Sample records for advanced visualization tools

  1. STRING 3: An Advanced Groundwater Flow Visualization Tool

    NASA Astrophysics Data System (ADS)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  2. Integrating advanced visualization technology into the planetary Geoscience workflow

    NASA Astrophysics Data System (ADS)

    Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb

    2011-09-01

    Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.

  3. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  4. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    PubMed

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.

  5. Igloo-Plot: a tool for visualization of multidimensional datasets.

    PubMed

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2014-01-01

    Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Molecules to maps: tools for visualization and interaction in support of computational biology.

    PubMed

    Kraemer, E T; Ferrin, T E

    1998-01-01

    The volume of data produced by genome projects, X-ray crystallography, NMR spectroscopy, and electron and confocal microscopy present the bioinformatics community with new challenges for analyzing, understanding, and exchanging this data. At the 1998 Pacific Symposium on Biocomputing, a track entitled 'Molecules to Maps: Tools for Visualization and Interaction in Computational Biology' provided tool developers and users with the opportunity to discuss advances in tools and techniques to assist scientists in evaluating, absorbing, navigating, and correlating this sea of information, through visualization and user interaction. In this paper we present these advances and discuss some of the challenges that remain to be solved.

  7. Interactive Tools for Measuring Visual Scanning Performance and Reaction Time

    PubMed Central

    Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie

    2017-01-01

    Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598

  8. Interactive Tools for Measuring Visual Scanning Performance and Reaction Time.

    PubMed

    Brooks, Johnell; Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie

    Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection © (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21-66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants' performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  9. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  10. Survey of visualization and analysis tools

    NASA Technical Reports Server (NTRS)

    Meyer, P. J.

    1994-01-01

    A large number of commercially available visualization and analysis tools are available to the researcher. Some of the strengths and limitations of some of these tools, from the viewpoint of the earth sciences discipline, are discussed. Visualization and analysis tools fall into one of two categories: those that are designed to a specific purpose and are non-extensive and those that are generic visual programming tools that are extensible. Most of the extensible packages examined incorporate a data flow paradigm.

  11. Survey of Network Visualization Tools

    DTIC Science & Technology

    2007-12-01

    Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to

  12. Visualization Tools for Teaching Computer Security

    ERIC Educational Resources Information Center

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  13. Continuous Symmetry and Chemistry Teachers: Learning Advanced Chemistry Content through Novel Visualization Tools

    ERIC Educational Resources Information Center

    Tuvi-Arad, Inbal; Blonder, Ron

    2010-01-01

    In this paper we describe the learning process of a group of experienced chemistry teachers in a specially designed workshop on molecular symmetry and continuous symmetry. The workshop was based on interactive visualization tools that allow molecules and their symmetry elements to be rotated in three dimensions. The topic of continuous symmetry is…

  14. Integrated Data Visualization and Virtual Reality Tool

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  15. Iterating between Tools to Create and Edit Visualizations.

    PubMed

    Bigelow, Alex; Drucker, Steven; Fisher, Danyel; Meyer, Miriah

    2017-01-01

    A common workflow for visualization designers begins with a generative tool, like D3 or Processing, to create the initial visualization; and proceeds to a drawing tool, like Adobe Illustrator or Inkscape, for editing and cleaning. Unfortunately, this is typically a one-way process: once a visualization is exported from the generative tool into a drawing tool, it is difficult to make further, data-driven changes. In this paper, we propose a bridge model to allow designers to bring their work back from the drawing tool to re-edit in the generative tool. Our key insight is to recast this iteration challenge as a merge problem - similar to when two people are editing a document and changes between them need to reconciled. We also present a specific instantiation of this model, a tool called Hanpuku, which bridges between D3 scripts and Illustrator. We show several examples of visualizations that are iteratively created using Hanpuku in order to illustrate the flexibility of the approach. We further describe several hypothetical tools that bridge between other visualization tools to emphasize the generality of the model.

  16. An interactive visualization tool for mobile objects

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuo

    Recent advancements in mobile devices---such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID)---have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data

  17. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE PAGES

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...

    2017-08-29

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  18. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  19. Tools for visually exploring biological networks.

    PubMed

    Suderman, Matthew; Hallett, Michael

    2007-10-15

    Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.

  20. chimeraviz: a tool for visualizing chimeric RNA.

    PubMed

    Lågstad, Stian; Zhao, Sen; Hoff, Andreas M; Johannessen, Bjarne; Lingjærde, Ole Christian; Skotheim, Rolf I

    2017-09-15

    Advances in high-throughput RNA sequencing have enabled more efficient detection of fusion transcripts, but the technology and associated software used for fusion detection from sequencing data often yield a high false discovery rate. Good prioritization of the results is important, and this can be helped by a visualization framework that automatically integrates RNA data with known genomic features. Here we present chimeraviz , a Bioconductor package that automates the creation of chimeric RNA visualizations. The package supports input from nine different fusion-finder tools: deFuse, EricScript, InFusion, JAFFA, FusionCatcher, FusionMap, PRADA, SOAPfuse and STAR-FUSION. chimeraviz is an R package available via Bioconductor ( https://bioconductor.org/packages/release/bioc/html/chimeraviz.html ) under Artistic-2.0. Source code and support is available at GitHub ( https://github.com/stianlagstad/chimeraviz ). rolf.i.skotheim@rr-research.no. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  1. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  2. Early visual analysis tool using magnetoencephalography for treatment and recovery of neuronal dysfunction.

    PubMed

    Rasheed, Waqas; Neoh, Yee Yik; Bin Hamid, Nor Hisham; Reza, Faruque; Idris, Zamzuri; Tang, Tong Boon

    2017-10-01

    Functional neuroimaging modalities play an important role in deciding the diagnosis and course of treatment of neuronal dysfunction and degeneration. This article presents an analytical tool with visualization by exploiting the strengths of the MEG (magnetoencephalographic) neuroimaging technique. The tool automates MEG data import (in tSSS format), channel information extraction, time/frequency decomposition, and circular graph visualization (connectogram) for simple result inspection. For advanced users, the tool also provides magnitude squared coherence (MSC) values allowing personalized threshold levels, and the computation of default model from MEG data of control population. Default model obtained from healthy population data serves as a useful benchmark to diagnose and monitor neuronal recovery during treatment. The proposed tool further provides optional labels with international 10-10 system nomenclature in order to facilitate comparison studies with EEG (electroencephalography) sensor space. Potential applications in epilepsy and traumatic brain injury studies are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Global Precipitation Mission Visualization Tool

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  4. Advanced Prosthetic Gait Training Tool

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...October 2014 2. REPORT TYPE Annual Report 3. DATES COVERED 20 Sep 2013 to 19 Sep 2014 4. TITLE AND SUBTITLE Advanced Prosthetic Gait Training...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care

  5. Visual illusion of tool use recalibrates tactile perception

    PubMed Central

    Miller, Luke E.; Longo, Matthew R.; Saygin, Ayse P.

    2018-01-01

    Brief use of a tool recalibrates multisensory representations of the user’s body, a phenomenon called tool embodiment. Despite two decades of research, little is known about its boundary conditions. It has been widely argued that embodiment requires active tool use, suggesting a critical role for somatosensory and motor feedback. The present study used a visual illusion to cast doubt on this view. We used a mirror-based setup to induce a visual experience of tool use with an arm that was in fact stationary. Following illusory tool use, tactile perception was recalibrated on this stationary arm, and with equal magnitude as physical use. Recalibration was not found following illusory passive tool holding, and could not be accounted for by sensory conflict or general interhemispheric plasticity. These results suggest visual tool-use signals play a critical role in driving tool embodiment. PMID:28196765

  6. ASCI visualization tool evaluation, Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegelmeyer, P.

    1997-04-01

    The charter of the ASCI Visualization Common Tools subgroup was to investigate and evaluate 3D scientific visualization tools. As part of that effort, a Tri-Lab evaluation effort was launched in February of 1996. The first step was to agree on a thoroughly documented list of 32 features against which all tool candidates would be evaluated. These evaluation criteria were both gleaned from a user survey and determined from informed extrapolation into the future, particularly as concerns the 3D nature and extremely large size of ASCI data sets. The second step was to winnow a field of 41 candidate tools downmore » to 11. The selection principle was to be as inclusive as practical, retaining every tool that seemed to hold any promise of fulfilling all of ASCI`s visualization needs. These 11 tools were then closely investigated by volunteer evaluators distributed across LANL, LLNL, and SNL. This report contains the results of those evaluations, as well as a discussion of the evaluation philosophy and criteria.« less

  7. Chapter 16: Lignin Visualization: Advanced Microscopy Techniques for Lignin Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Donohoe, Bryon S

    Visualization of lignin in plant cell walls, with both spatial and chemical resolution, is emerging as an important tool to understand lignin's role in the plant cell wall's nanoscale architecture and to understand and design processes intended to modify the lignin. As such, this chapter reviews recent advances in advanced imaging methods with respect to lignin in plant cell walls. This review focuses on the importance of lignin detection and localization for studies in both plant biology and biotechnology. Challenges going forward to identify and delineate lignin from other plant cell wall components and to quantitatively analyze lignin in wholemore » cell walls from native plant tissue and treated biomass are also discussed.« less

  8. Optimal visual-haptic integration with articulated tools.

    PubMed

    Takahashi, Chie; Watt, Simon J

    2017-05-01

    When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.

  9. Spectacle and SpecViz: New Spectral Analysis and Visualization Tools

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas; Peeples, Molly; JDADF Developers

    2018-01-01

    A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user

  10. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-07-20

    - Data parallelism, Task parallelism, Visualization parallelism; (2) Optimized parallel input/output (I/O); (3) Remote interactive execution; (4) Advanced intercomparison visualization; (5) Data provenance processing and capture; and (6) Interfaces for scientists - Workflow data analysis and visualization construction tools, and Visualization interfaces.« less

  11. Visual Impairment Screening Assessment (VISA) tool: pilot validation.

    PubMed

    Rowe, Fiona J; Hepworth, Lauren R; Hanna, Kerry L; Howard, Claire

    2018-03-06

    To report and evaluate a new Vision Impairment Screening Assessment (VISA) tool intended for use by the stroke team to improve identification of visual impairment in stroke survivors. Prospective case cohort comparative study. Stroke units at two secondary care hospitals and one tertiary centre. 116 stroke survivors were screened, 62 by naïve and 54 by non-naïve screeners. Both the VISA screening tool and the comprehensive specialist vision assessment measured case history, visual acuity, eye alignment, eye movements, visual field and visual inattention. Full completion of VISA tool and specialist vision assessment was achieved for 89 stroke survivors. Missing data for one or more sections typically related to patient's inability to complete the assessment. Sensitivity and specificity of the VISA screening tool were 90.24% and 85.29%, respectively; the positive and negative predictive values were 93.67% and 78.36%, respectively. Overall agreement was significant; k=0.736. Lowest agreement was found for screening of eye movement and visual inattention deficits. This early validation of the VISA screening tool shows promise in improving detection accuracy for clinicians involved in stroke care who are not specialists in vision problems and lack formal eye training, with potential to lead to more prompt referral with fewer false positives and negatives. Pilot validation indicates acceptability of the VISA tool for screening of visual impairment in stroke survivors. Sensitivity and specificity were high indicating the potential accuracy of the VISA tool for screening purposes. Results of this study have guided the revision of the VISA screening tool ahead of full clinical validation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    PubMed

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  13. Learn to Teach Chemistry Using Visual Media Tools

    ERIC Educational Resources Information Center

    Turkoguz, Suat

    2012-01-01

    The aim of this study was to investigate undergraduate students' attitudes to using visual media tools in the chemistry laboratory. One hundred and fifteen undergraduates studying science education at Dokuz Eylul University, Turkey participated in the study. They video-recorded chemistry experiments with visual media tools and assessed them on a…

  14. Got Graphs? An Assessment of Data Visualization Tools

    NASA Technical Reports Server (NTRS)

    Schaefer, C. M.; Foy, M.

    2015-01-01

    Graphs are powerful tools for simplifying complex data. They are useful for quickly assessing patterns and relationships among one or more variables from a dataset. As the amount of data increases, it becomes more difficult to visualize potential associations. Lifetime Surveillance of Astronaut Health (LSAH) was charged with assessing its current visualization tools along with others on the market to determine whether new tools would be useful for supporting NASA's occupational surveillance effort. It was concluded by members of LSAH that the current tools hindered their ability to provide quick results to researchers working with the department. Due to the high volume of data requests and the many iterations of visualizations requested by researchers, software with a better ability to replicate graphs and edit quickly could improve LSAH's efficiency and lead to faster research results.

  15. Advancing Water Science through Data Visualization

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As water scientists, we are increasingly handling larger and larger datasets with many variables, making it easy to lose ourselves in the details. Advanced data visualization will play an increasingly significant role in propelling the development of water science in research, economy, policy and education. It can enable analysis within research and further data scientists' understanding of behavior and processes and can potentially affect how the public, whom we often want to inform, understands our work. Unfortunately for water scientists, data visualization is approached in an ad hoc manner when a more formal methodology or understanding could potentially significantly improve both research within the academy and outreach to the public. Firstly to broaden and deepen scientific understanding, data visualization can allow for more analyzed targets to be processed simultaneously and can represent the variables effectively, finding patterns, trends and relationships; thus it can even explores the new research direction or branch of water science. Depending on visualization, we can detect and separate the pivotal and trivial influential factors more clearly to assume and abstract the original complex target system. Providing direct visual perception of the differences between observation data and prediction results of models, data visualization allows researchers to quickly examine the quality of models in water science. Secondly data visualization can also improve public awareness and perhaps influence behavior. Offering decision makers clearer perspectives of potential profits of water, data visualization can amplify the economic value of water science and also increase relevant employment rates. Providing policymakers compelling visuals of the role of water for social and natural systems, data visualization can advance the water management and legislation of water conservation. By building the publics' own data visualization through apps and games about water

  16. A Visual Basic simulation software tool for performance analysis of a membrane-based advanced water treatment plant.

    PubMed

    Pal, P; Kumar, R; Srivastava, N; Chaudhuri, J

    2014-02-01

    A Visual Basic simulation software (WATTPPA) has been developed to analyse the performance of an advanced wastewater treatment plant. This user-friendly and menu-driven software is based on the dynamic mathematical model for an industrial wastewater treatment scheme that integrates chemical, biological and membrane-based unit operations. The software-predicted results corroborate very well with the experimental findings as indicated in the overall correlation coefficient of the order of 0.99. The software permits pre-analysis and manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. It allows quick performance analysis of the whole system as well as the individual units. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for hazardous wastewater.

  17. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  18. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    PubMed

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges

  19. Spacecraft Guidance, Navigation, and Control Visualization Tool

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.

  20. Multi-Spacecraft Analysis with Generic Visualization Tools

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Vela, L.; Gonzalez, C.; Jeffers, S.

    2010-12-01

    To handle the needs of scientists today and in the future, software tools are going to have to take better advantage of the currently available hardware. Specifically, computing power, memory, and disk space have become cheaper, while bandwidth has become more expensive due to the explosion of online applications. To overcome these limitations, we have enhanced our Southwest Data Display and Analysis System (SDDAS) to take better advantage of the hardware by utilizing threads and data caching. Furthermore, the system was enhanced to support a framework for adding data formats and data visualization methods without costly rewrites. Visualization tools can speed analysis of many common scientific tasks and we will present a suite of tools that encompass the entire process of retrieving data from multiple data stores to common visualizations of the data. The goals for the end user are ease of use and interactivity with the data and the resulting plots. The data can be simultaneously plotted in a variety of formats and/or time and spatial resolutions. The software will allow one to slice and separate data to achieve other visualizations. Furthermore, one can interact with the data using the GUI or through an embedded language based on the Lua scripting language. The data presented will be primarily from the Cluster and Mars Express missions; however, the tools are data type agnostic and can be used for virtually any type of data.

  1. Visualization and interaction tools for aerial photograph mosaics

    NASA Astrophysics Data System (ADS)

    Fernandes, João Pedro; Fonseca, Alexandra; Pereira, Luís; Faria, Adriano; Figueira, Helder; Henriques, Inês; Garção, Rita; Câmara, António

    1997-05-01

    This paper describes the development of a digital spatial library based on mosaics of digital orthophotos, called Interactive Portugal, that will enable users both to retrieve geospatial information existing in the Portuguese National System for Geographic Information World Wide Web server, and to develop local databases connected to the main system. A set of navigation, interaction, and visualization tools are proposed and discussed. They include sketching, dynamic sketching, and navigation capabilities over the digital orthophotos mosaics. Main applications of this digital spatial library are pointed out and discussed, namely for education, professional, and tourism markets. Future developments are considered. These developments are related to user reactions, technological advancements, and projects that also aim at delivering and exploring digital imagery on the World Wide Web. Future capabilities for site selection and change detection are also considered.

  2. Visual disturbances in advanced cancer patients: clinical observations.

    PubMed

    Saita, L; Polastri, D; De Conno, F

    1999-03-01

    Visual disturbances in advanced cancer patients are very rarely signaled, evaluated, or adequately treated. The main causes of sight disturbances are primary eye tumors, ocular metastases, and some paraneoplastic syndromes. Sight alteration can also be associated with asthenia, fatigue, anemia, and hypovitaminosis. These symptoms can be monocular or binocular, and their gravity and evolution can vary. Based on a survey of 156 patients, we estimate the prevalence of visual disturbances to be 12% in advanced cancer patients.

  3. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  4. Visualization and Analytics Tools for Infectious Disease Epidemiology: A Systematic Review

    PubMed Central

    Carroll, Lauren N.; Au, Alan P.; Detwiler, Landon Todd; Fu, Tsung-chieh; Painter, Ian S.; Abernethy, Neil F.

    2014-01-01

    Background A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) Identify public health user needs and preferences for infectious disease information visualization tools; (2) Identify existing infectious disease information visualization tools and characterize their architecture and features; (3) Identify commonalities among approaches applied to different data types; and (4) Describe tool usability evaluation efforts and barriers to the adoption of such tools. Methods We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. Results A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and

  5. Visualization and analytics tools for infectious disease epidemiology: a systematic review.

    PubMed

    Carroll, Lauren N; Au, Alan P; Detwiler, Landon Todd; Fu, Tsung-Chieh; Painter, Ian S; Abernethy, Neil F

    2014-10-01

    A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) identify public health user needs and preferences for infectious disease information visualization tools; (2) identify existing infectious disease information visualization tools and characterize their architecture and features; (3) identify commonalities among approaches applied to different data types; and (4) describe tool usability evaluation efforts and barriers to the adoption of such tools. We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and misconceptions about tool

  6. McIDAS-V: A Data Analysis and Visualization Tool for Global Satellite Data

    NASA Astrophysics Data System (ADS)

    Achtor, T. H.; Rink, T. D.

    2011-12-01

    The Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for scientists, researchers and algorithm developers working with atmospheric data. The McIDAS-V software tools provide powerful new data manipulation and visualization capabilities, including 4-dimensional displays, an abstract data model with integrated metadata, user defined computation, and a powerful scripting capability. As such, McIDAS-V is a valuable tool for scientists and researchers within the GEO and GOESS domains. The advancing polar and geostationary orbit environmental satellite missions conducted by several countries will carry advanced instrumentation and systems that will collect and distribute land, ocean, and atmosphere data. These systems provide atmospheric and sea surface temperatures, humidity sounding, cloud and aerosol properties, and numerous other environmental products. This presentation will display and demonstrate some of the capabilities of McIDAS-V to analyze and display high temporal and spectral resolution data using examples from international environmental satellites.

  7. Tools for Visualizing HIV in Cure Research.

    PubMed

    Niessl, Julia; Baxter, Amy E; Kaufmann, Daniel E

    2018-02-01

    The long-lived HIV reservoir remains a major obstacle for an HIV cure. Current techniques to analyze this reservoir are generally population-based. We highlight recent developments in methods visualizing HIV, which offer a different, complementary view, and provide indispensable information for cure strategy development. Recent advances in fluorescence in situ hybridization techniques enabled key developments in reservoir visualization. Flow cytometric detection of HIV mRNAs, concurrently with proteins, provides a high-throughput approach to study the reservoir on a single-cell level. On a tissue level, key spatial information can be obtained detecting viral RNA and DNA in situ by fluorescence microscopy. At total-body level, advancements in non-invasive immuno-positron emission tomography (PET) detection of HIV proteins may allow an encompassing view of HIV reservoir sites. HIV imaging approaches provide important, complementary information regarding the size, phenotype, and localization of the HIV reservoir. Visualizing the reservoir may contribute to the design, assessment, and monitoring of HIV cure strategies in vitro and in vivo.

  8. MATISSE a web-based tool to access, visualize and analyze high resolution minor bodies observation

    NASA Astrophysics Data System (ADS)

    Zinzi, Angelo; Capria, Maria Teresa; Palomba, Ernesto; Antonelli, Lucio Angelo; Giommi, Paolo

    2016-07-01

    In the recent years planetary exploration missions acquired data from minor bodies (i.e., dwarf planets, asteroid and comets) at a detail level never reached before. Since these objects often present very irregular shapes (as in the case of the comet 67P Churyumov-Gerasimenko target of the ESA Rosetta mission) "classical" bidimensional projections of observations are difficult to understand. With the aim of providing the scientific community a tool to access, visualize and analyze data in a new way, ASI Science Data Center started to develop MATISSE (Multi-purposed Advanced Tool for the Instruments for the Solar System Exploration - http://tools.asdc.asi.it/matisse.jsp) in late 2012. This tool allows 3D web-based visualization of data acquired by planetary exploration missions: the output could either be the straightforward projection of the selected observation over the shape model of the target body or the visualization of a high-order product (average/mosaic, difference, ratio, RGB) computed directly online with MATISSE. Standard outputs of the tool also comprise downloadable files to be used with GIS software (GeoTIFF and ENVI format) and 3D very high-resolution files to be viewed by means of the free software Paraview. During this period the first and most frequent exploitation of the tool has been related to visualization of data acquired by VIRTIS-M instruments onboard Rosetta observing the comet 67P. The success of this task, well represented by the good number of published works that used images made with MATISSE confirmed the need of a different approach to correctly visualize data coming from irregular shaped bodies. In the next future the datasets available to MATISSE are planned to be extended, starting from the addition of VIR-Dawn observations of both Vesta and Ceres and also using standard protocols to access data stored in external repositories, such as NASA ODE and Planetary VO.

  9. Visualization Skills: A Prerequisite to Advanced Solid Modeling

    ERIC Educational Resources Information Center

    Gow, George

    2007-01-01

    Many educators believe that solid modeling software has made teaching two- and three-dimensional visualization skills obsolete. They claim that the visual tools built into the solid modeling software serve as a replacement for the CAD operator's personal visualization skills. They also claim that because solid modeling software can produce…

  10. The Development of a Visual-Perceptual Chemistry Specific (VPCS) Assessment Tool

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Sloan, Caroline

    2014-01-01

    The development of the Visual-Perceptual Chemistry Specific (VPCS) assessment tool is based on items that align to eight visual-perceptual skills considered as needed by chemistry students. This tool includes a comprehensive range of visual operations and presents items within a chemistry context without requiring content knowledge to solve…

  11. MATISSE: A novel tool to access, visualize and analyse data from planetary exploration missions

    NASA Astrophysics Data System (ADS)

    Zinzi, A.; Capria, M. T.; Palomba, E.; Giommi, P.; Antonelli, L. A.

    2016-04-01

    The increasing number and complexity of planetary exploration space missions require new tools to access, visualize and analyse data to improve their scientific return. ASI Science Data Center (ASDC) addresses this request with the web-tool MATISSE (Multi-purpose Advanced Tool for the Instruments of the Solar System Exploration), allowing the visualization of single observation or real-time computed high-order products, directly projected on the three-dimensional model of the selected target body. Using MATISSE it will be no longer needed to download huge quantity of data or to write down a specific code for every instrument analysed, greatly encouraging studies based on joint analysis of different datasets. In addition the extremely high-resolution output, to be used offline with a Python-based free software, together with the files to be read with specific GIS software, makes it a valuable tool to further process the data at the best spatial accuracy available. MATISSE modular structure permits addition of new missions or tasks and, thanks to dedicated future developments, it would be possible to make it compliant to the Planetary Virtual Observatory standards currently under definition. In this context the recent development of an interface to the NASA ODE REST API by which it is possible to access to public repositories is set.

  12. Cytoscape: the network visualization tool for GenomeSpace workflows.

    PubMed

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

  13. Cytoscape: the network visualization tool for GenomeSpace workflows

    PubMed Central

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537

  14. DspaceOgre 3D Graphics Visualization Tool

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  15. Recent Advances in Algal Genetic Tool Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Dahlin, Lukas; T. Guarnieri, Michael

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  16. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  17. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  18. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool

  19. Sinking Maps: A Conceptual Tool for Visual Metaphor

    ERIC Educational Resources Information Center

    Giampa, Joan Marie

    2012-01-01

    Sinking maps, created by Northern Virginia Community College professor Joan Marie Giampa, are tools that teach fine art students how to construct visual metaphor by conceptually mapping sensory perceptions. Her dissertation answers the question, "Can visual metaphor be conceptually mapped in the art classroom?" In the Prologue, Giampa…

  20. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE PAGES

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.; ...

    2017-07-18

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  1. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  2. SNP-VISTA: An interactive SNP visualization tool

    PubMed Central

    Shah, Nameeta; Teplitsky, Michael V; Minovitsky, Simon; Pennacchio, Len A; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L

    2005-01-01

    Background Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at [1]. Results We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. Conclusion The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user. PMID

  3. Web-Based Tools for Data Visualization and Decision Support for South Asia

    NASA Astrophysics Data System (ADS)

    Jones, N.; Nelson, J.; Pulla, S. T.; Ames, D. P.; Souffront, M.; David, C. H.; Zaitchik, B. F.; Gatlin, P. N.; Matin, M. A.

    2017-12-01

    The objective of the NASA SERVIR project is to assist developing countries in using information provided by Earth observing satellites to assess and manage climate risks, land use, and water resources. We present a collection of web apps that integrate earth observations and in situ data to facilitate deployment of data and water resources models as decision-making tools in support of this effort. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated for many of the regional SERVIR hubs where both financial and technical capacity may be limited. All that is needed to use the system is an Internet connection and a web browser. We take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization make results intuitive and information derived actionable. We also take advantage of the emerging standards for sharing water information across the web using the OGC and WMO approved WaterML standards. This makes our tools interoperable and extensible via application programming interfaces (APIs) so that tools and data from other projects can both consume and share the tools developed in our project. Our approach enables the integration of multiple types of data and models, thus facilitating collaboration between science teams in SERVIR. The apps developed thus far by our team process time-varying netCDF files from Earth observations and large-scale computer simulations and allow visualization and exploration via raster animation and extraction of time series at selected points and/or regions.

  4. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  5. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  6. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  7. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    NASA Astrophysics Data System (ADS)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  8. Recent Advancements in the Infrared Flow Visualization System for the NASA Ames Unitary Plan Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Baerny, Jennifer K.

    2017-01-01

    The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.

  9. High-resolution Self-Organizing Maps for advanced visualization and dimension reduction.

    PubMed

    Saraswati, Ayu; Nguyen, Van Tuc; Hagenbuchner, Markus; Tsoi, Ah Chung

    2018-05-04

    Kohonen's Self Organizing feature Map (SOM) provides an effective way to project high dimensional input features onto a low dimensional display space while preserving the topological relationships among the input features. Recent advances in algorithms that take advantages of modern computing hardware introduced the concept of high resolution SOMs (HRSOMs). This paper investigates the capabilities and applicability of the HRSOM as a visualization tool for cluster analysis and its suitabilities to serve as a pre-processor in ensemble learning models. The evaluation is conducted on a number of established benchmarks and real-world learning problems, namely, the policeman benchmark, two web spam detection problems, a network intrusion detection problem, and a malware detection problem. It is found that the visualization resulted from an HRSOM provides new insights concerning these learning problems. It is furthermore shown empirically that broad benefits from the use of HRSOMs in both clustering and classification problems can be expected. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Data Visualization Using Immersive Virtual Reality Tools

    NASA Astrophysics Data System (ADS)

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this

  11. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.

    PubMed

    Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal

    2014-12-01

    Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.

  12. Defibulation: A Visual Reference and Learning Tool.

    PubMed

    Abdulcadir, Jasmine; Marras, Sandra; Catania, Lucrezia; Abdulcadir, Omar; Petignat, Patrick

    2018-04-01

    Female genital mutilation type III (infibulation) is achieved by narrowing the vaginal orifice by creating a covering seal, accomplished by cutting and appositioning the labia minora and/or labia majora, with or without clitoral excision. Infibulation is responsible for significant urogynecological, obstetrical, and psychosexual consequences that can be treated with defibulation (or de-infibulation), an operation that opens the infibulation scar, exposing the vulvar vestibule, vaginal orifice, external urethral meatus, and eventually the clitoris. This article provides a practical comprehensive, up-to-date visual learning tool on defibulation, with information on pre-operative, post-operative, and follow-up information. Abdulcadir J, Marras S, Catania L, et al. Defibulation: a visual reference and learning tool. J Sex Med 2018;15:601-611. Copyright © 2018 International Society for Sexual Medicine. All rights reserved.

  13. A web-based data visualization tool for the MIMIC-II database.

    PubMed

    Lee, Joon; Ribey, Evan; Wallace, James R

    2016-02-04

    Although MIMIC-II, a public intensive care database, has been recognized as an invaluable resource for many medical researchers worldwide, becoming a proficient MIMIC-II researcher requires knowledge of SQL programming and an understanding of the MIMIC-II database schema. These are challenging requirements especially for health researchers and clinicians who may have limited computer proficiency. In order to overcome this challenge, our objective was to create an interactive, web-based MIMIC-II data visualization tool that first-time MIMIC-II users can easily use to explore the database. The tool offers two main features: Explore and Compare. The Explore feature enables the user to select a patient cohort within MIMIC-II and visualize the distributions of various administrative, demographic, and clinical variables within the selected cohort. The Compare feature enables the user to select two patient cohorts and visually compare them with respect to a variety of variables. The tool is also helpful to experienced MIMIC-II researchers who can use it to substantially accelerate the cumbersome and time-consuming steps of writing SQL queries and manually visualizing extracted data. Any interested researcher can use the MIMIC-II data visualization tool for free to quickly and conveniently conduct a preliminary investigation on MIMIC-II with a few mouse clicks. Researchers can also use the tool to learn the characteristics of the MIMIC-II patients. Since it is still impossible to conduct multivariable regression inside the tool, future work includes adding analytics capabilities. Also, the next version of the tool will aim to utilize MIMIC-III which contains more data.

  14. VisAdapt: A Visualization Tool to Support Climate Change Adaptation.

    PubMed

    Johansson, Jimmy; Opach, Tomasz; Glaas, Erik; Neset, Tina-Simone; Navarra, Carlo; Linner, Bjorn-Ola; Rod, Jan Ketil

    2017-01-01

    The web-based visualization VisAdapt tool was developed to help laypeople in the Nordic countries assess how anticipated climate change will impact their homes. The tool guides users through a three-step visual process that helps them explore risks and identify adaptive actions specifically modified to their location and house type. This article walks through the tool's multistep, user-centered design process. Although VisAdapt's target end users are Nordic homeowners, the insights gained from the development process and the lessons learned from the project are applicable to a wide range of domains.

  15. ATS displays: A reasoning visualization tool for expert systems

    NASA Technical Reports Server (NTRS)

    Selig, William John; Johannes, James D.

    1990-01-01

    Reasoning visualization is a useful tool that can help users better understand the inherently non-sequential logic of an expert system. While this is desirable in most all expert system applications, it is especially so for such critical systems as those destined for space-based operations. A hierarchical view of the expert system reasoning process and some characteristics of these various levels is presented. Also presented are Abstract Time Slice (ATS) displays, a tool to visualize the plethora of interrelated information available at the host inferencing language level of reasoning. The usefulness of this tool is illustrated with some examples from a prototype potable water expert system for possible use aboard Space Station Freedom.

  16. Visualization tool for human-machine interface designers

    NASA Astrophysics Data System (ADS)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  17. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  18. Development of a Geometric Spatial Visualization Tool

    ERIC Educational Resources Information Center

    Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya

    2009-01-01

    This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…

  19. An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran

    2010-01-01

    This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…

  20. The Mission Planning Lab: A Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.; Cervantes, Benjamin W.

    2009-01-01

    Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).

  1. OpenGl Visualization Tool and Library Version: 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-06-22

    GLVis is an OpenGL tool for visualization of finite element meshes and functions. When started without any options, GLVis starts a server, which waits for a socket connections and visualizes any recieved data. This way the results of simulations on a remote (parallel) machine can be visualized on the lical user desktop. GLVis can also be used to visualize a mesh with or without a finite element function (solution). It can run a batch sequence of commands (GLVis scripts), or display previously saved socket streams.

  2. BMDExpress Data Viewer: A Visualization Tool to Analyze ...

    EPA Pesticide Factsheets

    Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure in human risk assessments. BMDExpress applies BMD modeling to transcriptomics datasets and groups genes to biological processes and pathways for rapid assessment of doses at which biological perturbations occur. However, graphing and analytical capabilities within BMDExpress are limited, and the analysis of output files is challenging. We developed a web-based application, BMDExpress Data Viewer, for visualization and graphical analyses of BMDExpress output files. The software application consists of two main components: ‘Summary Visualization Tools’ and ‘Dataset Exploratory Tools’. We demonstrate through two case studies that the ‘Summary Visualization Tools’ can be used to examine and assess the distributions of probe and pathway BMD outputs, as well as derive a potential regulatory BMD through the modes or means of the distributions. The ‘Functional Enrichment Analysis’ tool presents biological processes in a two-dimensional bubble chart view. By applying filters of pathway enrichment p-value and minimum number of significant genes, we showed that the Functional Enrichment Analysis tool can be applied to select pathways that are potentially sensitive to chemical perturbations. The ‘Multiple Dataset Comparison’ tool enables comparison of BMDs across multiple experiments (e.g., across time points, tissues, or organisms, etc.). The ‘BMDL-BM

  3. Visualization Tools for Lattice QCD - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge,more » our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.« less

  4. A Visualization-Based Tutoring Tool for Engineering Education

    NASA Astrophysics Data System (ADS)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  5. Visualization and Analytics Software Tools for Peregrine System |

    Science.gov Websites

    R is a language and environment for statistical computing and graphics. Go to the R web site for System Visualization and Analytics Software Tools for Peregrine System Learn about the available visualization for OpenGL-based applications. For more information, please go to the FastX page. ParaView An open

  6. Tool for Sizing Analysis of the Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  7. Genovar: a detection and visualization tool for genomic variants.

