, J D; Lawrence, J E; Stewart, M E; Nakano, N; Khanduja, V

    2018-05-01

    Aims The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results' titles, abstracts, and references were examined for relevance. Results A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion The demonstration of 'real-world' benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559-65.

  9. Documenting the efficacy of virtual reality exposure with psychophysiological and information processing measures.

    PubMed

    Côté, Sophie; Bouchard, Stéphane

    2005-09-01

    Many outcome studies have been conducted to assess the efficacy of virtual reality in the treatment of specific phobias. However, most studies used self-report data. The addition of objective measures of arousal and information processing mechanisms would be a valuable contribution in order to validate the usefulness of virtual reality in the treatment of anxiety disorders. The goal of this study was to document the impact of virtual reality exposure (VRE) on cardiac response and automatic processing of threatening stimuli. Twenty-eight adults suffering from arachnophobia were assessed and received an exposure-based treatment using virtual reality. General outcome and specific processes measures included a battery of standardized questionnaires, a pictorial emotional Stroop task, a behavioral avoidance test and a measure of participants' inter-beat intervals (IBI) while they were looking at a live tarantula. Assessment was conducted before and after treatment. Repeated measures ANOVAs revealed that therapy had a positive impact on questionnaire data, as well as on the behavioral avoidance test. Analyses made on the pictorial Stroop task showed that information processing of spider-related stimuli changed after treatment, which also indicates therapeutic success. Psychophysiological data also showed a positive change after treatment, suggesting a decrease in anxiety. In sum, VRE led to significant therapeutic improvements on objective measures as well as on self-report instruments.

  10. Virtual reality in rhinology-a new dimension of clinical experience.

    PubMed

    Klapan, Ivica; Raos, Pero; Galeta, Tomislav; Kubat, Goranka

    2016-07-01

    There is often a need to more precisely identify the extent of pathology and the fine elements of intracranial anatomic features during the diagnostic process and during many operations in the nose, sinus, orbit, and skull base region. In two case reports, we describe the methods used in the diagnostic workup and surgical therapy in the nose and paranasal sinus region. Besides baseline x-ray, multislice computed tomography, and magnetic resonance imaging, operative field imaging was performed via a rapid prototyping model, virtual endoscopy, and 3-D imaging. Different head tissues were visualized in different colors, showing their anatomic interrelations and the extent of pathologic tissue within the operative field. This approach has not yet been used as a standard preoperative or intraoperative procedure in otorhinolaryngology. In this way, we tried to understand the new, visualized "world of anatomic relations within the patient's head" by creating an impression of perception (virtual perception) of the given position of all elements in a particular anatomic region of the head, which does not exist in the real world (virtual world). This approach was aimed at upgrading the diagnostic workup and surgical therapy by ensuring a faster, safer and, above all, simpler operative procedure. In conclusion, any ENT specialist can provide virtual reality support in implementing surgical procedures, with additional control of risks and within the limits of normal tissue, without additional trauma to the surrounding tissue in the anatomic region. At the same time, the virtual reality support provides an impression of the virtual world as the specialist navigates through it and manipulates virtual objects.

  11. Virtual Reality Simulation for the Operating Room

    PubMed Central

    Gallagher, Anthony G.; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P.; Moses, Gerald; Smith, C Daniel; Satava, Richard M.

    2005-01-01

    Summary Background Data: To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision Methods: A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. Results: VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. Conclusions: VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills. PMID:15650649

  12. On the usefulness of the concept of presence in virtual reality applications

    NASA Astrophysics Data System (ADS)

    Mestre, Daniel R.

    2015-03-01

    Virtual Reality (VR) leads to realistic experimental situations, while enabling researchers to have deterministic control on these situations, and to precisely measure participants' behavior. However, because more realistic and complex situations can be implemented, important questions arise, concerning the validity and representativeness of the observed behavior, with reference to a real situation. One example is the investigation of a critical (virtually dangerous) situation, in which the participant knows that no actual threat is present in the simulated situation, and might thus exhibit a behavioral response that is far from reality. This poses serious problems, for instance in training situations, in terms of transfer of learning to a real situation. Facing this difficult question, it seems necessary to study the relationships between three factors: immersion (physical realism), presence (psychological realism) and behavior. We propose a conceptual framework, in which presence is a necessary condition for the emergence of a behavior that is representative of what is observed in real conditions. Presence itself depends not only on physical immersive characteristics of the Virtual Reality setup, but also on contextual and psychological factors.

  13. Surgical virtual reality - highlights in developing a high performance surgical haptic device.

    PubMed

    Custură-Crăciun, D; Cochior, D; Constantinoiu, S; Neagu, C

    2013-01-01

    Just like simulators are a standard in aviation and aerospace sciences, we expect for surgical simulators to soon become a standard in medical applications. These will correctly instruct future doctors in surgical techniques without there being a need for hands on patient instruction. Using virtual reality by digitally transposing surgical procedures changes surgery in are volutionary manner by offering possibilities for implementing new, much more efficient, learning methods, by allowing the practice of new surgical techniques and by improving surgeon abilities and skills. Perfecting haptic devices has opened the door to a series of opportunities in the fields of research,industry, nuclear science and medicine. Concepts purely theoretical at first, such as telerobotics, telepresence or telerepresentation,have become a practical reality as calculus techniques, telecommunications and haptic devices evolved,virtual reality taking a new leap. In the field of surgery barrier sand controversies still remain, regarding implementation and generalization of surgical virtual simulators. These obstacles remain connected to the high costs of this yet fully sufficiently developed technology, especially in the domain of haptic devices. Celsius.

  14. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  15. Virtual reality system for planning minimally invasive neurosurgery. Technical note.

    PubMed

    Stadie, Axel Thomas; Kockro, Ralf Alfons; Reisch, Robert; Tropine, Andrei; Boor, Stephan; Stoeter, Peter; Perneczky, Axel

    2008-02-01

    The authors report on their experience with a 3D virtual reality system for planning minimally invasive neurosurgical procedures. Between October 2002 and April 2006, the authors used the Dextroscope (Volume Interactions, Ltd.) to plan neurosurgical procedures in 106 patients, including 100 with intracranial and 6 with spinal lesions. The planning was performed 1 to 3 days preoperatively, and in 12 cases, 3D prints of the planning procedure were taken into the operating room. A questionnaire was completed by the neurosurgeon after the planning procedure. After a short period of acclimatization, the system proved easy to operate and is currently used routinely for preoperative planning of difficult cases at the authors' institution. It was felt that working with a virtual reality multimodal model of the patient significantly improved surgical planning. The pathoanatomy in individual patients could easily be understood in great detail, enabling the authors to determine the surgical trajectory precisely and in the most minimally invasive way. The authors found the preoperative 3D model to be in high concordance with intraoperative conditions; the resulting intraoperative "déjà-vu" feeling enhanced surgical confidence. In all procedures planned with the Dextroscope, the chosen surgical strategy proved to be the correct choice. Three-dimensional virtual reality models of a patient allow quick and easy understanding of complex intracranial lesions.

  16. Virtual Reality Job Interview Training in Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Smith, Matthew J.; Ginger, Emily J.; Wright, Katherine; Wright, Michael A.; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale E.; Bell, Morris D.; Fleming, Michael F.

    2014-01-01

    The feasibility and efficacy of virtual reality job interview training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n = 16) or treatment-as-usual (TAU) (n = 10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic…

  17. Validity of assessing child feeding with virtual reality.

    PubMed

    Persky, Susan; Goldring, Megan R; Turner, Sara A; Cohen, Rachel W; Kistler, William D

    2018-04-01

    Assessment of parents' child feeding behavior is challenging, and there is need for additional methodological approaches. Virtual reality technology allows for the creation of behavioral measures, and its implementation overcomes several limitations of existing methods. This report evaluates the validity and usability of the Virtual Reality (VR) Buffet among a sample of 52 parents of children aged 3-7. Participants served a meal of pasta and apple juice in both a virtual setting and real-world setting (counterbalanced and separated by a distractor task). They then created another meal for their child, this time choosing from the full set of food options in the VR Buffet. Finally, participants completed a food estimation task followed by a questionnaire, which assessed their perceptions of the VR Buffet. Results revealed that the amount of virtual pasta served by parents correlated significantly with the amount of real pasta they served, r s  = 0.613, p < .0001, as did served amounts of virtual and real apple juice, r s  = 0.822, p < .0001. Furthermore, parents' perception of the calorie content of chosen foods was significantly correlated with observed calorie content (r s  = 0.438, p = .002), and parents agreed that they would feed the meal they created to their child (M = 4.43, SD = 0.82 on a 1-5 scale). The data presented here demonstrate that parent behavior in the VR Buffet is highly related to real-world behavior, and that the tool is well-rated by parents. Given the data presented and the potential benefits of the abundant behavioral data the VR Buffet can provide, we conclude that it is a valid and needed addition to the array of tools for assessing feeding behavior. Published by Elsevier Ltd.