    PubMed

    Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung

    2012-05-08

    Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.

  8. A training tool for visual aids. Using tracing techniques to create visual aids.

    PubMed

    Clark, M; Walters, J E; Wileman, R

    1982-01-01

    This training tool explains the use of tracing techniques to create visuals requiring few materials and no training of special skills in drawing. Magazines, books, posters, and many other materials contain photographs and drawings which can be used to create visual aids for health training and public health education. The materials required are pencils, an eraser, crayons or colored marking pens, paper clips, tracing and drawing paper, carbon paper, and sources of visual images. The procedure is described. The material was prepared by INTRAH staff members. Other materials include how to evaluate teaching, how to create a family health case study and training in group dynamics.

  9. CTViz: A tool for the visualization of transport in nanocomposites.

    PubMed

    Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A

    2016-05-01

    A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    PubMed

    Zaldivar, Andrew; Krichmar, Jeffrey L

    2014-01-01

    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  11. A Visual Training Tool for Teaching Kanji to Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Ikeshita-Yamazoe, Hanae; Miyao, Masutomo

    2016-01-01

    We developed a visual training tool to assist children with developmental dyslexia in learning to recognize and understand Chinese characters (kanji). The visual training tool presents the strokes of a kanji character as separate shapes and requires students to use these fragments to construct the character. Two types of experiments were conducted…

  12. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder

    PubMed Central

    Gori, Simone; Molteni, Massimo; Facoetti, Andrea

    2016-01-01

    A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools – based on visual illusions – to identify an early risk for neurodevelopmental disorders. PMID:27199702

  13. AR4VI: AR as an Accessibility Tool for People with Visual Impairments.

    PubMed

    Coughlan, James M; Miele, Joshua

    2017-10-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness - an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well.

  14. A Visualization Tool for Integrating Research Results at an Underground Mine

    NASA Astrophysics Data System (ADS)

    Boltz, S.; Macdonald, B. D.; Orr, T.; Johnson, W.; Benton, D. J.

    2016-12-01

    Researchers with the National Institute for Occupational Safety and Health are conducting research at a deep, underground metal mine in Idaho to develop improvements in ground control technologies that reduce the effects of dynamic loading on mine workings, thereby decreasing the risk to miners. This research is multifaceted and includes: photogrammetry, microseismic monitoring, geotechnical instrumentation, and numerical modeling. When managing research involving such a wide range of data, understanding how the data relate to each other and to the mining activity quickly becomes a daunting task. In an effort to combine this diverse research data into a single, easy-to-use system, a three-dimensional visualization tool was developed. The tool was created using the Unity3d video gaming engine and includes the mine development entries, production stopes, important geologic structures, and user-input research data. The tool provides the user with a first-person, interactive experience where they are able to walk through the mine as well as navigate the rock mass surrounding the mine to view and interpret the imported data in the context of the mine and as a function of time. The tool was developed using data from a single mine; however, it is intended to be a generic tool that can be easily extended to other mines. For example, a similar visualization tool is being developed for an underground coal mine in Colorado. The ultimate goal is for NIOSH researchers and mine personnel to be able to use the visualization tool to identify trends that may not otherwise be apparent when viewing the data separately. This presentation highlights the features and capabilities of the mine visualization tool and explains how it may be used to more effectively interpret data and reduce the risk of ground fall hazards to underground miners.

  15. Scientific Visualization Tools for Enhancement of Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Rodriguez, W. J.; Chaudhury, S. R.

    2001-05-01

    Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable

  16. VStar: Variable star data visualization and analysis tool

    NASA Astrophysics Data System (ADS)

    VStar Team

    2014-07-01

    VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.

  17. Conceptual design study for an advanced cab and visual system, volume 2

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.

  18. Advanced Technology for Portable Personal Visualization.

    DTIC Science & Technology

    1992-06-01

    interactive radiosity . 6 Advanced Technology for Portable Personal Visualization Progress Report January-June 1992 9 2.5 Virtual-Environment Ultrasound...the system, with support for textures, model partitioning, more complex radiosity emitters, and the replacement of model parts with objects from our...model libraries. "* Add real-time, interactive radiosity to the display program on Pixel-Planes 5. "* Move the real-time model mesh-generation to the

  19. Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities.

    PubMed

    Ramanujan, Devarajan; Bernstein, William Z; Chandrasegaran, Senthil K; Ramani, Karthik

    2017-01-01

    The rapid rise in technologies for data collection has created an unmatched opportunity to advance the use of data-rich tools for lifecycle decision-making. However, the usefulness of these technologies is limited by the ability to translate lifecycle data into actionable insights for human decision-makers. This is especially true in the case of sustainable lifecycle design (SLD), as the assessment of environmental impacts, and the feasibility of making corresponding design changes, often relies on human expertise and intuition. Supporting human sense-making in SLD requires the use of both data-driven and user-driven methods while exploring lifecycle data. A promising approach for combining the two is through the use of visual analytics (VA) tools. Such tools can leverage the ability of computer-based tools to gather, process, and summarize data along with the ability of human-experts to guide analyses through domain knowledge or data-driven insight. In this paper, we review previous research that has created VA tools in SLD. We also highlight existing challenges and future opportunities for such tools in different lifecycle stages-design, manufacturing, distribution & supply chain, use-phase, end-of-life, as well as life cycle assessment. Our review shows that while the number of VA tools in SLD is relatively small, researchers are increasingly focusing on the subject matter. Our review also suggests that VA tools can address existing challenges in SLD and that significant future opportunities exist.

  20. Cumulative latency advance underlies fast visual processing in desynchronized brain state

    PubMed Central

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-01

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals. PMID:24347634

  1. Cumulative latency advance underlies fast visual processing in desynchronized brain state.

    PubMed

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-07

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.

  2. AR4VI: AR as an Accessibility Tool for People with Visual Impairments

    PubMed Central

    Coughlan, James M.; Miele, Joshua

    2017-01-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness – an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well. PMID:29303163

  3. Tools and procedures for visualization of proteins and other biomolecules.

    PubMed

    Pan, Lurong; Aller, Stephen G

    2015-04-01

    Protein, peptides, and nucleic acids are biomolecules that drive biological processes in living organisms. An enormous amount of structural data for a large number of these biomolecules has been described with atomic precision in the form of structural "snapshots" that are freely available in public repositories. These snapshots can help explain how the biomolecules function, the nature of interactions between multi-molecular complexes, and even how small-molecule drugs can modulate the biomolecules for clinical benefits. Furthermore, these structural snapshots serve as inputs for sophisticated computer simulations to turn the biomolecules into moving, "breathing" molecular machines for understanding their dynamic properties in real-time computer simulations. In order for the researcher to take advantage of such a wealth of structural data, it is necessary to gain competency in the use of computer molecular visualization tools for exploring the structures and visualizing three-dimensional spatial representations. Here, we present protocols for using two common visualization tools--the Web-based Jmol and the stand-alone PyMOL package--as well as a few examples of other popular tools. Copyright © 2015 John Wiley & Sons, Inc.

  4. Web tools for effective retrieval, visualization, and evaluation of cardiology medical images and records

    NASA Astrophysics Data System (ADS)

    Masseroli, Marco; Pinciroli, Francesco

    2000-12-01

    To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.

  5. A Comparison of Satellite Conjunction Analysis Screening Tools

    DTIC Science & Technology

    2011-09-01

    visualization tool. Version 13.1.4 for Linux was tested. The SOAP conjunction analysis function does not have the capacity to perform the large...was examined by SOAP to confirm the conjunction. STK Advanced CAT STK Advanced CAT (Conjunction Analysis Tools) is an add-on module for the STK ...run with each tool. When attempting to perform the seven day all vs all analysis with STK Advanced CAT, the program consistently crashed during report

  6. Unit Planning Grids for Visual Arts--Grade 9-12 Advanced.

    ERIC Educational Resources Information Center

    Delaware State Dept. of Education, Dover.

    This planning grid for teaching visual arts (advanced) in grades 9-12 in Delaware outlines the following six standards for students to complete: (1) students will select and use form, media, techniques, and processes to create works of art and communicate meaning; (2) students will create ways to use visual, spatial, and temporal concepts in…

  7. Self-advancing step-tap tool

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R. (Inventor); Penner, Ronald K. (Inventor); Franklin, Larry D. (Inventor); Camarda, Charles J. (Inventor)

    2008-01-01

    Methods and tool for simultaneously forming a bore in a work piece and forming a series of threads in said bore. In an embodiment, the tool has a predetermined axial length, a proximal end, and a distal end, said tool comprising: a shank located at said proximal end; a pilot drill portion located at said distal end; and a mill portion intermediately disposed between said shank and said pilot drill portion. The mill portion is comprised of at least two drill-tap sections of predetermined axial lengths and at least one transition section of predetermined axial length, wherein each of said at least one transition section is sandwiched between a distinct set of two of said at least two drill-tap sections. The at least two drill-tap sections are formed of one or more drill-tap cutting teeth spirally increasing along said at least two drill-tap sections, wherein said tool is self-advanced in said work piece along said formed threads, and wherein said tool simultaneously forms said bore and said series of threads along a substantially similar longitudinal axis.

  8. Advanced Technology for Portable Personal Visualization

    DTIC Science & Technology

    1991-12-01

    sites. VPL Research began in 1989 selling0IDapitP incodaesyemW commemcillys a KD system that used a glove to control the actions of flying and grabbing...problem of beacon switching error or its equivalent . Steps we took to control these errors would apply to other (3) Ascension Technology Corporation. The...AD-A245 905 / /7 Advanced Technology for Portable Personal Visualization I) ICReport of Research Progress JAN 3.ELEC April - December 1991I ELECTE I

  9. Visualization tool for the world ocean surface currents

    NASA Astrophysics Data System (ADS)

    Kasyanov, S.; Nikitin, O.

    2003-04-01

    Fortran-based software for the world ocean surface currents visualization functioning on the Windows platform (95 and higher) has been developed. The software works with the global interpolated drifting buoys data set (1979-2002) from the WOCE Surface Velocity Program and the global bottom relief five-minute resolution data set (ETOPO5). These data sets loaded in binary form into operative memory of a PC (256 Mb or better more), together with the software compose the world ocean surface currents visualization tool. The tool allows researches to process data on-line in any region of the world ocean, display data in different visualization forms, calculate currents velocity statistics and save chosen images as graphic files. It provides displays of buoy movement (animation), maps of buoy trajectories, averaged (by prescribed time and space grid intervals) current vector and modulus fields, fields of current mean and eddy kinetic energies and their ratio, current steadiness coefficient and sea surface temperature. Any trajectory may be selected simply by clicking it on any summary map of trajectories (or by given buoy number). It may then be viewed and analyzed in detail, while graphs of velocity (components, module and vector) and water temperature variations along this trajectory may be displayed. The description of the previous version of the tool and some screen shots are available at http://zhurnal.ape.relarn.ru/articles/2001/154.pdf(in Russian) and will be available (in English) at http://csit.ugatu.ac.ru (CSIT '2001, Proceedings, v.2, p. 32-41, Nikitin O.P. et al).

  10. GES DAAC HDF Data Processing and Visualization Tools

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Cho, S.; Johnson, J.; Li, J.; Liu, Z.; Lu, L.; Pollack, N.; Qin, J.; Savtchenko, A.; Teng, B.

    2002-12-01

    The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) plays a major role in enabling basic scientific research and providing access to scientific data to the general user community. Several GES DAAC Data Support Teams provide expert assistance to users in accessing data, including information on visualization tools and documentation for data products. To provide easy access to the science data, the data support teams have additionally developed many online and desktop tools for data processing and visualization. This presentation is an overview of major HDF tools implemented at the GES DAAC and aimed at optimizing access to EOS data for the Earth Sciences community. GES DAAC ONLINE TOOLS: MODIS and AIRS on-demand Channel/Variable Subsetter are web-based, on-the-fly/on-demand subsetters that perform channel/variable subsetting and restructuring for Level1B and Level 2 data products. Users can specify criteria to subset data files with desired channels and variables and then download the subsetted file. AIRS QuickLook is a CGI/IDL combo package that allows users to view AIRS/HSB/AMSU Level-1B data online by specifying a channel prior to obtaining data. A global map is also provided along with the image to show geographic coverage of the granule and flight direction of the spacecraft. OASIS (Online data AnalySIS) is an IDL-based HTML/CGI interface for search, selection, and simple analysis of earth science data. It supports binary and GRIB formatted data, such as TOVS, Data Assimilation products, and some NCEP operational products. TRMM Online Analysis System is designed for quick exploration, analyses, and visualization of TRMM Level-3 and other precipitation products. The products consist of the daily (3B42), monthly(3B43), near-real-time (3B42RT), and Willmott's climate data. The system is also designed to be simple and easy to use - users can plot the average or accumulated rainfall over their region of interest for a given time period, or plot

  11. Mesoscale brain explorer, a flexible python-based image analysis and visualization tool.

    PubMed

    Haupt, Dirk; Vanni, Matthieu P; Bolanos, Federico; Mitelut, Catalin; LeDue, Jeffrey M; Murphy, Tim H

    2017-07-01

    Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.

  12. VRML and Collaborative Environments: New Tools for Networked Visualization

    NASA Astrophysics Data System (ADS)

    Crutcher, R. M.; Plante, R. L.; Rajlich, P.

    We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.

  13. SNPversity: a web-based tool for visualizing diversity

    PubMed Central

    Schott, David A; Vinnakota, Abhinav G; Portwood, John L; Andorf, Carson M

    2018-01-01

    Abstract Many stand-alone desktop software suites exist to visualize single nucleotide polymorphism (SNP) diversity, but web-based software that can be easily implemented and used for biological databases is absent. SNPversity was created to answer this need by building an open-source visualization tool that can be implemented on a Unix-like machine and served through a web browser that can be accessible worldwide. SNPversity consists of a HDF5 database back-end for SNPs, a data exchange layer powered by TASSEL libraries that represent data in JSON format, and an interface layer using PHP to visualize SNP information. SNPversity displays data in real-time through a web browser in grids that are color-coded according to a given SNP’s allelic status and mutational state. SNPversity is currently available at MaizeGDB, the maize community’s database, and will be soon available at GrainGenes, the clade-oriented database for Triticeae and Avena species, including wheat, barley, rye, and oat. The code and documentation are uploaded onto github, and they are freely available to the public. We expect that the tool will be highly useful for other biological databases with a similar need to display SNP diversity through their web interfaces. Database URL: https://www.maizegdb.org/snpversity PMID:29688387

  14. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  15. A Multidimensional Analysis Tool for Visualizing Online Interactions

    ERIC Educational Resources Information Center

    Kim, Minjeong; Lee, Eunchul

    2012-01-01

    This study proposes and verifies the performance of an analysis tool for visualizing online interactions. A review of the most widely used methods for analyzing online interactions, including quantitative analysis, content analysis, and social network analysis methods, indicates these analysis methods have some limitations resulting from their…

  16. Sandia MEMS Visualization Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor; Jorgensen, Craig R.; Young, Andrew I.

    This is a revision to the Sandia MEMS Visualization Tools. It replaces all previous versions. New features in this version: Support for AutoCAD 2014 and 2015 . This CD contains an integrated set of electronic files that: a) Provides a 2D Process Visualizer that generates cross-section images of devices constructed using the SUMMiT V fabrication process. b) Provides a 3D Visualizer that generates 3D images of devices constructed using the SUMMiT V fabrication process. c) Provides a MEMS 3D Model generator that creates 3D solid models of devices constructed using the SUMMiT V fabrication process. While there exists some filesmore » on the CD that are used in conjunction with software package AutoCAD , these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  17. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    DTIC Science & Technology

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms

  18. Engaging Patients With Advance Directives Using an Information Visualization Approach.

    PubMed

    Woollen, Janet; Bakken, Suzanne

    2016-01-01

    Despite the benefits of advance directives (AD) to patients and care providers, they are often not completed due to lack of patient awareness. The purpose of the current article is to advocate for creation and use of an innovative information visualization (infovisual) as a health communication tool aimed at improving AD dissemination and engagement. The infovisual would promote AD awareness by encouraging patients to learn about their options and inspire contemplation and conversation regarding their end-of-life (EOL) journey. An infovisual may be able to communicate insights that are often communicated in words, but are much more powerfully communicated by example. Furthermore, an infovisual could facilitate vivid understanding of options and inspire the beginning of often difficult conversations among care providers, patients, and loved ones. It may also save clinicians time, as care providers may be able to spend less time explaining details of EOL care options. Use of an infovisual could assist in ensuring a well-planned EOL journey. Copyright 2016, SLACK Incorporated.

  19. Advanced genetic tools for plant biotechnology.

    PubMed

    Liu, Wusheng; Yuan, Joshua S; Stewart, C Neal

    2013-11-01

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  20. Visual Information for the Desktop, version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2006-03-29

    VZIN integrates visual analytics capabilities into popular desktop tools to aid a user in searching and understanding an information space. VZIN allows users to Drag-Drop-Visualize-Explore-Organize information within tools such as Microsoft Office, Windows Explorer, Excel, and Outlook. VZIN is tailorable to specific client or industry requirements. VZIN follows the desktop metaphors so that advanced analytical capabilities are available with minimal user training.

  1. Recent advances in systems metabolic engineering tools and strategies.

    PubMed

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Visual Tools as Mediational Means: A Methodological Investigation

    ERIC Educational Resources Information Center

    Hilppö, Jaakko; Lipponen, Lasse; Kumpulainen, Kristiina; Rajala, Antti

    2017-01-01

    In this study, we investigated how Finnish children used photographs and drawings to discuss their preschool day experiences in focus groups. Building on sociocultural perspectives on mediated action, we specifically focused on how these visual tools were used as mediational means in sharing experiences. The results of our embodied interaction…

  3. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  4. Do Bedside Visual Tools Improve Patient and Caregiver Satisfaction? A Systematic Review of the Literature.

    PubMed

    Goyal, Anupama A; Tur, Komalpreet; Mann, Jason; Townsend, Whitney; Flanders, Scott A; Chopra, Vineet

    2017-11-01

    Although common, the impact of low-cost bedside visual tools, such as whiteboards, on patient care is unclear. To systematically review the literature and assess the influence of bedside visual tools on patient satisfaction. Medline, Embase, SCOPUS, Web of Science, CINAHL, and CENTRAL. Studies of adult or pediatric hospitalized patients reporting physician identification, understanding of provider roles, patient-provider communication, and satisfaction with care from the use of visual tools were included. Outcomes were categorized as positive, negative, or neutral based on survey responses for identification, communication, and satisfaction. Two reviewers screened studies, extracted data, and assessed the risk of study bias. Sixteen studies met the inclusion criteria. Visual tools included whiteboards (n = 4), physician pictures (n = 7), whiteboard and picture (n = 1), electronic medical record-based patient portals (n = 3), and formatted notepads (n = 1). Tools improved patients' identification of providers (13/13 studies). The impact on understanding the providers' roles was largely positive (8/10 studies). Visual tools improved patient-provider communication (4/5 studies) and satisfaction (6/8 studies). In adults, satisfaction varied between positive with the use of whiteboards (2/5 studies) and neutral with pictures (1/5 studies). Satisfaction related to pictures in pediatric patients was either positive (1/3 studies) or neutral (1/3 studies). Differences in tool format (individual pictures vs handouts with pictures of all providers) and study design (randomized vs cohort) may explain variable outcomes. The use of bedside visual tools appears to improve patient recognition of providers and patient-provider communication. Future studies that include better design and outcome assessment are necessary before widespread use can be recommended. © 2017 Society of Hospital Medicine

  5. Learner-Information Interaction: A Macro-Level Framework Characterizing Visual Cognitive Tools

    ERIC Educational Resources Information Center

    Sedig, Kamran; Liang, Hai-Ning

    2008-01-01

    Visual cognitive tools (VCTs) are external mental aids that maintain and display visual representations (VRs) of information (i.e., structures, objects, concepts, ideas, and problems). VCTs allow learners to operate upon the VRs to perform epistemic (i.e., reasoning and knowledge-based) activities. In VCTs, the mechanism by which learners operate…

  6. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  7. DspaceOgreTerrain 3D Terrain Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.

    2012-01-01

    DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.

  8. The Tools, Approaches and Applications of Visual Literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria

    ERIC Educational Resources Information Center

    Ecoma, Victor

    2016-01-01

    The paper reflects upon the tools, approaches and applications of visual literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria. The objective of the discourse is to examine how the visual arts training and practice equip students with skills in visual literacy through methods of production, materials and…

  9. Advanced genetic tools for plant biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis ofmore » large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.« less

  10. Experience with Using Multiple Types of Visual Educational Tools during Problem-Based Learning.

    PubMed

    Kang, Bong Jin

    2012-06-01

    This study describes the experience of using multiple types of visual educational tools in the setting of problem-based learning (PBL). The author intends to demonstrate their roles in diverse and efficient ways of clinical reasoning and problem solving. Visual educational tools were introduced in a lecture that included their various types, possible benefits, and some examples. Each group made one mechanistic case diagram per week, and each student designed one diagnostic schema or therapeutic algorithm per week, based on their learning issues. The students were also told to provide commentary, which was intended to give insights into their truthfulness. Subsequently, the author administered a questionnaire about the usefulness and weakness of visual educational tools and the difficulties with performing the work. Also, the qualities of the products were assessed by the author. There were many complaints about the adequacy of the introduction of visual educational tools, also revealed by the many initial inappropriate types of products. However, the exercise presentation in the first week improved the level of understanding regarding their purposes and the method of design. In general, students agreed on the benefits of their help in providing a deep understanding of the cases and the possibility of solving clinical problems efficiently. The commentary was helpful in evaluating the truthfulness of their efforts. Students gave suggestions for increasing the percentage of their scores, considering the efforts. Using multiple types of visual educational tools during PBL can be useful in understanding the diverse routes of clinical reasoning and clinical features.

  11. New abstraction networks and a new visualization tool in support of auditing the SNOMED CT content.

    PubMed

    Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan

    2012-01-01

    Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT.

  12. New Abstraction Networks and a New Visualization Tool in Support of Auditing the SNOMED CT Content

    PubMed Central

    Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan

    2012-01-01

    Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT. PMID:23304293

  13. Interactive Visualization to Advance Earthquake Simulation

    NASA Astrophysics Data System (ADS)

    Kellogg, Louise H.; Bawden, Gerald W.; Bernardin, Tony; Billen, Magali; Cowgill, Eric; Hamann, Bernd; Jadamec, Margarete; Kreylos, Oliver; Staadt, Oliver; Sumner, Dawn

    2008-04-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.

  14. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  15. Stereoscopic applications for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2007-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  16. MFV-class: a multi-faceted visualization tool of object classes.

    PubMed

    Zhang, Zhi-meng; Pan, Yun-he; Zhuang, Yue-ting

    2004-11-01

    Classes are key software components in an object-oriented software system. In many industrial OO software systems, there are some classes that have complicated structure and relationships. So in the processes of software maintenance, testing, software reengineering, software reuse and software restructure, it is a challenge for software engineers to understand these classes thoroughly. This paper proposes a class comprehension model based on constructivist learning theory, and implements a software visualization tool (MFV-Class) to help in the comprehension of a class. The tool provides multiple views of class to uncover manifold facets of class contents. It enables visualizing three object-oriented metrics of classes to help users focus on the understanding process. A case study was conducted to evaluate our approach and the toolkit.

  17. 3D Immersive Visualization: An Educational Tool in Geosciences

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  18. IViPP: A Tool for Visualization in Particle Physics

    NASA Astrophysics Data System (ADS)

    Tran, Hieu; Skiba, Elizabeth; Baldwin, Doug

    2011-10-01

    Experiments and simulations in physics generate a lot of data; visualization is helpful to prepare that data for analysis. IViPP (Interactive Visualizations in Particle Physics) is an interactive computer program that visualizes results of particle physics simulations or experiments. IViPP can handle data from different simulators, such as SRIM or MCNP. It can display relevant geometry and measured scalar data; it can do simple selection from the visualized data. In order to be an effective visualization tool, IViPP must have a software architecture that can flexibly adapt to new data sources and display styles. It must be able to display complicated geometry and measured data with a high dynamic range. We therefore organize it in a highly modular structure, we develop libraries to describe geometry algorithmically, use rendering algorithms running on the powerful GPU to display 3-D geometry at interactive rates, and we represent scalar values in a visual form of scientific notation that shows both mantissa and exponent. This work was supported in part by the US Department of Energy through the Laboratory for Laser Energetics (LLE), with special thanks to Craig Sangster at LLE.

  19. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  20. Data Visualization in Sociology

    PubMed Central

    Healy, Kieran; Moody, James

    2014-01-01

    Visualizing data is central to social scientific work. Despite a promising early beginning, sociology has lagged in the use of visual tools. We review the history and current state of visualization in sociology. Using examples throughout, we discuss recent developments in ways of seeing raw data and presenting the results of statistical modeling. We make a general distinction between those methods and tools designed to help explore datasets, and those designed to help present results to others. We argue that recent advances should be seen as part of a broader shift towards easier sharing of the code and data both between researchers and with wider publics, and encourage practitioners and publishers to work toward a higher and more consistent standard for the graphical display of sociological insights. PMID:25342872

  1. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations

  2. Contextual signals in visual cortex.

    PubMed

    Khan, Adil G; Hofer, Sonja B

    2018-06-05

    Vision is an active process. What we perceive strongly depends on our actions, intentions and expectations. During visual processing, these internal signals therefore need to be integrated with the visual information from the retina. The mechanisms of how this is achieved by the visual system are still poorly understood. Advances in recording and manipulating neuronal activity in specific cell types and axonal projections together with tools for circuit tracing are beginning to shed light on the neuronal circuit mechanisms of how internal, contextual signals shape sensory representations. Here we review recent work, primarily in mice, that has advanced our understanding of these processes, focusing on contextual signals related to locomotion, behavioural relevance and predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Examining Chemistry Students Visual-Perceptual Skills Using the VSCS Tool and Interview Data

    ERIC Educational Resources Information Center

    Christian, Caroline

    2010-01-01

    The Visual-Spatial Chemistry Specific (VSCS) assessment tool was developed to test students' visual-perceptual skills, which are required to form a mental image of an object. The VSCS was designed around the theoretical framework of Rochford and Archer that provides eight distinct and well-defined visual-perceptual skills with identified problems…

  4. Advancements to Visualization Control System (VCS, part of UV-CDAT), a Visualization Package Designed for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.

    2017-12-01

    Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as

  5. Data visualization and analysis tools for the MAVEN mission

    NASA Astrophysics Data System (ADS)

    Harter, B.; De Wolfe, A. W.; Putnam, B.; Brain, D.; Chaffin, M.

    2016-12-01

    The Mars Atmospheric and Volatile Evolution (MAVEN) mission has been collecting data at Mars since September 2014. We have developed new software tools for exploring and analyzing the science data. Our open-source Python toolkit for working with data from MAVEN and other missions is based on the widely-used "tplot" IDL toolkit. We have replicated all of the basic tplot functionality in Python, and use the bokeh and matplotlib libraries to generate interactive line plots and spectrograms, providing additional functionality beyond the capabilities of IDL graphics. These Python tools are generalized to work with missions beyond MAVEN, and our software is available on Github. We have also been exploring 3D graphics as a way to better visualize the MAVEN science data and models. We have constructed a 3D visualization of MAVEN's orbit using the CesiumJS library, which not only allows viewing of MAVEN's orientation and position, but also allows the display of selected science data sets and their variation over time.

  6. Open-source web-enabled data management, analyses, and visualization of very large data in geosciences using Jupyter, Apache Spark, and community tools

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.

    2017-12-01

    Current simulation models and sensors are producing high-resolution, high-velocity data in geosciences domain. Knowledge discovery from these complex and large size datasets require tools that are capable of handling very large data and providing interactive data analytics features to researchers. To this end, Kitware and its collaborators are producing open-source tools GeoNotebook, GeoJS, Gaia, and Minerva for geosciences that are using hardware accelerated graphics and advancements in parallel and distributed processing (Celery and Apache Spark) and can be loosely coupled to solve real-world use-cases. GeoNotebook (https://github.com/OpenGeoscience/geonotebook) is co-developed by Kitware and NASA-Ames and is an extension to the Jupyter Notebook. It provides interactive visualization and python-based analysis of geospatial data and depending the backend (KTile or GeoPySpark) can handle data sizes of Hundreds of Gigabytes to Terabytes. GeoNotebook uses GeoJS (https://github.com/OpenGeoscience/geojs) to render very large geospatial data on the map using WebGL and Canvas2D API. GeoJS is more than just a GIS library as users can create scientific plots such as vector and contour and can embed InfoVis plots using D3.js. GeoJS aims for high-performance visualization and interactive data exploration of scientific and geospatial location aware datasets and supports features such as Point, Line, Polygon, and advanced features such as Pixelmap, Contour, Heatmap, and Choropleth. Our another open-source tool Minerva ((https://github.com/kitware/minerva) is a geospatial application that is built on top of open-source web-based data management system Girder (https://github.com/girder/girder) which provides an ability to access data from HDFS or Amazon S3 buckets and provides capabilities to perform visualization and analyses on geosciences data in a web environment using GDAL and GeoPandas wrapped in a unified API provided by Gaia (https

  7. The advanced glaucoma intervention study, 6: effect of cataract on visual field and visual acuity. The AGIS Investigators.

    PubMed

    2000-12-01

    To investigate the effect of cataract on visual function and the role of cataract in explaining a race-treatment interaction in outcomes of glaucoma surgery. The Advanced Glaucoma Intervention Study (AGIS) enrolled 332 black patients (451 eyes) and 249 white patients (325 eyes) with advanced glaucoma. Eyes were randomly assigned to an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy sequence or a trabeculectomy-ALT-trabeculectomy sequence. From the AGIS experience with cataract surgery during follow-up, we estimated the expected change in visual function scores from before cataract surgery to after cataract surgery. Then, for eyes with cataract not removed, we used these estimates of expected change to adjust visual function scores for the presumed effects of cataract. In turn, we used the adjusted scores to obtain cataract-adjusted main outcome measures. Average percent of eyes with decrease of visual field (APDVF) and average percent of eyes with decrease of visual acuity (APDVA). Within the 2 months before cataract surgery, visual acuity was better in eyes of white patients than of black patients by an average of approximately 2 lines on the visual acuity test chart. Cataract surgery improved visual acuity and visual field defect scores, with the amounts of improvement greater when preoperative visual acuity was lower. Adjustments for cataract brought about the following relative reductions: for APDVF, a relative reduction of 5% to 11% in black patients and 9% to 11% in white patients; for APDVA, a relative reduction of 45% to 49% in black patients and 31% to 38% in white patients; and for the APDVF and APDVA race-treatment interactions, relative reductions of 25% and 45%, respectively. On average, visual function scores improved after cataract surgery. The findings of reduced race-treatment interactions after adjustment for cataract do not alter our earlier conclusion that the AGIS 7-year results support use of the ALT

  8. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    NASA Technical Reports Server (NTRS)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  9. The Use of Visual Advance Organizers for Learning Earth Science Concepts.

    ERIC Educational Resources Information Center

    Weisberg, Joseph S.

    This study was designed to determine whether advance organizers in the form of visual aids might serve the same function as Ausubel's verbal advance organizers. The basic design of the study consisted of a 4 X 3 X 2 ANOVA factorial design. Ninety-six eighth-grade students were involved in the study. One group was exposed to a physiographic diagram…

  10. BURRITO: An Interactive Multi-Omic Tool for Visualizing Taxa–Function Relationships in Microbiome Data

    PubMed Central

    McNally, Colin P.; Eng, Alexander; Noecker, Cecilia; Gagne-Maynard, William C.; Borenstein, Elhanan

    2018-01-01

    The abundance of both taxonomic groups and gene categories in microbiome samples can now be easily assayed via various sequencing technologies, and visualized using a variety of software tools. However, the assemblage of taxa in the microbiome and its gene content are clearly linked, and tools for visualizing the relationship between these two facets of microbiome composition and for facilitating exploratory analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool for interactive visualization of microbiome multi-omic data with paired taxonomic and functional information. BURRITO simultaneously visualizes the taxonomic and functional compositions of multiple samples and dynamically highlights relationships between taxa and functions to capture the underlying structure of these data. Users can browse for taxa and functions of interest and interactively explore the share of each function attributed to each taxon across samples. BURRITO supports multiple input formats for taxonomic and metagenomic data, allows adjustment of data granularity, and can export generated visualizations as static publication-ready formatted figures. In this paper, we describe the functionality of BURRITO, and provide illustrative examples of its utility for visualizing various trends in the relationship between the composition of taxa and functions in complex microbiomes. PMID:29545787

  11. Lighting Studies for Fuelling Machine Deployed Visual Inspection Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoots, Carl; Griffith, George

    2015-04-01

    Under subcontract to James Fisher Nuclear, Ltd., INL has been reviewing advanced vision systems for inspection of graphite in high radiation, high temperature, and high pressure environments. INL has performed calculations and proof-of-principle measurements of optics and lighting techniques to be considered for visual inspection of graphite fuel channels in AGR reactors in UK.

  12. Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool

    NASA Astrophysics Data System (ADS)

    Marco Figuera, R.; Pham Huu, B.; Rossi, A. P.; Minin, M.; Flahaut, J.; Halder, A.

    2018-01-01

    The lack of open-source tools for hyperspectral data visualization and analysis creates a demand for new tools. In this paper we present the new PlanetServer, a set of tools comprising a web Geographic Information System (GIS) and a recently developed Python Application Programming Interface (API) capable of visualizing and analyzing a wide variety of hyperspectral data from different planetary bodies. Current WebGIS open-source tools are evaluated in order to give an overview and contextualize how PlanetServer can help in this matters. The web client is thoroughly described as well as the datasets available in PlanetServer. Also, the Python API is described and exposed the reason of its development. Two different examples of mineral characterization of different hydrosilicates such as chlorites, prehnites and kaolinites in the Nili Fossae area on Mars are presented. As the obtained results show positive outcome in hyperspectral analysis and visualization compared to previous literature, we suggest using the PlanetServer approach for such investigations.