  18. The Selimiye Mosque of Edirne, Turkey - AN Immersive and Interactive Virtual Reality Experience Using Htc Vive

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Büyüksalih, G.; Tschirschwitz, F.; Kan, T.; Deggim, S.; Kaya, Y.; Baskaraca, A. P.

    2017-05-01

    Recent advances in contemporary Virtual Reality (VR) technologies are going to have a significant impact on veryday life. Through VR it is possible to virtually explore a computer-generated environment as a different reality, and to immerse oneself into the past or in a virtual museum without leaving the current real-life situation. For such the ultimate VR experience, the user should only see the virtual world. Currently, the user must wear a VR headset which fits around the head and over the eyes to visually separate themselves from the physical world. Via the headset images are fed to the eyes through two small lenses. Cultural heritage monuments are ideally suited both for thorough multi-dimensional geometric documentation and for realistic interactive visualisation in immersive VR applications. Additionally, the game industry offers tools for interactive visualisation of objects to motivate users to virtually visit objects and places. In this paper the generation of a virtual 3D model of the Selimiye mosque in the city of Edirne, Turkey and its processing for data integration into the game engine Unity is presented. The project has been carried out as a co-operation between BİMTAŞ, a company of the Greater Municipality of Istanbul, Turkey and the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg, Germany to demonstrate an immersive and interactive visualisation using the new VR system HTC Vive. The workflow from data acquisition to VR visualisation, including the necessary programming for navigation, is described. Furthermore, the possible use (including simultaneous multiple users environments) of such a VR visualisation for a CH monument is discussed in this contribution.

  19. Virtual reality intervention for older women with breast cancer.

    PubMed

    Schneider, Susan M; Ellis, Mathew; Coombs, William T; Shonkwiler, Erin L; Folsom, Linda C

    2003-06-01

    This study examined the effects of a virtual reality distraction intervention on chemotherapy-related symptom distress levels in 16 women aged 50 and older. A cross-over design was used to answer the following research questions: (1) Is virtual reality an effective distraction intervention for reducing chemotherapy-related symptom distress levels in older women with breast cancer? (2) Does virtual reality have a lasting effect? Chemotherapy treatments are intensive and difficult to endure. One way to cope with chemotherapy-related symptom distress is through the use of distraction. For this study, a head-mounted display (Sony PC Glasstron PLM - S700) was used to display encompassing images and block competing stimuli during chemotherapy infusions. The Symptom Distress Scale (SDS), Revised Piper Fatigue Scale (PFS), and the State Anxiety Inventory (SAI) were used to measure symptom distress. For two matched chemotherapy treatments, one pre-test and two post-test measures were employed. Participants were randomly assigned to receive the VR distraction intervention during one chemotherapy treatment and received no distraction intervention (control condition) during an alternate chemotherapy treatment. Analysis using paired t-tests demonstrated a significant decrease in the SAI (p = 0.10) scores immediately following chemotherapy treatments when participants used VR. No significant changes were found in SDS or PFS values. There was a consistent trend toward improved symptoms on all measures 48 h following completion of chemotherapy. Evaluation of the intervention indicated that women thought the head mounted device was easy to use, they experienced no cybersickness, and 100% would use VR again.

  20. Virtual Reality Intervention for Older Women with Breast Cancer

    PubMed Central

    SCHNEIDER, SUSAN M.; ELLIS, MATHEW; COOMBS, WILLIAM T.; SHONKWILER, ERIN L.; FOLSOM, LINDA C.