  13. Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data

    PubMed Central

    Fernandez, Nicolas F.; Gundersen, Gregory W.; Rahman, Adeeb; Grimes, Mark L.; Rikova, Klarisa; Hornbeck, Peter; Ma’ayan, Avi

    2017-01-01

    Most tools developed to visualize hierarchically clustered heatmaps generate static images. Clustergrammer is a web-based visualization tool with interactive features such as: zooming, panning, filtering, reordering, sharing, performing enrichment analysis, and providing dynamic gene annotations. Clustergrammer can be used to generate shareable interactive visualizations by uploading a data table to a web-site, or by embedding Clustergrammer in Jupyter Notebooks. The Clustergrammer core libraries can also be used as a toolkit by developers to generate visualizations within their own applications. Clustergrammer is demonstrated using gene expression data from the cancer cell line encyclopedia (CCLE), original post-translational modification data collected from lung cancer cells lines by a mass spectrometry approach, and original cytometry by time of flight (CyTOF) single-cell proteomics data from blood. Clustergrammer enables producing interactive web based visualizations for the analysis of diverse biological data. PMID:28994825

  14. Visualization of multiple influences on ocellar flight control in giant honeybees with the data-mining tool Viscovery SOMine.

    PubMed

    Kastberger, G; Kranner, G

    2000-02-01

    Viscovery SOMine is a software tool for advanced analysis and monitoring of numerical data sets. It was developed for professional use in business, industry, and science and to support dependency analysis, deviation detection, unsupervised clustering, nonlinear regression, data association, pattern recognition, and animated monitoring. Based on the concept of self-organizing maps (SOMs), it employs a robust variant of unsupervised neural networks--namely, Kohonen's Batch-SOM, which is further enhanced with a new scaling technique for speeding up the learning process. This tool provides a powerful means by which to analyze complex data sets without prior statistical knowledge. The data representation contained in the trained SOM is systematically converted to be used in a spectrum of visualization techniques, such as evaluating dependencies between components, investigating geometric properties of the data distribution, searching for clusters, or monitoring new data. We have used this software tool to analyze and visualize multiple influences of the ocellar system on free-flight behavior in giant honeybees. Occlusion of ocelli will affect orienting reactivities in relation to flight target, level of disturbance, and position of the bee in the flight chamber; it will induce phototaxis and make orienting imprecise and dependent on motivational settings. Ocelli permit the adjustment of orienting strategies to environmental demands by enforcing abilities such as centering or flight kinetics and by providing independent control of posture and flight course.

  15. Large Terrain Continuous Level of Detail 3D Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  16. VisBOL: Web-Based Tools for Synthetic Biology Design Visualization.

    PubMed

    McLaughlin, James Alastair; Pocock, Matthew; Mısırlı, Göksel; Madsen, Curtis; Wipat, Anil

    2016-08-19

    VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.

  17. Sandia Advanced MEMS Design Tools, Version 2.2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor; Allen, James; Lantz, Jeffery

    2010-01-19

    The Sandia National Laboratories Advanced MEMS Design Tools, Version 2.2.5, is a collection of menus, prototype drawings, and executables that provide significant productivity enhancements when using AutoCAD to design MEMS components. This release is designed for AutoCAD 2000i, 2002, or 2004 and is supported under Windows NT 4.0, Windows 2000, or XP. SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers internal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication processmore » b) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) New features in this version: AutoCAD 2004 support has been added. SafeExplode ? a new feature that explodes blocks without affecting polylines (avoids exploding polylines into objects that are ignored by the DRC and Visualization tools). Layer control menu ? a pull-down menu for selecting layers to isolate, freeze, or thaw. Updated tools: A check has been added to catch invalid block names. DRC features: Added username/password validation, added a method to update the user?s password. SNL_DRC_WIDTH ? a value to control the width of the DRC error lines. SNL_BIAS_VALUE ? a value use to offset selected geometry SNL_PROCESS_NAME ? a value to specify the process name Documentation changes: The documentation has been updated to include the new features. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  18. Utility of the advanced chronic kidney disease patient management tools: case studies.

    PubMed

    Patwardhan, Meenal B; Matchar, David B; Samsa, Gregory P; Haley, William E

    2008-01-01

    Appropriate management of advanced chronic kidney disease (CKD) delays or limits its progression. The Advanced CKD Patient Management Toolkit was developed using a process-improvement technique to assist patient management and address CKD-specific management issues. We pilot tested the toolkit in 2 community nephrology practices, assessed the utility of individual tools, and evaluated the impact on conformance to an advanced CKD guideline through patient chart abstraction. Tool use was distinct in the 2 sites and depended on the site champion's involvement, the extent of process reconfiguration demanded by a tool, and its perceived value. Baseline conformance varied across guideline recommendations (averaged 54%). Posttrial conformance increased in all clinical areas (averaged 59%). Valuable features of the toolkit in real-world settings were its ability to: facilitate tool selection, direct implementation efforts in response to a baseline performance audit, and allow selection of tool versions and customizing them. Our results suggest that systematically created, multifaceted, and customizable tools can promote guideline conformance.

  19. Real-Time Visualization Tool Integrating STEREO, ACE, SOHO and the SDO

    NASA Astrophysics Data System (ADS)

    Schroeder, P. C.; Luhmann, J. G.; Marchant, W.

    2011-12-01

    The STEREO/IMPACT team has developed a new web-based visualization tool for near real-time data from the STEREO instruments, ACE and SOHO as well as relevant models of solar activity. This site integrates images, solar energetic particle, solar wind plasma and magnetic field measurements in an intuitive way using near real-time products from NOAA and other sources to give an overview of recent space weather events. This site enhances the browse tools already available at UC Berkeley, UCLA and Caltech which allow users to visualize similar data from the start of the STEREO mission. Our new near real-time tool utilizes publicly available real-time data products from a number of missions and instruments, including SOHO LASCO C2 images from the SOHO team's NASA site, SDO AIA images from the SDO team's NASA site, STEREO IMPACT SEP data plots and ACE EPAM data plots from the NOAA Space Weather Prediction Center and STEREO spacecraft positions from the STEREO Science Center.

  20. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  1. GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes.

    PubMed

    Hallin, Peter F; Stærfeldt, Hans-Henrik; Rotenberg, Eva; Binnewies, Tim T; Benham, Craig J; Ussery, David W

    2009-09-25

    We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.

  2. Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…

  3. Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.

    PubMed

    Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E

    2007-01-01

    This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.

  4. A visual training tool for the Photoload sampling technique

    Treesearch

    Violet J. Holley; Robert E. Keane

    2010-01-01

    This visual training aid is designed to provide Photoload users a tool to increase the accuracy of fuel loading estimations when using the Photoload technique. The Photoload Sampling Technique (RMRS-GTR-190) provides fire managers a sampling method for obtaining consistent, accurate, inexpensive, and quick estimates of fuel loading. It is designed to require only one...

  5. Conceptual Assessment Tool for Advanced Undergraduate Electrodynamics

    ERIC Educational Resources Information Center

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-01-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question…

  6. Icarus: visualizer for de novo assembly evaluation.

    PubMed

    Mikheenko, Alla; Valin, Gleb; Prjibelski, Andrey; Saveliev, Vladislav; Gurevich, Alexey

    2016-11-01

    : Data visualization plays an increasingly important role in NGS data analysis. With advances in both sequencing and computational technologies, it has become a new bottleneck in genomics studies. Indeed, evaluation of de novo genome assemblies is one of the areas that can benefit from the visualization. However, even though multiple quality assessment methods are now available, existing visualization tools are hardly suitable for this purpose. Here, we present Icarus-a novel genome visualizer for accurate assessment and analysis of genomic draft assemblies, which is based on the tool QUAST. Icarus can be used in studies where a related reference genome is available, as well as for non-model organisms. The tool is available online and as a standalone application. http://cab.spbu.ru/software/icarus CONTACT: aleksey.gurevich@spbu.ruSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example

    ERIC Educational Resources Information Center

    Elnagar, Ashraf; Lulu, Leena

    2007-01-01

    We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…

  8. Data Visualization: An Exploratory Study into the Software Tools Used by Businesses

    ERIC Educational Resources Information Center

    Diamond, Michael; Mattia, Angela

    2017-01-01

    Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…

  9. Data Visualization: An Exploratory Study into the Software Tools Used by Businesses

    ERIC Educational Resources Information Center

    Diamond, Michael; Mattia, Angela

    2015-01-01

    Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…

  10. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.; Silva, Claudio

    2013-09-30

    For the past three years, a large analysis and visualization effort—funded by the Department of Energy’s Office of Biological and Environmental Research (BER), the National Aeronautics and Space Administration (NASA), and the National Oceanic and Atmospheric Administration (NOAA)—has brought together a wide variety of industry-standard scientific computing libraries and applications to create Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) to serve the global climate simulation and observational research communities. To support interactive analysis and visualization, all components connect through a provenance application–programming interface to capture meaningful history and workflow. Components can be loosely coupled into the framework for fast integrationmore » or tightly coupled for greater system functionality and communication with other components. The overarching goal of UV-CDAT is to provide a new paradigm for access to and analysis of massive, distributed scientific data collections by leveraging distributed data architectures located throughout the world. The UV-CDAT framework addresses challenges in analysis and visualization and incorporates new opportunities, including parallelism for better efficiency, higher speed, and more accurate scientific inferences. Today, it provides more than 600 users access to more analysis and visualization products than any other single source.« less

  11. The DiaCog: A Prototype Tool for Visualizing Online Dialog Games' Interactions

    ERIC Educational Resources Information Center

    Yengin, Ilker; Lazarevic, Bojan

    2014-01-01

    This paper proposes and explains the design of a prototype learning tool named the DiaCog. The DiaCog visualizes dialog interactions within an online dialog game by using dynamically created cognitive maps. As a purposefully designed tool for enhancing learning effectiveness the DiaCog might be applicable to dialogs at discussion boards within a…

  12. D-peaks: a visual tool to display ChIP-seq peaks along the genome.

    PubMed

    Brohée, Sylvain; Bontempi, Gianluca

    2012-01-01

    ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.

  13. The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma.

    PubMed

    2002-10-01

    To examine the relationships between baseline risk factors and sustained decrease of visual field (SDVF) and sustained decrease of visual acuity (SDVA). Cohort study of participants in the Advanced Glaucoma Intervention Study (AGIS). This multicenter study enrolled patients between 1988 and 1992 and followed them until 2001; 789 eyes of 591 patients with advanced glaucoma were randomly assigned to one of two surgical sequences, argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy (ATT) or trabeculectomy-ALT-trabeculectomy (TAT). This report is based on data from 747 eyes. Eyes were offered the next intervention in the sequence upon failure of the previous intervention. Failure was based on recurrent intraocular pressure elevation, visual field defect, and disk rim criteria. Study visits occurred every 6 months; potential follow-up ranged from 8 to 13 years. For each intervention sequence, Cox multiple regression analyses were used to examine the baseline characteristics for association with two vision outcomes: SDVF and SDVA. The magnitude of the association is measured by the hazard ratio (HR), where HR for binary variables is the relative change in the hazard (or risk) of the outcome in eyes with the factor divided by the hazard in eyes without the factor, and HR for continuous variables is the relative change in the hazard (or risk) of the outcome in eyes with a unit increase in the factor. Characteristics associated with increased SDVF risk in the ATT sequence are: less baseline visual field defect (hazard ratio [HR] = 0.86, P <.001, 95% CI = 0.82-0.90), male gender (HR = 2.23, P <.001, 1.54-3.23), and worse baseline visual acuity (HR = 0.96, P =.001, 0.94-0.98); in the TAT sequence: less baseline visual field defect (HR = 0.93, P =.001, 0.89-0.97) and diabetes (HR = 1.87, P =.007, 1.18-2.97). Characteristics associated with increased SDVA risk in both treatment sequences are better baseline acuity (ATT: HR = 1.05, P <.001, 1.02-1.09; TAT: HR = 1

  14. Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    NASA Astrophysics Data System (ADS)

    Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.

    2005-05-01

    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.

  15. Interactive 3D visualization tools for stereotactic atlas-based functional neurosurgery

    NASA Astrophysics Data System (ADS)

    St. Jean, Philippe; Kasrai, Reza; Clonda, Diego; Sadikot, Abbas F.; Evans, Alan C.; Peters, Terence M.

    1998-06-01

    Many of the critical basal ganglia structures are not distinguishable on anatomical magnetic resonance imaging (MRI) scans, even though they differ in functionality. In order to provide the neurosurgeon with this missing information, a deformable volumetric atlas of the basal ganglia has been created from the Shaltenbrand and Wahren atlas of cryogenic slices. The volumetric atlas can be non-linearly deformed to an individual patient's MRI. To facilitate the clinical use of the atlas, a visualization platform has been developed for pre- and intra-operative use which permits manipulation of the merged atlas and MRI data sets in two- and three-dimensional views. The platform includes graphical tools which allow the visualization of projections of the leukotome and other surgical tools with respect to the atlas data, as well as pre- registered images from any other imaging modality. In addition, a graphical interface has been designed to create custom virtual lesions using computer models of neurosurgical tools for intra-operative planning. To date 17 clinical cases have been successfully performed using the described system.

  16. Visualizing railroad operations : a tool for planning and monitoring railroad traffic

    DOT National Transportation Integrated Search

    2009-01-01

    This report provides an overview of the development and technology transfer of the Railroad Traffic Planner application, a visualization tool with string line diagrams that show train positions over time. The Railroad Traffic Planner provides support...

  17. Interactive visualization of vegetation dynamics

    USGS Publications Warehouse

    Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, James

    2001-01-01

    Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.

  18. Helioviewer: A Web 2.0 Tool for Visualizing Heterogeneous Heliophysics Data

    NASA Astrophysics Data System (ADS)

    Hughitt, V. K.; Ireland, J.; Lynch, M. J.; Schmeidel, P.; Dimitoglou, G.; Müeller, D.; Fleck, B.

    2008-12-01

    Solar physics datasets are becoming larger, richer, more numerous and more distributed. Feature/event catalogs (describing objects of interest in the original data) are becoming important tools in navigating these data. In the wake of this increasing influx of data and catalogs there has been a growing need for highly sophisticated tools for accessing and visualizing this wealth of information. Helioviewer is a novel tool for integrating and visualizing disparate sources of solar and Heliophysics data. Taking advantage of the newly available power of modern web application frameworks, Helioviewer merges image and feature catalog data, and provides for Heliophysics data a familiar interface not unlike Google Maps or MapQuest. In addition to streamlining the process of combining heterogeneous Heliophysics datatypes such as full-disk images and coronagraphs, the inclusion of visual representations of automated and human-annotated features provides the user with an integrated and intuitive view of how different factors may be interacting on the Sun. Currently, Helioviewer offers images from The Extreme ultraviolet Imaging Telescope (EIT), The Large Angle and Spectrometric COronagraph experiment (LASCO) and the Michelson Doppler Imager (MDI) instruments onboard The Solar and Heliospheric Observatory (SOHO), as well as The Transition Region and Coronal Explorer (TRACE). Helioviewer also incorporates feature/event information from the LASCO CME List, NOAA Active Regions, CACTus CME and Type II Radio Bursts feature/event catalogs. The project is undergoing continuous development with many more data sources and additional functionality planned for the near future.

  19. An Integrated Multivariable Visualization Tool for Marine Sanctuary Climate Assessments

    NASA Astrophysics Data System (ADS)

    Shein, K. A.; Johnston, S.; Stachniewicz, J.; Duncan, B.; Cecil, D.; Ansari, S.; Urzen, M.

    2012-12-01

    The comprehensive development and use of ecological climate impact assessments by ecosystem managers can be limited by data access and visualization methods that require a priori knowledge about the various large and complex climate data products necessary to those impact assessments. In addition, it can be difficult to geographically and temporally integrate climate and ecological data to fully characterize climate-driven ecological impacts. To address these considerations, we have enhanced and extended the functionality of the NOAA National Climatic Data Center's Weather and Climate Toolkit (WCT). The WCT is a freely available Java-based tool designed to access and display NCDC's georeferenced climate data products (e.g., satellite, radar, and reanalysis gridded data). However, the WCT requires users already know how to obtain the data products, which products are preferred for a given variable, and which products are most relevant to their needs. Developed in cooperation with research and management customers at the Gulf of the Farallones National Marine Sanctuary, the Integrated Marine Protected Area Climate Tools (IMPACT) modification to the WCT simplifies or eliminates these requirements, while simultaneously adding core analytical functionality to the tool. Designed for use by marine ecosystem managers, WCT-IMPACT accesses a suite of data products that have been identified as relevant to marine ecosystem climate impact assessments, such as NOAA's Climate Data Records. WCT-IMPACT regularly crops these products to the geographic boundaries of each included marine protected area (MPA), and those clipped regions are processed to produce MPA-specific analytics. The tool retrieves the most appropriate data files based on the user selection of MPA, environmental variable(s), and time frame. Once the data are loaded, they may be visualized, explored, analyzed, and exported to other formats (e.g., Google KML). Multiple variables may be simultaneously visualized using

  20. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    PubMed

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  1. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    PubMed

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. [Digital administrative maps - a tool for visualization of epidemiological data].

    PubMed

    Niewiadomska, Ewa; Kowalska, Malgorzata; Czech, Elibieta; Skrzypek, Michal

    2013-01-01

    The aim of the study is to present the methods for visualization of epidemiological data using digital contour maps that take into account administrative division of Poland. The possibility of epidemiological data visualization in a geographical order, limited to the administrative level of the country, voivodeships and poviats (countics), are presented. They are crucial for the process of identifying and undertaking adequate prophylactic activities directed towards decreasing the risk and improving the population's health. This paper presents tools and techniques available in Geographic Information System ArcGIS and statistical software package R. The work includes our own data reflecting: 1) the values of specific mortality rates due to respiratory diseases, Poland, 2010, based on the Central Statistical Office data, using the R statistical software package; 2) the averaged registered incidence rates of sarcoidosis in 2006-2010 for the population aged 19+ in the Silesian voivodeship, using G(eographic Information System ArcGIS; and 3) the number of children with diagnosed respiratory diseases in the city of L.egnica in 2009, taking into account their place of residence, using layered maps in Geographic Information System ArcGIS. The tools presented and described in this paper make it possible to visualize the results of research, to increase attractiveness of courses for students, as well as to enhance the skills and competence of students and participants of courses.

  3. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees.

    PubMed

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Hu, Songnian; Chen, Wei-Hua

    2012-07-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html.

  4. Development and methods for an open-sourced data visualization tool

    USDA-ARS?s Scientific Manuscript database

    This paper presents an open source on-demand web tool, which is specifically addressed to scientists and researchers that are non-expert in converting time series data into a time surface visualization. Similar to a GIS environment the time surface shows time on two axes; time of day vs. day of year...

  5. A WebGL Tool for Visualizing the Topology of the Sun's Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Duffy, A.; Cheung, C.; DeRosa, M. L.

    2012-12-01

    We present a web-based, topology-viewing tool that allows users to visualize the geometry and topology of the Sun's 3D coronal magnetic field in an interactive manner. The tool is implemented using, open-source, mature, modern web technologies including WebGL, jQuery, HTML 5, and CSS 3, which are compatible with nearly all modern web browsers. As opposed to the traditional method of visualization, which involves the downloading and setup of various software packages-proprietary and otherwise-the tool presents a clean interface that allows the user to easily load and manipulate the model, while also offering great power to choose which topological features are displayed. The tool accepts data encoded in the JSON open format that has libraries available for nearly every major programming language, making it simple to generate the data.

  6. Application of Multimedia Design Principles to Visuals Used in Course-Books: An Evaluation Tool

    ERIC Educational Resources Information Center

    Kuzu, Abdullah; Akbulut, Yavuz; Sahin, Mehmet Can

    2007-01-01

    This paper introduces an evaluation tool prepared to examine the quality of visuals in course-books. The tool is based on Mayer's Cognitive Theory of Multimedia Learning (i.e. Generative Theory) and its principles regarding the correct use of illustrations within text. The reason to generate the tool, the development process along with the…

  7. Examining Chemistry Students Visual-Perceptual Skills Using the VSCS tool and Interview Data

    NASA Astrophysics Data System (ADS)

    Christian, Caroline

    The Visual-Spatial Chemistry Specific (VSCS) assessment tool was developed to test students' visual-perceptual skills, which are required to form a mental image of an object. The VSCS was designed around the theoretical framework of Rochford and Archer that provides eight distinct and well-defined visual-perceptual skills with identified problems students might have with each skill set. Factor analysis was used to analyze the results during the validation process of the VSCS. Results showed that the eight factors could not be separated from each other, but instead two factors emerged as significant to the data. These two factors have been defined and described as a general visual-perceptual skill (factor 1) and a skill that adds on a second level of complexity by involving multiple viewpoints such as changing frames of reference. The questions included in the factor analysis were bolstered by the addition of an item response theory (IRT) analysis. Interviews were also conducted with twenty novice students to test face validity of the tool, and to document student approaches at solving visualization problems of this type. Students used five main physical resources or processes to solve the questions, but the resource that was the most successful was handling or building a physical representation of an object.

  8. Visualization of Near-Infrared Spectral Data of Eros Using the Small Body Mapping Tool

    NASA Astrophysics Data System (ADS)

    Klima, Rachel L.; Ernst, Carolyn

    2016-10-01

    One of the primary drivers for many missions visiting asteroids is to advance our understanding of their composition beyond what can be (and is) already measured by telescopes. Without sample return or lander missions, this task relies primarily on resolved near-infrared spectroscopic measurements. Scientific analysis using spectral data collected by point spectrometers is not as straightforward as for imaging spectrometers, where the local spatial context is immediately available. In the case of Eros and other highly non-spherical bodies, this problem becomes even more severe when trying to locate spectra that cross a mapped feature that bends over an irregularly shaped surface. Thus, it is often the case that outside of the mission teams, few from the community at large delve into these data sets, as they lack the tools necessary to incorporate the spectral information into geological analyses of the asteroids. Ultimately, we seek to make such spectral datasets, which NASA has invested significant amounts of money to obtain, more widely accessible and user-friendly. The Small Bodies Mapping Tool (SBMT) is a Java-based, interactive, three-dimensional visualization tool written and developed at APL to map and analyze features on irregularly shaped solar system bodies. The SBMT can be used to locate and then "drape" spacecraft images, spectra, and laser altimetry around the shape model of such bodies. It provides a means for rapid identification of available data in a region of interest and allows features to be mapped directly onto the shape model. The program allows the free rotation of a shape model (including any overlain data) in all directions, so that the correlation and distribution of mapped features can be easily and globally observed.We will present the results of our work on the NEAR/Near-Infrared Spectrograph (NIS) data, including improvements to the calibration made by using the geometric information provided by the SBMT and improvements to the SMBT

  9. Regional Sediment Management (RSM) Modeling Tools: Integration of Advanced Sediment Transport Tools into HEC-RAS

    DTIC Science & Technology

    2014-06-01

    Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment

  10. A low complexity visualization tool that helps to perform complex systems analysis

    NASA Astrophysics Data System (ADS)

    Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.

    2008-12-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  11. Applying Dataflow Architecture and Visualization Tools to In Vitro Pharmacology Data Automation.

    PubMed

    Pechter, David; Xu, Serena; Kurtz, Marc; Williams, Steven; Sonatore, Lisa; Villafania, Artjohn; Agrawal, Sony

    2016-12-01

    The pace and complexity of modern drug discovery places ever-increasing demands on scientists for data analysis and interpretation. Data flow programming and modern visualization tools address these demands directly. Three different requirements-one for allosteric modulator analysis, one for a specialized clotting analysis, and one for enzyme global progress curve analysis-are reviewed, and their execution in a combined data flow/visualization environment is outlined. © 2016 Society for Laboratory Automation and Screening.

  12. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  13. Interactive 3D visualization for theoretical virtual observatories

    NASA Astrophysics Data System (ADS)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  14. IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.

    PubMed

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam

    2015-01-01

    IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.

  15. Applying open source data visualization tools to standard based medical data.

    PubMed

    Kopanitsa, Georgy; Taranik, Maxim

    2014-01-01

    Presentation of medical data in personal health records (PHRs) requires flexible platform independent tools to ensure easy access to the information. Different backgrounds of the patients, especially elder people require simple graphical presentation of the data. Data in PHRs can be collected from heterogeneous sources. Application of standard based medical data allows development of generic visualization methods. Focusing on the deployment of Open Source Tools, in this paper we applied Java Script libraries to create data presentations for standard based medical data.

  16. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees

    PubMed Central

    Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J.; Hu, Songnian; Chen, Wei-Hua

    2012-01-01

    EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html. PMID:22695796

  17. Photovoice as a Teaching Tool: Learning by Doing with Visual Methods

    ERIC Educational Resources Information Center

    Schell, Kara; Ferguson, Alana; Hamoline, Rita; Shea, Jennifer; Thomas-MacLean, Roanne

    2009-01-01

    There has been a lack of research done on in-class teaching and learning using visual methods. The purpose of this article is to demonstrate an enriched teaching and learning experience, facilitated by a Photovoice project, in an Advanced Methodology class where sociology graduate students were exposed to various social research methods and…

  18. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  19. Visual Communications And Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell; Tzou, Kou-Hu

    1989-07-01

    This special issue on Visual Communications and Image Processing contains 14 papers that cover a wide spectrum in this fast growing area. For the past few decades, researchers and scientists have devoted their efforts to these fields. Through this long-lasting devotion, we witness today the growing popularity of low-bit-rate video as a convenient tool for visual communication. We also see the integration of high-quality video into broadband digital networks. Today, with more sophisticated processing, clearer and sharper pictures are being restored from blurring and noise. Also, thanks to the advances in digital image processing, even a PC-based system can be built to recognize highly complicated Chinese characters at the speed of 300 characters per minute. This special issue can be viewed as a milestone of visual communications and image processing on its journey to eternity. It presents some overviews on advanced topics as well as some new development in specific subjects.

  20. EINVis: a visualization tool for analyzing and exploring genetic interactions in large-scale association studies.

    PubMed

    Wu, Yubao; Zhu, Xiaofeng; Chen, Jian; Zhang, Xiang

    2013-11-01

    Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently drawn extensive research interests as many complex traits are likely caused by the joint effect of multiple genetic factors. The large number of possible interactions poses both statistical and computational challenges. A variety of approaches have been developed to address the analytical challenges in epistatic interaction detection. These methods usually output the identified genetic interactions and store them in flat file formats. It is highly desirable to develop an effective visualization tool to further investigate the detected interactions and unravel hidden interaction patterns. We have developed EINVis, a novel visualization tool that is specifically designed to analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and chromosomes, and the network structure formed by these interactions. Using EINVis, the user can distinguish marginal effects from interactions, track interactions involving more than two markers, visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic interactions. It is publicly available with detailed documentation and online tutorial on the web at http://filer.case.edu/yxw407/einvis/. © 2013 WILEY PERIODICALS, INC.

  1. VisualUrText: A Text Analytics Tool for Unstructured Textual Data

    NASA Astrophysics Data System (ADS)

    Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.

    2018-05-01

    The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.

  2. Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS

    NASA Astrophysics Data System (ADS)

    Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron

    2017-12-01

    This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.

  3. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  4. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  5. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    PubMed

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  6. An integrated modeling and design tool for advanced optical spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1992-01-01

    Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.

  7. Can Interactive Visualization Tools Engage and Support Pre-University Students in Exploring Non-Trivial Mathematical Concepts?

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2010-01-01

    Many students find it difficult to engage with mathematical concepts. As a relatively new class of learning tools, visualization tools may be able to promote higher levels of engagement with mathematical concepts. Often, development of new tools may outpace empirical evaluations of the effectiveness of these tools, especially in educational…

  8. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    PubMed Central

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-01-01

    Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818

  9. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data.

    PubMed

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-10-15

    Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  10. Contingency Analysis Post-Processing With Advanced Computing and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin

    Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability andmore » accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.« less

  11. Developing an Interactive Data Visualization Tool to Assess the Impact of Decision Support on Clinical Operations.

    PubMed

    Huber, Timothy C; Krishnaraj, Arun; Monaghan, Dayna; Gaskin, Cree M

    2018-05-18

    Due to mandates from recent legislation, clinical decision support (CDS) software is being adopted by radiology practices across the country. This software provides imaging study decision support for referring providers at the point of order entry. CDS systems produce a large volume of data, providing opportunities for research and quality improvement. In order to better visualize and analyze trends in this data, an interactive data visualization dashboard was created using a commercially available data visualization platform. Following the integration of a commercially available clinical decision support product into the electronic health record, a dashboard was created using a commercially available data visualization platform (Tableau, Seattle, WA). Data generated by the CDS were exported from the data warehouse, where they were stored, into the platform. This allowed for real-time visualization of the data generated by the decision support software. The creation of the dashboard allowed the output from the CDS platform to be more easily analyzed and facilitated hypothesis generation. Integrating data visualization tools into clinical decision support tools allows for easier data analysis and can streamline research and quality improvement efforts.

  12. Visual Tools for Eliciting Connections and Cohesiveness in Mixed Methods Research

    ERIC Educational Resources Information Center

    Murawska, Jaclyn M.; Walker, David A.

    2017-01-01

    In this commentary, we offer a set of visual tools that can assist education researchers, especially those in the field of mathematics, in developing cohesiveness from a mixed methods perspective, commencing at a study's research questions and literature review, through its data collection and analysis, and finally to its results. This expounds…

  13. The Film as Visual Aided Learning Tool in Classroom Management Course

    ERIC Educational Resources Information Center

    Altinay Gazi, Zehra; Altinay Aksal, Fahriye

    2011-01-01

    This research aims to investigate the impact of the visual aided learning on pre-service teachers' co-construction of subject matter knowledge in teaching practice. The study revealed the examination of film as an active cognizing and learning tool in classroom management course within teacher education programme. Within the framework of action…

  14. Visualization in simulation tools: requirements and a tool specification to support the teaching of dynamic biological processes.

    PubMed

    Jørgensen, Katarina M; Haddow, Pauline C

    2011-08-01

    Simulation tools are playing an increasingly important role behind advances in the field of systems biology. However, the current generation of biological science students has either little or no experience with such tools. As such, this educational glitch is limiting both the potential use of such tools as well as the potential for tighter cooperation between the designers and users. Although some simulation tool producers encourage their use in teaching, little attempt has hitherto been made to analyze and discuss their suitability as an educational tool for noncomputing science students. In general, today's simulation tools assume that the user has a stronger mathematical and computing background than that which is found in most biological science curricula, thus making the introduction of such tools a considerable pedagogical challenge. This paper provides an evaluation of the pedagogical attributes of existing simulation tools for cell signal transduction based on Cognitive Load theory. Further, design recommendations for an improved educational simulation tool are provided. The study is based on simulation tools for cell signal transduction. However, the discussions are relevant to a broader biological simulation tool set.

  15. An interactive mapping tool for visualizing lacunarity of laser scanned point clouds

    NASA Astrophysics Data System (ADS)

    Kania, Adam; Székely, Balázs

    2016-04-01

    Lacunarity, a measure of the spatial distribution of the empty space in a certain model or real space over large spatial scales, is found to be a useful descriptive quantity in many fields using imagery, including, among others, geology, dentistry, neurology. Its application in ecology was suggested more than 20 years ago. The main problem of its application was the lack of appropriate high resolution data. Nowadays, full-waveform laser scanning, also known as FWF LiDAR, provides the tool for mapping the vegetation in unprecedented details and accuracy. Consequently, the lacunarity concept can be revitalized, in order to study the structure of the vegetation in this sense as well. Calculation of lacunarity, even if it is done in two dimensions (2D), is still has its problems: on one hand it is a number-crunching procedure, on the other hand, it produces 4D results: at each 3D point it returns a set of data that are function of scale. These data sets are difficult to visualize, to evaluate, and to compare. In order to solve this problem, an interactive mapping tool has been conceptualized that is designed to manipulate and visualize the data, lets the user set parameters for best visualization or comparison results. The system is able to load large amounts of data, visualize them as lacunarity curves, or map view as horizontal slices or in 3D point clouds coloured according to the user's choice. Lacunarity maps are presented as a series of (usually) horizontal profiles, e.g. rasters, which cells contain color-mapped values of selected lacunarity of the point cloud. As lacunarity is usually analysed in a series of successive windows sizes, the tool can show a series of rasters with sequentially animated lacunarity maps calculated for various window sizes. A very fast switching of colour schemes is possible to facilitate rapid visual feedback to better understand underlying data patterns exposed by lacunarity functions. In the comparison mode, two sites (or two areas

  16. Body posture differentially impacts on visual attention towards tool, graspable, and non-graspable objects.

    PubMed

    Ambrosini, Ettore; Costantini, Marcello

    2017-02-01

    Viewed objects have been shown to afford suitable actions, even in the absence of any intention to act. However, little is known as to whether gaze behavior (i.e., the way we simply look at objects) is sensitive to action afforded by the seen object and how our actual motor possibilities affect this behavior. We recorded participants' eye movements during the observation of tools, graspable and ungraspable objects, while their hands were either freely resting on the table or tied behind their back. The effects of the observed object and hand posture on gaze behavior were measured by comparing the actual fixation distribution with that predicted by 2 widely supported models of visual attention, namely the Graph-Based Visual Saliency and the Adaptive Whitening Salience models. Results showed that saliency models did not accurately predict participants' fixation distributions for tools. Indeed, participants mostly fixated the action-related, functional part of the tools, regardless of its visual saliency. Critically, the restriction of the participants' action possibility led to a significant reduction of this effect and significantly improved the model prediction of the participants' gaze behavior. We suggest, first, that action-relevant object information at least in part guides gaze behavior. Second, postural information interacts with visual information to the generation of priority maps of fixation behavior. We support the view that the kind of information we access from the environment is constrained by our readiness to act. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization.

    PubMed

    Morrell, William C; Birkel, Garrett W; Forrer, Mark; Lopez, Teresa; Backman, Tyler W H; Dussault, Michael; Petzold, Christopher J; Baidoo, Edward E K; Costello, Zak; Ando, David; Alonso-Gutierrez, Jorge; George, Kevin W; Mukhopadhyay, Aindrila; Vaino, Ian; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Garcia Martin, Hector

    2017-12-15

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDD and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.

  18. MemAxes Visualization Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  19. From a Gloss to a Learning Tool: Does Visual Aids Enhance Better Sentence Comprehension?

    ERIC Educational Resources Information Center

    Sato, Takeshi; Suzuki, Akio

    2012-01-01

    The aim of this study is to optimize CALL environments as a learning tool rather than a gloss, focusing on the learning of polysemous words which refer to spatial relationship between objects. A lot of research has already been conducted to examine the efficacy of visual glosses while reading L2 texts and has reported that visual glosses can be…

  20. Evaluation of Visualization Tools for Computer Network Defense Analysts: Display Design, Methods, and Results for a User Study

    DTIC Science & Technology

    2016-11-01

    Display Design, Methods , and Results for a User Study by Christopher J Garneau and Robert F Erbacher Approved for public...NOV 2016 US Army Research Laboratory Evaluation of Visualization Tools for Computer Network Defense Analysts: Display Design, Methods ...January 2013–September 2015 4. TITLE AND SUBTITLE Evaluation of Visualization Tools for Computer Network Defense Analysts: Display Design, Methods

  1. A pandemic influenza modeling and visualization tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maciejewski, Ross; Livengood, Philip; Rudolph, Stephen

    2011-08-01

    The National Strategy for Pandemic Influenza outlines a plan for community response to a potential pandemic. In this outline, state and local communities are charged with enhancing their preparedness. In order to help public health officials better understand these charges, we have developed a modeling and visualization toolkit (PanViz) for analyzing the effect of decision measures implemented during a simulated pandemic influenza scenario. Spread vectors based on the point of origin and distance traveled over time are calculated and the factors of age distribution and population density are taken into effect. Healthcare officials are able to explore the effects ofmore » the pandemic on the population through a spatiotemporal view, moving forward and backward through time and inserting decision points at various days to determine the impact. Linked statistical displays are also shown, providing county level summaries of data in terms of the number of sick, hospitalized and dead as a result of the outbreak. Currently, this tool has been deployed in Indiana State Department of Health planning and preparedness exercises, and as an educational tool for demonstrating the impact of social distancing strategies during the recent H1N1 (swine flu) outbreak.« less

  2. Evaluation of reliability modeling tools for advanced fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Scheper, Charlotte

    1986-01-01

    The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.

  3. Tools for visualization of phosphoinositides in the cell nucleus.

    PubMed

    Kalasova, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Yildirim, Sukriye; Uličná, Lívia; Venit, Tomáš; Hozák, Pavel

    2016-04-01

    Phosphoinositides (PIs) are glycerol-based phospholipids containing hydrophilic inositol ring. The inositol ring is mono-, bis-, or tris-phosphorylated yielding seven PIs members. Ample evidence shows that PIs localize both to the cytoplasm and to the nucleus. However, tools for direct visualization of nuclear PIs are limited and many studies thus employ indirect approaches, such as staining of their metabolic enzymes. Since localization and mobility of PIs differ from their metabolic enzymes, these approaches may result in incomplete data. In this paper, we tested commercially available PIs antibodies by light microscopy on fixed cells, tested their specificity using protein-lipid overlay assay and blocking assay, and compared their staining patterns. Additionally, we prepared recombinant PIs-binding domains and tested them on both fixed and live cells by light microscopy. The results provide a useful overview of usability of the tools tested and stress that the selection of adequate tools is critical. Knowing the localization of individual PIs in various functional compartments should enable us to better understand the roles of PIs in the cell nucleus.

  4. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J.

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  5. Instrumentation, performance visualization, and debugging tools for multiprocessors

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.

    1991-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.

  6. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    NASA Technical Reports Server (NTRS)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  7. Using a Self-Administered Visual Basic Software Tool To Teach Psychological Concepts.

    ERIC Educational Resources Information Center

    Strang, Harold R.; Sullivan, Amie K.; Schoeny, Zahrl G.

    2002-01-01

    Introduces LearningLinks, a Visual Basic software tool that allows teachers to create individualized learning modules that use constructivist and behavioral learning principles. Describes field testing of undergraduates at the University of Virginia that tested a module designed to improve understanding of the psychological concepts of…

  8. SnopViz, an interactive snow profile visualization tool

    NASA Astrophysics Data System (ADS)

    Fierz, Charles; Egger, Thomas; gerber, Matthias; Bavay, Mathias; Techel, Frank

    2016-04-01

    SnopViz is a visualization tool for both simulation outputs of the snow-cover model SNOWPACK and observed snow profiles. It has been designed to fulfil the needs of operational services (Swiss Avalanche Warning Service, Avalanche Canada) as well as offer the flexibility required to satisfy the specific needs of researchers. This JavaScript application runs on any modern browser and does not require an active Internet connection. The open source code is available for download from models.slf.ch where examples can also be run. Both the SnopViz library and the SnopViz User Interface will become a full replacement of the current research visualization tool SN_GUI for SNOWPACK. The SnopViz library is a stand-alone application that parses the provided input files, for example, a single snow profile (CAAML file format) or multiple snow profiles as output by SNOWPACK (PRO file format). A plugin architecture allows for handling JSON objects (JavaScript Object Notation) as well and plugins for other file formats may be added easily. The outputs are provided either as vector graphics (SVG) or JSON objects. The SnopViz User Interface (UI) is a browser based stand-alone interface. It runs in every modern browser, including IE, and allows user interaction with the graphs. SVG, the XML based standard for vector graphics, was chosen because of its easy interaction with JS and a good software support (Adobe Illustrator, Inkscape) to manipulate graphs outside SnopViz for publication purposes. SnopViz provides new visualization for SNOWPACK timeline output as well as time series input and output. The actual output format for SNOWPACK timelines was retained while time series are read from SMET files, a file format used in conjunction with the open source data handling code MeteoIO. Finally, SnopViz is able to render single snow profiles, either observed or modelled, that are provided as CAAML-file. This file format (caaml.org/Schemas/V5.0/Profiles/SnowProfileIACS) is an international

  9. Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    rainfall conditions are available in the IFIS. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.

  10. LitPathExplorer: a confidence-based visual text analytics tool for exploring literature-enriched pathway models.

    PubMed

    Soto, Axel J; Zerva, Chrysoula; Batista-Navarro, Riza; Ananiadou, Sophia

    2018-04-15

    Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support. We have developed LitPathExplorer, a visual text analytics tool that integrates advanced text mining, semi-supervised learning and interactive visualization, to facilitate the exploration and analysis of pathway models using statements (i.e. events) extracted automatically from the literature and organized according to levels of confidence. LitPathExplorer supports pathway modellers and curators alike by: (i) extracting events from the literature that corroborate existing models with evidence; (ii) discovering new events which can update models; and (iii) providing a confidence value for each event that is automatically computed based on linguistic features and article metadata. Our evaluation of event extraction showed a precision of 89% and a recall of 71%. Evaluation of our confidence measure, when used for ranking sampled events, showed an average precision ranging between 61 and 73%, which can be improved to 95% when the user is involved in the semi-supervised learning process. Qualitative evaluation using pair analytics based on the feedback of three domain experts confirmed the utility of our tool within the context of pathway model exploration. LitPathExplorer is available at http://nactem.ac.uk/LitPathExplorer_BI/. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online.

  11. Microsurgical Clipping of an Anterior Communicating Artery Aneurysm Using a Novel Robotic Visualization Tool in Lieu of the Binocular Operating Microscope: Operative Video.

    PubMed

    Klinger, Daniel R; Reinard, Kevin A; Ajayi, Olaide O; Delashaw, Johnny B

    2018-01-01

    The binocular operating microscope has been the visualization instrument of choice for microsurgical clipping of intracranial aneurysms for many decades. To discuss recent technological advances that have provided novel visualization tools, which may prove to be superior to the binocular operating microscope in many regards. We present an operative video and our operative experience with the BrightMatterTM Servo System (Synaptive Medical, Toronto, Ontario, Canada) during the microsurgical clipping of an anterior communicating artery aneurysm. To the best of our knowledge, the use of this device for the microsurgical clipping of an intracranial aneurysm has never been described in the literature. The BrightMatterTM Servo System (Synaptive Medical) is a surgical exoscope which avoids many of the ergonomic constraints of the binocular operating microscope, but is associated with a steep learning curve. The BrightMatterTM Servo System (Synaptive Medical) is a maneuverable surgical exoscope that is positioned with a directional aiming device and a surgeon-controlled foot pedal. While utilizing this device comes with a steep learning curve typical of any new technology, the BrightMatterTM Servo System (Synaptive Medical) has several advantages over the conventional surgical microscope, which include a relatively unobstructed surgical field, provision of high-definition images, and visualization of difficult angles/trajectories. This device can easily be utilized as a visualization tool for a variety of cranial and spinal procedures in lieu of the binocular operating microscope. We anticipate that this technology will soon become an integral part of the neurosurgeon's armamentarium. Copyright © 2017 by the Congress of Neurological Surgeons

  12. GENEASE: Real time bioinformatics tool for multi-omics and disease ontology exploration, analysis and visualization.

    PubMed

    Ghandikota, Sudhir; Hershey, Gurjit K Khurana; Mersha, Tesfaye B

    2018-03-24

    Advances in high-throughput sequencing technologies have made it possible to generate multiple omics data at an unprecedented rate and scale. The accumulation of these omics data far outpaces the rate at which biologists can mine and generate new hypothesis to test experimentally. There is an urgent need to develop a myriad of powerful tools to efficiently and effectively search and filter these resources to address specific post-GWAS functional genomics questions. However, to date, these resources are scattered across several databases and often lack a unified portal for data annotation and analytics. In addition, existing tools to analyze and visualize these databases are highly fragmented, resulting researchers to access multiple applications and manual interventions for each gene or variant in an ad hoc fashion until all the questions are answered. In this study, we present GENEASE, a web-based one-stop bioinformatics tool designed to not only query and explore multi-omics and phenotype databases (e.g., GTEx, ClinVar, dbGaP, GWAS Catalog, ENCODE, Roadmap Epigenomics, KEGG, Reactome, Gene and Phenotype Ontology) in a single web interface but also to perform seamless post genome-wide association downstream functional and overlap analysis for non-coding regulatory variants. GENEASE accesses over 50 different databases in public domain including model organism-specific databases to facilitate gene/variant and disease exploration, enrichment and overlap analysis in real time. It is a user-friendly tool with point-and-click interface containing links for support information including user manual and examples. GENEASE can be accessed freely at http://research.cchmc.org/mershalab/genease_new/login.html. Tesfaye.Mersha@cchmc.org, Sudhir.Ghandikota@cchmc.org. Supplementary data are available at Bioinformatics online.

  13. SocialMood: an information visualization tool to measure the mood of the people in social networks

    NASA Astrophysics Data System (ADS)

    Amorim, Guilherme; Franco, Roberto; Moraes, Rodolfo; Figueiredo, Bruno; Miranda, João.; Dobrões, José; Afonso, Ricardo; Meiguins, Bianchi

    2013-12-01

    Based on the arena of social networks, the tool developed in this study aims to identify trends mood among undergraduate students. Combining the methodology Self-Assessment Manikin (SAM), which originated in the field of Psychology, the system filters the content provided on the Web and isolates certain words, establishing a range of values as perceived positive, negative or neutral. A Big Data summarizing the results, assisting in the construction and visualization of behavioral profiles generic, so we have a guideline for the development of information visualization tools for social networks.

  14. The Computer: An Art Tool for the Visually Gifted. A Curriculum Guide.

    ERIC Educational Resources Information Center

    Suter, Thomas E.; Bibbey, Melissa R.

    This curriculum guide, developed and used in Wheelersburg (Ohio) with visually talented students, shows how such students can be taught to utilize computers as an art medium and tool. An initial section covers program implementation including setup, class structure and scheduling, teaching strategies, and housecleaning and maintenance. Seventeen…

  15. Visual Analytics for Law Enforcement: Deploying a Service-Oriented Analytic Framework for Web-based Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowson, Scott T.; Bruce, Joseph R.; Best, Daniel M.

    2009-04-14

    This paper presents key components of the Law Enforcement Information Framework (LEIF) that provides communications, situational awareness, and visual analytics tools in a service-oriented architecture supporting web-based desktop and handheld device users. LEIF simplifies interfaces and visualizations of well-established visual analytical techniques to improve usability. Advanced analytics capability is maintained by enhancing the underlying processing to support the new interface. LEIF development is driven by real-world user feedback gathered through deployments at three operational law enforcement organizations in the US. LEIF incorporates a robust information ingest pipeline supporting a wide variety of information formats. LEIF also insulates interface and analyticalmore » components from information sources making it easier to adapt the framework for many different data repositories.« less

  16. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  17. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  18. Study of a direct visualization display tool for space applications

    NASA Astrophysics Data System (ADS)

    Pereira do Carmo, J.; Gordo, P. R.; Martins, M.; Rodrigues, F.; Teodoro, P.

    2017-11-01

    The study of a Direct Visualization Display Tool (DVDT) for space applications is reported. The review of novel technologies for a compact display tool is described. Several applications for this tool have been identified with the support of ESA astronauts and are presented. A baseline design is proposed. It consists mainly of OLEDs as image source; a specially designed optical prism as relay optics; a Personal Digital Assistant (PDA), with data acquisition card, as control unit; and voice control and simplified keyboard as interfaces. Optical analysis and the final estimated performance are reported. The system is able to display information (text, pictures or/and video) with SVGA resolution directly to the astronaut using a Field of View (FOV) of 20x14.5 degrees. The image delivery system is a monocular Head Mounted Display (HMD) that weights less than 100g. The HMD optical system has an eye pupil of 7mm and an eye relief distance of 30mm.

  19. Visual simulations of forest wildlife habitat structure, change, and landscape context in New England

    Treesearch

    Richard M. DeGraaf; Anna M. Lester; Mariko Yamasaki; William B. Leak

    2007-01-01

    Visualization is a powerful tool for depicting projections of forest structure and landscape conditions, for communicating habitat management practices, and for providing a landscape context to private landowners and to those concerned with public land management. Recent advances in visualization technology, especially in graphics quality, ease of use, and relative...

  20. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrell, William C.; Birkel, Garrett W.; Forrer, Mark

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less

  1. The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization

    DOE PAGES

    Morrell, William C.; Birkel, Garrett W.; Forrer, Mark; ...

    2017-08-21

    Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less

  2. PhyloDet: a scalable visualization tool for mapping multiple traits to large evolutionary trees

    PubMed Central

    Lee, Bongshin; Nachmanson, Lev; Robertson, George; Carlson, Jonathan M.; Heckerman, David

    2009-01-01

    Summary: Evolutionary biologists are often interested in finding correlations among biological traits across a number of species, as such correlations may lead to testable hypotheses about the underlying function. Because some species are more closely related than others, computing and visualizing these correlations must be done in the context of the evolutionary tree that relates species. In this note, we introduce PhyloDet (short for PhyloDetective), an evolutionary tree visualization tool that enables biologists to visualize multiple traits mapped to the tree. Availability: http://research.microsoft.com/cue/phylodet/ Contact: bongshin@microsoft.com. PMID:19633096

  3. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  4. Procedures and Tools Used by Teachers When Completing Functional Vision Assessments with Children with Visual Impairments

    ERIC Educational Resources Information Center

    Kaiser, Justin T.; Herzberg, Tina S.

    2017-01-01

    Introduction: This study analyzed survey responses from 314 teachers of students with visual impairments regarding the tools and procedures used in completing functional vision assessments (FVAs). Methods: Teachers of students with visual impairments in the United States and Canada completed an online survey during spring 2016. Results: The…

  5. A framework for interactive visualization of digital medical images.

    PubMed

    Koehring, Andrew; Foo, Jung Leng; Miyano, Go; Lobe, Thom; Winer, Eliot

    2008-10-01

    The visualization of medical images obtained from scanning techniques such as computed tomography and magnetic resonance imaging is a well-researched field. However, advanced tools and methods to manipulate these data for surgical planning and other tasks have not seen widespread use among medical professionals. Radiologists have begun using more advanced visualization packages on desktop computer systems, but most physicians continue to work with basic two-dimensional grayscale images or not work directly with the data at all. In addition, new display technologies that are in use in other fields have yet to be fully applied in medicine. It is our estimation that usability is the key aspect in keeping this new technology from being more widely used by the medical community at large. Therefore, we have a software and hardware framework that not only make use of advanced visualization techniques, but also feature powerful, yet simple-to-use, interfaces. A virtual reality system was created to display volume-rendered medical models in three dimensions. It was designed to run in many configurations, from a large cluster of machines powering a multiwalled display down to a single desktop computer. An augmented reality system was also created for, literally, hands-on interaction when viewing models of medical data. Last, a desktop application was designed to provide a simple visualization tool, which can be run on nearly any computer at a user's disposal. This research is directed toward improving the capabilities of medical professionals in the tasks of preoperative planning, surgical training, diagnostic assistance, and patient education.

  6. Different visual exploration of tool-related gestures in left hemisphere brain damaged patients is associated with poor gestural imitation.

    PubMed

    Vanbellingen, Tim; Schumacher, Rahel; Eggenberger, Noëmi; Hopfner, Simone; Cazzoli, Dario; Preisig, Basil C; Bertschi, Manuel; Nyffeler, Thomas; Gutbrod, Klemens; Bassetti, Claudio L; Bohlhalter, Stephan; Müri, René M

    2015-05-01

    According to the direct matching hypothesis, perceived movements automatically activate existing motor components through matching of the perceived gesture and its execution. The aim of the present study was to test the direct matching hypothesis by assessing whether visual exploration behavior correlate with deficits in gestural imitation in left hemisphere damaged (LHD) patients. Eighteen LHD patients and twenty healthy control subjects took part in the study. Gesture imitation performance was measured by the test for upper limb apraxia (TULIA). Visual exploration behavior was measured by an infrared eye-tracking system. Short videos including forty gestures (20 meaningless and 20 communicative gestures) were presented. Cumulative fixation duration was measured in different regions of interest (ROIs), namely the face, the gesturing hand, the body, and the surrounding environment. Compared to healthy subjects, patients fixated significantly less the ROIs comprising the face and the gesturing hand during the exploration of emblematic and tool-related gestures. Moreover, visual exploration of tool-related gestures significantly correlated with tool-related imitation as measured by TULIA in LHD patients. Patients and controls did not differ in the visual exploration of meaningless gestures, and no significant relationships were found between visual exploration behavior and the imitation of emblematic and meaningless gestures in TULIA. The present study thus suggests that altered visual exploration may lead to disturbed imitation of tool related gestures, however not of emblematic and meaningless gestures. Consequently, our findings partially support the direct matching hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Raising parents' awareness of the benefits of immunization by using a visual aid tool.

    PubMed

    Mulumba, Jose Gaby Tshikuka; Daoud, Saada; Kabang, Bandé

    2007-07-01

    A visual aid tool was used in two communities of Chad to raise parents' awareness of the benefits of immunization. In one community, the tool was administered by social workers two weeks before national immunization days (NIDs) and in the other community by vaccinators during NIDs. Parents' awareness significantly rose in both communities but was more significant in the community where the tool was administered by social workers. A significant association was found between parents' unawareness and children who missed immunization in both communities.

  8. Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus James

    2013-01-01

    The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.

  9. WebScope: A New Tool for Fusion Data Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Dang, Ningning; Xiao, Bingjia

    2010-04-01

    A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.

  10. Applying a visual language for image processing as a graphical teaching tool in medical imaging

    NASA Astrophysics Data System (ADS)

    Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As

  11. A results-based process for evaluation of diverse visual analytics tools

    NASA Astrophysics Data System (ADS)

    Rubin, Gary; Berger, David H.

    2013-05-01

    With the pervasiveness of still and full-motion imagery in commercial and military applications, the need to ingest and analyze these media has grown rapidly in recent years. Additionally, video hosting and live camera websites provide a near real-time view of our changing world with unprecedented spatial coverage. To take advantage of these controlled and crowd-sourced opportunities, sophisticated visual analytics (VA) tools are required to accurately and efficiently convert raw imagery into usable information. Whether investing in VA products or evaluating algorithms for potential development, it is important for stakeholders to understand the capabilities and limitations of visual analytics tools. Visual analytics algorithms are being applied to problems related to Intelligence, Surveillance, and Reconnaissance (ISR), facility security, and public safety monitoring, to name a few. The diversity of requirements means that a onesize- fits-all approach to performance assessment will not work. We present a process for evaluating the efficacy of algorithms in real-world conditions, thereby allowing users and developers of video analytics software to understand software capabilities and identify potential shortcomings. The results-based approach described in this paper uses an analysis of end-user requirements and Concept of Operations (CONOPS) to define Measures of Effectiveness (MOEs), test data requirements, and evaluation strategies. We define metrics that individually do not fully characterize a system, but when used together, are a powerful way to reveal both strengths and weaknesses. We provide examples of data products, such as heatmaps, performance maps, detection timelines, and rank-based probability-of-detection curves.

  12. Multimodal visualization interface for data management, self-learning and data presentation.

    PubMed

    Van Sint Jan, S; Demondion, X; Clapworthy, G; Louryan, S; Rooze, M; Cotten, A; Viceconti, M

    2006-10-01

    A multimodal visualization software, called the Data Manager (DM), has been developed to increase interdisciplinary communication around the topic of visualization and modeling of various aspects of the human anatomy. Numerous tools used in Radiology are integrated in the interface that runs on standard personal computers. The available tools, combined to hierarchical data management and custom layouts, allow analyzing of medical imaging data using advanced features outside radiological premises (for example, for patient review, conference presentation or tutorial preparation). The system is free, and based on an open-source software development architecture, and therefore updates of the system for custom applications are possible.

  13. Real-Time Aerodynamic Flow and Data Visualization in an Interactive Virtual Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2005-01-01

    Significant advances have been made to non-intrusive flow field diagnostics in the past decade. Camera based techniques are now capable of determining physical qualities such as surface deformation, surface pressure and temperature, flow velocities, and molecular species concentration. In each case, extracting the pertinent information from the large volume of acquired data requires powerful and efficient data visualization tools. The additional requirement for real time visualization is fueled by an increased emphasis on minimizing test time in expensive facilities. This paper will address a capability titled LiveView3D, which is the first step in the development phase of an in depth, real time data visualization and analysis tool for use in aerospace testing facilities.

  14. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma

    PubMed Central

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-01-01

    Background/aims To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Methods Normal subjects and patients with glaucoma with mean deviation <–12 dB in both eyes (Humphrey Field Analyzer 24-2 SITA-S program) used a driving simulator (DS; Honda Motor, Tokyo). Two scenarios in which oncoming cars turned right crossing the driver's path were chosen. We compared the binocular integrated visual field (IVF) in the patients who were involved in collisions and those who were not. We performed a multivariate logistic regression analysis; the dependent parameter was collision involvement, and the independent parameters were age, visual acuity and mean sensitivity of the IVF subfields. Results The study included 43 normal subjects and 100 patients with advanced glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (p<0.001). The patients with advanced glaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (p<0.001) and had lower mean IVF sensitivity in the inferior hemifield, both 0°–12° and 13°–24° in comparison with who were not involved in collisions (p=0.012 and p=0.034). A logistic regression analysis revealed that collision involvement was significantly associated with decreased inferior IVF mean sensitivity from 13° to 24° (p=0.041), in addition to older age and lower visual acuity (p=0.018 and p<0.001). Conclusions Our data suggest that the inferior hemifield was associated with the incidence of motor vehicle collisions with oncoming cars in patients with advanced glaucoma. PMID:28400370

  15. User Directed Tools for Exploiting Expert Knowledge in an Immersive Segmentation and Visualization Environment

    NASA Technical Reports Server (NTRS)

    Senger, Steven O.

    1998-01-01

    Volumetric data sets have become common in medicine and many sciences through technologies such as computed x-ray tomography (CT), magnetic resonance (MR), positron emission tomography (PET), confocal microscopy and 3D ultrasound. When presented with 2D images humans immediately and unconsciously begin a visual analysis of the scene. The viewer surveys the scene identifying significant landmarks and building an internal mental model of presented information. The identification of features is strongly influenced by the viewers expectations based upon their expert knowledge of what the image should contain. While not a conscious activity, the viewer makes a series of choices about how to interpret the scene. These choices occur in parallel with viewing the scene and effectively change the way the viewer sees the image. It is this interaction of viewing and choice which is the basis of many familiar visual illusions. This is especially important in the interpretation of medical images where it is the expert knowledge of the radiologist which interprets the image. For 3D data sets this interaction of view and choice is frustrated because choices must precede the visualization of the data set. It is not possible to visualize the data set with out making some initial choices which determine how the volume of data is presented to the eye. These choices include, view point orientation, region identification, color and opacity assignments. Further compounding the problem is the fact that these visualization choices are defined in terms of computer graphics as opposed to language of the experts knowledge. The long term goal of this project is to develop an environment where the user can interact with volumetric data sets using tools which promote the utilization of expert knowledge by incorporating visualization and choice into a tight computational loop. The tools will support activities involving the segmentation of structures, construction of surface meshes and local

  16. Visual-haptic integration with pliers and tongs: signal “weights” take account of changes in haptic sensitivity caused by different tools

    PubMed Central

    Takahashi, Chie; Watt, Simon J.

    2014-01-01

    When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the “weight” given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots) with different “gains” between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber's law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modeled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimizing the design of visual

  17. Panoramic-image-based rendering solutions for visualizing remote locations via the web

    NASA Astrophysics Data System (ADS)

    Obeysekare, Upul R.; Egts, David; Bethmann, John

    2000-05-01

    With advances in panoramic image-based rendering techniques and the rapid expansion of web advertising, new techniques are emerging for visualizing remote locations on the WWW. Success of these techniques depends on how easy and inexpensive it is to develop a new type of web content that provides pseudo 3D visualization at home, 24-hours a day. Furthermore, the acceptance of this new visualization medium depends on the effectiveness of the familiarization tools by a segment of the population that was never exposed to this type of visualization. This paper addresses various hardware and software solutions available to collect, produce, and view panoramic content. While cost and effectiveness of building the content is being addressed using a few commercial hardware solutions, effectiveness of familiarization tools is evaluated using a few sample data sets.

  18. Living Color Frame System: PC graphics tool for data visualization

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1993-01-01

    Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.

  19. π Scope: python based scientific workbench with visualization tool for MDSplus data

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.

    2014-10-01

    π Scope is a python based scientific data analysis and visualization tool constructed on wxPython and Matplotlib. Although it is designed to be a generic tool, the primary motivation for developing the new software is 1) to provide an updated tool to browse MDSplus data, with functionalities beyond dwscope and jScope, and 2) to provide a universal foundation to construct interface tools to perform computer simulation and modeling for Alcator C-Mod. It provides many features to visualize MDSplus data during tokamak experiments including overplotting different signals and discharges, various plot types (line, contour, image, etc.), in-panel data analysis using python scripts, and publication quality graphics generation. Additionally, the logic to produce multi-panel plots is designed to be backward compatible with dwscope, enabling smooth migration for dwscope users. πScope uses multi-threading to reduce data transfer latency, and its object-oriented design makes it easy to modify and expand while the open source nature allows portability. A built-in tree data browser allows a user to approach the data structure both from a GUI and a script, enabling relatively complex data analysis workflow to be built quickly. As an example, an IDL-based interface to perform GENRAY/CQL3D simulations was ported on πScope, thus allowing LHCD simulation to be run between-shot using C-Mod experimental profiles. This workflow is being used to generate a large database to develop a LHCD actuator model for the plasma control system. Supported by USDoE Award DE-FC02-99ER54512.

  20. XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data

    PubMed Central

    2015-01-01

    Background Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. Results In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. Conclusions Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results. PMID:26328893

  1. Genoviz Software Development Kit: Java tool kit for building genomics visualization applications.

    PubMed

    Helt, Gregg A; Nicol, John W; Erwin, Ed; Blossom, Eric; Blanchard, Steven G; Chervitz, Stephen A; Harmon, Cyrus; Loraine, Ann E

    2009-08-25

    Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. The Genoviz Software Development Kit (SDK) is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities. Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at http://genoviz.sourceforge.net/.

  2. Tools and Methods for Visualization of Mesoscale Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.

    2017-12-01

    Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available

  3. The iMeteo is a web-based weather visualization tool

    NASA Astrophysics Data System (ADS)

    Tuni San-Martín, Max; San-Martín, Daniel; Cofiño, Antonio S.

    2010-05-01

    iMeteo is a web-based weather visualization tool. Designed with an extensible J2EE architecture, it is capable of displaying information from heterogeneous data sources such as gridded data from numerical models (in NetCDF format) or databases of local predictions. All this information is presented in a user-friendly way, being able to choose the specific tool to display data (maps, graphs, information tables) and customize it to desired locations. *Modular Display System* Visualization of the data is achieved through a set of mini tools called widgets. A user can add them at will and arrange them around the screen easily with a drag and drop movement. They can be of various types and each can be configured separately, forming a really powerful and configurable system. The "Map" is the most complex widget, since it can show several variables simultaneously (either gridded or point-based) through a layered display. Other useful widgets are the the "Histogram", which generates a graph with the frequency characteristics of a variable and the "Timeline" which shows the time evolution of a variable at a given location in an interactive way. *Customization and security* Following the trends in web development, the user can easily customize the way data is displayed. Due to programming in client side with technologies like AJAX, the interaction with the application is similar to the desktop ones because there are rapid respone times. If a user is registered then he could also save his settings in the database, allowing access from any system with Internet access with his particular setup. There is particular emphasis on application security. The administrator can define a set of user profiles, which may have associated restrictions on access to certain data sources, geographic areas or time intervals.

  4. C-SPADE: a web-tool for interactive analysis and visualization of drug screening experiments through compound-specific bioactivity dendrograms

    PubMed Central

    Alam, Zaid; Peddinti, Gopal

    2017-01-01

    Abstract The advent of polypharmacology paradigm in drug discovery calls for novel chemoinformatic tools for analyzing compounds’ multi-targeting activities. Such tools should provide an intuitive representation of the chemical space through capturing and visualizing underlying patterns of compound similarities linked to their polypharmacological effects. Most of the existing compound-centric chemoinformatics tools lack interactive options and user interfaces that are critical for the real-time needs of chemical biologists carrying out compound screening experiments. Toward that end, we introduce C-SPADE, an open-source exploratory web-tool for interactive analysis and visualization of drug profiling assays (biochemical, cell-based or cell-free) using compound-centric similarity clustering. C-SPADE allows the users to visually map the chemical diversity of a screening panel, explore investigational compounds in terms of their similarity to the screening panel, perform polypharmacological analyses and guide drug-target interaction predictions. C-SPADE requires only the raw drug profiling data as input, and it automatically retrieves the structural information and constructs the compound clusters in real-time, thereby reducing the time required for manual analysis in drug development or repurposing applications. The web-tool provides a customizable visual workspace that can either be downloaded as figure or Newick tree file or shared as a hyperlink with other users. C-SPADE is freely available at http://cspade.fimm.fi/. PMID:28472495

  5. Use of advanced analysis tools to support freeway corridor freight planning.

    DOT National Transportation Integrated Search

    2010-07-22

    Advanced corridor freight management and pricing strategies are increasingly being chosen to : address freight mobility challenges. As a result, evaluation tools are needed to assess the benefits : of these strategies as compared to other alternative...

  6. DataPflex: a MATLAB-based tool for the manipulation and visualization of multidimensional datasets.

    PubMed

    Hendriks, Bart S; Espelin, Christopher W

    2010-02-01

    DataPflex is a MATLAB-based application that facilitates the manipulation and visualization of multidimensional datasets. The strength of DataPflex lies in the intuitive graphical user interface for the efficient incorporation, manipulation and visualization of high-dimensional data that can be generated by multiplexed protein measurement platforms including, but not limited to Luminex or Meso-Scale Discovery. Such data can generally be represented in the form of multidimensional datasets [for example (time x stimulation x inhibitor x inhibitor concentration x cell type x measurement)]. For cases where measurements are made in a combinational fashion across multiple dimensions, there is a need for a tool to efficiently manipulate and reorganize such data for visualization. DataPflex accepts data consisting of up to five arbitrary dimensions in addition to a measurement dimension. Data are imported from a simple .xls format and can be exported to MATLAB or .xls. Data dimensions can be reordered, subdivided, merged, normalized and visualized in the form of collections of line graphs, bar graphs, surface plots, heatmaps, IC50's and other custom plots. Open source implementation in MATLAB enables easy extension for custom plotting routines and integration with more sophisticated analysis tools. DataPflex is distributed under the GPL license (http://www.gnu.org/licenses/) together with documentation, source code and sample data files at: http://code.google.com/p/datapflex. Supplementary data available at Bioinformatics online.

  7. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  8. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    NASA Astrophysics Data System (ADS)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  9. Living Liquid: Design and Evaluation of an Exploratory Visualization Tool for Museum Visitors.

    PubMed

    Ma, J; Liao, I; Ma, Kwan-Liu; Frazier, J

    2012-12-01

    Interactive visualizations can allow science museum visitors to explore new worlds by seeing and interacting with scientific data. However, designing interactive visualizations for informal learning environments, such as museums, presents several challenges. First, visualizations must engage visitors on a personal level. Second, visitors often lack the background to interpret visualizations of scientific data. Third, visitors have very limited time at individual exhibits in museums. This paper examines these design considerations through the iterative development and evaluation of an interactive exhibit as a visualization tool that gives museumgoers access to scientific data generated and used by researchers. The exhibit prototype, Living Liquid, encourages visitors to ask and answer their own questions while exploring the time-varying global distribution of simulated marine microbes using a touchscreen interface. Iterative development proceeded through three rounds of formative evaluations using think-aloud protocols and interviews, each round informing a key visualization design decision: (1) what to visualize to initiate inquiry, (2) how to link data at the microscopic scale to global patterns, and (3) how to include additional data that allows visitors to pursue their own questions. Data from visitor evaluations suggests that, when designing visualizations for public audiences, one should (1) avoid distracting visitors from data that they should explore, (2) incorporate background information into the visualization, (3) favor understandability over scientific accuracy, and (4) layer data accessibility to structure inquiry. Lessons learned from this case study add to our growing understanding of how to use visualizations to actively engage learners with scientific data.

  10. Intelligent video storage of visual evidences on site in fast deployment

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois

    2004-07-01

    In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.

  11. Industrial Inspection with Open Eyes: Advance with Machine Vision Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Niel, Kurt

    Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less

  12. GO(vis), a gene ontology visualization tool based on multi-dimensional values.

    PubMed

    Ning, Zi; Jiang, Zhenran

    2010-05-01

    Most of gene product similarity measurements concentrate on the information content of Gene Ontology (GO) terms or use a path-based similarity between GO terms, which may ignore other important information contained in the structure of the ontology. In our study, we integrate different GO similarity measure approaches to analyze the functional relationship of genes and gene products with a new triangle-based visualization tool called GO(Vis). The purpose of this tool is to demonstrate the effect of three important information factors when measuring the similarity between gene products. One advantage of this tool is that its important ratio can be adjusted to meet different measuring requirements according to the biological knowledge of each factor. The experimental results demonstrate that GO(Vis) can display diagrams of the functional relationship for gene products effectively.

  13. Advanced computational tools for 3-D seismic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advancemore » in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.« less

  14. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  15. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  16. Conceptual design study for an advanced cab and visual system, volume 1

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.

  17. 'tomo_display' and 'vol_tools': IDL VM Packages for Tomography Data Reconstruction, Processing, and Visualization

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Gualda, G. A.