    2013-01-01

    This study examined the effects of a virtual reality distraction intervention on chemotherapy-related symptom distress levels in 16 women aged 50 and older. A cross-over design was used to answer the following research questions: (1) Is virtual reality an effective distraction intervention for reducing chemotherapy-related symptom distress levels in older women with breast cancer? (2) Does virtual reality have a lasting effect? Chemotherapy treatments are intensive and difficult to endure. One way to cope with chemotherapy-related symptom distress is through the use of distraction. For this study, a head-mounted display (Sony PC Glasstron PLM—S700) was used to display encompassing images and block competing stimuli during chemotherapy infusions. The Symptom Distress Scale (SDS), Revised Piper Fatigue Scale (PFS), and the State Anxiety Inventory (SAI) were used to measure symptom distress. For two matched chemotherapy treatments, one pre-test and two post-test measures were employed. Participants were randomly assigned to receive the VR distraction intervention during one chemotherapy treatment and received no distraction intervention (control condition) during an alternate chemotherapy treatment. Analysis using paired t-tests demonstrated a significant decrease in the SAI (p = 0.10) scores immediately following chemotherapy treatments when participants used VR. No significant changes were found in SDS or PFS values. There was a consistent trend toward improved symptoms on all measures 48 h following completion of chemotherapy. Evaluation of the intervention indicated that women thought the head mounted device was easy to use, they experienced no cybersickness, and 100% would use VR again. PMID:12855087

  1. High psychosis liability is associated with altered autonomic balance during exposure to Virtual Reality social stressors.

    PubMed

    Counotte, Jacqueline; Pot-Kolder, Roos; van Roon, Arie M; Hoskam, Olivier; van der Gaag, Mark; Veling, Wim

    2017-06-01

    Social stressors are associated with an increased risk of psychosis. Stress sensitisation is thought to be an underlying mechanism and may be reflected in an altered autonomic stress response. Using an experimental Virtual Reality design, the autonomic stress response to social stressors was examined in participants with different liability to psychosis. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra-high risk for psychosis, 42 siblings of patients with psychosis and 53 controls were exposed to social stressors (crowdedness, ethnic minority status and hostility) in a Virtual Reality environment. Heart rate variability parameters and skin conductance levels were measured at baseline and during Virtual Reality experiments. High psychosis liability groups had significantly increased heart rate and decreased heart rate variability compared to low liability groups both at baseline and during Virtual Reality experiments. Both low frequency (LF) and high frequency (HF) power were reduced, while the LF/HF ratio was similar between groups. The number of virtual social stressors significantly affected heart rate, HF, LF/HF and skin conductance level. There was no interaction between psychosis liability and amount of virtual social stress. High liability to psychosis is associated with decreased parasympathetic activity in virtual social environments, which reflects generally high levels of arousal, rather than increased autonomic reactivity to social stressors. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Virtual reality interventions for rehabilitation: considerations for developing protocols.

    PubMed

    Boechler, Patricia; Krol, Andrea; Raso, Jim; Blois, Terry

    2009-01-01

    This paper is a preliminary report on a work in progress that explores the existence of practice effects in early use of virtual reality environments for rehabilitation purposes and the effects of increases in level of difficulty as defined by rate of on-screen objects.

  3. Ecological assessment of divided attention: What about the current tools and the relevancy of virtual reality.

    PubMed

    Lopez Maïté, C; Gaétane, D; Axel, C

    2016-01-01

    The ability to perform two tasks simultaneously has become increasingly important as attention-demanding technologies have become more common in daily life. This type of attentional resources allocation is commonly called "divided attention". Because of the importance of divided attention in natural world settings, substantial efforts have been made recently so as to promote an integrated, realistic assessment of functional abilities in dual-task paradigms. In this context, virtual reality methods appear to be a good solution. However to date, there has been little discussion on validity of such methods. Here, we offer a comparative review of conventional tools used to assess divided attention and of the first virtual reality studies (mostly from the field of road and pedestrian safety). The ecological character of virtual environments leads to a better understanding of the influence of dual-task settings and also makes it possible to clarify issues such as the utility of hands-free phones. After discussing the theoretical and clinical contributions of these studies, we discuss the limits of virtual reality assessment, focusing in particular: (i) on the challenges associated with lack of familiarity with new technological devices; (ii) on the validity of the ecological character of virtual environments; and (iii) on the question of whether the results obtained in a specific context can be generalized to all dual-task situations typical of daily life. To overcome the limitations associated with virtual reality, we propose: (i) to include a standardized familiarization phase in assessment protocols so as to limit the interference caused by the use of new technologies; (ii) to systematically compare virtual reality performance with conventional tests or real-life tests; and (iii) to design dual-task scenarios that are independent from the patient's expertise on one of the two tasks. We conclude that virtual reality appears to constitute a useful tool when used in

  4. Fear of falling: efficacy of virtual reality associated with serious games in elderly people.

    PubMed

    Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Komano, Odile; Millet, Bruno; Jouvent, Roland