    2009-05-01

    One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk

  18. Advances in bioluminescence imaging: new probes from old recipes.

    PubMed

    Yao, Zi; Zhang, Brendan S; Prescher, Jennifer A

    2018-06-04

    Bioluminescent probes are powerful tools for visualizing biology in live tissues and whole animals. Recent years have seen a surge in the number of new luciferases, luciferins, and related tools available for bioluminescence imaging. Many were crafted using classic methods of optical probe design and engineering. Here we highlight recent advances in bioluminescent tool discovery and development, along with applications of the probes in cells, tissues, and organisms. Collectively, these tools are improving in vivo imaging capabilities and bolstering new research directions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. XML-Based Visual Specification of Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Al-Theneyan, Ahmed; Jakatdar, Amol; Mehrotra, Piyush; Zubair, Mohammad

    2001-01-01

    The advancements in the Internet and Web technologies have fueled a growing interest in developing a web-based distributed computing environment. We have designed and developed Arcade, a web-based environment for designing, executing, monitoring, and controlling distributed heterogeneous applications, which is easy to use and access, portable, and provides support through all phases of the application development and execution. A major focus of the environment is the specification of heterogeneous, multidisciplinary applications. In this paper we focus on the visual and script-based specification interface of Arcade. The web/browser-based visual interface is designed to be intuitive to use and can also be used for visual monitoring during execution. The script specification is based on XML to: (1) make it portable across different frameworks, and (2) make the development of our tools easier by using the existing freely available XML parsers and editors. There is a one-to-one correspondence between the visual and script-based interfaces allowing users to go back and forth between the two. To support this we have developed translators that translate a script-based specification to a visual-based specification, and vice-versa. These translators are integrated with our tools and are transparent to users.

  20. Researchermap: a tool for visualizing author locations using Google maps.

    PubMed

    Rastegar-Mojarad, Majid; Bales, Michael E; Yu, Hong

    2013-01-01

    We hereby present ResearcherMap, a tool to visualize locations of authors of scholarly papers. In response to a query, the system returns a map of author locations. To develop the system we first populated a database of author locations, geocoding institution locations for all available institutional affiliation data in our database. The database includes all authors of Medline papers from 1990 to 2012. We conducted a formative heuristic usability evaluation of the system and measured the system's accuracy and performance. The accuracy of finding the accurate address is 97.5% in our system.

  1. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma.

    PubMed

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-07-01

    To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Normal subjects and patients with glaucoma with mean deviation <-12 dB in both eyes (Humphrey Field Analyzer 24-2 SITA-S program) used a driving simulator (DS; Honda Motor, Tokyo). Two scenarios in which oncoming cars turned right crossing the driver's path were chosen. We compared the binocular integrated visual field (IVF) in the patients who were involved in collisions and those who were not. We performed a multivariate logistic regression analysis; the dependent parameter was collision involvement, and the independent parameters were age, visual acuity and mean sensitivity of the IVF subfields. The study included 43 normal subjects and 100 patients with advanced glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (p<0.001). The patients with advanced glaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (p<0.001) and had lower mean IVF sensitivity in the inferior hemifield, both 0°-12° and 13°-24° in comparison with who were not involved in collisions (p=0.012 and p=0.034). A logistic regression analysis revealed that collision involvement was significantly associated with decreased inferior IVF mean sensitivity from 13° to 24° (p=0.041), in addition to older age and lower visual acuity (p=0.018 and p<0.001). Our data suggest that the inferior hemifield was associated with the incidence of motor vehicle collisions with oncoming cars in patients with advanced glaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  2. Visualizing time-related data in biology, a review

    PubMed Central

    Secrier, Maria; Schneider, Reinhard

    2014-01-01

    Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an understanding of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms) is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at more involved temporal interpretation have been made in recent years, but awareness of the available resources is still limited within the scientific community. Here, we review some advances in biological visualization of time-driven processes and consider how they aid data analysis and interpretation. PMID:23585583

  3. MARs Tools for Interactive ANalysis (MARTIAN): Google Maps Tools for Visual Exploration of Geophysical Modeling on Mars

    NASA Astrophysics Data System (ADS)

    Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.

    2006-12-01

    Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its

  4. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    PubMed Central

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2008-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444

  5. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap

    PubMed Central

    Metsalu, Tauno; Vilo, Jaak

    2015-01-01

    The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/. PMID:25969447

  6. Using Visual Simulation Tools And Learning Outcomes-Based Curriculum To Help Transportation Engineering Students And Practitioners To Better Understand And Design Traffic Signal Control Systems

    DOT National Transportation Integrated Search

    2012-06-01

    The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...

  7. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    PubMed

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  8. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  9. Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts

    ERIC Educational Resources Information Center

    Cetin, Ibrahim

    2013-01-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…

  10. Applications of image processing and visualization in the evaluation of murder and assault

    NASA Astrophysics Data System (ADS)

    Oliver, William R.; Rosenman, Julian G.; Boxwala, Aziz; Stotts, David; Smith, John; Soltys, Mitchell; Symon, James; Cullip, Tim; Wagner, Glenn

    1994-09-01

    Recent advances in image processing and visualization are of increasing use in the investigation of violent crime. The Digital Image Processing Laboratory at the Armed Forces Institute of Pathology in collaboration with groups at the University of North Carolina at Chapel Hill are actively exploring visualization applications including image processing of trauma images, 3D visualization, forensic database management and telemedicine. Examples of recent applications are presented. Future directions of effort include interactive consultation and image manipulation tools for forensic data exploration.

  11. A Data-Driven Approach to Interactive Visualization of Power Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun

    Driven by emerging industry standards, electric utilities and grid coordination organizations are eager to seek advanced tools to assist grid operators to perform mission-critical tasks and enable them to make quick and accurate decisions. The emerging field of visual analytics holds tremendous promise for improving the business practices in today’s electric power industry. The conducted investigation, however, has revealed that the existing commercial power grid visualization tools heavily rely on human designers, hindering user’s ability to discover. Additionally, for a large grid, it is very labor-intensive and costly to build and maintain the pre-designed visual displays. This project proposes amore » data-driven approach to overcome the common challenges. The proposed approach relies on developing powerful data manipulation algorithms to create visualizations based on the characteristics of empirically or mathematically derived data. The resulting visual presentations emphasize what the data is rather than how the data should be presented, thus fostering comprehension and discovery. Furthermore, the data-driven approach formulates visualizations on-the-fly. It does not require a visualization design stage, completely eliminating or significantly reducing the cost for building and maintaining visual displays. The research and development (R&D) conducted in this project is mainly divided into two phases. The first phase (Phase I & II) focuses on developing data driven techniques for visualization of power grid and its operation. Various data-driven visualization techniques were investigated, including pattern recognition for auto-generation of one-line diagrams, fuzzy model based rich data visualization for situational awareness, etc. The R&D conducted during the second phase (Phase IIB) focuses on enhancing the prototyped data driven visualization tool based on the gathered requirements and use cases. The goal is to evolve the prototyped tool developed

  12. Technologies Used in the Study of Advanced Mathematics by Students Who Are Visually Impaired in Classrooms: Teachers' Perspectives

    ERIC Educational Resources Information Center

    DePountis, Vicki M.; Pogrund, Rona L.; Griffin-Shirley, Nora; Lan, William Y.

    2015-01-01

    Introduction: This research examined the perspectives of teachers of students who are visually impaired regarding the use and effectiveness of high-tech assistive technology purported to assist visually impaired students in advanced mathematics. Methods: The data for this study were collected via a mixed-methods online survey distributed through…

  13. Dynamic Visual Acuity: a Functionally Relevant Research Tool

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; Brady, Rachel A.; Miller, Chris A.; Mulavara, Ajitkumar P.; Wood, Scott J.; Cohen, Helen S.; Bloomberg, Jacob J.

    2010-01-01

    Coordinated movements between the eyes and head are required to maintain a stable retinal image during head and body motion. The vestibulo-ocular reflex (VOR) plays a significant role in this gaze control system that functions well for most daily activities. However, certain environmental conditions or interruptions in normal VOR function can lead to inadequate ocular compensation, resulting in oscillopsia, or blurred vision. It is therefore possible to use acuity to determine when the environmental conditions, VOR function, or the combination of the two is not conductive for maintaining clear vision. Over several years we have designed and tested several tests of dynamic visual acuity (DVA). Early tests used the difference between standing and walking acuity to assess decrements in the gaze stabilization system after spaceflight. Supporting ground-based studies measured the responses from patients with bilateral vestibular dysfunction and explored the effects of visual target viewing distance and gait cycle events on walking acuity. Results from these studies show that DVA is affected by spaceflight, is degraded in patients with vestibular dysfunction, changes with target distance, and is not consistent across the gait cycle. We have recently expanded our research to include studies in which seated subjects are translated or rotated passively. Preliminary results from this work indicate that gaze stabilization ability may differ between similar active and passive conditions, may change with age, and can be affected by the location of the visual target with respect to the axis of motion. Use of DVA as a diagnostic tool is becoming more popular but the functional nature of the acuity outcome measure also makes it ideal for identifying conditions that could lead to degraded vision. By doing so, steps can be taken to alter the problematic environments to improve the man-machine interface and optimize performance.

  14. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways

    PubMed Central

    Kersey, Alyssa J.; Clark, Tyia S.; Lussier, Courtney A.; Mahon, Bradford Z.; Cantlon, Jessica F.

    2016-01-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4–8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614

  15. PATIKAweb: a Web interface for analyzing biological pathways through advanced querying and visualization.

    PubMed

    Dogrusoz, U; Erson, E Z; Giral, E; Demir, E; Babur, O; Cetintas, A; Colak, R

    2006-02-01

    Patikaweb provides a Web interface for retrieving and analyzing biological pathways in the Patika database, which contains data integrated from various prominent public pathway databases. It features a user-friendly interface, dynamic visualization and automated layout, advanced graph-theoretic queries for extracting biologically important phenomena, local persistence capability and exporting facilities to various pathway exchange formats.

  16. Visual aid tool to improve decision making in acute stroke care.

    PubMed

    Saposnik, Gustavo; Goyal, Mayank; Majoie, Charles; Dippel, Diederik; Roos, Yvo; Demchuk, Andrew; Menon, Bijoy; Mitchell, Peter; Campbell, Bruce; Dávalos, Antoni; Jovin, Tudor; Hill, Michael D

    2016-10-01

    Background Acute stroke care represents a challenge for decision makers. Recent randomized trials showed the benefits of endovascular therapy. Our goal was to provide a visual aid tool to guide clinicians in the decision process of endovascular intervention in patients with acute ischemic stroke. Methods We created visual plots (Cates' plots; www.nntonline.net ) representing benefits of standard of care vs. endovascular thrombectomy from the pooled analysis of five RCTs using stent retrievers. These plots represent the following clinically relevant outcomes (1) functionally independent state (modified Rankin scale (mRS) 0 to 2 at 90 days) (2) excellent recovery (mRS 0-1) at 90 days, (3) NIHSS 0-2 (4) early neurological recovery, and (5) revascularization at 24 h. Subgroups visually represented include time to treatment and baseline stroke severity strata. Results Overall, 1287 patients (634 assigned to endovascular thrombectomy, 653 assigned to control were included to create the visual plots. Cates' visual plots revealed that for every 100 patients with acute ischemic stroke and large vessel occlusion, 27 would achieve independence at 90 days (mRS 0-2) in the control group compared to 49 (95% CI 43-56) in the intervention group. Similarly, 21 patients would achieve early neurological recovery at 24 h compared to 54 (95% CI 45-63) out of 100 for the intervention group. Conclusion Cates' plots may assist clinicians and patients to visualize and compare potential outcomes after an acute ischemic stroke. Our results suggest that for every 100 treated individuals with an acute ischemic stroke and a large vessel occlusion, endovascular thrombectomy would provide 22 additional patients reaching independency at three months and 33 more patients achieving ENR compared to controls.

  17. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  18. A survey of tools and resources for the next generation analyst

    NASA Astrophysics Data System (ADS)

    Hall, David L.; Graham, Jake; Catherman, Emily

    2015-05-01

    We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.

  19. Rocker: Open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization.

    PubMed

    Lätti, Sakari; Niinivehmas, Sanna; Pentikäinen, Olli T

    2016-01-01

    Receiver operating characteristics (ROC) curve with the calculation of area under curve (AUC) is a useful tool to evaluate the performance of biomedical and chemoinformatics data. For example, in virtual drug screening ROC curves are very often used to visualize the efficiency of the used application to separate active ligands from inactive molecules. Unfortunately, most of the available tools for ROC analysis are implemented into commercially available software packages, or are plugins in statistical software, which are not always the easiest to use. Here, we present Rocker, a simple ROC curve visualization tool that can be used for the generation of publication quality images. Rocker also includes an automatic calculation of the AUC for the ROC curve and Boltzmann-enhanced discrimination of ROC (BEDROC). Furthermore, in virtual screening campaigns it is often important to understand the early enrichment of active ligand identification, for this Rocker offers automated calculation routine. To enable further development of Rocker, it is freely available (MIT-GPL license) for use and modifications from our web-site (http://www.jyu.fi/rocker).

  20. Reading Authentic EFL Text Using Visualization and Advance Organizers in a Multimedia Learning Environment

    ERIC Educational Resources Information Center

    Lin, Huifen; Chen, Tsuiping

    2007-01-01

    The purpose of this experimental study was to compare the effects of different types of computer-generated visuals (static versus animated) and advance organizers (descriptive versus question) in enhancing comprehension and retention of a content-based lesson for learning English as a Foreign Language (EFL). Additionally, the study investigated…

  1. Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…

  2. MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.

    PubMed

    Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd

    2018-07-01

    Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

  3. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes.

    PubMed

    Nussbaumer, Thomas; Kugler, Karl G; Schweiger, Wolfgang; Bader, Kai C; Gundlach, Heidrun; Spannagl, Manuel; Poursarebani, Naser; Pfeifer, Matthias; Mayer, Klaus F X

    2014-12-10

    Over the last years reference genome sequences of several economically and scientifically important cereals and model plants became available. Despite the agricultural significance of these crops only a small number of tools exist that allow users to inspect and visualize the genomic position of genes of interest in an interactive manner. We present chromoWIZ, a web tool that allows visualizing the genomic positions of relevant genes and comparing these data between different plant genomes. Genes can be queried using gene identifiers, functional annotations, or sequence homology in four grass species (Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Oryza sativa). The distribution of the anchored genes is visualized along the chromosomes by using heat maps. Custom gene expression measurements, differential expression information, and gene-to-group mappings can be uploaded and can be used for further filtering. This tool is mainly designed for breeders and plant researchers, who are interested in the location and the distribution of candidate genes as well as in the syntenic relationships between different grass species. chromoWIZ is freely available and online accessible at http://mips.helmholtz-muenchen.de/plant/chromoWIZ/index.jsp.

  4. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client

  5. Food Web Designer: a flexible tool to visualize interaction networks.

    PubMed

    Sint, Daniela; Traugott, Michael

    Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.

  6. On the road to a stronger public health workforce: visual tools to address complex challenges.

    PubMed

    Drehobl, Patricia; Stover, Beth H; Koo, Denise

    2014-11-01

    The public health workforce is vital to protecting the health and safety of the public, yet for years, state and local governmental public health agencies have reported substantial workforce losses and other challenges to the workforce that threaten the public's health. These challenges are complex, often involve multiple influencing or related causal factors, and demand comprehensive solutions. However, proposed solutions often focus on selected factors and might be fragmented rather than comprehensive. This paper describes approaches to characterizing the situation more comprehensively and includes two visual tools: (1) a fishbone, or Ishikawa, diagram that depicts multiple factors affecting the public health workforce; and (2) a roadmap that displays key elements-goals and strategies-to strengthen the public health workforce, thus moving from the problems depicted in the fishbone toward solutions. The visual tools aid thinking about ways to strengthen the public health workforce through collective solutions and to help leverage resources and build on each other's work. The strategic roadmap is intended to serve as a dynamic tool for partnership, prioritization, and gap assessment. These tools reflect and support CDC's commitment to working with partners on the highest priorities for strengthening the workforce to improve the public's health. Published by Elsevier Inc.

  7. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  8. Visual DMDX: A web-based authoring tool for DMDX, a Windows display program with millisecond accuracy.

    PubMed

    Garaizar, Pablo; Reips, Ulf-Dietrich

    2015-09-01

    DMDX is a software package for the experimental control and timing of stimulus display for Microsoft Windows systems. DMDX is reliable, flexible, millisecond accurate, and can be downloaded free of charge; therefore it has become very popular among experimental researchers. However, setting up a DMDX-based experiment is burdensome because of its command-based interface. Further, DMDX relies on RTF files in which parts of the stimuli, design, and procedure of an experiment are defined in a complicated (DMASTR-compatible) syntax. Other experiment software, such as E-Prime, Psychopy, and WEXTOR, became successful as a result of integrated visual authoring tools. Such an intuitive interface was lacking for DMDX. We therefore created and present here Visual DMDX (http://visualdmdx.com/), a HTML5-based web interface to set up experiments and export them to DMDX item files format in RTF. Visual DMDX offers most of the features available from the rich DMDX/DMASTR syntax, and it is a useful tool to support researchers who are new to DMDX. Both old and modern versions of DMDX syntax are supported. Further, with Visual DMDX, we go beyond DMDX by having added export to JSON (a versatile web format), easy backup, and a preview option for experiments. In two examples, one experiment each on lexical decision making and affective priming, we explain in a step-by-step fashion how to create experiments using Visual DMDX. We release Visual DMDX under an open-source license to foster collaboration in its continuous improvement.

  9. Occurrence of CYP1B1 Mutations in Juvenile Open-Angle Glaucoma With Advanced Visual Field Loss.

    PubMed

    Souzeau, Emmanuelle; Hayes, Melanie; Zhou, Tiger; Siggs, Owen M; Ridge, Bronwyn; Awadalla, Mona S; Smith, James E H; Ruddle, Jonathan B; Elder, James E; Mackey, David A; Hewitt, Alex W; Healey, Paul R; Goldberg, Ivan; Morgan, William H; Landers, John; Dubowsky, Andrew; Burdon, Kathryn P; Craig, Jamie E

    2015-07-01

    Juvenile open-angle glaucoma (JOAG) is a severe neurodegenerative eye disorder in which most of the genetic contribution remains unexplained. To assess the prevalence of pathogenic CYP1B1 sequence variants in an Australian cohort of patients with JOAG and severe visual field loss. For this cohort study, we recruited 160 patients with JOAG classified as advanced (n = 118) and nonadvanced (n = 42) through the Australian and New Zealand Registry of Advanced Glaucoma from January 1, 2007, through April 1, 2014. Eighty individuals with no evidence of glaucoma served as a control group. We defined JOAG as diagnosis before age 40 years and advanced JOAG as visual field loss in 2 of the 4 central fixation squares on a reliable visual field test result. We performed direct sequencing of the entire coding region of CYP1B1. Data analysis was performed in October 2014. Identification and characterization of CYP1B1 sequence variants. We identified 7 different pathogenic variants among 8 of 118 patients with advanced JOAG (6.8%) but none among the patients with nonadvanced JOAG. Three patients were homozygous or compound heterozygous for CYP1B1 pathogenic variants, which provided a likely basis for their disease. Five patients were heterozygous. The allele frequency among the patients with advanced JOAG (11 in 236 [4.7%]) was higher than among our controls (1 in 160 [0.6%]; P = .02; odds ratio, 7.8 [95% CI, 0.02-1.0]) or among the control population from the Exome Aggregation Consortium database (2946 of 122 960 [2.4%]; P = .02; odds ratio, 2.0 [95% CI, 0.3-0.9]). Individuals with CYP1B1 pathogenic variants, whether heterozygous or homozygous, had worse mean (SD) deviation on visual fields (-24.5 [5.1] [95% CI, -31.8 to -17.2] vs -15.6 [10.0] [95% CI, -17.1 to -13.6] dB; F1,126 = 5.90; P = .02; partial ηp2 = 0.05) and were younger at diagnosis (mean [SD] age, 23.1 [8.4] [95% CI, 17.2-29.1] vs 31.5 [8.0] [95% CI, 30.1-33.0] years; F1,122 = 7

  10. Power Plant Model Validation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool usesmore » PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: The tool interacts with GE PSLF; The tool uses GE PSLF Play-In Function for generator model validation; Database of projects (model validation studies); Database of the historic events; Database of the power plant; The tool has advanced visualization capabilities; and The tool automatically generates reports« less

  11. A tool for improving the Web accessibility of visually handicapped persons.

    PubMed

    Fujiki, Tadayoshi; Hanada, Eisuke; Yamada, Tomomi; Noda, Yoshihiro; Antoku, Yasuaki; Nakashima, Naoki; Nose, Yoshiaki

    2006-04-01

    Abstract Much has been written concerning the difficulties faced by visually handicapped persons when they access the internet. To solve some of the problems and to make web pages more accessible, we developed a tool we call the "Easy Bar," which works as a toolbar on the web browser. The functions of the Easy Bar are to change the size of web texts and images, to adjust the color, and to clear cached data that is automatically saved by the web browser. These functions are executed with ease by clicking buttons and operating a pull-down list. Since the icons built into Easy Bar are quite large, it is not necessary for the user to deal with delicate operations. The functions of Easy Bar run on any web page without increasing the processing time. For the visually handicapped, Easy Bar would contribute greatly to improved web accessibility to medical information.

  12. New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis

    NASA Astrophysics Data System (ADS)

    Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.

    2017-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.

  13. Three-Dimensional Online Visualization and Engagement Tools for the Geosciences

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Moran, T.; Pidlisecky, A.

    2013-12-01

    Educational tools often sacrifice interactivity in favour of scalability so they can reach more users. This compromise leads to tools that may be viewed as second tier when compared to more engaging activities performed in a laboratory; however, the resources required to deliver laboratory exercises that are scalable is often impractical. Geoscience education is well situated to benefit from interactive online learning tools that allow users to work in a 3D environment. Visible Geology (http://3ptscience.com/visiblegeology) is an innovative web-based application designed to enable visualization of geologic structures and processes through the use of interactive 3D models. The platform allows users to conceptualize difficult, yet important geologic principles in a scientifically accurate manner by developing unique geologic models. The environment allows students to interactively practice their visualization and interpretation skills by creating and interacting with their own models and terrains. Visible Geology has been designed from a user centric perspective resulting in a simple and intuitive interface. The platform directs students to build there own geologic models by adding beds and creating geologic events such as tilting, folding, or faulting. The level of ownership and interactivity encourages engagement, leading learners to discover geologic relationships on their own, in the context of guided assignments. In January 2013, an interactive geologic history assignment was developed for a 700-student introductory geology class at The University of British Columbia. The assignment required students to distinguish the relative age of geologic events to construct a geologic history. Traditionally this type of exercise has been taught through the use of simple geologic cross-sections showing crosscutting relationships; from these cross-sections students infer the relative age of geologic events. In contrast, the Visible Geology assignment offers students a unique

  14. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  15. Generating and Analyzing Visual Representations of Conic Sections with the Use of Technological Tools

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Espinosa-Perez, Hugo; Reyes-Rodriguez, Aaron

    2006-01-01

    Technological tools have the potential to offer students the possibility to represent information and relationships embedded in problems and concepts in ways that involve numerical, algebraic, geometric, and visual approaches. In this paper, the authors present and discuss an example in which an initial representation of a mathematical object…

  16. Results of an Experimental Exploration of Advanced Automated Geospatial Tools: Agility in Complex Planning

    DTIC Science & Technology

    2009-06-01

    AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet

  17. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  18. Linking Science and Management in an Interactive Geospatial, Mutli-Criterion, Structured Decision Support Framework: Use Case Studies of the "Future Forests Geo-visualization and Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Pontius, J.; Duncan, J.

    2017-12-01

    Land managers are often faced with balancing management activities to accomplish a diversity of management objectives, in systems faced with many stress agents. Advances in ecosystem modeling provide a rich source of information to inform management. Coupled with advances in decision support techniques and computing capabilities, interactive tools are now accessible for a broad audience of stakeholders. Here we present one such tool designed to capture information on how climate change may impact forested ecosystems, and how that impact varies spatially across the landscape. This tool integrates empirical models of current and future forest structure and function in a structured decision framework that allows users to customize weights for multiple management objectives and visualize suitability outcomes across the landscape. Combined with climate projections, the resulting products allow stakeholders to compare the relative success of various management objectives on a pixel by pixel basis and identify locations where management outcomes are most likely to be met. Here we demonstrate this approach with the integration of several of the preliminary models developed to map species distributions, sugar maple health, forest fragmentation risk and hemlock vulnerability to hemlock woolly adelgid under current and future climate scenarios. We compare three use case studies with objective weightings designed to: 1) Identify key parcels for sugarbush conservation and management, 2) Target state lands that may serve as hemlock refugia from hemlock woolly adelgid induced mortality, and 3) Examine how climate change may alter the success of managing for both sugarbush and hemlock across privately owned lands. This tool highlights the value of flexible models that can be easily run with customized weightings in a dynamic, integrated assessment that allows users to hone in on their potentially complex management objectives, and to visualize and prioritize locations across the

  19. Conceptual assessment tool for advanced undergraduate electrodynamics

    NASA Astrophysics Data System (ADS)

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-12-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  20. iGlobe Interactive Visualization and Analysis of Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2012-01-01

    iGlobe is open-source software built on NASA World Wind virtual globe technology. iGlobe provides a growing set of tools for weather science, climate research, and agricultural analysis. Up until now, these types of sophisticated tools have been developed in isolation by national agencies, academic institutions, and research organizations. By providing an open-source solution to analyze and visualize weather, climate, and agricultural data, the scientific and research communities can more readily advance solutions needed to understand better the dynamics of our home planet, Earth

  1. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways.

    PubMed

    Kersey, Alyssa J; Clark, Tyia S; Lussier, Courtney A; Mahon, Bradford Z; Cantlon, Jessica F

    2016-07-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4-8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  3. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

    PubMed Central

    Hurley, Daniel; Araki, Hiromitsu; Tamada, Yoshinori; Dunmore, Ben; Sanders, Deborah; Humphreys, Sally; Affara, Muna; Imoto, Seiya; Yasuda, Kaori; Tomiyasu, Yuki; Tashiro, Kosuke; Savoie, Christopher; Cho, Vicky; Smith, Stephen; Kuhara, Satoru; Miyano, Satoru; Charnock-Jones, D. Stephen; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions. PMID:22121215

  4. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    NASA Astrophysics Data System (ADS)

    Torlapati, Jagadish; Prabhakar Clement, T.

    2013-01-01

    We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.

  5. Freiburg RNA tools: a central online resource for RNA-focused research and teaching.

    PubMed

    Raden, Martin; Ali, Syed M; Alkhnbashi, Omer S; Busch, Anke; Costa, Fabrizio; Davis, Jason A; Eggenhofer, Florian; Gelhausen, Rick; Georg, Jens; Heyne, Steffen; Hiller, Michael; Kundu, Kousik; Kleinkauf, Robert; Lott, Steffen C; Mohamed, Mostafa M; Mattheis, Alexander; Miladi, Milad; Richter, Andreas S; Will, Sebastian; Wolff, Joachim; Wright, Patrick R; Backofen, Rolf

    2018-05-21

    The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.

  6. Pragmatic abilities in children with congenital visual impairment: an exploration of non-literal language and advanced theory of mind understanding.

    PubMed

    Pijnacker, Judith; Vervloed, Mathijs P J; Steenbergen, Bert

    2012-11-01

    Children with congenital visual impairment have been reported to be delayed in theory of mind development. So far, research focused on first-order theory of mind, and included mainly blind children, whereas the majority of visually impaired children is not totally blind. The present study set out to explore whether children with a broader range of congenital visual impairments have a delay in more advanced theory of mind understanding, in particular second-order theory of mind (i.e. awareness that other people have beliefs about beliefs) and non-literal language (e.g. irony or figure of speech). Twenty-four children with congenital visual impairment and 24 typically developing sighted children aged between 6 and 13 were included. All children were presented with a series of stories involving understanding of theory of mind and non-literal language. When compared with sighted children of similar age and verbal intelligence, performance of children with congenital visual impairment on advanced theory of mind and non-literal stories was alike. The ability to understand the motivations behind non-literal language was associated with age, verbal intelligence and theory of mind skills, but was not associated with visual ability.

  7. WebGIVI: a web-based gene enrichment analysis and visualization tool.

    PubMed

    Sun, Liang; Zhu, Yongnan; Mahmood, A S M Ashique; Tudor, Catalina O; Ren, Jia; Vijay-Shanker, K; Chen, Jian; Schmidt, Carl J

    2017-05-04

    A major challenge of high throughput transcriptome studies is presenting the data to researchers in an interpretable format. In many cases, the outputs of such studies are gene lists which are then examined for enriched biological concepts. One approach to help the researcher interpret large gene datasets is to associate genes and informative terms (iTerm) that are obtained from the biomedical literature using the eGIFT text-mining system. However, examining large lists of iTerm and gene pairs is a daunting task. We have developed WebGIVI, an interactive web-based visualization tool ( http://raven.anr.udel.edu/webgivi/ ) to explore gene:iTerm pairs. WebGIVI was built via Cytoscape and Data Driven Document JavaScript libraries and can be used to relate genes to iTerms and then visualize gene and iTerm pairs. WebGIVI can accept a gene list that is used to retrieve the gene symbols and corresponding iTerm list. This list can be submitted to visualize the gene iTerm pairs using two distinct methods: a Concept Map or a Cytoscape Network Map. In addition, WebGIVI also supports uploading and visualization of any two-column tab separated data. WebGIVI provides an interactive and integrated network graph of gene and iTerms that allows filtering, sorting, and grouping, which can aid biologists in developing hypothesis based on the input gene lists. In addition, WebGIVI can visualize hundreds of nodes and generate a high-resolution image that is important for most of research publications. The source code can be freely downloaded at https://github.com/sunliang3361/WebGIVI . The WebGIVI tutorial is available at http://raven.anr.udel.edu/webgivi/tutorial.php .

  8. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  9. Clinical Holistic Health: Advanced Tools for Holistic Medicine

    PubMed Central

    Ventegodt, Søren; Clausen, Birgitte; Nielsen, May Lyck; Merrick, Joav

    2006-01-01

    According to holistic medical theory, the patient will heal when old painful moments, the traumatic events of life that are often called “gestalts”, are integrated in the present “now”. The advanced holistic physicians expanded toolbox has many different tools to induce this healing, some that are more dangerous and potentially traumatic than others. The more intense the therapeutic technique, the more emotional energy will be released and contained in the session, but the higher also is the risk for the therapist to lose control of the session and lose the patient to his or her own dark side. To avoid harming the patient must be the highest priority in holistic existential therapy, making sufficient education and training an issue of highest importance. The concept of “stepping up” the therapy by using more and more “dramatic” methods to get access to repressed emotions and events has led us to a “therapeutic staircase” with ten steps: (1) establishing the relationship; (2) establishing intimacy, trust, and confidentiality; (3) giving support and holding; (4) taking the patient into the process of physical, emotional, and mental healing; (5) social healing of being in the family; (6) spiritual healing — returning to the abstract wholeness of the soul; (7) healing the informational layer of the body; (8) healing the three fundamental dimensions of existence: love, power, and sexuality in a direct way using, among other techniques, “controlled violence” and “acupressure through the vagina”; (9) mind-expanding and consciousness-transformative techniques like psychotropic drugs; and (10) techniques transgressing the patient's borders and, therefore, often traumatizing (for instance, the use of force against the will of the patient).We believe that the systematic use of the staircase will greatly improve the power and efficiency of holistic medicine for the patient and we invite a broad cooperation in scientifically testing the efficiency

  10. RealSurf - A Tool for the Interactive Visualization of Mathematical Models

    NASA Astrophysics Data System (ADS)

    Stussak, Christian; Schenzel, Peter

    For applications in fine art, architecture and engineering it is often important to visualize and to explore complex mathematical models. In former times there were static models of them collected in museums respectively in mathematical institutes. In order to check their properties for esthetical reasons it could be helpful to explore them interactively in 3D in real time. For the class of implicitly given algebraic surfaces we developed the tool RealSurf. Here we give an introduction to the program and some hints for the design of interesting surfaces.

  11. KinView: A visual comparative sequence analysis tool for integrated kinome research

    PubMed Central

    McSkimming, Daniel Ian; Dastgheib, Shima; Baffi, Timothy R.; Byrne, Dominic P.; Ferries, Samantha; Scott, Steven Thomas; Newton, Alexandra C.; Eyers, Claire E.; Kochut, Krzysztof J.; Eyers, Patrick A.

    2017-01-01

    Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To

  12. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  13. Open the VALT™: Creation and application of a visually authentic learning tool.

    PubMed

    Ackland-Tilbrook, Vanessa; Warland, Jane

    2015-05-01

    This paper describes the process of creating and applying a Visually Authentic Learning Tool (VALT™) in an undergraduate midwifery program. The VALT was developed to facilitate learning in the topic "bleeding in pregnancy". The VALTs objective is to open the mind of the student to facilitate learning via the visual representation of authentic real life simulations designed to enhance and bring to life the written scenario. Students were asked for their feedback of the VALTs. A descriptive analysis was performed on the collated results to determine how the students rated the VALTS in terms of satisfaction and meeting their learning needs. Overall the students seemed to value the VALTs as they present an engaging and unique opportunity to promote learning whilst acknowledging and valuing different learning style within the student group. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Porcupine: A visual pipeline tool for neuroimaging analysis

    PubMed Central

    Snoek, Lukas; Knapen, Tomas

    2018-01-01

    The field of neuroimaging is rapidly adopting a more reproducible approach to data acquisition and analysis. Data structures and formats are being standardised and data analyses are getting more automated. However, as data analysis becomes more complicated, researchers often have to write longer analysis scripts, spanning different tools across multiple programming languages. This makes it more difficult to share or recreate code, reducing the reproducibility of the analysis. We present a tool, Porcupine, that constructs one’s analysis visually and automatically produces analysis code. The graphical representation improves understanding of the performed analysis, while retaining the flexibility of modifying the produced code manually to custom needs. Not only does Porcupine produce the analysis code, it also creates a shareable environment for running the code in the form of a Docker image. Together, this forms a reproducible way of constructing, visualising and sharing one’s analysis. Currently, Porcupine links to Nipype functionalities, which in turn accesses most standard neuroimaging analysis tools. Our goal is to release researchers from the constraints of specific implementation details, thereby freeing them to think about novel and creative ways to solve a given problem. Porcupine improves the overview researchers have of their processing pipelines, and facilitates both the development and communication of their work. This will reduce the threshold at which less expert users can generate reusable pipelines. With Porcupine, we bridge the gap between a conceptual and an implementational level of analysis and make it easier for researchers to create reproducible and shareable science. We provide a wide range of examples and documentation, as well as installer files for all platforms on our website: https://timvanmourik.github.io/Porcupine. Porcupine is free, open source, and released under the GNU General Public License v3.0. PMID:29746461

  15. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences

    PubMed Central

    Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei

    2007-01-01

    Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966

  16. Data-Driven Healthcare: Challenges and Opportunities for Interactive Visualization.

    PubMed

    Gotz, David; Borland, David

    2016-01-01

    The healthcare industry's widespread digitization efforts are reshaping one of the largest sectors of the world's economy. This transformation is enabling systems that promise to use ever-improving data-driven evidence to help doctors make more precise diagnoses, institutions identify at risk patients for intervention, clinicians develop more personalized treatment plans, and researchers better understand medical outcomes within complex patient populations. Given the scale and complexity of the data required to achieve these goals, advanced data visualization tools have the potential to play a critical role. This article reviews a number of visualization challenges unique to the healthcare discipline.

  17. Image-Enabled Discourse: Investigating the Creation of Visual Information as Communicative Practice

    ERIC Educational Resources Information Center

    Snyder, Jaime

    2012-01-01

    Anyone who has clarified a thought or prompted a response during a conversation by drawing a picture has exploited the potential of image making as an interactive tool for conveying information. Images are increasingly ubiquitous in daily communication, in large part due to advances in visually enabled information and communication technologies…

  18. Implementation of an ADME enabling selection and visualization tool for drug discovery.

    PubMed

    Stoner, Chad L; Gifford, Eric; Stankovic, Charles; Lepsy, Christopher S; Brodfuehrer, Joanne; Prasad, J V N Vara; Surendran, Narayanan

    2004-05-01

    The pharmaceutical industry has large investments in compound library enrichment, high throughput biological screening, and biopharmaceutical (ADME) screening. As the number of compounds submitted for in vitro ADME screens increases, data analysis, interpretation, and reporting will become rate limiting in providing ADME-structure-activity relationship information to guide the synthetic strategy for chemical series. To meet these challenges, a software tool was developed and implemented that enables scientists to explore in vitro and in silico ADME and chemistry data in a multidimensional framework. The present work integrates physicochemical and ADME data, encompassing results for Caco-2 permeability, human liver microsomal half-life, rat liver microsomal half-life, kinetic solubility, measured log P, rule of 5 descriptors (molecular weight, hydrogen bond acceptors, hydrogen bond donors, calculated log P), polar surface area, chemical stability, and CYP450 3A4 inhibition. To facilitate interpretation of this data, a semicustomized software solution using Spotfire was designed that allows for multidimensional data analysis and visualization. The solution also enables simultaneous viewing and export of chemical structures with the corresponding ADME properties, enabling a more facile analysis of ADME-structure-activity relationship. In vitro and in silico ADME data were generated for 358 compounds from a series of human immunodeficiency virus protease inhibitors, resulting in a data set of 5370 experimental values which were subsequently analyzed and visualized using the customized Spotfire application. Implementation of this analysis and visualization tool has accelerated the selection of molecules for further development based on optimum ADME characteristics, and provided medicinal chemistry with specific, data driven structural recommendations for improvements in the ADME profile. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm

  19. Using Firefly Tools to Enhance Archive Web Pages

    NASA Astrophysics Data System (ADS)

    Roby, W.; Wu, X.; Ly, L.; Goldina, T.

    2013-10-01

    Astronomy web developers are looking for fast and powerful HTML 5/AJAX tools to enhance their web archives. We are exploring ways to make this easier for the developer. How could you have a full FITS visualizer or a Web 2.0 table that supports paging, sorting, and filtering in your web page in 10 minutes? Can it be done without even installing any software or maintaining a server? Firefly is a powerful, configurable system for building web-based user interfaces to access astronomy science archives. It has been in production for the past three years. Recently, we have made some of the advanced components available through very simple JavaScript calls. This allows a web developer, without any significant knowledge of Firefly, to have FITS visualizers, advanced table display, and spectrum plots on their web pages with minimal learning curve. Because we use cross-site JSONP, installing a server is not necessary. Web sites that use these tools can be created in minutes. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). We are using Firefly to serve many projects including Spitzer, Planck, WISE, PTF, LSST and others.

  20. Advances in lenticular lens arrays for visual display

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Jacobsen, Gary A.

    2005-08-01

    Lenticular lens arrays are widely used in the printed display industry and in specialized applications of electronic displays. In general, lenticular arrays can create from interlaced printed images such visual effects as 3-D, animation, flips, morph, zoom, or various combinations. The use of these typically cylindrical lens arrays for this purpose began in the late 1920's. The lenses comprise a front surface having a spherical crosssection and a flat rear surface upon where the material to be displayed is proximately located. The principal limitation to the resultant image quality for current technology lenticular lenses is spherical aberration. This limitation causes the lenticular lens arrays to be generally thick (0.5 mm) and not easily wrapped around such items as cans or bottles. The objectives of this research effort were to develop a realistic analytical model, to significantly improve the image quality, to develop the tooling necessary to fabricate lenticular lens array extrusion cylinders, and to develop enhanced fabrication technology for the extrusion cylinder. It was determined that the most viable cross-sectional shape for the lenticular lenses is elliptical. This shape dramatically improves the image quality. The relationship between the lens radius, conic constant, material refractive index, and thickness will be discussed. A significant challenge was to fabricate a diamond-cutting tool having the proper elliptical shape. Both true elliptical and pseudo-elliptical diamond tools were designed and fabricated. The plastic sheets extruded can be quite thin (< 0.25 mm) and, consequently, can be wrapped around cans and the like. Fabrication of the lenticular engraved extrusion cylinder required remarkable development considering the large physical size and weight of the cylinder, and the tight mechanical tolerances associated with the lenticular lens molds cut into the cylinder's surface. The development of the cutting tool and the lenticular engraved

  1. Advanced Tools for River Science: EAARL and MD_SWMS: Chapter 3

    USGS Publications Warehouse

    Kinzel, Paul J.

    2009-01-01

    Disruption of flow regimes and sediment supplies, induced by anthropogenic or climatic factors, can produce dramatic alterations in river form, vegetation patterns, and associated habitat conditions. To improve habitat in these fluvial systems, resource managers may choose from a variety of treatments including flow and/or sediment prescriptions, vegetation management, or engineered approaches. Monitoring protocols developed to assess the morphologic response of these treatments require techniques that can measure topographic changes above and below the water surface efficiently, accurately, and in a standardized, cost-effective manner. Similarly, modeling of flow, sediment transport, habitat, and channel evolution requires characterization of river morphology for model input and verification. Recent developments by the U.S. Geological Survey with regard to both remotely sensed methods (the Experimental Advanced Airborne Research LiDAR; EAARL) and computational modeling software (the Multi-Dimensional Surface-Water Modeling System; MD_SWMS) have produced advanced tools for spatially explicit monitoring and modeling in aquatic environments. In this paper, we present a pilot study conducted along the Platte River, Nebraska, that demonstrates the combined use of these river science tools.

  2. The LandCarbon Web Application: Advanced Geospatial Data Delivery and Visualization Tools for Communication about Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.

    2015-12-01

    The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application

  3. Visualizing the ground motions of the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Chourasia, A.; Cutchin, S.; Aagaard, Brad T.

    2008-01-01

    With advances in computational capabilities and refinement of seismic wave-propagation models in the past decade large three-dimensional simulations of earthquake ground motion have become possible. The resulting datasets from these simulations are multivariate, temporal and multi-terabyte in size. Past visual representations of results from seismic studies have been largely confined to static two-dimensional maps. New visual representations provide scientists with alternate ways of viewing and interacting with these results potentially leading to new and significant insight into the physical phenomena. Visualizations can also be used for pedagogic and general dissemination purposes. We present a workflow for visual representation of the data from a ground motion simulation of the great 1906 San Francisco earthquake. We have employed state of the art animation tools for visualization of the ground motions with a high degree of accuracy and visual realism. ?? 2008 Elsevier Ltd.

  4. The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS.

    PubMed

    Martínez-Lapiscina, Elena H; Fraga-Pumar, Elena; Gabilondo, Iñigo; Martínez-Heras, Eloy; Torres-Torres, Ruben; Ortiz-Pérez, Santiago; Llufriu, Sara; Tercero, Ana; Andorra, Magi; Roca, Marc Figueras; Lampert, Erika; Zubizarreta, Irati; Saiz, Albert; Sanchez-Dalmau, Bernardo; Villoslada, Pablo

    2014-12-15

    Multiple Sclerosis (MS) is an immune-mediated disease of the Central Nervous System with two major underlying etiopathogenic processes: inflammation and neurodegeneration. The latter determines the prognosis of this disease. MS is the main cause of non-traumatic disability in middle-aged populations. The MS-VisualPath Cohort was set up to study the neurodegenerative component of MS using advanced imaging techniques by focusing on analysis of the visual pathway in a middle-aged MS population in Barcelona, Spain. We started the recruitment of patients in the early phase of MS in 2010 and it remains permanently open. All patients undergo a complete neurological and ophthalmological examination including measurements of physical and disability (Expanded Disability Status Scale; Multiple Sclerosis Functional Composite and neuropsychological tests), disease activity (relapses) and visual function testing (visual acuity, color vision and visual field). The MS-VisualPath protocol also assesses the presence of anxiety and depressive symptoms (Hospital Anxiety and Depression Scale), general quality of life (SF-36) and visual quality of life (25-Item National Eye Institute Visual Function Questionnaire with the 10-Item Neuro-Ophthalmic Supplement). In addition, the imaging protocol includes both retinal (Optical Coherence Tomography and Wide-Field Fundus Imaging) and brain imaging (Magnetic Resonance Imaging). Finally, multifocal Visual Evoked Potentials are used to perform neurophysiological assessment of the visual pathway. The analysis of the visual pathway with advance imaging and electrophysilogical tools in parallel with clinical information will provide significant and new knowledge regarding neurodegeneration in MS and provide new clinical and imaging biomarkers to help monitor disease progression in these patients.

  5. Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2007-01-01

    Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.

  6. Imaging anatomy of the vestibular and visual systems.

    PubMed

    Gunny, Roxana; Yousry, Tarek A

    2007-02-01

    This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.

  7. Testing the Visual Soil Assessment tool on Estonian farm fields

    NASA Astrophysics Data System (ADS)

    Reintam, Endla; Are, Mihkel; Selge, Are

    2017-04-01

    Soil quality estimation plays important role in decision making on farm as well on policy level. Sustaining the production ability and good health of the soil the chemical, physical and biological indicators should be taken into account. The system to use soil chemical parameters is usually quite well established in most European counties, including Estonia. However, measuring soil physical properties, such bulk density, porosity, penetration resistance, structural stability ect is time consuming, needs special tools and is highly weather dependent. In that reason these parameters are excluded from controllable quality parameters in policy in Estonia. Within the project "Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience" (iSQAPER) the visual soil assessment (VSA) tool was developed for easy detection of soil quality as well the different soil friendly agricultural management practices (AMP) were detected. The aim of current study was to test the VSA tool on Estonian farm fields under different management practices and compare the results with laboratory measurements. The main focus was set on soil physical parameters. Next to the VSA, the undisturbed soil samples were collected from the depth of 5-10 cm and 25-30 cm. The study revealed that results of a visually assessed soil physical parameters, such a soil structure, soil structural stability, soil porosity, presence of tillage pan, were confirmed by laboratory measurements in most cases. Soil water stable structure measurement on field (on 1 cm2 net in one 1 l box with 4-6 cm air dry clods for 5-10 min) underestimated very well structured soil on grassland and overestimated the structure aggregates stability of compacted soil. The slightly better soil quality was detected under no-tillage compared to ploughed soils. However, the ploughed soil got higher quality points compared with minimum tillage. The slurry application (organic manuring) had

  8. Data visualization, bar naked: A free tool for creating interactive graphics.

    PubMed

    Weissgerber, Tracey L; Savic, Marko; Winham, Stacey J; Stanisavljevic, Dejana; Garovic, Vesna D; Milic, Natasa M

    2017-12-15

    Although bar graphs are designed for categorical data, they are routinely used to present continuous data in studies that have small sample sizes. This presentation is problematic, as many data distributions can lead to the same bar graph, and the actual data may suggest different conclusions from the summary statistics. To address this problem, many journals have implemented new policies that require authors to show the data distribution. This paper introduces a free, web-based tool for creating an interactive alternative to the bar graph (http://statistika.mfub.bg.ac.rs/interactive-dotplot/). This tool allows authors with no programming expertise to create customized interactive graphics, including univariate scatterplots, box plots, and violin plots, for comparing values of a continuous variable across different study groups. Individual data points may be overlaid on the graphs. Additional features facilitate visualization of subgroups or clusters of non-independent data. A second tool enables authors to create interactive graphics from data obtained with repeated independent experiments (http://statistika.mfub.bg.ac.rs/interactive-repeated-experiments-dotplot/). These tools are designed to encourage exploration and critical evaluation of the data behind the summary statistics and may be valuable for promoting transparency, reproducibility, and open science in basic biomedical research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. An online model composition tool for system biology models

    PubMed Central

    2013-01-01

    Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914

  10. Blended Learning in the Visual Communications Classroom: Student Reflections on a Multimedia Course

    ERIC Educational Resources Information Center

    George-Palilonis, Jennifer; Filak, Vincent

    2009-01-01

    Advances in digital technology and a rapidly evolving media landscape continue to dramatically change teaching and learning. Among these changes is the emergence of multimedia teaching and learning tools, online degree programs, and hybrid classes that blend traditional and digital content delivery. At the same time, visual communication programs…

  11. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Hank; Brugger, Eric; Whitlock, Brad

    2012-11-01

    VisIt is a popular open source tool for visualizing and analyzing big data. It owes its success to its foci of increasing data understanding, large data support, and providing a robust and usable product, as well as its underlying design that fits today's supercomputing landscape. This report, which draws heavily from an earlier publication at the SciDAC Conference in 2011 describes the VisIt project and its accomplishments.

  12. Interactive entity resolution in relational data: a visual analytic tool and its evaluation.

    PubMed

    Kang, Hyunmo; Getoor, Lise; Shneiderman, Ben; Bilgic, Mustafa; Licamele, Louis

    2008-01-01

    Databases often contain uncertain and imprecise references to real-world entities. Entity resolution, the process of reconciling multiple references to underlying real-world entities, is an important data cleaning process required before accurate visualization or analysis of the data is possible. In many cases, in addition to noisy data describing entities, there is data describing the relationships among the entities. This relational data is important during the entity resolution process; it is useful both for the algorithms which determine likely database references to be resolved and for visual analytic tools which support the entity resolution process. In this paper, we introduce a novel user interface, D-Dupe, for interactive entity resolution in relational data. D-Dupe effectively combines relational entity resolution algorithms with a novel network visualization that enables users to make use of an entity's relational context for making resolution decisions. Since resolution decisions often are interdependent, D-Dupe facilitates understanding this complex process through animations which highlight combined inferences and a history mechanism which allows users to inspect chains of resolution decisions. An empirical study with 12 users confirmed the benefits of the relational context visualization on the performance of entity resolution tasks in relational data in terms of time as well as users' confidence and satisfaction.

  13. Incorporating Assistive Technology for Students with Visual Impairments into the Music Classroom

    ERIC Educational Resources Information Center

    Rush, Toby W.

    2015-01-01

    Although recent advances make it easier than ever before for students with severe visual impairments to be fully accommodated in the music classroom, one of the most significant current challenges in this area is most music educators' unfamiliarity with current assistive technology. Fortunately, many of these tools are readily available and even…

  14. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools.

    PubMed

    Deshmukh, Rupesh K; Sonah, Humira; Bélanger, Richard R

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  15. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  16. Visualization: a tool for enhancing students' concept images of basic object-oriented concepts

    NASA Astrophysics Data System (ADS)

    Cetin, Ibrahim

    2013-03-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey including open-ended questions, which was administered to the participants. Follow-up interviews with 12 randomly selected students were conducted to explore their answers to the survey in depth. The results of the first part of the research were utilized to construct visualization scenarios. The students used these scenarios to develop animations using Flash software. The study found that most of the students experienced difficulties in learning object-oriented notions. Overdependence on code-writing practice and examples and incorrectly learned analogies were determined to be the sources of their difficulties. Moreover, visualization was found to be a promising approach in facilitating students' concept images of basic object-oriented notions. The results of this study have implications for researchers and practitioners when designing programming instruction.

  17. Geoscience data visualization and analysis using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha

    2013-04-01

    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D

  18. Gas discharge visualization: an imaging and modeling tool for medical biometrics.

    PubMed

    Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D; Cohly, Hari H P

    2011-01-01

    The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases.

  19. McIDAS-V: Advanced Visualization for 3D Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Rink, T.; Achtor, T. H.

    2010-12-01

    McIDAS-V is a Java-based, open-source, freely available software package for analysis and visualization of geophysical data. Its advanced capabilities provide very interactive 4-D displays, including 3D volumetric rendering and fast sub-manifold slicing, linked to an abstract mathematical data model with built-in metadata for units, coordinate system transforms and sampling topology. A Jython interface provides user defined analysis and computation in terms of the internal data model. These powerful capabilities to integrate data, analysis and visualization are being applied to hyper-spectral sounding retrievals, eg. AIRS and IASI, of moisture and cloud density to interrogate and analyze their 3D structure, as well as, validate with instruments such as CALIPSO, CloudSat and MODIS. The object oriented framework design allows for specialized extensions for novel displays and new sources of data. Community defined CF-conventions for gridded data are understood by the software, and can be immediately imported into the application. This presentation will show examples how McIDAS-V is used in 3-dimensional data analysis, display and evaluation.

  20. Steady-state visual evoked potentials as a research tool in social affective neuroscience

    PubMed Central

    Wieser, Matthias J.; Miskovic, Vladimir; Keil, Andreas

    2017-01-01

    Like many other primates, humans place a high premium on social information transmission and processing. One important aspect of this information concerns the emotional state of other individuals, conveyed by distinct visual cues such as facial expressions, overt actions, or by cues extracted from the situational context. A rich body of theoretical and empirical work has demonstrated that these socio-emotional cues are processed by the human visual system in a prioritized fashion, in the service of optimizing social behavior. Furthermore, socio-emotional perception is highly dependent on situational contexts and previous experience. Here, we review current issues in this area of research and discuss the utility of the steady-state visual evoked potential (ssVEP) technique for addressing key empirical questions. Methodological advantages and caveats are discussed with particular regard to quantifying time-varying competition among multiple perceptual objects, trial-by-trial analysis of visual cortical activation, functional connectivity, and the control of low-level stimulus features. Studies on facial expression and emotional scene processing are summarized, with an emphasis on viewing faces and other social cues in emotional contexts, or when competing with each other. Further, because the ssVEP technique can be readily accommodated to studying the viewing of complex scenes with multiple elements, it enables researchers to advance theoretical models of socio-emotional perception, based on complex, quasi-naturalistic viewing situations. PMID:27699794

  1. IPAT: a freely accessible software tool for analyzing multiple patent documents with inbuilt landscape visualizer.

    PubMed

    Ajay, Dara; Gangwal, Rahul P; Sangamwar, Abhay T

    2015-01-01

    Intelligent Patent Analysis Tool (IPAT) is an online data retrieval tool, operated based on text mining algorithm to extract specific patent information in a predetermined pattern into an Excel sheet. The software is designed and developed to retrieve and analyze technology information from multiple patent documents and generate various patent landscape graphs and charts. The software is C# coded in visual studio 2010, which extracts the publicly available patent information from the web pages like Google Patent and simultaneously study the various technology trends based on user-defined parameters. In other words, IPAT combined with the manual categorization will act as an excellent technology assessment tool in competitive intelligence and due diligence for predicting the future R&D forecast.

  2. Provider Tools for Advance Care Planning and Goals of Care Discussions: A Systematic Review.

    PubMed

    Myers, Jeff; Cosby, Roxanne; Gzik, Danusia; Harle, Ingrid; Harrold, Deb; Incardona, Nadia; Walton, Tara

    2018-01-01

    Advance care planning and goals of care discussions involve the exploration of what is most important to a person, including their values and beliefs in preparation for health-care decision-making. Advance care planning conversations focus on planning for future health care, ensuring that an incapable person's wishes are known and can guide the person's substitute decision maker for future decision-making. Goals of care discussions focus on preparing for current decision-making by ensuring the person's goals guide this process. To provide evidence regarding tools and/or practices available for use by health-care providers to effectively facilitate advance care planning conversations and/or goals of care discussions. A systematic review was conducted focusing on guidelines, randomized trials, comparative studies, and noncomparative studies. Databases searched included MEDLINE, EMBASE, and the proceedings of the International Advance Care Planning Conference and the American Society of Clinical Oncology Palliative Care Symposium. Although several studies report positive findings, there is a lack of consistent patient outcome evidence to support any one clinical tool for use in advance care planning or goals of care discussions. Effective advance care planning conversations at both the population and the individual level require provider education and communication skill development, standardized and accessible documentation, quality improvement initiatives, and system-wide coordination to impact the population level. There is a need for research focused on goals of care discussions, to clarify the purpose and expected outcomes of these discussions, and to clearly differentiate goals of care from advance care planning.

  3. Impacts of a CAREER Award on Advancing 3D Visualization in Geology Education

    NASA Astrophysics Data System (ADS)

    Billen, M. I.

    2011-12-01

    CAREER awards provide a unique opportunity to develop educational activities as an integrated part of one's research activities. This CAREER award focused on developing interactive 3D visualization tools to aid geology students in improving their 3D visualization skills. Not only is this a key skill for field geologists who need to visualize unseen subsurface structures, but it is also an important aspect of geodynamic research into the processes, such as faulting and viscous flow, that occur during subduction. Working with an undergraduate student researcher and using the KeckCAVES developed volume visualization code 3DVisualizer, we have developed interactive visualization laboratory exercises (e.g., Discovering the Rule of Vs) and a suite of mini-exercises using illustrative 3D geologic structures (e.g., syncline, thrust fault) that students can explore (e.g., rotate, slice, cut-away) to understand how exposure of these structures at the surface can provide insight into the subsurface structure. These exercises have been integrated into the structural geology curriculum and made available on the web through the KeckCAVES Education website as both data-and-code downloads and pre-made movies. One of the main challenges of implementing research and education activities through the award is that progress must be made on both throughout the award period. Therefore, while our original intent was to use subduction model output as the structures in the educational models, delays in the research results required that we develop these models using other simpler input data sets. These delays occurred because one of the other goals of the CAREER grant is to allow the faculty to take their research in a new direction, which may certainly lead to transformative science, but can also lead to more false-starts as the challenges of doing the new science are overcome. However, having created the infrastructure for the educational components, use of the model results in future

  4. Development of a Carbon Sequestration Visualization Tool using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Keating, G. N.; Greene, M. K.

    2008-12-01

    The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.

  5. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  6. Earthquake information products and tools from the Advanced National Seismic System (ANSS)

    USGS Publications Warehouse

    Wald, Lisa

    2006-01-01

    This Fact Sheet provides a brief description of postearthquake tools and products provided by the Advanced National Seismic System (ANSS) through the U.S. Geological Survey Earthquake Hazards Program. The focus is on products specifically aimed at providing situational awareness in the period immediately following significant earthquake events.

  7. Knowledge Visualizations: A Tool to Achieve Optimized Operational Decision Making and Data Integration

    DTIC Science & Technology

    2015-06-01

    Hadoop Distributed File System (HDFS) without any integration with Accumulo-based Knowledge Stores based on OWL/RDF. 4. Cloud Based The Apache Software...BTW, 7(12), pp. 227–241. Godin, A. & Akins, D. (2014). Extending DCGS-N naval tactical clouds from in-storage to in-memory for the integrated fires...VISUALIZATIONS: A TOOL TO ACHIEVE OPTIMIZED OPERATIONAL DECISION MAKING AND DATA INTEGRATION by Paul C. Hudson Jeffrey A. Rzasa June 2015 Thesis

  8. Visualization of LC-MS/MS proteomics data in MaxQuant.

    PubMed

    Tyanova, Stefka; Temu, Tikira; Carlson, Arthur; Sinitcyn, Pavel; Mann, Matthias; Cox, Juergen

    2015-04-01

    Modern software platforms enable the analysis of shotgun proteomics data in an automated fashion resulting in high quality identification and quantification results. Additional understanding of the underlying data can be gained with the help of advanced visualization tools that allow for easy navigation through large LC-MS/MS datasets potentially consisting of terabytes of raw data. The updated MaxQuant version has a map navigation component that steers the users through mass and retention time-dependent mass spectrometric signals. It can be used to monitor a peptide feature used in label-free quantification over many LC-MS runs and visualize it with advanced 3D graphic models. An expert annotation system aids the interpretation of the MS/MS spectra used for the identification of these peptide features. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration.

    PubMed

    Roh, Miin; Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W; Jackson, Mary Lou

    2018-01-01

    Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL.

  10. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    PubMed Central

    2012-01-01

    Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be

  11. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.

    PubMed

    Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R

    2012-08-13

    The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful

  12. Motivational interviewing: a valuable tool for the psychiatric advanced practice nurse.

    PubMed

    Karzenowski, Abby; Puskar, Kathy

    2011-01-01

    Motivational Interviewing (MI) is well known and respected by many health care professionals. Developed by Miller and Rollnick (2002) , it is a way to promote behavior change from within and resolve ambivalence. MI is individualized and is most commonly used in the psychiatric setting; it is a valuable tool for the Psychiatric Advanced Nurse Practice Nurse. There are many resources that talk about what MI is and the principles used to apply it. However, there is little information about how to incorporate MI into a clinical case. This article provides a summary of articles related to MI and discusses two case studies using MI and why advanced practice nurses should use MI with their patients.

  13. sbml-diff: A Tool for Visually Comparing SBML Models in Synthetic Biology.

    PubMed

    Scott-Brown, James; Papachristodoulou, Antonis

    2017-07-21

    We present sbml-diff, a tool that is able to read a model of a biochemical reaction network in SBML format and produce a range of diagrams showing different levels of detail. Each diagram type can be used to visualize a single model or to visually compare two or more models. The default view depicts species as ellipses, reactions as rectangles, rules as parallelograms, and events as diamonds. A cartoon view replaces the symbols used for reactions on the basis of the associated Systems Biology Ontology terms. An abstract view represents species as ellipses and draws edges between them to indicate whether a species increases or decreases the production or degradation of another species. sbml-diff is freely licensed under the three-clause BSD license and can be downloaded from https://github.com/jamesscottbrown/sbml-diff and used as a python package called from other software, as a free-standing command-line application, or online using the form at http://sysos.eng.ox.ac.uk/tebio/upload.

  14. Modeling Tool Advances Rotorcraft Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.

  15. Book4All: A Tool to Make an e-Book More Accessible to Students with Vision/Visual-Impairments

    NASA Astrophysics Data System (ADS)

    Calabrò, Antonello; Contini, Elia; Leporini, Barbara

    Empowering people who are blind or otherwise visually impaired includes ensuring that products and electronic materials incorporate a broad range of accessibility features and work well with screen readers and other assistive technology devices. This is particularly important for students with vision impairments. Unfortunately, authors and publishers often do not include specific criteria when preparing the contents. Consequently, e-books can be inadequate for blind and low vision users, especially for students. In this paper we describe a semi-automatic tool developed to support operators who adapt e-documents for visually impaired students. The proposed tool can be used to convert a PDF e-book into a more suitable accessible and usable format readable on desktop computer or on mobile devices.

  16. InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.

    PubMed

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; Juan, Liran; Jiang, Qinghua; Wang, Yadong; Chen, Jin

    2016-08-31

    The Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. We present InteGO2, a web tool that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface. InteGO2 can be accessed via http://mlg.hit.edu.cn:8089/ .

  17. Next generation tools for genomic data generation, distribution, and visualization

    PubMed Central

    2010-01-01

    Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq. PMID:20828407

  18. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion

    PubMed Central

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M.

    2017-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet. PMID:28163564

  19. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    PubMed

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  20. BioSigPlot: an opensource tool for the visualization of multi-channel biomedical signals with Matlab.

    PubMed

    Boudet, Samuel; Peyrodie, Laurent; Gallois, Philippe; de l'Aulnoit, Denis Houzé; Cao, Hua; Forzy, Gérard

    2013-01-01

    This paper presents a Matlab-based software (MathWorks inc.) called BioSigPlot for the visualization of multi-channel biomedical signals, particularly for the EEG. This tool is designed for researchers on both engineering and medicine who have to collaborate to visualize and analyze signals. It aims to provide a highly customizable interface for signal processing experimentation in order to plot several kinds of signals while integrating the common tools for physician. The main advantages compared to other existing programs are the multi-dataset displaying, the synchronization with video and the online processing. On top of that, this program uses object oriented programming, so that the interface can be controlled by both graphic controls and command lines. It can be used as EEGlab plug-in but, since it is not limited to EEG, it would be distributed separately. BioSigPlot is distributed free of charge (http://biosigplot.sourceforge.net), under the terms of GNU Public License for non-commercial use and open source development.

  1. Visualizing inequality

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-07-01

    The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.

  2. 3D data processing with advanced computer graphics tools

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Ekstrand, Laura; Grieve, Taylor; Eisenmann, David J.; Chumbley, L. Scott

    2012-09-01

    Often, the 3-D raw data coming from an optical profilometer contains spiky noises and irregular grid, which make it difficult to analyze and difficult to store because of the enormously large size. This paper is to address these two issues for an optical profilometer by substantially reducing the spiky noise of the 3-D raw data from an optical profilometer, and by rapidly re-sampling the raw data into regular grids at any pixel size and any orientation with advanced computer graphics tools. Experimental results will be presented to demonstrate the effectiveness of the proposed approach.

  3. Visualizing Qualitative Information

    ERIC Educational Resources Information Center

    Slone, Debra J.

    2009-01-01

    The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…

  4. Anvil Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Bauman, William, III; Keen, Jeremy

    2007-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was

  5. Dynamic visualizations as tools for supporting cosmological literacy

    NASA Astrophysics Data System (ADS)

    Buck, Zoe Elizabeth

    My dissertation research is designed to improve access to STEM content through the development of cosmology visualizations that support all learners as they engage in cosmological sense-making. To better understand how to design visualizations that work toward breaking cycles of power and access in the sciences, I orient my work to following "meta-question": How might educators use visualizations to support diverse ways of knowing and learning in order to expand access to cosmology, and to science? In this dissertation, I address this meta-question from a pragmatic epistemological perspective, through a sociocultural lens, following three lines of inquiry: experimental methods (Creswell, 2003) with a focus on basic visualization design, activity analysis (Wells, 1996; Ash, 2001; Rahm, 2012) with a focus on culturally and linguistically diverse learners, and case study (Creswell, 2000) with a focus on expansive learning at a planetarium (Engestrom, 2001; Ash, 2014). My research questions are as follows, each of which corresponds to a self contained course of inquiry with its own design, data, analysis and results: 1) Can mediational cues like color affect the way learners interpret the content in a cosmology visualization? 2) How do cosmology visualizations support cosmological sense-making for diverse students? 3) What are the shared objects of dynamic networks of activity around visualization production and use in a large, urban planetarium and how do they affect learning? The result is a mixed-methods design (Sweetman, Badiee & Creswell, 2010) where both qualitative and quantitative data are used when appropriate to address my research goals. In the introduction I begin by establishing a theoretical framework for understanding visualizations within cultural historical activity theory (CHAT) and situating the chapters that follow within that framework. I also introduce the concept of cosmological literacy, which I define as the set of conceptual, semiotic and

  6. Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics

    PubMed Central

    Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D.; Cohly, Hari H. P.

    2011-01-01

    The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases. PMID:21747817

  7. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis

    PubMed Central

    Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H

    2006-01-01

    Background The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. Results We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. Conclusion By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development. PMID:16740163

  8. AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis.

    PubMed

    Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H

    2006-06-01

    The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.

  9. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady-state, nearly sinusoidal behavior of the components in a free-piston Stirling engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F = ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB (MathWorks), which takes user input data, passes it to Sage (Gedeon Associates), a one-dimensional thermodynamic modeling program used to model the Stirling convertor, runs Sage, and then automatically plots the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot-end temperature, cold-end temperature, operating frequency, and displacer spring constant. These phasor diagrams offer useful insight into convertor operation and performance.

  10. Trans3D: a free tool for dynamical visualization of EEG activity transmission in the brain.

    PubMed

    Blinowski, Grzegorz; Kamiński, Maciej; Wawer, Dariusz

    2014-08-01

    The problem of functional connectivity in the brain is in the focus of attention nowadays, since it is crucial for understanding information processing in the brain. A large repertoire of measures of connectivity have been devised, some of them being capable of estimating time-varying directed connectivity. Hence, there is a need for a dedicated software tool for visualizing the propagation of electrical activity in the brain. To this aim, the Trans3D application was developed. It is an open access tool based on widely available libraries and supporting both Windows XP/Vista/7(™), Linux and Mac environments. Trans3D can create animations of activity propagation between electrodes/sensors, which can be placed by the user on the scalp/cortex of a 3D model of the head. Various interactive graphic functions for manipulating and visualizing components of the 3D model and input data are available. An application of the Trans3D tool has helped to elucidate the dynamics of the phenomena of information processing in motor and cognitive tasks, which otherwise would have been very difficult to observe. Trans3D is available at: http://www.eeg.pl/. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement.

    PubMed

    Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into Neuro

  12. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    PubMed Central

    Garcia-Cantero, Juan J.; Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into Neuro

  13. What Top-Down Task Sets Do for Us: An ERP Study on the Benefits of Advance Preparation in Visual Search

    ERIC Educational Resources Information Center

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-01-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…

  14. [Visual cues as a therapeutic tool in Parkinson's disease. A systematic review].

    PubMed

    Muñoz-Hellín, Elena; Cano-de-la-Cuerda, Roberto; Miangolarra-Page, Juan Carlos

    2013-01-01

    Sensory stimuli or sensory cues are being used as a therapeutic tool for improving gait disorders in Parkinson's disease patients, but most studies seem to focus on auditory stimuli. The aim of this study was to conduct a systematic review regarding the use of visual cues over gait disorders, dual tasks during gait, freezing and the incidence of falls in patients with Parkinson to obtain therapeutic implications. We conducted a systematic review in main databases such as Cochrane Database of Systematic Reviews, TripDataBase, PubMed, Ovid MEDLINE, Ovid EMBASE and Physiotherapy Evidence Database, during 2005 to 2012, according to the recommendations of the Consolidated Standards of Reporting Trials, evaluating the quality of the papers included with the Downs & Black Quality Index. 21 articles were finally included in this systematic review (with a total of 892 participants) with variable methodological quality, achieving an average of 17.27 points in the Downs and Black Quality Index (range: 11-21). Visual cues produce improvements over temporal-spatial parameters in gait, turning execution, reducing the appearance of freezing and falls in Parkinson's disease patients. Visual cues appear to benefit dual tasks during gait, reducing the interference of the second task. Further studies are needed to determine the preferred type of stimuli for each stage of the disease. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  15. SLIDE - a web-based tool for interactive visualization of large-scale -omics data.

    PubMed

    Ghosh, Soumita; Datta, Abhik; Tan, Kaisen; Choi, Hyungwon

    2018-06-28

    Data visualization is often regarded as a post hoc step for verifying statistically significant results in the analysis of high-throughput data sets. This common practice leaves a large amount of raw data behind, from which more information can be extracted. However, existing solutions do not provide capabilities to explore large-scale raw datasets using biologically sensible queries, nor do they allow user interaction based real-time customization of graphics. To address these drawbacks, we have designed an open-source, web-based tool called Systems-Level Interactive Data Exploration, or SLIDE to visualize large-scale -omics data interactively. SLIDE's interface makes it easier for scientists to explore quantitative expression data in multiple resolutions in a single screen. SLIDE is publicly available under BSD license both as an online version as well as a stand-alone version at https://github.com/soumitag/SLIDE. Supplementary Information are available at Bioinformatics online.

  16. Antigen Receptor Galaxy: A User-Friendly, Web-Based Tool for Analysis and Visualization of T and B Cell Receptor Repertoire Data

    PubMed Central

    IJspeert, Hanna; van Schouwenburg, Pauline A.; van Zessen, David; Pico-Knijnenburg, Ingrid

    2017-01-01

    Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: the demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analyzes the frequency and patterns of SHM, Ag selection (including BASELINe), clonality (Change-O), and CSR. The functionality of the ARGalaxy tool is illustrated in several clinical examples of patients with primary immunodeficiencies. In conclusion, ARGalaxy is a novel tool for the analysis of the complete immune repertoire, which is applicable to many patient groups with disturbances in the immune repertoire such as autoimmune diseases, allergy, and leukemia, but it can also be used to address basic research questions in repertoire formation and selection. PMID:28416602

  17. A Java tool for dynamic web-based 3D visualization of anatomy and overlapping gene or protein expression patterns.

    PubMed

    Gerth, Victor E; Vize, Peter D

    2005-04-01

    The Gene Expression Viewer is a web-launched three-dimensional visualization tool, tailored to compare surface reconstructions of multi-channel image volumes generated by confocal microscopy or micro-CT.

  18. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE PAGES

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.; ...

    2018-03-17

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  19. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, A. J.; Srinivasan, V.; Hart, J. C.

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less

  20. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security.

    PubMed

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-05-01

    Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in "big data" analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.

  1. Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security

    PubMed Central

    Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy

    2018-01-01

    Abstract Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields. PMID:29562368

  2. Evaluation of a visual risk communication tool: effects on knowledge and perception of blood transfusion risk.

    PubMed

    Lee, D H; Mehta, M D

    2003-06-01

    Effective risk communication in transfusion medicine is important for health-care consumers, but understanding the numerical magnitude of risks can be difficult. The objective of this study was to determine the effect of a visual risk communication tool on the knowledge and perception of transfusion risk. Laypeople were randomly assigned to receive transfusion risk information with either a written or a visual presentation format for communicating and comparing the probabilities of transfusion risks relative to other hazards. Knowledge of transfusion risk was ascertained with a multiple-choice quiz and risk perception was ascertained by psychometric scaling and principal components analysis. Two-hundred subjects were recruited and randomly assigned. Risk communication with both written and visual presentation formats increased knowledge of transfusion risk and decreased the perceived dread and severity of transfusion risk. Neither format changed the perceived knowledge and control of transfusion risk, nor the perceived benefit of transfusion. No differences in knowledge or risk perception outcomes were detected between the groups randomly assigned to written or visual presentation formats. Risk communication that incorporates risk comparisons in either written or visual presentation formats can improve knowledge and reduce the perception of transfusion risk in laypeople.

  3. Visual Aid Tool to Improve Decision Making in Anticoagulation for Stroke Prevention.

    PubMed

    Saposnik, Gustavo; Joundi, Raed A

    2016-10-01

    The management of stroke prevention among patients with atrial fibrillation (AF) has changed in the last few years. Despite the benefits of new oral anticoagulants (NOACs), decisions about the optimal agent remain a challenge. We provide a visual aid tool to guide clinicians and patients in the decision process of selecting oral anticoagulants for stroke prevention. We created visual plots representing benefits of warfarin versus NOACs from a meta-analysis comprising 58,541 participants. Visual plots (Cates plots) were created using software available at nntonline.net. The primary outcome was stroke or systemic embolism during the study period. In the chosen meta-analysis, 29,312 participants received a NOAC and 29,229 participants received warfarin. For every 1000 patients with AF, 38 would have a stroke or systemic embolic event in the warfarin group compared to 31 in the NOAC group (RR .81; 95% CI .73-.91). Fifteen patients would develop an intracranial hemorrhage in the warfarin group compared to 7 in the NOAC group (RR .48; 95% CI .39-.59). Conversely, 25 patients would develop gastrointestinal bleeding in the NOAC group compared to 20 in the warfarin group (RR 1.25; 95% CI 1.01-1.55). For every 1000 treated individuals with AF, NOACs would prevent stroke or systemic embolism in 7 additional patients and cerebral hemorrhage in 8 additional patients compared to warfarin. On the other hand, 5 more patients would develop gastrointestinal bleeding with NOACs compared to warfarin. These data are visually shown in Cates plots, facilitating conversations with patients regarding anticoagulation decisions. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees.

    PubMed

    He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian

    2016-07-08

    Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration

    PubMed Central

    Selivanova, Alexandra; Shin, Hyun Joon; Miller, Joan W.; Jackson, Mary Lou

    2018-01-01

    Purpose Vision loss from age-related macular degeneration (AMD) has a profound effect on vision-related quality of life (VRQoL). The pupose of this study is to identify clinical factors associated with VRQoL using the Rasch- calibrated NEI VFQ-25 scales in bilateral advanced AMD patients. Methods We retrospectively reviewed 47 patients (mean age 83.2 years) with bilateral advanced AMD. Clinical assessment included age, gender, type of AMD, high contrast visual acuity (VA), history of medical conditions, contrast sensitivity (CS), central visual field loss, report of Charles Bonnet Syndrome, current treatment for AMD and Rasch-calibrated NEI VFQ-25 visual function and socioemotional function scales. The NEI VFQ visual function scale includes items of general vision, peripheral vision, distance vision and near vision-related activity while the socioemotional function scale includes items of vision related-social functioning, role difficulties, dependency, and mental health. Multiple regression analysis (structural regression model) was performed using fixed item parameters obtained from the one-parameter item response theory model. Results Multivariate analysis showed that high contrast VA and CS were two factors influencing VRQoL visual function scale (β = -0.25, 95% CI-0.37 to -0.12, p<0.001 and β = 0.35, 95% CI 0.25 to 0.46, p<0.001) and socioemontional functioning scale (β = -0.2, 95% CI -0.37 to -0.03, p = 0.023, and β = 0.3, 95% CI 0.18 to 0.43, p = 0.001). Central visual field loss was not assoicated with either VRQoL visual or socioemontional functioning scale (β = -0.08, 95% CI-0.28 to 0.12,p = 0.44 and β = -0.09, 95% CI -0.03 to 0.16, p = 0.50, respectively). Conclusion In patients with vision impairment secondary to bilateral advanced AMD, high contrast VA and CS are two important factors affecting VRQoL. PMID:29746512

  6. Advancement of Tools Supporting Improvement of Work Safety in Selected Industrial Company

    NASA Astrophysics Data System (ADS)

    Gembalska-Kwiecień, Anna

    2018-03-01

    In the presented article, the advancement of tools to improve the safety of work in the researched industrial company was taken into consideration. Attention was paid to the skillful analysis of the working environment, which includes the available technologies, work organization and human capital. These factors determine the development of the best prevention activities to minimize the number of accidents.

  7. How Formal Dynamic Verification Tools Facilitate Novel Concurrency Visualizations

    NASA Astrophysics Data System (ADS)

    Aananthakrishnan, Sriram; Delisi, Michael; Vakkalanka, Sarvani; Vo, Anh; Gopalakrishnan, Ganesh; Kirby, Robert M.; Thakur, Rajeev

    With the exploding scale of concurrency, presenting valuable pieces of information collected by formal verification tools intuitively and graphically can greatly enhance concurrent system debugging. Traditional MPI program debuggers present trace views of MPI program executions. Such views are redundant, often containing equivalent traces that permute independent MPI calls. In our ISP formal dynamic verifier for MPI programs, we present a collection of alternate views made possible by the use of formal dynamic verification. Some of ISP’s views help pinpoint errors, some facilitate discerning errors by eliminating redundancy, while others help understand the program better by displaying concurrent even orderings that must be respected by all MPI implementations, in the form of completes-before graphs. In this paper, we describe ISP’s graphical user interface (GUI) capabilities in all these areas which are currently supported by a portable Java based GUI, a Microsoft Visual Studio GUI, and an Eclipse based GUI whose development is in progress.

  8. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  9. Measuring political commitment and opportunities to advance food and nutrition security: piloting a rapid assessment tool.

    PubMed

    Fox, Ashley M; Balarajan, Yarlini; Cheng, Chloe; Reich, Michael R

    2015-06-01

    Lack of political commitment has been identified as a primary reason for the low priority that food and nutrition interventions receive from national governments relative to the high disease burden caused by malnutrition. Researchers have identified a number of factors that contribute to food and nutrition's 'low-priority cycle' on national policy agendas, but few tools exist to rapidly measure political commitment and identify opportunities to advance food and nutrition on the policy agenda. This article presents a theory-based rapid assessment approach to gauging countries' level of political commitment to food and nutrition security and identifying opportunities to advance food and nutrition on the policy agenda. The rapid assessment tool was piloted among food and nutrition policymakers and planners in 10 low- and middle-income countries in April to June 2013. Food and nutrition commitment and policy opportunity scores were calculated for each country and strategies to advance food and nutrition on policy agendas were designed for each country. The article finds that, in a majority of countries, political leaders had verbally and symbolically committed to addressing food and nutrition, but adequate financial resources were not allocated to implement specific programmes. In addition, whereas the low cohesion of the policy community has been viewed a major underlying cause of the low-priority status of food and nutrition, the analysis finds that policy community cohesion and having a well thought-out policy alternative were present in most countries. This tool may be useful to policymakers and planners providing information that can be used to benchmark and/or evaluate advocacy efforts to advance reforms in the food and nutrition sector; furthermore, the results can help identify specific strategies that can be employed to move the food and nutrition agenda forward. This tool complements others that have been recently developed to measure national commitment to

  10. Towards a New Generation of Time-Series Visualization Tools in the ESA Heliophysics Science Archives

    NASA Astrophysics Data System (ADS)

    Perez, H.; Martinez, B.; Cook, J. P.; Herment, D.; Fernandez, M.; De Teodoro, P.; Arnaud, M.; Middleton, H. R.; Osuna, P.; Arviset, C.

    2017-12-01

    During the last decades a varied set of Heliophysics missions have allowed the scientific community to gain a better knowledge on the solar atmosphere and activity. The remote sensing images of missions such as SOHO have paved the ground for Helio-based spatial data visualization software such as JHelioViewer/Helioviewer. On the other hand, the huge amount of in-situ measurements provided by other missions such as Cluster provide a wide base for plot visualization software whose reach is still far from being fully exploited. The Heliophysics Science Archives within the ESAC Science Data Center (ESDC) already provide a first generation of tools for time-series visualization focusing on each mission's needs: visualization of quicklook plots, cross-calibration time series, pre-generated/on-demand multi-plot stacks (Cluster), basic plot zoom in/out options (Ulysses) and easy navigation through the plots in time (Ulysses, Cluster, ISS-Solaces). However, as the needs evolve and the scientists involved in new missions require to plot multi-variable data, heat maps stacks interactive synchronization and axis variable selection among other improvements. The new Heliophysics archives (such as Solar Orbiter) and the evolution of existing ones (Cluster) intend to address these new challenges. This paper provides an overview of the different approaches for visualizing time-series followed within the ESA Heliophysics Archives and their foreseen evolution.

  11. Surveying the maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    USDA-ARS?s Scientific Manuscript database

    The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data, and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on beh...

  12. SmartWay Truck Tool-Advanced Class: Getting the Most out of Your SmartWay Participation

    EPA Pesticide Factsheets

    This EPA presentation provides information on the Advanced SmartWay Truck Tool; it's background, development, participation, data collection, usage, fleet categories, emission metrics, ranking system, performance data, reports, and schedule for 2017.

  13. Reliability of visual and instrumental color matching.

    PubMed

    Igiel, Christopher; Lehmann, Karl Martin; Ghinea, Razvan; Weyhrauch, Michael; Hangx, Ysbrand; Scheller, Herbert; Paravina, Rade D

    2017-09-01

    The aim of this investigation was to evaluate intra-rater and inter-rater reliability of visual and instrumental shade matching. Forty individuals with normal color perception participated in this study. The right maxillary central incisor of a teaching model was prepared and restored with 10 feldspathic all-ceramic crowns of different shades. A shade matching session consisted of the observer (rater) visually selecting the best match by using VITA classical A1-D4 (VC) and VITA Toothguide 3D Master (3D) shade guides and the VITA Easyshade Advance intraoral spectrophotometer (ES) to obtain both VC and 3D matches. Three shade matching sessions were held with 4 to 6 weeks between sessions. Intra-rater reliability was assessed based on the percentage of agreement for the three sessions for the same observer, whereas the inter-rater reliability was calculated as mean percentage of agreement between different observers. The Fleiss' Kappa statistical analysis was used to evaluate visual inter-rater reliability. The mean intra-rater reliability for the visual shade selection was 64(11) for VC and 48(10) for 3D. The corresponding ES values were 96(4) for both VC and 3D. The percentages of observers who matched the same shade with VC and 3D were 55(10) and 43(12), respectively, while corresponding ES values were 88(8) for VC and 92(4) for 3D. The results for visual shade matching exhibited a high to moderate level of inconsistency for both intra-rater and inter-rater comparisons. The VITA Easyshade Advance intraoral spectrophotometer exhibited significantly better reliability compared with visual shade selection. This study evaluates the ability of observers to consistently match the same shade visually and with a dental spectrophotometer in different sessions. The intra-rater and inter-rater reliability (agreement of repeated shade matching) of visual and instrumental tooth color matching strongly suggest the use of color matching instruments as a supplementary tool in

  14. SpacePy - a Python-based library of tools for the space sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven K; Welling, Daniel T; Koller, Josef

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks tomore » promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in

  15. Proposal for constructing an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael H.; Podolak, Esther; Mckay, Christopher P.; Thompson, David E.

    1990-01-01

    Scientific model building can be a time intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing and using models. The proposed tool will include an interactive intelligent graphical interface and a high level, domain specific, modeling language. As a testbed for this research, we propose development of a software prototype in the domain of planetary atmospheric modeling.

  16. Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...

  17. Identifying opportunities to advance practice at a large academic medical center using the ASHP Ambulatory Care Self-Assessment Tool.

    PubMed

    Martirosov, Amber Lanae; Michael, Angela; McCarty, Melissa; Bacon, Opal; DiLodovico, John R; Jantz, Arin; Kostoff, Diana; MacDonald, Nancy C; Mikulandric, Nancy; Neme, Klodiana; Sulejmani, Nimisha; Summers, Bryant B

    2018-05-29

    The use of the ASHP Ambulatory Care Self-Assessment Tool to advance pharmacy practice at 8 ambulatory care clinics of a large academic medical center is described. The ASHP Ambulatory Care Self-Assessment Tool was developed to help ambulatory care pharmacists assess how their current practices align with the ASHP Practice Advancement Initiative. The Henry Ford Hospital Ambulatory Care Advisory Group (ACAG) opted to use the "Practitioner Track" sections of the tool to assess pharmacy practices within each of 8 ambulatory care clinics individually. The responses to self-assessment items were then compiled and discussed by ACAG members. The group identified best practices and ways to implement action items to advance ambulatory care practice throughout the institution. Three recommended action items were common to most clinics: (1) identify and evaluate solutions to deliver financially viable services, (2) develop technology to improve patient care, and (3) optimize the role of pharmacy technicians and support personnel. The ACAG leadership met with pharmacy administrators to discuss how action items that were both feasible and deemed likely to have a medium-to-high impact aligned with departmental goals and used this information to develop an ambulatory care strategic plan. This process informed and enabled initiatives to advance ambulatory care pharmacy practice within the system. The ASHP Ambulatory Care Self-Assessment Tool was useful in identifying opportunities for practice advancement in a large academic medical center. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  18. What top-down task sets do for us: an ERP study on the benefits of advance preparation in visual search.

    PubMed

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-12-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features. Visual search arrays contained two different color singleton digits, and participants had to select one of these as target and report its parity. Target color was either known in advance (fixed color task) or had to be selected anew on each trial (free color-choice task). ERP correlates of spatially selective attentional target selection (N2pc) and working memory processing (SPCN) demonstrated rapid target selection and efficient exclusion of color singleton distractors from focal attention and working memory in the fixed color task. In the free color-choice task, spatially selective processing also emerged rapidly, but selection efficiency was reduced, with nontarget singleton digits capturing attention and gaining access to working memory. Results demonstrate the benefits of top-down task sets: Feature-specific advance preparation accelerates target selection, rapidly resolves attentional competition, and prevents irrelevant events from attracting attention and entering working memory.

  19. Web-Based Geospatial Visualization of GPM Data with CesiumJS

    NASA Technical Reports Server (NTRS)

    Lammers, Matt

    2018-01-01

    Advancements in the capabilities of JavaScript frameworks and web browsing technology have made online visualization of large geospatial datasets such as those coming from precipitation satellites viable. These data benefit from being visualized on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS (http://cesiumjs.org), developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. This presentation will describe how CesiumJS has been used in three-dimensional visualization products developed as part of the NASA Precipitation Processing System (PPS) STORM data-order website. Existing methods of interacting with Global Precipitation Measurement (GPM) Mission data primarily focus on two-dimensional static images, whether displaying vertical slices or horizontal surface/height-level maps. These methods limit interactivity with the robust three-dimensional data coming from the GPM core satellite. Integrating the data with CesiumJS in a web-based user interface has allowed us to create the following products. We have linked with the data-order interface an on-the-fly visualization tool for any GPM/partner satellite orbit. A version of this tool also focuses on high-impact weather events. It enables viewing of combined radar and microwave-derived precipitation data on mobile devices and in a way that can be embedded into other websites. We also have used CesiumJS to visualize a method of integrating gridded precipitation data with modeled wind speeds that animates over time. Emphasis in the presentation will be placed on how a variety of technical methods were used to create these tools, and how the flexibility of the CesiumJS framework facilitates creative approaches to interact with the data.

  20. The Efficacy of a Low-Level Program Visualization Tool for Teaching Programming Concepts to Novice C Programmers.

    ERIC Educational Resources Information Center

    Smith, Philip A.; Webb, Geoffrey I.

    2000-01-01

    Describes "Glass-box Interpreter" a low-level program visualization tool called Bradman designed to provide a conceptual model of C program execution for novice programmers and makes visible aspects of the programming process normally hidden from the user. Presents an experiment that tests the efficacy of Bradman, and provides…

  1. Using McIDAS-V data analysis and visualization software as an educational tool for understanding the atmosphere

    NASA Astrophysics Data System (ADS)

    Achtor, T. H.; Rink, T.

    2010-12-01

    The University of Wisconsin’s Space Science and Engineering Center (SSEC) has been at the forefront in developing data analysis and visualization tools for environmental satellites and other geophysical data. The fifth generation of the Man-computer Interactive Data Access System (McIDAS-V) is Java-based, open-source, freely available software that operates on Linux, Macintosh and Windows systems. The software tools provide powerful new data manipulation and visualization capabilities that work with geophysical data in research, operational and educational environments. McIDAS-V provides unique capabilities to support innovative techniques for evaluating research results, teaching and training. McIDAS-V is based on three powerful software elements. VisAD is a Java library for building interactive, collaborative, 4 dimensional visualization and analysis tools. The Integrated Data Viewer (IDV) is a reference application based on the VisAD system and developed by the Unidata program that demonstrates the flexibility that is needed in this evolving environment, using a modern, object-oriented software design approach. The third tool, HYDRA, allows users to build, display and interrogate multi and hyperspectral environmental satellite data in powerful ways. The McIDAS-V software is being used for training and education in several settings. The McIDAS User Group provides training workshops at its annual meeting. Numerous online tutorials with training data sets have been developed to aid users in learning simple and more complex operations in McIDAS-V, all are available online. In a University of Wisconsin-Madison undergraduate course in Radar and Satellite Meteorology, McIDAS-V is used to create and deliver laboratory exercises using case study and real time data. At the high school level, McIDAS-V is used in several exercises in our annual Summer Workshop in Earth and Atmospheric Sciences to provide young scientists the opportunity to examine data with friendly and

  2. Interactive Visualization of Dependencies

    ERIC Educational Resources Information Center

    Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James

    2012-01-01

    We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…

  3. Development of the Music Therapy Assessment Tool for Advanced Huntington's Disease: A Pilot Validation Study.

    PubMed

    O'Kelly, Julian; Bodak, Rebeka

    2016-01-01

    Case studies of people with Huntington's disease (HD) report that music therapy provides a range of benefits that may improve quality of life; however, no robust music therapy assessment tools exist for this population. Develop and conduct preliminary psychometric testing of a music therapy assessment tool for patients with advanced HD. First, we established content and face validity of the Music Therapy Assessment Tool for Advanced HD (MATA-HD) through focus groups and field testing. Second, we examined psychometric properties of the resulting MATA-HD in terms of its construct validity, internal consistency, and inter-rater and intra-rater reliability over 10 group music therapy sessions with 19 patients. The resulting MATA-HD included a total of 15 items across six subscales (Arousal/Attention, Physical Presentation, Communication, Musical, Cognition, and Psychological/Behavioral). We found good construct validity (r ≥ 0.7) for Mood, Communication Level, Communication Effectiveness, Choice, Social Behavior, Arousal, and Attention items. Cronbach's α of 0.825 indicated good internal consistency across 11 items with a common focus of engagement in therapy. The inter-rater reliability (IRR) Intra-Class Coefficient (ICC) scores averaged 0.65, and a mean intra-rater ICC reliability of 0.68 was obtained. Further training and retesting provided a mean of IRR ICC of 0.7. Preliminary data indicate that the MATA-HD is a promising tool for measuring patient responses to music therapy interventions across psychological, physical, social, and communication domains of functioning in patients with advanced HD. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. A Meta-Analysis of the Educational Effectiveness of Three-Dimensional Visualization Technologies in Teaching Anatomy

    ERIC Educational Resources Information Center

    Yammine, Kaissar; Violato, Claudio

    2015-01-01

    Many medical graduates are deficient in anatomy knowledge and perhaps below the standards for safe medical practice. Three-dimensional visualization technology (3DVT) has been advanced as a promising tool to enhance anatomy knowledge. The purpose of this review is to conduct a meta-analysis of the effectiveness of 3DVT in teaching and learning…

  5. Visual tool for estimating the fractal dimension of images

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Rusu, M. V.; Jipa, Al.; Bordeianu, C. C.; Felea, D.

    2009-10-01

    This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from "noise", we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not. Program summaryProgram title: Fractal Analysis v01 Catalogue identifier: AEEG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29 690 No. of bytes in distributed program, including test data, etc.: 4 967 319 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 30M Classification: 14 Nature of problem: Estimating the fractal dimension of images. Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from "noise". User friendly graphical interface. Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format. Running time: In a first approximation, the algorithm is linear.

  6. VISIBIOweb: visualization and layout services for BioPAX pathway models

    PubMed Central

    Dilek, Alptug; Belviranli, Mehmet E.; Dogrusoz, Ugur

    2010-01-01

    With recent advancements in techniques for cellular data acquisition, information on cellular processes has been increasing at a dramatic rate. Visualization is critical to analyzing and interpreting complex information; representing cellular processes or pathways is no exception. VISIBIOweb is a free, open-source, web-based pathway visualization and layout service for pathway models in BioPAX format. With VISIBIOweb, one can obtain well-laid-out views of pathway models using the standard notation of the Systems Biology Graphical Notation (SBGN), and can embed such views within one's web pages as desired. Pathway views may be navigated using zoom and scroll tools; pathway object properties, including any external database references available in the data, may be inspected interactively. The automatic layout component of VISIBIOweb may also be accessed programmatically from other tools using Hypertext Transfer Protocol (HTTP). The web site is free and open to all users and there is no login requirement. It is available at: http://visibioweb.patika.org. PMID:20460470

  7. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less

  8. EDITORIAL: Focus on Visualization in Physics FOCUS ON VISUALIZATION IN PHYSICS

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.; Senden, Tim; Springel, Volker

    2008-12-01

    Advances in physics are intimately connected with developments in a new technology, the telescope, precision clocks, even the computer all have heralded a shift in thinking. These landmark developments open new opportunities accelerating research and in turn new scientific directions. These technological drivers often correspond to new instruments, but equally might just as well flag a new mathematical tool, an algorithm or even means to visualize physics in a new way. Early on in this twenty-first century, scientific communities are just starting to explore the potential of digital visualization. Whether visualization is used to represent and communicate complex concepts, or to understand and interpret experimental data, or to visualize solutions to complex dynamical equations, the basic tools of visualization are shared in each of these applications and implementations. High-performance computing exemplifies the integration of visualization with leading research. Visualization is an indispensable tool for analyzing and interpreting complex three-dimensional dynamics as well as to diagnose numerical problems in intricate parallel calculation algorithms. The effectiveness of visualization arises by exploiting the unmatched capability of the human eye and visual cortex to process the large information content of images. In a brief glance, we recognize patterns or identify subtle features even in noisy data, something that is difficult or impossible to achieve with more traditional forms of data analysis. Importantly, visualizations guide the intuition of researchers and help to comprehend physical phenomena that lie far outside of direct experience. In fact, visualizations literally allow us to see what would otherwise remain completely invisible. For example, artificial imagery created to visualize the distribution of dark matter in the Universe has been instrumental to develop the notion of a cosmic web, and for helping to establish the current standard model of

  9. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets*

    PubMed Central

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; del-Toro, Noemi; Dianes, Jose A.; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE. The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX “complete” submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. PMID:26545397

  10. CellNetVis: a web tool for visualization of biological networks using force-directed layout constrained by cellular components.

    PubMed

    Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane

    2017-09-13

    The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.

  11. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology.

    PubMed

    Wei, Qing; Khan, Ishita K; Ding, Ziyun; Yerneni, Satwica; Kihara, Daisuke

    2017-03-20

    The number of genomics and proteomics experiments is growing rapidly, producing an ever-increasing amount of data that are awaiting functional interpretation. A number of function prediction algorithms were developed and improved to enable fast and automatic function annotation. With the well-defined structure and manual curation, Gene Ontology (GO) is the most frequently used vocabulary for representing gene functions. To understand relationship and similarity between GO annotations of genes, it is important to have a convenient pipeline that quantifies and visualizes the GO function analyses in a systematic fashion. NaviGO is a web-based tool for interactive visualization, retrieval, and computation of functional similarity and associations of GO terms and genes. Similarity of GO terms and gene functions is quantified with six different scores including protein-protein interaction and context based association scores we have developed in our previous works. Interactive navigation of the GO function space provides intuitive and effective real-time visualization of functional groupings of GO terms and genes as well as statistical analysis of enriched functions. We developed NaviGO, which visualizes and analyses functional similarity and associations of GO terms and genes. The NaviGO webserver is freely available at: http://kiharalab.org/web/navigo .

  12. Concept of Operations Visualization for Ares I Production

    NASA Technical Reports Server (NTRS)

    Chilton, Jim; Smith, David Alan

    2008-01-01

    Establishing Computer Aided Design models of the Ares I production facility, tooling and vehicle components and integrating them into manufacturing visualizations/simulations allows Boeing and NASA to collaborate real time early in the design/development cycle. This collaboration identifies cost effective and lean solutions that can be easily shared with Ares stakeholders (e.g., other NASA Centers and potential science users). These Ares I production visualizations and analyses by their nature serve as early manufacturing improvement precursors for other Constellation elements to be built at the Michoud Assembly Facility such as Ares V and the Altair Lander. Key to this Boeing and Marshall Space Flight Center collaboration has been the use of advanced virtual manufacturing tools to understand the existing Shuttle era infrastructure and trade potential modifications to support Ares I production. These approaches are then used to determine an optimal manufacturing configuration in terms of labor efficiency, safety and facility enhancements. These same models and tools can be used in an interactive simulation of Ares I and V flight to the Space Station or moon to educate the human space constituency (e.g., government, academia, media and the public) in order to increase national and international understanding of Constellation goals and benefits.

  13. Scalable Visual Analytics of Massive Textual Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Manoj Kumar; Bohn, Shawn J.; Cowley, Wendy E.

    2007-04-01

    This paper describes the first scalable implementation of text processing engine used in Visual Analytics tools. These tools aid information analysts in interacting with and understanding large textual information content through visual interfaces. By developing parallel implementation of the text processing engine, we enabled visual analytics tools to exploit cluster architectures and handle massive dataset. The paper describes key elements of our parallelization approach and demonstrates virtually linear scaling when processing multi-gigabyte data sets such as Pubmed. This approach enables interactive analysis of large datasets beyond capabilities of existing state-of-the art visual analytics tools.

  14. ModuleRole: a tool for modulization, role determination and visualization in protein-protein interaction networks.

    PubMed

    Li, Guipeng; Li, Ming; Zhang, Yiwei; Wang, Dong; Li, Rong; Guimerà, Roger; Gao, Juntao Tony; Zhang, Michael Q

    2014-01-01

    Rapidly increasing amounts of (physical and genetic) protein-protein interaction (PPI) data are produced by various high-throughput techniques, and interpretation of these data remains a major challenge. In order to gain insight into the organization and structure of the resultant large complex networks formed by interacting molecules, using simulated annealing, a method based on the node connectivity, we developed ModuleRole, a user-friendly web server tool which finds modules in PPI network and defines the roles for every node, and produces files for visualization in Cytoscape and Pajek. For given proteins, it analyzes the PPI network from BioGRID database, finds and visualizes the modules these proteins form, and then defines the role every node plays in this network, based on two topological parameters Participation Coefficient and Z-score. This is the first program which provides interactive and very friendly interface for biologists to find and visualize modules and roles of proteins in PPI network. It can be tested online at the website http://www.bioinfo.org/modulerole/index.php, which is free and open to all users and there is no login requirement, with demo data provided by "User Guide" in the menu Help. Non-server application of this program is considered for high-throughput data with more than 200 nodes or user's own interaction datasets. Users are able to bookmark the web link to the result page and access at a later time. As an interactive and highly customizable application, ModuleRole requires no expert knowledge in graph theory on the user side and can be used in both Linux and Windows system, thus a very useful tool for biologist to analyze and visualize PPI networks from databases such as BioGRID. ModuleRole is implemented in Java and C, and is freely available at http://www.bioinfo.org/modulerole/index.php. Supplementary information (user guide, demo data) is also available at this website. API for ModuleRole used for this program can be

  15. Visualization of small scale structures on high resolution DEMs

    NASA Astrophysics Data System (ADS)

    Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof

    2015-04-01

    Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky

  16. MEMHDX: an interactive tool to expedite the statistical validation and visualization of large HDX-MS datasets.

    PubMed

    Hourdel, Véronique; Volant, Stevenn; O'Brien, Darragh P; Chenal, Alexandre; Chamot-Rooke, Julia; Dillies, Marie-Agnès; Brier, Sébastien

    2016-11-15

    With the continued improvement of requisite mass spectrometers and UHPLC systems, Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) workflows are rapidly evolving towards the investigation of more challenging biological systems, including large protein complexes and membrane proteins. The analysis of such extensive systems results in very large HDX-MS datasets for which specific analysis tools are required to speed up data validation and interpretation. We introduce a web application and a new R-package named 'MEMHDX' to help users analyze, validate and visualize large HDX-MS datasets. MEMHDX is composed of two elements. A statistical tool aids in the validation of the results by applying a mixed-effects model for each peptide, in each experimental condition, and at each time point, taking into account the time dependency of the HDX reaction and number of independent replicates. Two adjusted P-values are generated per peptide, one for the 'Change in dynamics' and one for the 'Magnitude of ΔD', and are used to classify the data by means of a 'Logit' representation. A user-friendly interface developed with Shiny by RStudio facilitates the use of the package. This interactive tool allows the user to easily and rapidly validate, visualize and compare the relative deuterium incorporation on the amino acid sequence and 3D structure, providing both spatial and temporal information. MEMHDX is freely available as a web tool at the project home page http://memhdx.c3bi.pasteur.fr CONTACT: marie-agnes.dillies@pasteur.fr or sebastien.brier@pasteur.frSupplementary information: Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0139

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    1999-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  18. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0192

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  19. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  20. Invariant visual object recognition and shape processing in rats

    PubMed Central

    Zoccolan, Davide

    2015-01-01

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  1. Interactive web visualization tools to the results interpretation of a seismic risk study aimed at the emergency levels definition

    NASA Astrophysics Data System (ADS)

    Rivas-Medina, A.; Gutierrez, V.; Gaspar-Escribano, J. M.; Benito, B.

    2009-04-01

    Results of a seismic risk assessment study are often applied and interpreted by users unspecialised on the topic or lacking a scientific background. In this context, the availability of tools that help translating essentially scientific contents to broader audiences (such as decision makers or civil defence officials) as well as representing and managing results in a user-friendly fashion, are on indubitable value. On of such tools is the visualization tool VISOR-RISNA, a web tool developed within the RISNA project (financed by the Emergency Agency of Navarre, Spain) for regional seismic risk assessment of Navarre and the subsequent development of emergency plans. The RISNA study included seismic hazard evaluation, geotechnical characterization of soils, incorporation of site effects to expected ground motions, vulnerability distribution assessment and estimation of expected damage distributions for a 10% probability of exceedance in 50 years. The main goal of RISNA was the identification of higher risk area where focusing detailed, local-scale risk studies in the future and the corresponding urban emergency plans. A geographic information system was used to combine different information layers, generate tables of results and represent maps with partial and final results. The visualization tool VISOR-RISNA is intended to facilitate the interpretation and representation of the collection of results, with the ultimate purpose of defining actuation plans. A number of criteria for defining actuation priorities are proposed in this work. They are based on combinations of risk parameters resulting from the risk study (such as expected ground motion and damage and exposed population), as determined by risk assessment specialists. Although the values that these parameters take are a result of the risk study, their distribution in several classes depends on the intervals defined by decision takers or civil defense officials. These criteria provide a ranking of

  2. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady state, nearly sinusoidal behavior of the components in a Free Piston Stirling Engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F=ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB by taking user input data, passing it to Sage, a 1-D thermodynamic modeling program used to model the Stirling convertor, running Sage and then automatically plotting the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot end temperature, cold end temperature, operating frequency, and displacer spring constant. By using these phasor diagrams, better insight can be gained as to why the convertor operates the way that it does.

  3. Visualizing Matrix Multiplication

    ERIC Educational Resources Information Center

    Daugulis, Peteris; Sondore, Anita

    2018-01-01

    Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…

  4. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  5. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  6. Female Genital Mutilation: A Visual Reference and Learning Tool for Health Care Professionals.

    PubMed

    Abdulcadir, Jasmine; Catania, Lucrezia; Hindin, Michelle Jane; Say, Lale; Petignat, Patrick; Abdulcadir, Omar

    2016-11-01

    Female genital mutilation comprises all procedures that involve partial or total removal of the external female genitalia or injury to the female genital organs for nonmedical reasons. Health care providers for women and girls living with female genital mutilation have reported difficulties in recognizing, classifying, and recording female genital mutilation, which can adversely affect treatment of complications and discussions of the prevention of the practice in future generations. According to the World Health Organization, female genital mutilation is classified into four types, subdivided into subtypes. An agreed-upon classification of female genital mutilation is important for clinical practice, management, recording, and reporting, as well as for research on prevalence, trends, and consequences of female genital mutilation. We provide a visual reference and learning tool for health care professionals. The tool can be consulted by caregivers when unsure on the type of female genital mutilation diagnosed and used for training and surveys for monitoring the prevalence of female genital mutilation types and subtypes.

  7. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.

    PubMed

    Siddiqui, Michael S; Thodey, Kate; Trenchard, Isis; Smolke, Christina D

    2012-03-01

    Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. DisEpi: Compact Visualization as a Tool for Applied Epidemiological Research.

    PubMed

    Benis, Arriel; Hoshen, Moshe

    2017-01-01

    Outcomes research and evidence-based medical practice is being positively impacted by proliferation of healthcare databases. Modern epidemiologic studies require complex data comprehension. A new tool, DisEpi, facilitates visual exploration of epidemiological data supporting Public Health Knowledge Discovery. It provides domain-experts a compact visualization of information at the population level. In this study, DisEpi is applied to Attention-Deficit/Hyperactivity Disorder (ADHD) patients within Clalit Health Services, analyzing the socio-demographic and ADHD filled prescription data between 2006 and 2016 of 1,605,800 children aged 6 to 17 years. DisEpi's goals facilitate the identification of (1) Links between attributes and/or events, (2) Changes in these relationships over time, and (3) Clusters of population attributes for similar trends. DisEpi combines hierarchical clustering graphics and a heatmap where color shades reflect disease time-trends. In the ADHD context, DisEpi allowed the domain-expert to visually analyze a snapshot summary of data mining results. Accordingly, the domain-expert was able to efficiently identify that: (1) Relatively younger children and particularly youngest children in class are treated more often, (2) Medication incidence increased between 2006 and 2011 but then stabilized, and (3) Progression rates of medication incidence is different for each of the 3 main discovered clusters (aka: profiles) of treated children. DisEpi delivered results similar to those previously published which used classical statistical approaches. DisEpi requires minimal preparation and fewer iterations, generating results in a user-friendly format for the domain-expert. DisEpi will be wrapped as a package containing the end-to-end discovery process. Optionally, it may provide automated annotation using calendar events (such as policy changes or media interests), which can improve discovery efficiency, interpretation, and policy implementation.

  9. Wired Widgets: Agile Visualization for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Gerschefske, K.; Witmer, J.

    2012-09-01

    Continued advancement in sensors and analysis techniques have resulted in a wealth of Space Situational Awareness (SSA) data, made available via tools and Service Oriented Architectures (SOA) such as those in the Joint Space Operations Center Mission Systems (JMS) environment. Current visualization software cannot quickly adapt to rapidly changing missions and data, preventing operators and analysts from performing their jobs effectively. The value of this wealth of SSA data is not fully realized, as the operators' existing software is not built with the flexibility to consume new or changing sources of data or to rapidly customize their visualization as the mission evolves. While tools like the JMS user-defined operational picture (UDOP) have begun to fill this gap, this paper presents a further evolution, leveraging Web 2.0 technologies for maximum agility. We demonstrate a flexible Web widget framework with inter-widget data sharing, publish-subscribe eventing, and an API providing the basis for consumption of new data sources and adaptable visualization. Wired Widgets offers cross-portal widgets along with a widget communication framework and development toolkit for rapid new widget development, giving operators the ability to answer relevant questions as the mission evolves. Wired Widgets has been applied in a number of dynamic mission domains including disaster response, combat operations, and noncombatant evacuation scenarios. The variety of applications demonstrate that Wired Widgets provides a flexible, data driven solution for visualization in changing environments. In this paper, we show how, deployed in the Ozone Widget Framework portal environment, Wired Widgets can provide an agile, web-based visualization to support the SSA mission. Furthermore, we discuss how the tenets of agile visualization can generally be applied to the SSA problem space to provide operators flexibility, potentially informing future acquisition and system development.

  10. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; North, Chris

    2012-10-14

    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less

  11. High-power graphic computers for visual simulation: a real-time--rendering revolution

    NASA Technical Reports Server (NTRS)

    Kaiser, M. K.

    1996-01-01

    Advances in high-end graphics computers in the past decade have made it possible to render visual scenes of incredible complexity and realism in real time. These new capabilities make it possible to manipulate and investigate the interactions of observers with their visual world in ways once only dreamed of. This paper reviews how these developments have affected two preexisting domains of behavioral research (flight simulation and motion perception) and have created a new domain (virtual environment research) which provides tools and challenges for the perceptual psychologist. Finally, the current limitations of these technologies are considered, with an eye toward how perceptual psychologist might shape future developments.

  12. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets.

    PubMed

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; Del-Toro, Noemi; Dianes, Jose A; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE.The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX "complete" submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Visual Programming: A Programming Tool for Increasing Mathematics Achivement

    ERIC Educational Resources Information Center

    Swanier, Cheryl A.; Seals, Cheryl D.; Billionniere, Elodie V.

    2009-01-01

    This paper aims to address the need of increasing student achievement in mathematics using a visual programming language such as Scratch. This visual programming language facilitates creating an environment where students in K-12 education can develop mathematical simulations while learning a visual programming language at the same time.…

  14. Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark

    Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchersmore » the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.« less

  15. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  16. Visualization and Quality Control Web Tools for CERES Products

    NASA Astrophysics Data System (ADS)

    Mitrescu, C.; Doelling, D.; Chu, C.; Mlynczak, P.

    2014-12-01

    The CERES project continues to provide the scientific community a wide variety of satellite-derived data products. The flagship products TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. These datasets encompass a wide range of temporal and spatial resolutions, suited to specific applications. We thus offer time resolutions that range from instantaneous to monthly means, with spatial resolutions that range from 20-km footprint to global scales. The 14-year record is mostly used by climate modeling communities that focus on global mean energetics, meridianal heat transport, and climate trend studies. CERES products are also used by the remote sensing community for their climatological studies. In the last years however, our CERES products had been used by an even broader audience, like the green energy, health and environmental research communities, and others. Because of that, the CERES project has implemented a now well-established web-oriented Ordering and Visualization Tool (OVT), which is well into its fifth year of development. In order to help facilitate a comprehensive quality control of CERES products, the OVT Team began introducing a series of specialized functions. These include the 1- and 2-D histogram, anomaly, deseasonalization, temporal and spatial averaging, side-by-side parameter comparison, and other specialized scientific application capabilities. Over time increasingly higher order temporal and spatial resolution products are being made available to the public through the CERES OVT. These high-resolution products require accessing the existing long-term archive - thus the reading of many very large netCDF or HDF files that pose a real challenge to the task of near instantaneous visualization. An overview of the CERES OVT basic functions and QC capabilities as well as future steps in expanding its capabilities will be presented at the meeting.

  17. Images as tools. On visual epistemic practices in the biological sciences.

    PubMed

    Samuel, Nina

    2013-06-01

    Contemporary visual epistemic practices in the biological sciences raise new questions of how to transform an iconic data measurements into images, and how the process of an imaging technique may change the material it is 'depicting'. This case-oriented study investigates microscopic imagery, which is used by system and synthetic biologists alike. The core argument is developed around the analysis of two recent methods, developed between 2003 and 2006: localization microscopy and photo-induced cell death. Far from functioning merely as illustrations of work done by other means, images can be determined as tools for discovery in their own right and as objects of investigation. Both methods deploy different constellations of intended and unintended interactions between visual appearance and underlying biological materiality. To characterize these new ways of interaction, the article introduces the notions of 'operational images' and 'operational agency'. Despite all their novelty, operational images are still subject to conventions of seeing and depicting: Phenomena emerging with the new method of localization microscopy have to be designed according to image traditions of older, conventional fluorescence microscopy to function properly as devices for communication between physicists and biologists. The article emerged from a laboratory study based on interviews conducted with researchers from the Kirchhoff-Institute for Physics and German Cancer Research Center (DKFZ) at Bioquant, Heidelberg, in 2011. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Validity of the growth model of the 'computerized visual perception assessment tool for Chinese characters structures'.

    PubMed

    Wu, Huey-Min; Li, Cheng-Hsaun; Kuo, Bor-Chen; Yang, Yu-Mao; Lin, Chin-Kai; Wan, Wei-Hsiang

    2017-08-01

    Morphological awareness is the foundation for the important developmental skills involved with vocabulary, as well as understanding the meaning of words, orthographic knowledge, reading, and writing. Visual perception of space and radicals in two-dimensional positions of Chinese characters' morphology is very important in identifying Chinese characters. The important predictive variables of special and visual perception in Chinese characters identification were investigated in the growth model in this research. The assessment tool is the "Computerized Visual Perception Assessment Tool for Chinese Characters Structures" developed by this study. There are two constructs, basic stroke and character structure. In the basic stroke, there are three subtests of one, two, and more than three strokes. In the character structure, there are three subtests of single-component character, horizontal-compound character, and vertical-compound character. This study used purposive sampling. In the first year, 551 children 4-6 years old participated in the study and were monitored for one year. In the second year, 388 children remained in the study and the successful follow-up rate was 70.4%. This study used a two-wave cross-lagged panel design to validate the growth model of the basic stroke and the character structure. There was significant correlation of the basic stroke and the character structure at different time points. The abilities in the basic stroke and in the character structure steadily developed over time for preschool children. Children's knowledge of the basic stroke effectively predicted their knowledge of the basic stroke and the character structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    PubMed

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of

  20. Advanced Infusion Techniques with 3-D Printed Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuttall, David; Elliott, Amy; Post, Brian K.

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanningmore » and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products

  1. Methods, Tools and Current Perspectives in Proteogenomics *

    PubMed Central

    Ruggles, Kelly V.; Krug, Karsten; Wang, Xiaojing; Clauser, Karl R.; Wang, Jing; Payne, Samuel H.; Fenyö, David; Zhang, Bing; Mani, D. R.

    2017-01-01

    With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, i.e. the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. PMID:28456751

  2. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    PubMed

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  3. The academic tweet: Twitter as a tool to advance academic surgery.

    PubMed

    Logghe, Heather J; Selby, Luke V; Boeck, Marissa A; Stamp, Nikki L; Chuen, Jason; Jones, Christian

    2018-06-01

    Social media, Twitter in particular, has emerged as an essential tool for surgeons. In the realm of academic surgery, it enables surgeons to advance the core values of academic surgery, as outlined by the Association for Academic Surgery: inclusion, leadership, innovation, scholarship, and mentorship. This article details the ways in which surgeons are using Twitter to embody these values and how the Twitter account for the Association of Academic Surgeons accomplishes its goal of inspiring and developing young academic surgeons. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Advanced imaging in acute and chronic deep vein thrombosis

    PubMed Central

    Karande, Gita Yashwantrao; Sanchez, Yadiel; Baliyan, Vinit; Mishra, Vishala; Ganguli, Suvranu; Prabhakar, Anand M.

    2016-01-01

    Deep venous thrombosis (DVT) affecting the extremities is a common clinical problem. Prompt imaging aids in rapid diagnosis and adequate treatment. While ultrasound (US) remains the workhorse of detection of extremity venous thrombosis, CT and MRI are commonly used as the problem-solving tools either to visualize the thrombosis in central veins like superior or inferior vena cava (IVC) or to test for the presence of complications like pulmonary embolism (PE). The cross-sectional modalities also offer improved visualization of venous collaterals. The purpose of this article is to review the established modalities used for characterization and diagnosis of DVT, and further explore promising innovations and recent advances in this field. PMID:28123971

  5. More than words: Using visual graphics for community-based health research.

    PubMed

    Morton Ninomiya, Melody E

    2017-04-20

    With increased attention to knowledge translation and community engagement in the applied health research field, many researchers aim to find effective ways of engaging health policy and decision makers and community stakeholders. While visual graphics such as graphs, charts, figures and photographs are common in scientific research dissemination, they are less common as a communication tool in research. In this commentary, I illustrate how and why visual graphics were created and used to facilitate dialogue and communication throughout all phases of a community-based health research study with a rural Indigenous community, advancing community engagement and knowledge utilization of a research study. I suggest that it is essential that researchers consider the use of visual graphics to accurately communicate and translate important health research concepts and content in accessible forms for diverse research stakeholders and target audiences.

  6. Web-based interactive 3D visualization as a tool for improved anatomy learning.

    PubMed

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain from its use in reaching their anatomical learning objectives. Several 3D vascular VR models were created using an interactive segmentation tool based on the "virtual contrast injection" method. This method allows users, with relative ease, to convert computer tomography or magnetic resonance images into vivid 3D VR movies using the OsiriX software equipped with the CMIV CTA plug-in. Once created using the segmentation tool, the image series were exported in Quick Time Virtual Reality (QTVR) format and integrated within a web framework of the Educational Virtual Anatomy (EVA) program. A total of nine QTVR movies were produced encompassing most of the major arteries of the body. These movies were supplemented with associated information, color keys, and notes. The results indicate that, in general, students' attitudes towards the EVA-program were positive when compared with anatomy textbooks, but results were not the same with dissections. Additionally, knowledge tests suggest a potentially beneficial effect on learning.

  7. The Effects of Visual Magnification and Physical Movement Scale on the Manipulation of a Tool with Indirect Vision

    ERIC Educational Resources Information Center

    Bohan, Michael; McConnell, Daniel S.; Chaparro, Alex; Thompson, Shelby G.

    2010-01-01

    Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the…

  8. Collaboration tools and techniques for large model datasets

    USGS Publications Warehouse

    Signell, R.P.; Carniel, S.; Chiggiato, J.; Janekovic, I.; Pullen, J.; Sherwood, C.R.

    2008-01-01

    In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional datasets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters - no advanced programming support is necessary. ?? 2007 Elsevier B.V. All rights reserved.

  9. The pyPHaz software, an interactive tool to analyze and visualize results from probabilistic hazard assessments

    NASA Astrophysics Data System (ADS)

    Tonini, Roberto; Selva, Jacopo; Costa, Antonio; Sandri, Laura

    2014-05-01

    Probabilistic Hazard Assessment (PHA) is becoming an essential tool for risk mitigation policies, since it allows to quantify the hazard due to hazardous phenomena and, differently from the deterministic approach, it accounts for both aleatory and epistemic uncertainties. On the other hand, one of the main disadvantages of PHA methods is that their results are not easy to understand and interpret by people who are not specialist in probabilistic tools. For scientists, this leads to the issue of providing tools that can be easily used and understood by decision makers (i.e., risk managers or local authorities). The work here presented fits into the problem of simplifying the transfer between scientific knowledge and land protection policies, by providing an interface between scientists, who produce PHA's results, and decision makers, who use PHA's results for risk analyses. In this framework we present pyPHaz, an open tool developed and designed to visualize and analyze PHA results due to one or more phenomena affecting a specific area of interest. The software implementation has been fully developed with the free and open-source Python programming language and some featured Python-based libraries and modules. The pyPHaz tool allows to visualize the Hazard Curves (HC) calculated in a selected target area together with different levels of uncertainty (mean and percentiles) on maps that can be interactively created and modified by the user, thanks to a dedicated Graphical User Interface (GUI). Moreover, the tool can be used to compare the results of different PHA models and to merge them, by creating ensemble models. The pyPHaz software has been designed with the features of storing and accessing all the data through a MySQL database and of being able to read as input the XML-based standard file formats defined in the frame of GEM (Global Earthquake Model). This format model is easy to extend also to any other kind of hazard, as it will be shown in the applications

  10. Surveying the Maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    PubMed Central

    Braun, Bremen L.; Schott, David A.; Portwood, II, John L.; Schaeffer, Mary L.; Harper, Lisa C.; Gardiner, Jack M.; Cannon, Ethalinda K.; Andorf, Carson M.

    2017-01-01

    Abstract The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on behalf of the Maize Genetics Executive Committee in Summer 2015. The survey garnered 48 responses from maize researchers, of which more than half were self-identified as breeders. The survey showed that the maize researchers considered their top priorities for visualization as: (i) displaying single nucleotide polymorphisms in a given region for a given list of lines, (ii) showing haplotypes for a given list of lines and (iii) presenting pedigree relationships visually. The survey also asked which populations would be most useful to display. The following two populations were on top of the list: (i) 3000 publicly available maize inbred lines used in Romay et al. (Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol, 2013;14:R55) and (ii) maize lines with expired Plant Variety Protection Act (ex-PVP) certificates. Driven by this strong stakeholder input, MaizeGDB staff are currently working in four areas to improve its interface and web-based tools: (i) presenting immediate progenies of currently available stocks at the MaizeGDB Stock pages, (ii) displaying the most recent ex-PVP lines described in the Germplasm Resources Information Network (GRIN) on the MaizeGDB Stock pages, (iii) developing network views of pedigree relationships and (iv) visualizing genotypes from SNP-based diversity datasets. These survey results can help other biological databases to direct their efforts according to user preferences as they serve similar types of data sets for their communities. Database URL: https://www.maizegdb.org PMID:28605768

  11. PanACEA: a bioinformatics tool for the exploration and visualization of bacterial pan-chromosomes.

    PubMed

    Clarke, Thomas H; Brinkac, Lauren M; Inman, Jason M; Sutton, Granger; Fouts, Derrick E

    2018-06-27

    Bacterial pan-genomes, comprised of conserved and variable genes across multiple sequenced bacterial genomes, allow for identification of genomic regions that are phylogenetically discriminating or functionally important. Pan-genomes consist of large amounts of data, which can restrict researchers ability to locate and analyze these regions. Multiple software packages are available to visualize pan-genomes, but currently their ability to address these concerns are limited by using only pre-computed data sets, prioritizing core over variable gene clusters, or by not accounting for pan-chromosome positioning in the viewer. We introduce PanACEA (Pan-genome Atlas with Chromosome Explorer and Analyzer), which utilizes locally-computed interactive web-pages to view ordered pan-genome data. It consists of multi-tiered, hierarchical display pages that extend from pan-chromosomes to both core and variable regions to single genes. Regions and genes are functionally annotated to allow for rapid searching and visual identification of regions of interest with the option that user-supplied genomic phylogenies and metadata can be incorporated. PanACEA's memory and time requirements are within the capacities of standard laptops. The capability of PanACEA as a research tool is demonstrated by highlighting a variable region important in differentiating strains of Enterobacter hormaechei. PanACEA can rapidly translate the results of pan-chromosome programs into an intuitive and interactive visual representation. It will empower researchers to visually explore and identify regions of the pan-chromosome that are most biologically interesting, and to obtain publication quality images of these regions.

  12. Epiviz: a view inside the design of an integrated visual analysis software for genomics

    PubMed Central

    2015-01-01

    Background Computational and visual data analysis for genomics has traditionally involved a combination of tools and resources, of which the most ubiquitous consist of genome browsers, focused mainly on integrative visualization of large numbers of big datasets, and computational environments, focused on data modeling of a small number of moderately sized datasets. Workflows that involve the integration and exploration of multiple heterogeneous data sources, small and large, public and user specific have been poorly addressed by these tools. In our previous work, we introduced Epiviz, which bridges the gap between the two types of tools, simplifying these workflows. Results In this paper we expand on the design decisions behind Epiviz, and introduce a series of new advanced features that further support the type of interactive exploratory workflow we have targeted. We discuss three ways in which Epiviz advances the field of genomic data analysis: 1) it brings code to interactive visualizations at various different levels; 2) takes the first steps in the direction of collaborative data analysis by incorporating user plugins from source control providers, as well as by allowing analysis states to be shared among the scientific community; 3) combines established analysis features that have never before been available simultaneously in a genome browser. In our discussion section, we present security implications of the current design, as well as a series of limitations and future research steps. Conclusions Since many of the design choices of Epiviz are novel in genomics data analysis, this paper serves both as a document of our own approaches with lessons learned, as well as a start point for future efforts in the same direction for the genomics community. PMID:26328750

  13. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D

    PubMed Central

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron

    2017-01-01

    Abstract Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. PMID:28814063

  14. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    PubMed

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  15. Sandia Advanced MEMS Design Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor R.; Allen, James J.; Lantz, Jeffrey W.

    This is a major revision to the Sandia Advanced MEMS Design Tools. It replaces all previous versions. New features in this version: Revised to support AutoCAD 2014 and 2015 This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exists somemore » files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  16. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  17. Accessing and Visualizing scientific spatiotemporal data

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Bergou, Attila; Berriman, Bruce G.; Block, Gary L.; Collier, Jim; Curkendall, David W.; Good, John; Husman, Laura; Jacob, Joseph C.; Laity, Anastasia; hide

    2004-01-01

    This paper discusses work done by JPL 's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids These tools do one or more of the following tasks visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.

  18. Accessing Cloud Properties and Satellite Imagery: A tool for visualization and data mining

    NASA Astrophysics Data System (ADS)

    Chee, T.; Nguyen, L.; Minnis, P.; Spangenberg, D.; Palikonda, R.

    2016-12-01

    Providing public access to imagery of cloud macro and microphysical properties and the underlying satellite imagery is a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a tool and system that allows end users to easily browse cloud information and satellite imagery that is otherwise difficult to acquire and manipulate. The tool has two uses, one to visualize the data and the other to access the data directly. It uses a widely used access protocol, the Open Geospatial Consortium's Web Map and Processing Services, to encourage user to access the data we produce. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud. One goal of the tool is to provide a demonstration of the back end capability to end users so that they can use the dynamically generated imagery and data as an input to their own work flows or to set up data mining constraints. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information and satellite imagery accessible and easily searchable. Increasingly, information is used in a "mash-up" form where multiple sources of information are combined to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much cutting edge scientific knowledge, observations and products available to the citizen science, research and interested communities for these kinds of "mash-ups" as well as provide a means for automated systems to data mine our information. This tool and access method provides a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  19. Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer

    PubMed Central

    Gutman, David A.; Dunn, William D.; Cobb, Jake; Stoner, Richard M.; Kalpathy-Cramer, Jayashree; Erickson, Bradley

    2014-01-01

    Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance. PMID:24904399

  20. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Vortex filament method as a tool for computational visualization of quantum turbulence

    PubMed Central

    Hänninen, Risto; Baggaley, Andrew W.

    2014-01-01

    The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear. PMID:24704873

  2. CEREBRA: a 3-D visualization tool for brain network extracted from fMRI data.

    PubMed

    Nasir, Baris; Yarman Vural, Fatos T

    2016-08-01

    In this paper, we introduce a new tool, CEREBRA, to visualize the 3D network of human brain, extracted from the fMRI data. The tool aims to analyze the brain connectivity by representing the selected voxels as the nodes of the network. The edge weights among the voxels are estimated by considering the relationships among the voxel time series. The tool enables the researchers to observe the active brain regions and the interactions among them by using graph theoretic measures, such as, the edge weight and node degree distributions. CEREBRA provides an interactive interface with basic display and editing options for the researchers to study their hypotheses about the connectivity of the brain network. CEREBRA interactively simplifies the network by selecting the active voxels and the most correlated edge weights. The researchers may remove the voxels and edges by using local and global thresholds selected on the window. The built-in graph reduction algorithms are then eliminate the irrelevant regions, voxels and edges and display various properties of the network. The toolbox is capable of space-time representation of the voxel time series and estimated arc weights by using the animated heat maps.

  3. Web-based visual analysis for high-throughput genomics

    PubMed Central

    2013-01-01

    Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the

  4. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0185

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  5. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0161

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  6. JavaProtein Dossier: a novel web-based data visualization tool for comprehensive analysis of protein structure

    PubMed Central

    Neshich, Goran; Rocchia, Walter; Mancini, Adauto L.; Yamagishi, Michel E. B.; Kuser, Paula R.; Fileto, Renato; Baudet, Christian; Pinto, Ivan P.; Montagner, Arnaldo J.; Palandrani, Juliana F.; Krauchenco, Joao N.; Torres, Renato C.; Souza, Savio; Togawa, Roberto C.; Higa, Roberto H.

    2004-01-01

    JavaProtein Dossier (JPD) is a new concept, database and visualization tool providing one of the largest collections of the physicochemical parameters describing proteins' structure, stability, function and interaction with other macromolecules. By collecting as many descriptors/parameters as possible within a single database, we can achieve a better use of the available data and information. Furthermore, data grouping allows us to generate different parameters with the potential to provide new insights into the sequence–structure–function relationship. In JPD, residue selection can be performed according to multiple criteria. JPD can simultaneously display and analyze all the physicochemical parameters of any pair of structures, using precalculated structural alignments, allowing direct parameter comparison at corresponding amino acid positions among homologous structures. In order to focus on the physicochemical (and consequently pharmacological) profile of proteins, visualization tools (showing the structure and structural parameters) also had to be optimized. Our response to this challenge was the use of Java technology with its exceptional level of interactivity. JPD is freely accessible (within the Gold Sting Suite) at http://sms.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS, http://trantor.bioc.columbia.edu/SMS and http://www.es.embnet.org/SMS/ (Option: JavaProtein Dossier). PMID:15215458

  7. Advanced Welding Tool

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accutron Tool & Instrument Co.'s welder was originally developed as a tool specifically for joining parts made of plastic or composite materials in any atmosphere to include the airless environment of space. Developers decided on induction or magnetic heating to avoid causing deformation and it also can be used with almost any type of thermoplastic material. Induction coil transfers magnetic flux through the plastic to a metal screen that is sandwiched between the sheets of plastic to be joined. When welder is energized, alternating current produces inductive heating on the screen causing the adjacent plastic surfaces to melt and flow into the mesh, creating a bond on the total surface area. Dave Brown, owner of Great Falls Canoe and Kayak Repair, Vienna, VA, uses a special repair technique based on operation of the Induction Toroid Welder to fix canoes. Whitewater canoeing poses the problem of frequent gashes that are difficult to repair. The main reason is that many canoes are made of plastics. The commercial Induction model is a self-contained, portable welding gun with a switch on the handle to regulate the temperature of the plastic melting screen. Welder has a broad range of applications in the automobile, appliance, aerospace and construction industries.

  8. SECIMTools: a suite of metabolomics data analysis tools.

    PubMed

    Kirpich, Alexander S; Ibarra, Miguel; Moskalenko, Oleksandr; Fear, Justin M; Gerken, Joseph; Mi, Xinlei; Ashrafi, Ali; Morse, Alison M; McIntyre, Lauren M

    2018-04-20

    Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.

  9. Visualization of JPEG Metadata

    NASA Astrophysics Data System (ADS)

    Malik Mohamad, Kamaruddin; Deris, Mustafa Mat

    There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.

  10. Development of Experimental and Computational Aeroacoustic Tools for Advanced Liner Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Nark, Douglas N.; Parrott, Tony L.; Gerhold, Carl H.; Brown, Martha C.

    2006-01-01

    Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of user-selected modes. The Grazing Flow Impedance Tube is a 51- mm by 63-mm duct currently being fabricated to operate at Mach numbers up to 0.6 with source SPLs up to at least 140 dB, and will replace the existing 51-mm by 51-mm duct. Together, these test rigs allow evaluation of advanced acoustic liners over a range of conditions representative of those observed in aircraft engine nacelles. Data acquired with these test ducts are processed using three aeroacoustic propagation codes. Two are based on finite element solutions to convected Helmholtz and linearized Euler equations. The third is based on a parabolic approximation to the convected Helmholtz equation. The current status of these computational tools and their associated usage with the Langley test rigs is provided.

  11. The Application of Visual Illusion in the Visual Communication Design

    NASA Astrophysics Data System (ADS)

    Xin, Tao; You Ye, Han

    2018-03-01

    With the development of our national reform, opening up and modernization, the science and technology has also been well developed and it has been applied in every wall of life, the development of visual illusion industry is represented in the widespread use of advanced technology in it. Ultimately, the visual illusion is a phenomenon, it should be analyzed from the angles of physics and philosophy. The widespread application of visual illusion not only can improve the picture quality, but also could maximize peoples’ sense degree through the visual communication design works, expand people’s horizons and promote the diversity of visual communication design works.

  12. The Effect of Using a Visual Representation Tool in a Teaching-Learning Sequence for Teaching Newton's Third Law

    ERIC Educational Resources Information Center

    Savinainen, Antti; Mäkynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2017-01-01

    This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton's third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool--an interaction diagram (ID)--highlighting…

  13. Advances and limitations of visual conditioning protocols in harnessed bees.

    PubMed

    Avarguès-Weber, Aurore; Mota, Theo

    2016-10-01

    Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SieveSifter: a web-based tool for visualizing the sieve analyses of HIV-1 vaccine efficacy trials.

    PubMed

    Fiore-Gartland, Andrew; Kullman, Nicholas; deCamp, Allan C; Clenaghan, Graham; Yang, Wayne; Magaret, Craig A; Edlefsen, Paul T; Gilbert, Peter B

    2017-08-01

    Analysis of HIV-1 virions from participants infected in a randomized controlled preventive HIV-1 vaccine efficacy trial can help elucidate mechanisms of partial protection. By comparing the genetic sequence of viruses from vaccine and placebo recipients to the sequence of the vaccine itself, a technique called 'sieve analysis', one can identify functional specificities of vaccine-induced immune responses. We have created an interactive web-based visualization and data access tool for exploring the results of sieve analyses performed on four major preventive HIV-1 vaccine efficacy trials: (i) the HIV Vaccine Trial Network (HVTN) 502/Step trial, (ii) the RV144/Thai trial, (iii) the HVTN 503/Phambili trial and (iv) the HVTN 505 trial. The tool acts simultaneously as a platform for rapid reinterpretation of sieve effects and as a portal for organizing and sharing the viral sequence data. Access to these valuable datasets also enables the development of novel methodology for future sieve analyses. Visualization: http://sieve.fredhutch.org/viz . Source code: https://github.com/nkullman/SIEVE . Data API: http://sieve.fredhutch.org/data . agartlan@fredhutch.org. © The Author(s) 2017. Published by Oxford University Press.

  15. Web tools for predictive toxicology model building.

    PubMed

    Jeliazkova, Nina

    2012-07-01

    The development and use of web tools in chemistry has accumulated more than 15 years of history already. Powered by the advances in the Internet technologies, the current generation of web systems are starting to expand into areas, traditional for desktop applications. The web platforms integrate data storage, cheminformatics and data analysis tools. The ease of use and the collaborative potential of the web is compelling, despite the challenges. The topic of this review is a set of recently published web tools that facilitate predictive toxicology model building. The focus is on software platforms, offering web access to chemical structure-based methods, although some of the frameworks could also provide bioinformatics or hybrid data analysis functionalities. A number of historical and current developments are cited. In order to provide comparable assessment, the following characteristics are considered: support for workflows, descriptor calculations, visualization, modeling algorithms, data management and data sharing capabilities, availability of GUI or programmatic access and implementation details. The success of the Web is largely due to its highly decentralized, yet sufficiently interoperable model for information access. The expected future convergence between cheminformatics and bioinformatics databases provides new challenges toward management and analysis of large data sets. The web tools in predictive toxicology will likely continue to evolve toward the right mix of flexibility, performance, scalability, interoperability, sets of unique features offered, friendly user interfaces, programmatic access for advanced users, platform independence, results reproducibility, curation and crowdsourcing utilities, collaborative sharing and secure access.

  16. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    NASA Astrophysics Data System (ADS)

    Funning, G. J.; Cockett, R.

    2012-12-01

    InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median

  17. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    USGS Publications Warehouse

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource

  18. Visual Analytics 101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.

    This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics

  19. What puts the how in where? Tool use and the divided visual streams hypothesis.

    PubMed

    Frey, Scott H

    2007-04-01

    An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.

  20. Mapping as a visual health communication tool: promises and dilemmas.

    PubMed

    Parrott, Roxanne; Hopfer, Suellen; Ghetian, Christie; Lengerich, Eugene

    2007-01-01

    In the era of evidence-based public health promotion and planning, the use of maps as a form of evidence to communicate about the multiple determinants of cancer is on the rise. Geographic information systems and mapping technologies make future proliferation of this strategy likely. Yet disease maps as a communication form remain largely unexamined. This content analysis considers the presence of multivariate information, credibility cues, and the communication function of publicly accessible maps for cancer control activities. Thirty-six state comprehensive cancer control plans were publicly available in July 2005 and were reviewed for the presence of maps. Fourteen of the 36 state cancer plans (39%) contained map images (N = 59 static maps). A continuum of map inter activity was observed, with 10 states having interactive mapping tools available to query and map cancer information. Four states had both cancer plans with map images and interactive mapping tools available to the public on their Web sites. Of the 14 state cancer plans that depicted map images, two displayed multivariate data in a single map. Nine of the 10 states with interactive mapping capability offered the option to display multivariate health risk messages. The most frequent content category mapped was cancer incidence and mortality, with stage at diagnosis infrequently available. The most frequent communication function served by the maps reviewed was redundancy, as maps repeated information contained in textual forms. The social and ethical implications for communicating about cancer through the use of visual geographic representations are discussed.