    2016-01-01

    Fear of falling is defined as an ongoing concern about falling that is not explained by physical examination. Focusing on the psychological dimension of this pathology (phobic reaction to walking), we looked at how virtual reality associated with serious games can be used to treat this pathology. Participants with fear of falling were randomly assigned to either a treatment group or a waiting list. The therapy consisted of 12 weekly sessions of virtual reality exposure therapy associated with serious games. Sixteen participants were included. The mean age of the treatment group was 72 years and that of the control group was 69 years. Participants' scores on the fear of falling measure improved after treatment with virtual reality associated with serious games, leading to a significant difference between the two groups. Virtual reality exposure therapy associated with serious games can be used in the treatment of fear of falling. The two techniques are complementary (top-down and bottom-up processes). To our knowledge, this is the first time that a combination of the two has been assessed. There was a specific effect of this therapy on the phobic reaction. Further studies are needed to confirm its efficacy and identify its underlying mechanism.

  5. Fear of falling: efficacy of virtual reality associated with serious games in elderly people

    PubMed Central

    Levy, Fanny; Leboucher, Pierre; Rautureau, Gilles; Komano, Odile; Millet, Bruno; Jouvent, Roland

    2016-01-01

    Objective Fear of falling is defined as an ongoing concern about falling that is not explained by physical examination. Focusing on the psychological dimension of this pathology (phobic reaction to walking), we looked at how virtual reality associated with serious games can be used to treat this pathology. Methods Participants with fear of falling were randomly assigned to either a treatment group or a waiting list. The therapy consisted of 12 weekly sessions of virtual reality exposure therapy associated with serious games. Results Sixteen participants were included. The mean age of the treatment group was 72 years and that of the control group was 69 years. Participants’ scores on the fear of falling measure improved after treatment with virtual reality associated with serious games, leading to a significant difference between the two groups. Conclusion Virtual reality exposure therapy associated with serious games can be used in the treatment of fear of falling. The two techniques are complementary (top-down and bottom-up processes). To our knowledge, this is the first time that a combination of the two has been assessed. There was a specific effect of this therapy on the phobic reaction. Further studies are needed to confirm its efficacy and identify its underlying mechanism. PMID:27143889

  6. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170885 (1 Oct. 2010) --- NASA astronauts Alvin Drew (left) and Tim Kopra, both STS-133 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration

  7. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170871 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration

  8. STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab

    NASA Image and Video Library

    2010-10-01

    JSC2010-E-170873 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration

  9. Virtual reality and consciousness inference in dreaming

    PubMed Central

    Hobson, J. Allan; Hong, Charles C.-H.; Friston, Karl J.

    2014-01-01

    This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity – becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM) sleep dreaming, may provide the theater for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements (REMs) endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness). In short, our premise or hypothesis is that the waking brain engages with the world to predict the causes of sensations, while in sleep the brain’s generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research. PMID:25346710

  10. The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC

    NASA Technical Reports Server (NTRS)

    Little, William

    2017-01-01

    The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.

  11. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.

    PubMed

    Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev

    2012-01-01

    To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.

  12. Can we use virtual reality tools in the planning of an experiment?

    NASA Astrophysics Data System (ADS)

    Kucaba-Pietal, Anna; Szumski, Marek; Szczerba, Piotr

    2015-03-01

    Virtual reality (VR) has proved to be a particularly useful tool in engineering and design. A related area of aviation in which VR is particularly significant is a flight training, as it requires many hours of practice and using real planes for all training is both expensive and more dangerous. Research conducted at the Rzeszow University of Technology (RUT) showed that virtual reality can be successfully used for planning experiment during a flight tests. Motivation to the study were a wing deformation measurements of PW-6 glider in flight by use Image Pattern Correlation Technique (IPCT) planned within the frame of AIM2 project. The tool VirlIPCT was constructed, which permits to perform virtual IPCT setup on an airplane. Using it, we can test a camera position, camera resolution, pattern application. Moreover performed tests on RUT indicate, that VirlIPCT can be used as a virtual IPCT image generator. This paper presents results of the research on VirlIPCT.

  13. Virtual Reality for Life Skills Education: Program Evaluation

    ERIC Educational Resources Information Center

    Vogel, Jennifer; Bowers, Clint; Meehan, Cricket; Hoeft, Raegan; Bradley, Kristy

    2004-01-01

    A program evaluation was completed for a Virtual Reality (VR) pilot project intended to aid deaf children in learning various life skills which they may be at risk of not adequately learning. Such skills include crossing the street safely, exiting a building during a fire drill, and avoiding situations in which strangers may harm them. The VR was…

  14. Improving Weight Maintenance Using Virtual Reality (Second Life)

    ERIC Educational Resources Information Center

    Sullivan, Debra K.; Goetz, Jeannine R.; Gibson, Cheryl A.; Washburn, Richard A.; Smith, Bryan K.; Lee, Jaehoon; Gerald, Stephanie; Fincham, Tennille; Donnelly, Joseph E.

    2013-01-01

    Objective: Compare weight loss and maintenance between a face-to-face (FTF) weight management clinic and a clinic delivered via virtual reality (VR). Methods: Participants were randomized to 3 months of weight loss with a weekly clinic delivered via FTF or VR and then 6 months' weight maintenance delivered with VR. Data were collected at baseline…

  15. VirSSPA- a virtual reality tool for surgical planning workflow.

    PubMed

    Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T

    2009-03-01

    A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.

  16. Randomized Clinical Trial of Virtual Reality Simulation Training for Transvaginal Gynecologic Ultrasound Skills.

    PubMed

    Chao, Coline; Chalouhi, Gihad E; Bouhanna, Philippe; Ville, Yves; Dommergues, Marc

    2015-09-01

    To compare the impact of virtual reality simulation training and theoretical teaching on the ability of inexperienced trainees to produce adequate virtual transvaginal ultrasound images. We conducted a randomized controlled trial with parallel groups. Participants included inexperienced residents starting a training program in Paris. The intervention consisted of 40 minutes of virtual reality simulation training using a haptic transvaginal simulator versus 40 minutes of conventional teaching including a conference with slides and videos and answers to the students' questions. The outcome was a 19-point image quality score calculated from a set of 4 images (sagittal and coronal views of the uterus and left and right ovaries) produced by trainees immediately after the intervention, using the same simulator on which a new virtual patient had been uploaded. Experts assessed the outcome on stored images, presented in a random order, 2 months after the trial was completed. They were blinded to group assignment. The hypothesis was an improved outcome in the intervention group. Randomization was 1 to 1. The mean score was significantly greater in the simulation group (n = 16; mean score, 12; SEM, 0.8) than the control group (n = 18; mean score, 9; SEM, 1.0; P= .0302). The quality of virtual vaginal images produced by inexperienced trainees was greater immediately after a single virtual reality simulation training session than after a single theoretical teaching session. © 2015 by the American Institute of Ultrasound in Medicine.

  17. Virtual Reality in Neurointervention.

    PubMed

    Ong, Chin Siang; Deib, Gerard; Yesantharao, Pooja; Qiao, Ye; Pakpoor, Jina; Hibino, Narutoshi; Hui, Ferdinand; Garcia, Juan R

    2018-06-01

    Virtual reality (VR) allows users to experience realistic, immersive 3D virtual environments with the depth perception and binocular field of view of real 3D settings. Newer VR technology has now allowed for interaction with 3D objects within these virtual environments through the use of VR controllers. This technical note describes our preliminary experience with VR as an adjunct tool to traditional angiographic imaging in the preprocedural workup of a patient with a complex pseudoaneurysm. Angiographic MRI data was imported and segmented to create 3D meshes of bilateral carotid vasculature. The 3D meshes were then projected into VR space, allowing the operator to inspect the carotid vasculature using a 3D VR headset as well as interact with the pseudoaneurysm (handling, rotation, magnification, and sectioning) using two VR controllers. 3D segmentation of a complex pseudoaneurysm in the distal cervical segment of the right internal carotid artery was successfully performed and projected into VR. Conventional and VR visualization modes were equally effective in identifying and classifying the pathology. VR visualization allowed the operators to manipulate the dataset to achieve a greater understanding of the anatomy of the parent vessel, the angioarchitecture of the pseudoaneurysm, and the surface contours of all visualized structures. This preliminary study demonstrates the feasibility of utilizing VR for preprocedural evaluation in patients with anatomically complex neurovascular disorders. This novel visualization approach may serve as a valuable adjunct tool in deciding patient-specific treatment plans and selection of devices prior to intervention.

  18. Progress in virtual reality simulators for surgical training and certification.

    PubMed

    de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D

    2011-02-21

    There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.

  19. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    PubMed

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT