Sample records for advanced waste water

  1. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  2. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  3. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  4. Numerical Simulation of Hydrothermal Salt Separation Process and Analysis and Cost Estimating of Shipboard Liquid Waste Disposal

    DTIC Science & Technology

    2007-06-01

    possible means to improve a variety of processes: supercritical water in steam Rankine cycles (fossil-fuel powered plants), supercritical carbon ... dioxide and supercritical water in advanced nuclear power plants, and oxidation in supercritical water for use in destroying toxic military wastes and...destruction technologies are installed in a class of ship. Additionally, the properties of one waste water destruction medium, supercritical

  5. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less

  6. Economic and Environmental Analysis for Advancing Sustainable Management of Livestock Waste: A Wisconsin Case Study

    EPA Science Inventory

    Livestock waste may cause air quality degradation from ammonia and methane emissions, soil quality detriment from the in-excess nutrients and acidification, and water pollution issues from nutrient and pathogens runoff to the water bodies, leading to eutrophication, algal blooms,...

  7. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    NASA Astrophysics Data System (ADS)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  8. 77 FR 10485 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Status EM/National Nuclear Security Administration Integration Ecological Surveys Ground Water Waste Area... and site management in the areas of environmental restoration, waste management, and related... Idaho Cleanup Project (ICP) Workforce Reductions Advanced Mixed Waste Cleanup Project (AMWTP) Workforce...

  9. Removal of nitrosamines from waste water by potassium ferrate oxidation.

    PubMed

    Bartzatt, R; Nagel, D

    1991-01-01

    Potassium ferrate (K2FeO4) is useful in the advanced treatment of waste water. Additional evidence of this capability is presented in this study. Potassium ferrate is a very strong oxidant and is highly soluble in water. The nitrosamine studied in this work was toxic and was a potent pancreatic tumorigen in laboratory animals. Nitrosamines, which are potent carcinogens, are widespread throughout the environment and can be eliminated from waste water effluent by the action of potassium ferrate. Potassium ferrate and the nitrosamine was placed in aqueous solution and allowed to react to completion. Analysis by photospectroscopy revealed that the nitrosamine was completely degraded. This result suggests that potassium ferrate is useful for decontamination of some waste water collections.

  10. Advanced Life Systems for Extreme Environments: An Arctic Application

    NASA Technical Reports Server (NTRS)

    Lewis, Carol E.; Stanford, Kerry L.; Bubenheim, David L.; Covington, Alan (Technical Monitor)

    1995-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S. Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions (U.S. Arctic Research Commission). These solutions are also damaging to the environment. Sanitation and a safe water supply are particularly problems in rural villages. About one-fourth of Alaska's 86.000 Native residents live in these communities. They are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain (Office of Technology Assessment, 1994). Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Advanced Life Systems for Extreme Environments (ALSEE) provides a solution to sanitation and safe water problems. The system uses an advanced integrated technology developed for Antarctic and space applications. ALSEE uses the systems approach to address more than waste and water problems. By incorporating hydroponic horticulture and aquaculture into the waste treatment system, ALSEE addresses the quality and quantity of fresh foods available to Arctic residents. A temperate climate is required for year-round plant growth. ALSEE facilities can be designed to include a climate controlled area within the structure. This type of environment is a change from the long periods of darkness and cold found in the Arctic and can help alleviate stress so often associated with these extremes. While the overall concept of ALSEE projects is advanced, system facilities can be operated by village residents with appropriate training. ALSEE provides continuing training and education as a part of the project. Not only is this desirable but necessary. There is ample evidence in "gravoyard" throughout rural Alaska of technologies which failed not because they were not applic4tble, but because they were not integrated and could not be operated or repaired by village residents. Waste streams in villages will vary depending on the human diet and the non-food waste stream. ALSEE units can be adapted to different village situations once the content of the waste stream is known. Units located in population hubs can serve as research, education. and demonstration centers. Appropriate modifications can be determined at these centers to transfer technology to more remote locations where waste stream conditions may differ.

  11. Development of an advanced spacecraft water and waste materials processing system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  12. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process.

    PubMed

    Natarajan, Subramanian; Bajaj, Hari C; Tayade, Rajesh J

    2018-03-01

    The problem of textile dye pollution has been addressed by various methods, mainly physical, chemical, biological, and acoustical. These methods mainly separate and/or remove the dye present in water. Recently, advanced oxidation processes (AOP) have been focused for removal of dye from waste water due to their advantages such as ecofriendly, economic and capable to degrade many dyes or organic pollutant present in water. Photocatalysis is one of the advance oxidation processes, mainly carried out under irradiation of light and suitable photocatalytic materials. The photocatalytic activity of the photocatalytic materials mainly depends on the band gap, surface area, and generation of electron-hole pair for degradation dyes present in water. It has been observed that the surface area plays a major role in photocatalytic degradation of dyes, by providing higher surface area, which leads to the higher adsorption of dye molecule on the surface of photocatalyst and enhances the photocatalytic activity. This present review discusses the synergic effect of adsorption of dyes on the photocatalytic efficiency of various nanostructured high surface area photocatalysts. In addition, it also provides the properties of the water polluting dyes, their mechanism and various photocatalytic materials; and their morphology used for the dye degradation under irradiation of light along with the future prospects of highly adsorptive photocatalytic material and their application in photocatalytic removal of dye from waste water. Copyright © 2017. Published by Elsevier B.V.

  13. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  14. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dexin

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less

  15. Application of NASA's Advanced Life Support Technologies in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. As advanced technologies are transferred to the commercial sector the ALSEE project Offers the potential for development of new industries in Alaska to supply the products to support remote communities of the globe.

  16. Analytical technique characterizes all trace contaminants in water

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Lysyj, I.; Nelson, K. H.

    1967-01-01

    Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.

  17. JSC ECLSS R/T Program Overview

    NASA Technical Reports Server (NTRS)

    Behrend, A. F.

    1990-01-01

    Viewgraphs on Johnson Space Center Environmental Control and Life Support System (ECLSS) research and technology program overview are presented. Topics covered include: advancements in electrochemical CO2 removal; supercritical water waste oxidation; electrooxidation for post-treatment of reclaimed water; and photocatalytic post-treatment of reclaimed water.

  18. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review.

    PubMed

    Ahmed, Syed Nabeel; Haider, Waseem

    2018-08-24

    There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.

  19. Advanced wastewater treatment simplified through research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souther, R.H.

    A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less

  20. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  1. Land application of domestic wastewater in Florida--statewide assessment of impact on ground-water quality

    USGS Publications Warehouse

    Franks, Bernard J.

    1981-01-01

    In Florida domestic waste water is being applied to the land for disposal and reuse. State and Federal regulations favor land-application methods over other advanced waste water treatment practices. Despite the increasing use of this alternative technology, little is known about localized effects on groundwater quality. This report documents the extent of land-application practices in Florida and summarizes case study information on some of the more adequately monitored site throughout the State. More than 2,500 sites in Florida are permitted by the Department of Environmental Regulation for applying domestic waste water to the land. The majority (more than 1,700 sites), classified as infiltration ponds, are concentrated in central and southern Florida. More than 560 sites classified as drainfields, and more than 250 sites classified as irrigation sites, are located primarily in central Florida. An estimated 150 million gallons per day of domestic waste water, after required secondary treatment, are applied to Florida soils. Despite the large numbers of sites and the considerable volume of waste water utilized, little is known about potential impact on groundwater quality. At the few sites where observation wells have been drilled and local groundwater quality monitored, no significant deterioration of water quality has been detected. (USGS)

  2. 7 CFR 1779.84 - Additional loans or advances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Additional loans or advances. 1779.84 Section 1779.84 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.84 Additional loans or...

  3. Environmental impact statement for Manned Spacecraft Center and White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This environment has not only attracted people and increased payrolls, but has also created a broader base for the local economy. The activity of the center was a catalyst to private enterprise and has led to sizeable residential and commercial developments. Adequate treatment of domestic and industrial waste water was maintained. A feasibility study is now being conducted to establish a plan for a coordinated, centerwide plan for advanced treatment of domestic and industrial waste water.

  4. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  5. Evaluating the feasibility of biological waste processing for long term space missions.

    PubMed

    Garland, J L; Alazraki, M P; Atkinson, C F; Finger, B W

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  6. Evaluating the feasibility of biological waste processing for long term space missions

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  7. The potential benefit of an advanced integrated utility system

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1975-01-01

    The applicability of an advanced integrated utility system based on 1980 technology was investigated. An example of such a system, which provides electricity, heating and air conditioning, solid waste disposal, and water treatment in a single integrated plant, is illustrated for a hypothetical apartment complex. The system requires approximately 50 percent of the energy and approximately 55 percent of the water that would be required by a typical current conventional system.

  8. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less

  9. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  10. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less

  11. Selection and Evaluation of Chemical Indicators for Waste Stream Identification

    NASA Astrophysics Data System (ADS)

    DeVita, W. M.; Hall, J.

    2015-12-01

    Human and animal wastes pose a threat to the quality of groundwater, surface water and drinking water. This is especially of concern for private and public water supplies in agricultural areas of Wisconsin where land spreading of livestock waste occurs on thin soils overlaying fractured bedrock. Current microbial source tracking (MST) methods for source identification requires the use of polymerase chain reaction (PCR) techniques. Due to cost, these tests are often not an option for homeowners, municipalities or state agencies with limited resources. The Water and Environmental Analysis Laboratory sought to develop chemical methods to provide lower cost processes to determine sources of fecal waste using fecal sterols, pharmaceuticals (human and veterinary) and human care/use products in ground and surface waters using solid phase extraction combined with triple quadrupole mass spectrometry. The two separate techniques allow for the detection of fecal sterol and other chemical markers in the sub part per billion-range. Fecal sterol ratios from published sources were used to evaluate drinking water samples and wastewater from onsite waste treatment systems and municipal wastewater treatment plants. Pharmaceuticals and personal care products indicative of human waste included: acetaminophen, caffeine, carbamazepine, cotinine, paraxanthine, sulfamethoxazole, and the artificial sweeteners; acesulfame, saccharin, and sucralose. The bovine antibiotic sulfamethazine was also targeted. Well water samples with suspected fecal contamination were analyzed for fecal sterols and PPCPs. Results were compared to traditional MST results from the Wisconsin State Laboratory of Hygiene. Chemical indicators were found in 6 of 11 drinking water samples, and 5 of 11 were in support of MST results. Lack of detection of chemical indicators in samples contaminated with fecal waste supports the need for confirmatory methods and advancement of chemical indicator detection technologies.

  12. Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Caraccio, A. J.; Anthony, S. M.; Tsoras, A. N.; Devor, Robert; Captain, James G.; Nur, Mononita

    2013-01-01

    Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed

  13. Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Hintze, Paul. E.; Caraccio, Anne J.; Anthony, Stephen M.; Tsoras, Alexandra N.; Nur, Monoita; Devor, Robert; Captain, James G.

    2013-01-01

    Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed.

  14. Physical/chemical closed-loop water-recycling

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Theodore

    1991-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on Earth, in regions where extensive water recycling is needed or where advanced water treatment is essential to meet EPA health standards.

  15. Advanced Life Support Technologies and Scenarios

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2011-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  16. Waste management to improve food safety and security for health advancement.

    PubMed

    Lin, Angela Yu-Chen; Huang, Susana Tzy-Ying; Wahlqvist, Mark L

    2009-01-01

    Economic growth inevitably influences the food chain. Growing demand with changes in lifestyle and health consciousness encourage use of packaged and pre-prepared foods. The needs of environmental protection from waste generated are largely overlooked, and a lack of knowledge about the impact on the environment and its health effects constitute food security/safety problems. Food production and waste generation directly affect resource (i.e., energy and water) consumption and often contaminate the environment. More pressure on food production has inculcated the use of pesticides, herbicides, antibiotics and chemical fertilizers which add to current global pollution. At least half of food grown is discarded before and after it reaches consumers. It is estimated that one third to half of landfill waste comes from the food sector. This landfill releases green house gases (GHG) as well as leachate which worsen soil and water quality and safety. Pharmaceutical and chemical contaminations from residential, industrial and agricultural sources make their way into nearby water and soil and can eventually affect our food systems. Phthalates, PFOA, BPA, commonly used in plastics and personal care products, are found in unacceptable concentrations in Taiwanese waters. They, too, contribute to food contamination and long-term health risk. Existing waste management strategies warrant more stringent norms for waste reduction at source. Awareness through education could reduce food waste and its consequences. This review encompasses impacts of food production systems on the environment, pollution which results from food waste, costs and economic advantages in food waste management, and health consequences of waste.

  17. Composting in advanced life support systems

    NASA Technical Reports Server (NTRS)

    Atkinson, C. F.; Sager, J. C.; Alazraki, M.; Loader, C.

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  18. Composting in advanced life support systems.

    PubMed

    Atkinson, C F; Sager, J C; Alazraki, M; Loader, C

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  19. Chemical and toxicological evaluation of transformation products during advanced oxidation processes.

    PubMed

    vom Eyser, C; Börgers, A; Richard, J; Dopp, E; Janzen, N; Bester, K; Tuerk, J

    2013-01-01

    The entry of pharmaceuticals into the water cycle from sewage treatment plants is of growing concern because environmental effects are evident at trace levels. Ozonation, UV- and UV/H(2)O(2)-treatment were tested as an additional step in waste water treatment because they have been proven to be effective in eliminating aqueous organic contaminants. The pharmaceuticals carbamazepine, ciprofloxacin, diclofenac, metoprolol and sulfamethoxazole as well as the personal care products galaxolide and tonalide were investigated in terms of degradation efficiency and by-product formation in consideration of toxic effects. The substances were largely removed from treatment plant effluent by ozonation, UV- and UV/H(2)O(2)-treatment. Transformation products were detected in all tested treatment processes. Accompanying analysis showed no genotoxic, cytotoxic or estrogenic potential for the investigated compounds after oxidative treatment of real waste waters. The results indicate that by-product formation from ozonation and advanced oxidation processes does not have any negative environmental impact.

  20. American power conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less

  1. Advanced Structural Concepts for Weapons Storage - Flat and Mountainous Terrains.

    DTIC Science & Technology

    1983-06-01

    be required in the Maintenance Area. 7. WATER AND WASTE WATER. Water supply and wastewater collection systems are assumed to be available. It is...Ufceooa w aWdoo.amwa.. ,FC.hc OU 0 coos a (Peoi...sa dooedhI "- llcrnIT ENmca46t 0 Coos c I de odk BLACK A VEATCH 0oevLU Soedly _______ ONAgmagO 0 . 1 5

  2. N-SINK - reduction of waste water nitrogen load

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni; Tiirola, Marja; Arvola, Lauri; Huotari, Jussi; Tulonen, Tiina; Rissanen, Antti; Nykänen, Hannu

    2014-05-01

    Protection of the Baltic Sea from eutrophication is one of the key topics in the European Union environmental policy. One of the main anthropogenic sources of nitrogen (N) loading into Baltic Sea are waste water treatment plants, which are currently capable in removing only 40-70% of N. European commission has obliged Finland and other Baltic states to reduce nitrate load, which would require high monetary investments on nitrate removal processes in treatment plants. In addition, forced denitrification in treatment plants would increase emissions of strong greenhouse gas N2O. In this project (LIFE12 FI/ENV/597 N-SINK) we will develop and demonstrate a novel economically feasible method for nitrogen removal using applied ecosystem services. As sediment is known to have enormous capacity to reduce nitrate to nitrogen gas through denitrification, we predict that spatial optimization of the waste water discharge would be an efficient way to reduce nitrate-based load in aquatic systems. A new sediment filtration approach, which will increase both the area and time that nitrified waste water will be in contact with the reducing microbes of the sediment, is tested. Compared to the currently implemented practice, where purified waste water is discharged though one-point outlet system, we expect that sediment filtration system will result in more efficient denitrification and decreased N load to aquatic system. We will conduct three full-scale demonstrations in the receiving water bodies of waste water treatment plants in Southern and Central Finland. The ecosystem effects of sediment filtration system will be monitored. Using the most advanced stable isotope techniques will allow us accurately measure denitrification and unfavoured DNRA (reduction of nitrite to ammonium) activity.

  3. Physical/chemical closed-loop water-recycling for long-duration missions

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Ted

    1990-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on earth, in regions where extensive water ecycling is needed or where advanced water treatment is essential to meet EPA health standards.

  4. Coconut-based biosorbents for water treatment--a review of the recent literature.

    PubMed

    Bhatnagar, Amit; Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2010-10-15

    Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials (especially agricultural wastes). Among several agricultural wastes studied as biosorbents for water treatment, coconut has been of great importance as various parts of this tree (e.g. coir, shell, etc.) have been extensively studied as biosorbents for the removal of diverse type of pollutants from water. Coconut-based agricultural wastes have gained wide attention as effective biosorbents due to low-cost and significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of coconut-based biosorbents from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. Available abundantly, high biosorption capacity, cost-effectiveness and renewability are the important factors making these materials as economical alternatives for water treatment and waste remediation. This paper presents a state of the art review of coconut-based biosorbents used for water pollution control, highlighting and discussing key advancement on the preparation of novel adsorbents utilizing coconut wastes, its major challenges together with the future prospective. It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale, leading to the superior improvement of pollution control and environmental preservation. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin

    USGS Publications Warehouse

    Grant, R. Stephen

    1976-01-01

    A waste-load-assimilation study of a reach of Koshkonong Creek below the Sun Prairie, Wisconsin, sewage-treatment-plant outfall indicated that a high level of treatment would be required to meet Wisconsin water-quality standards. To maintain a minimum dissolved-oxygen concentration of 5 mg/liter during the critical summer low-flow period, 5-day carbonaceous biochemical-oxygen demand in waste discharges should not exceed 5 mg/liter and ammonium nitrogen should not exceed 1.5 mg/liter. Advanced treatment with denitrification is required because stream-reaeration coefficients are not high enough to offset deoxygenation caused by an abundance of attached biological slimes. The slimes apparently consumed dissolved oxygen at a rate of about 110 mg/liter per day at the time of the stream survey. During the critical summer low-flow period, natural stream discharge is very small compared to waste-water discharge , so benefits of dilution are insignificant. An evaluation of two proposed alternative waste-water discharge sites indicated that the present discharge site is hydraulically superior to these sites. Stream-reaeration coefficients used in the study were based on measurements using the radioactive-tracer method. (Woodard-USGS)

  6. Integrated systems analysis of persistent polar pollutants in the water cycle.

    PubMed

    van der Voet, E; Nikolic, I; Huppes, G; Kleijn, R

    2004-01-01

    Persistent polar pollutants (P3) are difficult to degrade in standard waste water treatment plants. As a result, they end up in the effluent and are emitted to the surface water. In some areas, this problem is aggravated through "closed loop recycling", causing concentrations of P3 in surface water to build up over time. This could cause violation of (future) EU regulations. In the P-THREE project, various alternative waste water treatment techniques are investigated regarding their effectiveness in eliminating these substances, especially membrane bioreactor treatment and advanced oxidation processes, MBR and AOP. The integrated systems analysis which is the subject of this paper assesses these techniques in a broader systems context: (1) the life-cycle of the P3, (2) the life cycle of the WWTPs, and (3) the WWTP life cycle costs.

  7. Final report on isotope tracer investigations in the Forebay of the Orange County groundwater basin.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davisson, M; Woodside, G

    2003-12-13

    California is currently faced with some critical decisions about water resource infrastructure development in highly urbanized regions, whose outcome will dictate the future long-term viability of plentiful water. Among these is developing and safely implementing the reuse of advanced treated waste water. One of the most reliable strategies for this water resource is its indirect reuse via groundwater recharge and storage, with particular emphasis on supplementing annual water demand or during drought relief. The Orange County Water District (District) is currently implementing the first phase of a large-scale water reuse project that will advance-treat up to 60 million gallons permore » day of waste water and recharge it into existing percolation basins in the Forebay region of the Orange County groundwater basin. In order for the District to protect public health, the fate and potability of this recharged waste water needs to be understood. In particular, the direction and rates of flow into underlying aquifers need to be characterized so that changes in water quality can be quantified between the recharge basins and points of production. Furthermore, to ensure compliance to California Department of Health Services (DHS) draft regulations, the direction and rate of recharged waste water from these basins need to be understood to sufficient detail that small mixtures can be delineated in monitoring and production wells. Under proposed DHS guidelines, consumptive use of recycled water is permissive only if its residence time in an aquifer exceeds a specified six-month time-frame. DHS guidelines also limit the percentage of recycled water at production wells. However, attaining such detail using current hydrogeological and computer-assisted modeling tools is either cost-prohibitive or results in uncertainties too large to achieve regulatory confidence. To overcome this technical barrier, the District funded Lawrence Livermore National Laboratory (LLNL) from 1995-2001 to directly measure groundwater ages and perform two artificial tracer studies using isotope methods to quantify flowpath directions, groundwater residence times, and the rate and extent of recharge water and groundwater mixing. In addition, Jordan Clark at University of California, Santa Barbara also performed an artificial tracer experiment using sulfur-hexafluoride, whose results have been integrated into the LLNL findings.« less

  8. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. Thismore » is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.« less

  9. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Coldmore » Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  10. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This ismore » well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  11. Advanced Technologies to Improve Closure of Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  12. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  13. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    PubMed

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Advanced life support technology development for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.

    1990-01-01

    An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.

  15. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced life support subsystems for long range planning in support of earth orbital programs. Cost analysis are presented for five leading water reclamation systems; (1) RITE waste management-water system;(2) reverse osmosis system;(3) multifiltration system;(4) vapor compression system; and(5) closed air evaporation system with electrolytic pretreatment.

  16. Trash-to-Gas: Converting Space Trash into Useful Products

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne J.; Hintze, Paul E.

    2013-01-01

    NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of CO2, CO, CH4, and H2O were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.

  17. Trash to Gas: Converting Space Trash into Useful Products

    NASA Technical Reports Server (NTRS)

    Nur, Mononita

    2013-01-01

    NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of C02, CO, CH4, and H20 were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.

  18. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Using phytoremediation technologies to upgrade waste water treatment in Europe.

    PubMed

    Schröder, Peter; Navarro-Aviñó, Juan; Azaizeh, Hassan; Goldhirsh, Avi Golan; DiGregorio, Simona; Komives, Tamas; Langergraber, Günter; Lenz, Anton; Maestri, Elena; Memon, Abdul R; Ranalli, Alfonso; Sebastiani, Luca; Smrcek, Stanislav; Vanek, Tomas; Vuilleumier, Stephane; Wissing, Frieder

    2007-11-01

    One of the burning problems of our industrial society is the high consumption of water and the high demand for clean drinking water. Numerous approaches have been taken to reduce water consumption, but in the long run it seems only possible to recycle waste water into high quality water. It seems timely to discuss alternative water remediation technologies that are fit for industrial as well as less developed countries to ensure a high quality of drinking water throughout Europe. The present paper discusses a range of phytoremediation technologies to be applied in a modular approach to integrate and improve the performance of existing wastewater treatment, especially towards the emerging micro pollutants, i.e. organic chemicals and pharmaceuticals. This topic is of global relevance for the EU. Existing technologies for waste water treatment do not sufficiently address increasing pollution situation, especially with the growing use of organic pollutants in the private household and health sector. Although some crude chemical approaches exist, such as advanced oxidation steps, most waste water treatment plants will not be able to adopt them. The same is true for membrane technologies. Incredible progress has been made during recent years, thus providing us with membranes of longevity and stability and, at the same time, high filtration capacity. However, these systems are expensive and delicate in operation, so that the majority of communities will not be able to afford them. Combinations of different phytoremediation technologies seem to be most promising to solve this burning problem. To quantify the occurrence and the distribution of micropollutants, to evaluate their effects, and to prevent them from passing through wastewater collection and treatment systems into rivers, lakes and ground water bodies represents an urgent task for applied environmental sciences in the coming years. Public acceptance of green technologies is generally higher than that of industrial processes. The EU should stimulate research to upgrade existing waste water treatment by implementing phytoremediation modules and demonstrating their reliability to the public.

  20. Separation and collection of coarse aggregate from waste concrete by electric pulsed power

    NASA Astrophysics Data System (ADS)

    Shigeishi, Mitsuhiro

    2017-09-01

    Waste concrete accounts for a substantial fraction of construction waste, and the recycling of waste concrete as concrete aggregate for construction is an important challenge associated with the rapid increase in the amount of waste concrete and the tight supply of natural aggregate. In this study, we propose a technique based on the use of high-voltage pulsed electric discharge into concrete underwater for separating and collecting aggregate from waste concrete with minimal deterioration of quality. By using this technique, the quality of the coarse aggregate separated and collected from concrete test specimens is comparable to that of coarse aggregate recycled by heating and grinding methods, thus satisfying the criteria in Japan Industrial Standard (JIS) A 5021 for the oven-dry density and the water absorption of coarse aggregate by advanced recycling.

  1. Chemical Technology Division annual technical report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  2. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    NASA Astrophysics Data System (ADS)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  3. 10 CFR 110.41 - Executive Branch review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (6) An export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium... equipment to a foreign reactor. (8) An export involving radioactive waste. (9) An export to any country...

  4. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less

  5. Trash to Gas (TtG) Simulant Analysis

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Hintze, Paul E.

    2014-01-01

    Space exploration in outer earths orbit is a long-term commitment, where the reuse of discarded materials is a critical component for its success. The Logistics Reduction and Repurposing (LRR) project under the NASA Advanced Exploration System Program is a project focused on technologies that reduce the amount of consumables that are needed to be sent into space, repurpose items sent to space, or convert wastes to commodities. In particular, Trash to Gas (TtG), part of the LRR project, is a novel space technology capable of converting raw elements from combustible waste including food waste and packaging, paper, wipes and towels, nitrile gloves, fecal matter, urine brine, maximum absorbency garments, and other organic wastes from human space exploration into useful gases. Trash to gas will ultimately reduce mission cost by producing a portion of important consumables in situ. This paper will discuss results of waste processing by steam reforming. Steam reforming is a thermochemical process developed as part of TtG, where waste is heated in the presence of oxygen and steam to produce carbon dioxide, carbon monoxide, hydrogen, methane and water. The aim of this experiment is to investigate the processing of different waste simulants and their gaseous products. This will lay a foundation for understating and optimizing the production of useful gases for propulsion and recovery of water for life support.

  6. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  7. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  8. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  9. Waste Management System overview for future spacecraft.

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1973-01-01

    Waste Management Systems (WMS) for post Apollo spacecraft will be significantly more sophisticated and earthlike in user procedures. Some of the features of the advanced WMS will be accommodation of both males and females, automatic operation, either tissue wipe or anal wash, measurement and sampling of urine, feces and vomitus for medical analysis, water recovery, and solids disposal. This paper presents an overview of the major problems of and approaches to waste management for future spacecraft. Some of the processes discussed are liquid/gas separation, the Dry-John, the Hydro-John, automated sampling, vapor compression distillation, vacuum distillation-catalytic oxidation, incineration, and the integration of the above into complete systems.

  10. Evaluation of Aquaponics Techniques for Enhancing Productivity and Degree of Closure of Bioregenerative Life Support Systems (BLSS)

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William; Highfield, Eric

    A number of researchers in space bioregenerative life support systems (BLSS) have advocated the inclusion of fish-rearing. Fish have relatively high feed to production ratios and can utilize some waste products from other system components. In recent years, there has been much advance in an approach to combining fish-culture with hydroponically-grown crops called “aquaponics”. Aquaponics systems vary but generally include: fish-rearing unit, settling basin, biofilter, hydroponic plant unit and sump where water is pumped back and the cycle continues. Aquaponics research and application has grown since these systems have the potential to increase overall productivity of both crops and fish. Since the fish waste is used as the growth medium of the food plants, there are environmental benefits in reduced discharge of nutrient-rich wastewater which has been one of the drawbacks of conventional aquaculture. In addition, since water use is reduced 95+% over field agriculture, since water from the hydroponic tanks is fed back to the fish tanks and water is recycled apart from evapotranspiration losses, conservation of water resources and applications in water-limited arid regions are other benefits fueling the spread of aquaponics around the world. These considerations also make utilization of aquaponic approaches desirable in BLSS for space application. This paper will examine some recent research results with aquaponics and explore how it might be utilized for food production and reduction of consumables in space life support. In addition, a review and comparison with other fish-culture options previously advanced will evaluate whether aquaponics can improve production efficiency, reduce inputs and better recycle critical resources. Finally, we will explore whether for the space environment, even more advanced aquaponics systems are possible where consumables such as fish-food can be partially or completely supplied from other subsystems of the BLSS and ET water losses compensated by condensation from humidity in the atmosphere. For longer term space life support, the paper will evaluate how aquaponics might integrate soil-like-substrate made from inedible crop biomass, utilize algae (edible) for water quality improvement in the fish tanks and how any wastes might be more fully integrated in other BLSS subsystems to improve overall closure ratio.

  11. Advanced waste management technology evaluation

    NASA Technical Reports Server (NTRS)

    Couch, H.; Birbara, P.

    1996-01-01

    The purpose of this program is to evaluate the feasibility of steam reforming spacecraft wastes into simple recyclable inorganic salts, carbon dioxide and water. Model waste compounds included cellulose, urea, methionine, Igapon TC-42, and high density polyethylenes. These are compounds found in urine, feces, hygiene water, etc. The gasification and steam reforming process used the addition of heat and low quantities of oxygen to oxidize and reduce the model compounds.The studied reactions were aimed at recovery of inorganic residues that can be recycled into a closed biologic system. Results indicate that even at very low concentrations of oxygen (less than 3%) the formation of a carbonaceous residue was suppressed. The use of a nickel/cobalt reforming catalyst at reaction temperature of 1600 degrees yielded an efficient destruction of the organic effluents, including methane and ammonia. Additionally, the reforming process with nickel/cobalt catalyst diminished the noxious odors associated with butyric acid, methionine and plastics.

  12. The Influence of Surface Coal Mining on Runoff Processes and Stream Chemistry in the Elk Valley, British Colubmbia, Canada

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Wellen, C. C.; Shatilla, N. J.

    2015-12-01

    Surface mining is a common method of accessing coal. In high-elevation environments, vegetation and soils are typically removed prior to the blasting of overburden rock, thereby allowing access to mineable ore. Following this, the removed overburden rock is deposited in adjacent valleys as waste rock spoils. Previous research has identified that areas downstream of surface coal mining have impaired water quality, yet there is limited information about the interaction of hydrology and geochemistry across a range of mining conditions, particularly at the headwater scale. Here, we provide an analysis of an extensive long-term data set of geochemistry and flows across a gradient of coal mining in the Elk Valley, British Columbia, Canada. This work is part of a broader R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley aimed at informing effective management responses. Results indicate that water from waste rock piles has an ionic profile distinct from unimpacted catchments. While the concentration of geochemicals increased with the degree of mine impact, the control of hydrological transport capacity over geochemical export did not vary with degree of mine impact. Geochemical export in mine-influenced catchments was limited more strongly by transport capacity than supply, implying that more water moving through the waste rock mobilized more geochemicals. Placement of waste rock within the catchment (headwaters or outlet) did not affect chemical concentrations but did alter the timing with which chemically distinct water mixed. This work advances on results reported earlier using empirical models of selenium loading and further highlights the importance of limiting water inputs into waste rock piles.

  13. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  14. 10 CFR 110.41 - Executive Branch review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... export involving assistance to end uses related to isotope separation, chemical reprocessing, heavy water production, advanced reactors, or the fabrication of nuclear fuel containing plutonium, except for exports of... foreign reactor. (8) An export involving radioactive waste. (9) An export to any country listed in § 110...

  15. Water technology for specific water usage.

    PubMed

    Frimmel, Fritz H

    2003-01-01

    Water is the basis for life and culture. In addition to the availability of water its quality has become a major issue in industrialized areas and in developing countries as well. Water usage has to be seen as part of the hydrological cycle. As a consequence water management has to be sustainable. The aim of the contribution is to give water usage oriented quality criteria and to focus on the technical means to achieve them. Water is used for many purposes, ranging from drinking and irrigation to a broad variety of technical processes. Most applications need specific hygienic, chemical and/or physical properties. To meet these demands separation and reaction principles are applied. The reuse of water and the application of water treatment with little or no waste and by-product formation is the way to go. Membrane separation and advanced oxidation including catalytic reactions are promising methods that apply natural processes in sustainable technical performance. Thus elimination of specific water constituents (e.g. salts and metals, microorganisms) and waste water cleaning (e.g. pollutants, nutrients and organic water) can be done efficiently. Learning from nature and helping nature with appropriate technology is a convincing strategy for sustainable water management.

  16. Incinerator technology overview

    NASA Astrophysics Data System (ADS)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  17. Disinfection of biological agents in the field using a mobile ...

    EPA Pesticide Factsheets

    Report The Army’s Net Zero Initiative is an energy-conservation program that focuses on energy as well as water and waste usage procedures. All Net Zero projects are geared toward helping the military installation or community become more sustainable and resilient, with an emphasis on taking a systems approach. Net Zero projects must advance the state of the science and are focused on three general topic areas: water, energy, and waste, and the nexuses among them. This project examined the inactivation and/or removal of biological contaminants in dirty wash water using a portable ozone-UV AOP process. The strain of E. coli used in these experiments is not a biological warfare agent, but acts as a surrogate for certain of the vegetative biological agents such as the enterohemorrhagic strain designated E. coli 0157:H7.

  18. Locational Determinants of Emissions from Pollution-Intensive Firms in Urban Areas

    PubMed Central

    Zhou, Min; Tan, Shukui; Guo, Mingjing; Zhang, Lu

    2015-01-01

    Industrial pollution has remained as one of the most daunting challenges for many regions around the world. Characterizing the determinants of industrial pollution should provide important management implications. Unfortunately, due to the absence of high-quality data, rather few studies have systematically examined the locational determinants using a geographical approach. This paper aimed to fill the gap by accessing the pollution source census dataset, which recorded the quantity of discharged wastes (waste water and solid waste) from 717 pollution-intensive firms within Huzhou City, China. Spatial exploratory analysis was applied to analyze the spatial dependency and local clusters of waste emissions. Results demonstrated that waste emissions presented significantly positive autocorrelation in space. The high-high hotspots generally concentrated towards the city boundary, while the low-low clusters approached the Taihu Lake. Their locational determinants were identified by spatial regression. In particular, firms near the city boundary and county road were prone to discharge more wastes. Lower waste emissions were more likely to be observed from firms with high proximity to freight transfer stations or the Taihu Lake. Dense populous districts saw more likelihood of solid waste emissions. Firms in the neighborhood of rivers exhibited higher waste water emissions. Besides, the control variables (firm size, ownership, operation time and industrial type) also exerted significant influence. The present methodology can be applicable to other areas, and further inform the industrial pollution control practices. Our study advanced the knowledge of determinants of emissions from pollution-intensive firms in urban areas. PMID:25927438

  19. Processing of electronic waste in a counter current teeter-bed separator.

    PubMed

    Dey, Sujit Kumar; Ari, Vidyadhar; Das, Avimanyu

    2012-09-30

    Advanced gravity separation of ground electronic waste (e-waste) in a teeter-bed separator was investigated. It was established that the Floatex Density Seprator (FDS) is a promising device for wet processing of e-waste to recover metal values physically. It was possible to enrich the metal content from 23% in the feed to 37% in the product in a single stage operation using the FDS with over 95% recovery of the metals. A two-stage processing scheme was developed that enriched the metal content further to 48.2%. The influence of the operating variables, namely, teeter water flow rate, bed pressure and feed rate were quantified. Low bed pressures and low teeter water rates produced higher mass yields with poorer product grades. On the contrary, a high bed pressure and high teeter water rate combination led to a lower mass yield but better product quality. A high feed rate introduced en-masse settling leading to higher yield but at a poorer product grade. For an FDS with 230 mm × 230 mm cross section and a height of 530 mm, the process condition with 6.6l pm teeter water rate, 5.27 kPa bed pressure and 82 kg/hr feed rate maximized the yield for a target product grade of 37% metal in a single pass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. US Environmental rotection Agency's strategy for ground-water-quality monitoring at hazardous-waste land-disposal facilities located in karst terranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, M.S.

    1988-11-01

    Ground-water monitoring of hazardous-waste land-disposal units by a network of wells is ineffective when located in karstic terranes. The U.S. Environmental Protection Agency (EPA) is currently proposing to modify its current ground-water-quality monitoring requirement of one upgradient well and three downgradient wells for disposal units located in karstic terranes. The convergent nature of subsurface flow to cave streams in karstic terranes requires that effective monitoring wells intercept the cave streams. Wells located around a hazardous-waste disposal unit, but not in the specific cave stream draining the site, are only providing irrelevant data and a false sense of security because themore » water samples from such wells are not necessarily from the hazardous-waste disposal unit. A case study is provided in this paper. EPA is drafting a guidance document that will allow monitoring by wells, only if the up- and down-gradient wells can be demonstrated to be hydraulically connected by means of dye-trace studies. If not, then the monitoring of springs shown to be hydraulically connected to the facility by dye-tracing studies would be required. Monitoring for sinkhole development will also be required to provide advance warning of sinkhole collapse. The investigation and determination of the probability of sinkhole collapse is given special treatment.« less

  1. CHEMICAL MARKERS OF HUMAN WASTE ...

    EPA Pesticide Factsheets

    Giving public water authorities a tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. This methodology, using both urobilin and azithromycin (or any other human-use pharmaceutical) could be used to give public water authorities a rapid (24- hrs) and definitive method for measuring human waste contamination The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subco

  2. CHEMICAL MARKERS OF HUMAN WASTE ...

    EPA Pesticide Factsheets

    Giving public water authorities a tool to monitor and measure levels of human waste contamination of waters simply and rapidly would enhance public protection. This methodology, using both urobilin and azithromycin (or any other human-use pharmaceutical) could be used to give public water authorities a rapid (24- hrs) and definitive method for measuring human waste contamination. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subc

  3. Are we running out of water?

    USGS Publications Warehouse

    Nace, Raymond L.

    1967-01-01

    Water supplies are not running out, but time is getting short to stem waste of water and destructive exploitation of the environment before harm is done that may be irreparable. Most of the world's water is oceanic brine. Of the waters on the land, most is frozen in Antarctica and Greenland. Only a small part of continental water is available for use and management. The discharge of rivers to the sea is a close measure of the availability of liquid water, but ground-water reservoirs have important functions as inexpensive equalizers of water supply. Soil moisture is a major factor in the water economy, and its function usually is overlooked in assessments of water use and future water demand. Despite outcries of water shortage, the principal use of water in advanced countries is as a medium for waste disposal. In reality, despite regional maldistribution of water, United States supplies are adequate, given rational management. Also, contrary to common belief, water pollution is primarily a problem of economics, not of health. A paramount problem in most parts of the world is the shortage of water development and management facilities, not a shortage of water. The International Hydrological Decade is a program to awaken people everywhere to the crucial importance of water in man's future and to promote rational approach to water problems.

  4. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes.

    PubMed

    Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen

    2016-10-01

    This work investigated various supercritical water oxidation (SCWO) systems, i.e. SCWO1 (only water), SCWO2 (water+H2O2) and SCWO3 (water+H2O2/NaOH), for waste printed circuit boards (PCBs) detoxification and recycling. Response surface methodology (RSM) was applied to optimize the operating conditions of the optimal SCWO3 systems. The optimal reaction conditions for debromination were found to be the NaOH of 0.21g, the H2O2 volume of 9.04mL, the time of 39.7min, maximum debromination efficiency of 95.14%. Variance analysis indicated that the factors influencing debromination efficiency was in the sequence of NaOH>H2O2>time. Mechanism studies indicated that the dissociated ions from NaOH in supercritical water promoted the debromination of brominated epoxy resins (BERs) through an elimination reaction and nucleophilic substitution. HO2, produced by H2O2 could induce the oxidation of phenol ring to open (intermediates of BERs), which were thoroughly degraded to form hydrocarbons, CO2, H2O and NaBr. In addition, the alkali-silica reaction between OH(-) and SiO2 induced the phase transformation of glass fibers, which were simultaneously converted into anorthite and albite. Waste PCBs in H2O2/NaOH improved SCWO system were fully degraded into useful products and simultaneously transformed into functional materials. These findings are helpful for efficient recycling of waste PCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pharmaceuticals as emerging contaminants and their removal from water. A review.

    PubMed

    Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ferro-García, María Ángeles; Prados-Joya, Gonzalo; Ocampo-Pérez, Raúl

    2013-10-01

    The main objective of this study was to conduct an exhaustive review of the literature on the presence of pharmaceutical-derived compounds in water and on their removal. The most representative pharmaceutical families found in water were described and related water pollution issues were analyzed. The performances of different water treatment systems in the removal of pharmaceuticals were also summarized. The water treatment technologies were those based on conventional systems (chlorine, chlorine dioxide, wastewater treatment plants), adsorption/bioadsorption on activated carbon (from lotus stalks, olive-waste cake, coal, wood, plastic waste, cork powder waste, peach stones, coconut shell, rice husk), and advanced oxidation processes by means of ozonation (O₃, O₃/H₂O₂, O₃/activated carbon, O₃/biological treatment), photooxidation (UV, UV/H₂O₂, UV/K₂S₂O₈, UV/TiO₂, UV/H₂O₂/TiO₂, UV/TiO₂/activated carbon, photo-Fenton), radiolysis (e-Beam, ⁶⁰Co, ¹³⁷Cs. Additives used: H₂O₂, SO₃²⁻, HCO₃⁻, CH₃₋OH, CO₃²⁻, or NO₃⁻), and electrochemical processes (Electrooxidation without and with active chlorine generation). The effect of these treatments on pharmaceutical compounds and the advantages and disadvantages of different methodologies used were described. The most important parameters of the above water treatment systems (experimental conditions, removal yield, pharmaceutical compound mineralization, TOC removal, toxicity evolution) were indicated. The key publications on pharmaceutical removal from water were summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Understanding Wicked Problems: A Key to Advancing Environmental Health Promotion

    ERIC Educational Resources Information Center

    Kreuter, Marshall W.; De Rosa, Christopher; Howze, Elizabeth H.; Baldwin, Grant T.

    2004-01-01

    Complex environmental health problems--like air and water pollution, hazardous waste sites, and lead poisoning--are in reality a constellation of linked problems embedded in the fabric of the communities in which they occur. These kinds of complex problems have been characterized by some as "wicked problems" wherein stakeholders may have…

  7. Regeneration of oxygen from carbon dioxide and water.

    NASA Technical Reports Server (NTRS)

    Weissbart, J.; Smart, W. H.; Wydeven, T.

    1972-01-01

    In a closed ecological system it is necessary to reclaim most of the oxygen required for breathing from respired carbon dioxide and the remainder from waste water. One of the advanced physicochemical systems being developed for generating oxygen in manned spacecraft is the solid electrolyte-electrolysis system. The solid electrolyte system consists of two basic units, an electrolyzer and a carbon monoxide disproportionator. The electrolyzer can reclaim oxygen from both carbon dioxide and water. Electrolyzer preparation and assembly are discussed together with questions of reactor design and electrolyzer performance data.

  8. The advances of Chinese non-ferrous metal mineral industry and its environmental management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao Zewei; Gao Lin; Zhou Xiaoyuan

    1998-12-31

    With the steady growth of Chinese economy, the nonferrous metal industry of China was also developed quickly. The gross output of ten main nonferrous metals 4.25 million tons in 1995 so that China ranks the fourth in the world. However, a series of environmental problems also occurred, which relate to characteristics of mineral resources, techniques for mining, dressing, smelting and processing, equipment and their management level. The major pollutants include sulphur dioxide, industrial powder-dust and smoke-dust, water containing heavy metal ions as well as solid wastes. Air, water body, soil, vegetation and people`s health were polluted and damaged to differentmore » extent due to the above pollutants. For the purpose of environmental management and pollution control, some measures must be taken: (1) to strengthen environmental planning, accelerate and perfect environmental laws and related regulations as well as spread the consciousness of environmental protection energetically; (2) to extend cleaner production and adopt advanced technologies so as to reduce environmental pollution; (3) to turn the concept of the end-of-pipe management to the whole-process control; (4) to recovery or reuse the wastes fully. In addition, general situation and policies on reclamation of mining land as well as theory, methods and techniques of restoration of waste land were also stated in the paper.« less

  9. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, December 30, 1996--March 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    The objective of this project is to utilize coal ashes to process hazardous materials such as industrial waste water treatment residues, contaminated soils, and air pollution control dusts from the metal industry and municipal waste incineration. This report describes the activities of the project team during the reporting period. The principal work has focused upon continuing evaluation of aged samples from Phase 1, planning supportive laboratory studies for Phase 2, completing scholarly work, reestablishing MAX Environmental Technologies, Inc., as the subcontractor for the field work of Phase 2, proposing two presentations for later in 1997, and making and responding tomore » several outside contacts.« less

  10. Power plant wastes capitalization as geopolymeric building materials

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  11. Applications of multi-season hyperspectral remote sensing for acid mine water characterization and mapping of secondary iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Davies, Gwendolyn E.

    Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.

  12. Combustion and Reacting Systems for Exploration

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2004-01-01

    Contents include the foloving: 1. Spacecraft Fire Prevention, Detection, and Suppression. 2. Advanced Life Support. Air/water revitalization, waste management. 3. In Situ Resource Utilization (ISRU). Fuel/consumables from regolith/atmosphere. 4. Extra vehicular Activity. Air revitalization, power systems (MEMS scale combustors). 5. In-situ Fabrication and Repair.Of these we have the lead responsibility in Fire Safety.

  13. A Review: Advances on Absorption of Heavy Metals in the Waste Water by Biochar

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Xie, Anbin; You, Shaohong

    2018-01-01

    Biochar as a new type of adsorbent, its physical and chemical characteristics and adsorption of heavy metal has been widely studied. Based on the current studies, the article reviewed the main characteristics of biochar, its influencing factors (preparation temperature, feed stocks, functional group et.) on adsorption of heavy metals in water and its mechanism of adsorption (ion exchange adsorption, complexation, precipitation sedimentation et.). Briefly summarize unresolved issues for potential applications of biochar in the future.

  14. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  15. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    PubMed

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  16. Modeling of Solid Waste Processing Options in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Rodriguez, Luis F.; Finn, Cory; Kang, Sukwon; Hogan, John; Luna, Bernadette (Technical Monitor)

    2000-01-01

    BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support missions.

  17. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less

  18. Getting Out of Orbit: Water Recycling Requirements and Technology Needs for Long Duration Missions Away from Earth

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2017-01-01

    Deep-space crewed missions will not have regular access to the Earth's resources or the ability to rapidly return to Earth if a system fails. As crewed missions extend farther from Earth for longer periods, habitation systems must become more self-sufficient and reliable for safe, healthy, and sustainable human exploration. For human missions to Mars, Environmental Control and Life Support Systems (ECLSS) must be able operate for up to 1,100 days with minimal spares and consumables. These missions will require capabilities to more fully recycle atmospheric gases and wastewater to substantially reduce mission costs. Even with relatively austere requirements for use, water represents one of the largest consumables by mass. Systems must be available to extract and recycle water from all sources of waste. And given that there will be no opportunity to send samples back to Earth for analysis, analytical measurements will be limited to monitoring hardware brought on board the spacecraft. The Earth Reliant phase of NASA's exploration strategy includes leveraging the International Space Station (ISS) to demonstrate advanced capabilities for a robust and reliable ECLSS. The ISS Water Recovery System (WRS) includes a Urine Processor Assembly (UPA) for distillation and recovery of water from urine and a Water Processor Assembly (WPA) to process humidity condensate and urine distillate into potable water. Possible enhancements to more fully "close the water loop" include recovery of water from waste brines and solid wastes. A possible game changer is the recovery of water from local planetary resources through use of In Situ Resource Utilization (ISRU) technologies. As part of the development and demonstration sequence, NASA intends to utilize cis-Lunar space as a Proving Ground to verify systems for deep space habitation by conducting extended duration missions to validate our readiness for Mars.

  19. Women, water supply and sanitation: INSTRAW's training initiatives.

    PubMed

    Tavares, J

    1997-01-01

    The International Research and Training Institute for the Advancement of Women (INSTRAW) has worked on women, water supply and sanitation since 1986. The program aims to establish the relationship between women, water supply and sanitation and the promotion of the needs of women and their participation in Water Supply and Sanitation projects. Using a multimedia and modular approach, the training package on Women, Water Supply and Sanitation aims to provide an overview for the different government agencies, engineers, trainers and managers involved in water supply and sanitation projects. The six modules contained in this package include: 1) The International Drinking Water Supply and Sanitation Decade and beyond; 2) The Participation of Women in planning, Choice of Technology and Implementation of Sustainable Water Supply and Sanitation Projects; 3) Role of Women in Hygiene Education and Training Activities for Water Supply and Sanitation Projects; 4) Involvement of Women in Management of Water resources, Water Supply and Waste Disposal; 5) Women and Waste Management; and 6) Evaluation and Monitoring of Water Supply and Sanitation Programs, Projects and the Role of Women. In addition, each module comprises five components including objective description, detailed bibliography, feedback tools for each modular unit, lesson plan and guides for trainers and users, and audiovisual aids. In the face of water scarcity, INSTRAW highlights the importance of women¿s participation in the sustainable use of water supply.

  20. An energy-economy-environment model for simulating the impacts of socioeconomic development on energy and environment.

    PubMed

    Wang, Wenyi; Zeng, Weihua; Yao, Bo

    2014-01-01

    Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement.

  1. Water & Sanitation: An Essential Battlefront in the War on Antimicrobial Resistance.

    PubMed

    Bürgmann, Helmut; Frigon, Dominic; Gaze, William; Manaia, Célia; Pruden, Amy; Singer, Andrew C; Smets, Barth; Zhang, Tong

    2018-06-05

    Water and sanitation represents a key battlefront in combating the spread of antimicrobial resistance (AMR). Basic water sanitation infrastructure is an essential first step to protecting public health, thereby limiting the spread of pathogens and the need for antibiotics. AMR presents unique human health risks, meriting new risk assessment frameworks specifically adapted to water and sanitation-borne AMR. There are numerous exposure routes to AMR originating from human waste, each of which must be quantified for its relative risk to human health. Wastewater treatment plants (WWTPs) play a vital role in centralized collection and treatment of human sewage, but there are numerous unresolved questions in terms of the microbial ecological processes occurring within and the extent to which they attenuate or amplify AMR. Research is needed to advance understanding of the fate of resistant bacteria and antibiotic resistance genes (ARGs) in various waste management systems, depending on the local constraints and intended re-use applications. WHO and national AMR action plans would benefit from a more holistic 'One Water' understanding. Here we provide a framework for research, policy, practice, and public engagement aimed at limiting the spread of AMR from water and sanitation in both low-, medium- and high-income countries, alike.

  2. A good life environment for all through conceptual, technological and social innovations.

    PubMed

    Lettinga, G

    2006-01-01

    In conventional environmental protection the parallel development of advanced technical solutions alongside ever more stringent environmental standards increasingly conflicts with the moral and practical imperatives to ensure sustainability and drastically improve the life conditions of the world's poor. Such priorities are far better tackled by technological and social innovations based on relatively simple and highly sustainable concepts: e.g., applying Natural Biological Mineralization Routes (NBMR) for wastewater and waste treatment, implementing Decentralized Sanitation and Resource Recovery and Reuse (DESAR3) where transport of waste(water)s is kept to an optimum level and pollutants valorized, etc. With developing countries now taking a lead in applying these concepts in public sanitation, the more prosperous countries will gradually abandon the expensive, vulnerable and non-sustainable conventional approaches to wastes treatment and environmental protection.

  3. Bioconversion of water hyacinth-Coastal Bermuda grass-MSW-sludge blends to methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Klass, D.L.

    1979-01-01

    Continuous operation of a biomethanation plant could be acheved more readily if mixtures of biomass and organic wastes could be utilized as feedstock. The research reported in this paper was directed to a laboratory evaluation of a blend of terrestrial and aquatic biomass with organic wastes as an anaerobic digester feed. Specifically, a blend of water hyacinth, Coastal Bermuda grass, the combustible fraction of municipal solid waste, and a small quantity of sludge was digested under standard, high-rate mesophilic conditions. Good methane production was achieved without the addition of external nutrients. As expected, biodegradabilities in decreasing order were hemicellulose, cellulose,more » crude protein, and lignin. The digester effluent was easily dewatered by filtration without chemical conditioning. Pretreatment of the feed slurry with 3 wt % sodium hydroxide solution under ambient conditions improved methane yield about 20% over that of the fresh untreated feed. A kinetic analysis of the experimental data indicated that hydrolysis or acidification was the rate limiting step of digestion of the biomass-waste blend. It was concluded from this work that biomass-waste blends of the type studied in this work can sustain anaerobic digestion under conventional conditions for long periods with little difficulty. Substantial improvements in methane yield should be possible, however, by use of advanced digestion techniques because methane recovery efficiencies in this work ranged up to about 46%.« less

  4. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    PubMed

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  5. A review of the current status of the American shad '(Alosa sapidissima)' in the Susquehanna River. Special report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidell, B.D.

    1979-02-01

    During the last two hundred years there has been a dramatic and sustained decline in the American shad fishery of the Susquehanna River. Among the explanations most often advanced for this decline are overfishing, both in the Chesapeake Bay and in the river itself; construction of dams (canal-feeder and hydro-electric) or other obstructions to passage of anadromous fishes; and deleterious effects on water quality caused by mining wastes, sawmill pulp wastes, municipal sewages and increased agricultural activity in the watershed leading to fluctuations in flow characteristis of the river. This report attempts to answer these questions.

  6. 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. Duringmore » the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.« less

  7. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments in developing integrated waste and water management strategies.

  8. Sustainable water management in rural and peri-urban areas: what technology do we need to meet the UN millennium development goals?

    PubMed

    Wilderer, P A

    2005-01-01

    Installation of advanced urban water management systems is one of the most important first steps in the attempt to overcome poverty on earth, outbreak of diseases, crime and even terrorism. Because world wide application of traditional water supply, sewerage and wastewater treatment technology requires financial resources which are basically not available within a reasonable short time frame novel solutions must be found, developed and implemented. The combination of high-tech on-site treatment of the various waste streams generated in households, enterprises and industrial sites, and reuse of the valuable materials obtained from the treatment plants, including the purified water, is one of the options which is investigated by various groups of researchers and technology developers, nowadays. This concept may help meeting the UN Millennium Development Goals, provided people are ready to accept this new way of dealing with household wastes. Education is necessary to build up the foundation which modern water technology can be based upon. In parallel, tailored modifications are to be considered to satisfy the specific demands of local communities. In this context, female participation appears to be extremely important in the decision making process.

  9. Research on Potential of Advanced Technology for Housing. A Building System Based on Filament Winding and New Developments in Water and Waste Management.

    ERIC Educational Resources Information Center

    Michigan Univ., Ann Arbor.

    The University of Michigan and Aerojet Corporation report their development of a new building system which will offer the consumer a higher quality product at lower cost. To achieve this goal, the University-Aerojet proposal suggested filament winding (a process derived from the aerospace program for the manufacture of reinforced plastic…

  10. Gills Onions Advanced Energy Recovery System: Turning a Waste Liability into a Renewable Resource

    DTIC Science & Technology

    2011-01-13

    i U fl A bi 2 rea u ce s ng an p ow naero c Sludge Blanket (UASB) Reactor 3 Recover Biogas from UASB Remove Sulfur and Moisture for Cattle... biogas per cell ● 15 psi ● Requires highly purified water (RO) Energy NG RO W ta er ● Methane and steam converted into hydrogen-rich gas

  11. An Energy-Economy-Environment Model for Simulating the Impacts of Socioeconomic Development on Energy and Environment

    PubMed Central

    Yao, Bo

    2014-01-01

    Many rapidly developing regions have begun to draw the attention of the world. Meanwhile, the energy and environmental issues associated with rapid economic growth have aroused widespread critical concern. Therefore, studying energy, economic, and environmental systems is of great importance. This study establishes a system dynamic model that covers multiple aspects of those systems, such as energy, economy, population, water pollution, air pollution, solid waste, and technology. The model designed here attempts to determine the impacts of socioeconomic development on the energy and environment of Tongzhou District in three scenarios: under current, planning, and sustainable conditions. The results reveal that energy shortages and water pollutions are very serious and are the key issues constraining future social and economic development. Solid waste emissions increase with population growth. The prediction results provide valuable insights into social advancement. PMID:24683332

  12. Appendix to HDC 2118 design criteria 100-X reactor water plant, general description - section II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1952-03-29

    The factors responsible for the advances of 100-X compared with the older areas are: Simplification of the process, such as elimination of separate process water clearwells, by having the filtered water reservoirs perform that function. Combination of separate buildings into one building, such as combining filter pump house and process pump house. Use of electric standby. Use of higher capacity pumps and filter basins, and so fewer number of units. Centralization of control and operation. More compact arrangement of plant components. Use of waste heat for space heating, recovered from reactor effluent, backed up by steam plant.

  13. Introduction to environmental engineering

    NASA Astrophysics Data System (ADS)

    Šalić, Anita; Zelić, Bruno

    2018-02-01

    Nowadays we can easily say that environmental engineering is truly an interdisciplinary science. Combining biology, ecology, geology, geography, mathematics, chemistry, agronomy, medicine, economy, etc. environmental engineering strives to use environmental understanding and advancements in technology to serve mankind by decreasing production of environmental hazards and the effects of those hazards already present in the soil, water, and air. Major activities of environmental engineer involve water supply, waste water and solid management, air and noise pollution control, environmental sustainability, environmental impact assessment, climate changes, etc. And all this with only one main goal - to prevent or reduce undesirable impacts of human activities on the environment. To ensure we all have tomorrow.

  14. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  15. WIPP Hazardous Waste Facility Permit Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehrman, B.; Most, W.

    2006-07-01

    The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification requestmore » that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)« less

  16. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  17. Biomass potential resources identification in Togean Islands, Central Sulawesi

    NASA Astrophysics Data System (ADS)

    Bunyamin, A.; Purnomo, D.

    2017-05-01

    Togean Islands is one of remote area in Central Sulawesi Province, Indonesia. Togean has been already well known for its great underwater scenery which fascinating many foreign tourists stay there. The large number of visits to Togean doesn’t mean at the same time it brings much improvement to local economy. People in Togean was used to live with limited utilities. Water and electricity are the two major problems that have been faced by the communities for many years. On the other hand, Togean has a very good potential for the development of biomass as a renewable energy source. This paper evaluated the potency of each resources using some parameters including availability, social support, technology feasibilities and sustainability aspect. Biomass potential resources that were investigated are hardwoods and forestry product, agroindustrial waste and by-products, and also household waste. Advanced analysis has concluded that the most feasible resources that eligible to be considered as future biomass resources is household waste followed by agro-industrial and agricultural waste then hardwood and forestry products.

  18. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.

  19. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Technical Reports Server (NTRS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  20. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses.

    PubMed

    Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  1. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  2. Advances in the hydrogeochemistry and microbiology of acid mine waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2000-01-01

    The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.

  3. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  4. Structure modification of natural zeolite for waste removal application

    NASA Astrophysics Data System (ADS)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  5. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... determining: (1) Whether hazardous waste or hazardous waste constituents have entered the ground water; (2... water; and (3) The concentrations of hazardous waste or hazardous waste constituents in the ground water...

  6. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... determining: (1) Whether hazardous waste or hazardous waste constituents have entered the ground water; (2... water; and (3) The concentrations of hazardous waste or hazardous waste constituents in the ground water...

  7. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    PubMed

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  8. The use of short rotation willows and poplars for the recycling of saline waste waters

    Treesearch

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  9. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  10. Method of draining water through a solid waste site without leaching

    DOEpatents

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  11. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The development of Environmental Control and Life Support Systems (ECLSS) for Space Station Freedom, future colonization of the Moon, and Mars missions presents new challenges for present technologies. ECLSS that operate during long-duration missions must be semi-autonomous to allow crew members environmental control without constant supervision. A control system for the ECLSS must address these issues as well as being reliable. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The ECLSS for Freedom is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire-sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort.

  12. Recycling of Na in advanced life support: strategies based on crop production systems.

    PubMed

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  13. New policies and measures for saving a great manmade reservoir providing drinking water for 20 million people in the Republic of Korea.

    PubMed

    Ahn, K H

    2000-01-01

    Water quality of the Paldang reservoir, the largest drinking water supply source in the Republic Korea provides raw water for about 20 million people living in Seoul Metropolitan area. Water quality has been deteriorating mainly due to improperly treated livestock waste and domestic wastewater discharged from motels, restaurants, and private homes. A recent survey conducted by the Ministry of Environment (MOE) showed that the water quality of this reservoir has been identified as Class III must contain less than 6 ppm of BOD, which will require advanced purification treatment before it can be used as drinking water. The MOE also announced that this water source would no longer be potable unless wastewater in the catchment is treated efficiently. To protect drinking water resources, the MOE has set up comprehensive management. These programmes include new regulations, measures, land use planning and economic incentives.

  14. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  15. Regenerative Life Support Evaluation

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1977-01-01

    This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.

  16. Recent developments in photocatalytic water treatment technology: a review.

    PubMed

    Chong, Meng Nan; Jin, Bo; Chow, Christopher W K; Saint, Chris

    2010-05-01

    In recent years, semiconductor photocatalytic process has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. The ability of this advanced oxidation technology has been widely demonstrated to remove persistent organic compounds and microorganisms in water. At present, the main technical barriers that impede its commercialisation remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the recent R&D progresses of engineered-photocatalysts, photoreactor systems, and the process optimizations and modellings of the photooxidation processes for water treatment. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photoreactor operation parameters and water quality on the photo-process performances in terms of the mineralization and disinfection are assessed. For the first time, we describe how to utilize a multi-variables optimization approach to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency. Both photomineralization and photo-disinfection kinetics and their modellings associated with the photocatalytic water treatment process are detailed. A brief discussion on the life cycle assessment for retrofitting the photocatalytic technology as an alternative waste treatment process is presented. This paper will deliver a scientific and technical overview and useful information to scientists and engineers who work in this field.

  17. Application of receptor models on water quality data in source apportionment in Kuantan River Basin

    PubMed Central

    2012-01-01

    Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management. PMID:23369363

  18. The public health significance of trace chemicals in waste water utilization

    PubMed Central

    Shuval, Hillel I.

    1962-01-01

    The practice of waste water utilization has grown considerably in recent years, owing to the growing demand for water for agricultural, industrial and domestic purposes. Such utilization presents certain problems in respect of the quality of the reclaimed water, on account of the presence of certain trace chemicals in the waste waters to be re-used. The presence of these trace chemicals may have important consequences in the agricultural or industrial utilization of waste waters, but from the public health point of view it is in the re-use of waste waters for domestic purposes that their presence has most importance, owing to their possible toxic effects. This paper discusses the public health significance of trace chemicals in water, with special reference to some of the newer complex synthetic organic compounds that are appearing in ever-increasing numbers in industrial wastes. Current information on the acute and chronic toxicity of these substances is reviewed and related to possible methods of treatment of waste waters. In conclusion, the author points out that the problem of trace chemicals is not confined only to direct waste-water reclamation projects, but arises in all cases where surface waters polluted with industrial wastes are used as a source of domestic supply. PMID:13988826

  19. Emerging solutions to the water challenges of an urbanizing world.

    PubMed

    Larsen, Tove A; Hoffmann, Sabine; Lüthi, Christoph; Truffer, Bernhard; Maurer, Max

    2016-05-20

    The top priorities for urban water sustainability include the provision of safe drinking water, wastewater handling for public health, and protection against flooding. However, rapidly aging infrastructure, population growth, and increasing urbanization call into question current urban water management strategies, especially in the fast-growing urban areas in Asia and Africa. We review innovative approaches in urban water management with the potential to provide locally adapted, resource-efficient alternative solutions. Promising examples include new concepts for stormwater drainage, increased water productivity, distributed or on-site treatment of wastewater, source separation of human waste, and institutional and organizational reforms. We conclude that there is an urgent need for major transdisciplinary efforts in research, policy, and practice to develop alternatives with implications for cities and aquatic ecosystems alike. Copyright © 2016, American Association for the Advancement of Science.

  20. 9 CFR 93.916 - Special provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... establishment discharges its waste water to a municipal sewage system that includes waste water disinfection... waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging settling... includes waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging...

  1. 9 CFR 93.916 - Special provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... establishment discharges its waste water to a municipal sewage system that includes waste water disinfection... waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging settling... includes waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging...

  2. 9 CFR 93.916 - Special provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... establishment discharges its waste water to a municipal sewage system that includes waste water disinfection... waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging settling... includes waste water disinfection sufficient to neutralize any VHS virus or to either a non-discharging...

  3. 78 FR 41960 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... with the various excursions are typically air emissions, waste water (urine, grey-water) and solid waste (food waste, human solid waste, and packaging materials). Human waste and grey water would be..., Santa Cruz, CA. Activity for Which Permit Is Requested Waste Permit; A small expedition would use an ice...

  4. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less

  5. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Little Laughery Creek, Ripley and Franklin counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)

  6. 40 CFR 421.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of process waste water pollutants to navigable waters. (b) During any calendar month there may be discharged from the overflow of a process waste water impoundment either a volume of process waste water... the evaporation within the impoundment for that month, or, if greater, a volume of process waste water...

  7. Wastewater and Hazardous Waste Survey, Homestead AFB Florida.

    DTIC Science & Technology

    1988-03-01

    tank into the sanitary sewer. 16. Bilge waste from the Water Survival School is currently placed in 55-gallon drums and stored on site. At the time...plant. W0’I; • ,. =% . Fiue5. AGE Accumulation Site , 30 7. A disposal contract for waste bilge water is needed for the Water Survival School. Currently...eliminate all pesticide wastes from S this shop. 16. The Water Survival School can possibly eliminate bilge water waste by having Civil Engineering

  8. Sterols indicate water quality and wastewater treatment efficiency.

    PubMed

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater treatment in WSPs. They can complement the use of commonly used indicators of water quality, to provide essential information on the overall performance of ponds and whether a pond is underperforming in terms of stabilising human waste. Such a holistic understanding is essential when the aim is to improve the performance of a treatment plant, build new plants or expand existing infrastructure. Future work should aim at further establishing the use of sterols as reliable water quality indicators on a broader scale across natural and engineered systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 40 CFR 436.31 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and ground water seepage. However, if a mine is also used for treatment of process generated waste... other facility used for treatment of such waste water. The term does not include waste water used for... waste water. (c) The term “10-year 24-hour precipitation event” shall mean the maximum 24 hour...

  10. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  11. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water... site is served by a privately owned and centrally operated water and water/waste disposal system, the...

  12. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less

  13. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  14. Contained recovery of oily waste

    DOEpatents

    Johnson, Jr., Lyle A.; Sudduth, Bruce C.

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  15. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  16. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    PubMed

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The Use of Microwave Incineration to Process Biological Wastes

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)

    1994-01-01

    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  18. Chemical Technology Division annual technical report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less

  19. Water and waste water reclamation in a 21st century space colony

    NASA Technical Reports Server (NTRS)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  20. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  1. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  2. 7 CFR 1779.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.2 Definitions. The following general... agencies with authority delegated by the Secretary of Agriculture to administer the Water and Waste... collection), solid waste, and storm drainage facilities. WW. An acronym for Water and Waste Disposal. ...

  3. Effects of drain wells on the ground-water quality of the western Snake Plain Aquifer, Idaho

    USGS Publications Warehouse

    Moreland, Joe A.; Seitz, Harold R.; LaSala, Albert Mario

    1976-01-01

    Approximately 3,100 drain wells injects irrigation waste water, urban runoff, septic-tank effluent, and industrial waste water into the Snake Plain aquifer in Minidoka, Gooding, Jerome, and Lincoln Counties, Idaho. About 29,000 acre-feet of irrigation waste water, 100 acre-feet of urban runoff, 400 acre-feet of septic-tank effluent, and 1,000 acre-feet of industrial waste water are injected annually. The quality of irrigation waste water is highly variable, depending upon its source, method and rate of application, amount of fertilizer added, and other factors. The quality of urban runoff water is generally much better than irrigation waste water. Septic-tank effluent is relatively high in nutrient concentrations. Chloride concentrations also are high, and bacterial concentrations are exceedingly high. The only industrial waste water sampled during this study had been used for cooling. No chemical changes were noted, but temperature was significantly increased. The data indicate that drain-well inflow does move appreciable distances through the aquifer and can be detected in downgradient wells. (Woodard-USGS)

  4. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  5. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  6. Lunar base CELSS: A bioregenerative approach

    NASA Technical Reports Server (NTRS)

    Easterwood, G. W.; Street, J. J.; Sartain, J. B.; Hubbell, D. H.; Robitaille, H. A.

    1992-01-01

    During the twenty-first century, human habitation of a self-sustaining lunar base could become a reality. To achieve this goal, the occupants will have to have food, water, and an adequate atmosphere within a carefully designed environment. Advanced technology will be employed to support terrestrial life-sustaining processes on the Moon. One approach to a life support system based on food production, waste management and utilization, and product synthesis is outlined. Inputs include an atmosphere, water, plants, biodegradable substrates, and manufacutured materials such as fiberglass containment vessels from lunar resources. Outputs include purification of air and water, food, and hydrogen (H2) generated from methane (CH4). Important criteria are as follows: (1) minimize resupply from Earth; and (2) recycle as efficiently as possible.

  7. Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process.

    PubMed

    Torabi Angaji, Mahmood; Ghiaee, Reza

    2015-03-01

    A pilot scale hydrodynamic cavitation (HC) reactor, using iron metal blades, as the heterogeneous catalyst, with no external source of H₂O₂ was developed for catalytic decontamination of unsymmetrical dimethylhydrazine (UDMH) waste water. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The effects of the applied catalyst, pH of the initial solution (1.0-9.7), initial UDMH concentration (2-15 mg/l), inlet pressure (5.5-7.8bar), and downstream pressure (2-6 bar), have been investigated. The results showed that the highest cavitation yield can be obtained at pH 3 and initial UDMH concentration of 10mg/l. Also, an increase in the inlet pressure would lead to an increase in the extent of UDMH degradation. In addition, the optimum value of 3 bar was determined for the downstream pressure that resulted to 98.6% degradation of UDMH after 120 min of processing time. Neither n-nitrosodimethylamine (NDMA) nor any other toxic byproduct (/end-product) was observed in the investigated samples. Formic acid and acetic acid, as well as nitromethane, were identified as oxidation by-products. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of UDMH. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Advanced Life Support Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    2001-01-01

    A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.

  9. 21 CFR 1250.51 - Railroad conveyances; discharge of wastes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; discharge of wastes. (a) New railroad conveyances. Human wastes, garbage, waste water, or other polluting... drainage of drinking water taps or lavatory facilities. (b) Nonnew railroad conveyances. Human wastes... and Drugs. In lieu of retention pending discharge at approved servicing areas, human wastes, garbage...

  10. 21 CFR 1250.51 - Railroad conveyances; discharge of wastes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; discharge of wastes. (a) New railroad conveyances. Human wastes, garbage, waste water, or other polluting... drainage of drinking water taps or lavatory facilities. (b) Nonnew railroad conveyances. Human wastes... and Drugs. In lieu of retention pending discharge at approved servicing areas, human wastes, garbage...

  11. 21 CFR 1250.51 - Railroad conveyances; discharge of wastes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; discharge of wastes. (a) New railroad conveyances. Human wastes, garbage, waste water, or other polluting... drainage of drinking water taps or lavatory facilities. (b) Nonnew railroad conveyances. Human wastes... and Drugs. In lieu of retention pending discharge at approved servicing areas, human wastes, garbage...

  12. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2011-10-01 2011-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...

  13. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2010-10-01 2010-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...

  14. 40 CFR 436.21 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... However, if a mine is also used for treatment of process generated waste water, discharges of commingled water from the facilities shall be deemed discharges of process generated waste water. (c) The term “10... treatment of such waste water. ...

  15. Advancing Sustainable Materials Management: Facts and Figures Report

    EPA Pesticide Factsheets

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  16. Lyophilization for Water Recovery From Solid Waste

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  17. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  18. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  19. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  20. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    EPA Pesticide Factsheets

    Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW) generation, recycling, composting, combustion with energy recovery and landfilling. The 2014 report provides information on historical tipping fees for MSW, and information on the construction and demolition debris generation, which is outside of the scope of MSW. The Facts and Figures website includes recent reports (2012 to 2014 as well as historical information on materials in the U.S. Municipal Waste Stream, 1960 to 2014 (in tons). The reports for both current and historical waste prevention can be accessed at EPA's SMM website. The recent Annual Facts and Figures reports are accessible at the following link: https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report. Historical data as well as studies and summary tables related to the Advancing Sustainable Materials Management Report are accessible here: https://www.epa.gov/smm/studies-summary-tables-and-data-related-advancing-sustainable-materials-management-report. An excel file containing the data from 1960 - 2014 is located here: https://edg.epa.gov/data/PUBLIC/OLEM/Materials_Municipal_Waste_Stream_1960_to_2014.xlsx. EPA also maintains a list of state and local waste characterization studies (reports are not available for all states). You can search for your state at https://www.epa.gov/smm/advancing-

  1. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption.

    PubMed

    Hammond, Geoffrey P; Li, Bo

    2016-09-01

    Environmental or 'ecological' footprints have been widely used in recent years as indicators of resource consumption and waste absorption presented in terms of biologically productive land area [in global hectares (gha)] required per capita with prevailing technology. In contrast, 'carbon footprints' are the amount of carbon (or carbon dioxide equivalent) emissions for such activities in units of mass or weight (like kilograms per functional unit), but can be translated into a component of the environmental footprint (on a gha basis). The carbon and environmental footprints associated with the world production of liquid biofuels have been computed for the period 2010-2050. Estimates of future global biofuel production were adopted from the 2011 International Energy Agency (IEA) 'technology roadmap' for transport biofuels. This suggests that, although first generation biofuels will dominate the market up to 2020, advanced or second generation biofuels might constitute some 75% of biofuel production by 2050. The overall environmental footprint was estimated to be 0.29 billion (bn) gha in 2010 and is likely to grow to around 2.57 bn gha by 2050. It was then disaggregated into various components: bioproductive land, built land, carbon emissions, embodied energy, materials and waste, transport, and water consumption. This component-based approach has enabled the examination of the Manufactured and Natural Capital elements of the 'four capitals' model of sustainability quite broadly, along with specific issues (such as the linkages associated with the so-called energy-land-water nexus). Bioproductive land use was found to exhibit the largest footprint component (a 48% share in 2050), followed by the carbon footprint (23%), embodied energy (16%), and then the water footprint (9%). Footprint components related to built land, transport and waste arisings were all found to account for an insignificant proportion to the overall environmental footprint, together amounting to only about 2.

  2. 40 CFR 436.21 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... natural deposits. (e) The term “process generated waste water” shall mean any waste water used in the... of the mine operator. However, if a mine is also used for treatment of process generated waste water, discharges of commingled water from the facilities shall be deemed discharges of process generated waste...

  3. 40 CFR 422.42 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...

  4. 40 CFR 422.42 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...

  5. 40 CFR 422.42 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...

  6. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  7. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  8. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  9. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    PubMed

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.

  10. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  11. Innovative technologies for decentralised water-, wastewater and biowaste management in urban and peri-urban areas.

    PubMed

    Otterpohl, R; Braun, U; Oldenburg, M

    2003-01-01

    Avoiding the comingling of water flows coming from different sources and thus obtaining flows with a very low dilution factor is the first and major step key to technical solutions for adequate treatment of household wastewaters. Through their decentral structure and effective recovery of water, energy and fertiliser these systems can be highly cost efficient. Fresh water consumption can be reduced by up to 80% while nutrients can be recovered to a large extent. Source control is also advantageous for hygienic reasons: low volumes are far easier to sanitise. Source separation technology in municipal waste water treatment does often lead decentralised or semicentral systems. The first essential step is the separate collection and treatment of toilet waste in households, which contains almost all pathogens and nutrients. New toilet systems with very low dilution factors, ranging from vacuum- through urine sorting to dry toilets, have been introduced in several projects and proven feasible. New ideas such as the black- and greywater cycle systems are presently under research at the Technical University Hamburg Harburg. Such modular, integrated and small scale systems are only possible through recent advances in membrane technology and, due to their small scale, do have the potential to be installed in densely populated regions. These technologies are options for following the principles of ecological sanitation, to contain, to sanitise and to reuse also in urban areas (EcoSanRes, 2003).

  12. Occurrence State and Molecular Structure Analysis of Extracellular Proteins with Implications on the Dewaterability of Waste-Activated Sludge.

    PubMed

    Wu, Boran; Ni, Bing-Jie; Horvat, Kristine; Song, Liyan; Chai, Xiaoli; Dai, Xiaohu; Mahajan, Devinder

    2017-08-15

    The occurrence state and molecular structure of extracellular proteins were analyzed to reveal the influencing factors on the water-holding capacities of protein-like substances in waste-activated sludge (WAS). The gelation process of extracellular proteins verified that advanced oxidation processes (AOPs) for WAS dewaterability improvement eliminated the water affinity of extracellular proteins and prevented these macromolecules from forming stable colloidal aggregates. Isobaric tags for relative and absolute quantitation proteomics identified that most of the extracellular proteins were originally derived from the intracellular part and the proteins originally located in the extracellular part were mainly membrane-associated. The main mechanism of extracellular protein transformation during AOPs could be represented by the damage of the membrane or related external encapsulating structure and the release of intracellular substances. For the selected representative extracellular proteins, the strong correlation (R 2 > 0.97, p < 0.03) between the surface hydrophilicity index and α-helix percentages in the secondary structure indicated that the water affinity relied more on the spatial distribution of hydrophilic functional groups rather than the content. Destructing the secondary structure represented by the α-helix and stretching the polypeptide aggregation in the water phase through disulfide bond removal might be the key to eliminating the inhibitory effects of extracellular proteins on the interstitial water removal from WAS.

  13. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  14. 40 CFR 436.41 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... seepage. However, if a mine is also used for the treatment of process generated waste water, discharges of commingled water from the mine shall be deemed discharges of process generated waste water. (c) The term “10... water in a pit, pond, lagoon, mine or other facility used for treatment of such waste water. The terms...

  15. 40 CFR 35.918 - Individual systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... localized treatment and disposal of wastewater with minimal or no conveyance of untreated waste water... plant. (5) Alternative waste water treatment works. A waste water conveyance and/or treatment system... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.918...

  16. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  17. 40 CFR 412.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... effluent limitations representing the application of BPT: There shall be no discharge of process waste water pollutants to navigable waters. (b) Process waste pollutants in the overflow may be discharged to... waste water from a facility designed, constructed and operated to contain all process generated waste...

  18. 40 CFR 436.31 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... deposits. (e) The term “process generated waste water” shall mean any waste water used in the slurry... rainfall and ground water seepage. However, if a mine is also used for treatment of process generated waste... waste water. (c) The term “10-year 24-hour precipitation event” shall mean the maximum 24 hour...

  19. Ozone Application for Tofu Waste Water Treatment and Its Utilisation for Growth Medium of Microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Hadiyanto

    2018-02-01

    Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.

  20. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    A methodology was developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware based on an extrapolation of past hardware development experience. Major items of costs within water recovery systems were identified and related to physical and/or performance criteria. Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced water recovery systems. The results of the study are expected to assist NASA in long-range planning and allocation of resources in a cost effective manner in support of earth orbital programs. This report deals with the cost analysis of the five leading water reclamation systems, namely: (1) RITE waste management-water system, (2) reverse osmosis system, (3) multifiltration system, (4) vapor compression system, and (5) closed air evaporation system with electrolytic pretreatment.

  1. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOEpatents

    Janikowski, Stuart K.

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  2. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  3. Monitoring genetic damage to ecosystems from hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.L.

    1992-03-01

    Applications of ecological toxicity testing to hazardous waste management have increased dramatically over the last few years, resulting in a greater awareness of the need for improved biomonitoring techniques. Our laboratory is developing advanced techniques to assess the genotoxic effects of environmental contamination on ecosystems. We have developed a novel mutagenesis assay using the nematode Caenorhabditis elegans, which is potentially applicable for multimedia studies in soil, sediment, and water. In addition, we are conducting validation studies of a previously developed anaphase aberration test that utilizes sea urchin embryos. Other related efforts include field validation studies of the new tests, evaluationmore » of their potential ecological relevance, and analysis of their sensitivity relative to that of existing toxicity tests that assess only lethal effects, rather than genetic damage.« less

  4. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste. Reduces volume, removes water and renders a biologically stable and safe product. The HMC compacts and reduces the trash volume as much as 90o/o greater than the current manual compaction used by the crew.The project has three primary goals or tasks. 1. Microbiological analysis of HMC hardware surfaces before and after operation. 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures. 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"

  5. Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima.

    PubMed

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C; Lammers, Laura N; Ikeda, Takashi; Sassi, Michel; Rosso, Kevin M; Machida, Masahiko

    2018-04-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE PAGES

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.; ...

    2018-03-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  7. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  8. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ..., purification, or distribution of water; and for the collection, treatment, or disposal of waste in rural areas... requirements, Rural areas, Waste treatment and disposal, Water supply, Watersheds. For the reasons discussed in...

  9. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    PubMed

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    PubMed

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Waste-water characterization and hazardous-waste technical assistance survey, Bergstrom AFB tTxas. Final report, 6-15 March 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedgecock, N.S.

    1990-01-01

    At the request of 67 Combat Support Group/DEEV the Air Force Occupational and Environmental Health Laboratory conducted a waste-water characterization and hazardous-waste technical assistance survey at Bergstrom AFB (BAFB) from 6-15 Mar 89. The scope of the waste-water survey was to characterize the effluent exiting the base and the effluent from 23 industrial facilities and 10 food-serving facilities. The scope of the hazardous-waste survey was to address hazardous-waste-management practices and explore opportunities for hazardous waste minimization. Specific recommendations from the survey include: (1) Accompany City of Austin personnel during waste-water sampling procedures; (2) Sample at the manhole exiting the mainmore » lift station rather than at the lift station wet well; (3) Split waste-water samples with the City of Austin for comparison of results; (4) Ensure that oil/water separators and grease traps are functioning properly and are cleaned out regularly; (5) Limit the quantity of soaps and solvents discharged down the drain to the sanitary sewer; (6) Establish a waste disposal contract for the removal of wastes in the Petroleum Oils and Lubricants underground storage tanks. (7) Remove, analyze, and properly dispose of oil contaminated soil from accumulation sites. (8) Move indoors or secure, cover, and berm the aluminum sign reconditioning tank at 67 Civil Engineering Squadron Protective Coating. (9) Connect 67 Combat Repair Squadron Test Cell floor drains to the sanitary sewer.« less

  12. Transuranic inventory reduction in repository by partitioning and transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, C.H.; Kazimi, M.S.

    1992-01-01

    The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).

  13. Some recent developments in spacecraft environmental control/life support subsystems

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Olcott, T. M.

    1974-01-01

    The subsystems considered include a flash evaporator for heat rejection, a regenerable carbon dioxide and humidity control subsystem, an iodinating subsystem for potable water, a cabin contaminant control subsystem, and a wet oxidation subsystem for processing spacecraft wastes. The flash evaporator discussed is a simple unit which efficiently controls life support system temperatures over a wide range of heat loads. For certain advanced spacecraft applications the control of cabin carbon dioxide and humidity can be successfully achieved by a regenerable solid amine subsystem.

  14. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.

  15. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    PubMed

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less...

  17. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. Waste-water characterization and hazardous-waste technical assistance survey, Mather AFB California. Final report, 28 November-9 December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.P.; Hedgecock, N.S.

    1989-10-01

    Personnel from the AFOEHL conducted a waste-water characterization and hazardous-waste technical assistance survey at MAFB from 28 Nov to 9 Dec 1988. The scope of this survey was to characterize the waste-water, address hazardous-waste-management practices, and explore opportunities for hazardous waste minimization. The waste water survey team analyzed the base's industrial effluent, effluent from oil/water separators, and storm water. The team performed a shop-by-shop evaluation of chemical-waste-management practices. Survey results showed that MAFB needs to improve its hazardous-waste-management program. Recommendations for improvement include: (1) Collecting two additional grab samples on separate days from the hospital discharge. Analyze for EPA Methodmore » 601 to determine if the grab sample from the survey gives a true indication of what is being discharged. (2) Locate the source and prevent mercury from the hospital from discharging into the sanitary sewer. (3) Dilute the soaps used for cleaning at the Fuels Lab, Building 7060. (4) Investigate the source of chromium from the Photo Lab. (5) Clean out the sewer system manhole directly downgradient from the Photo Lab. (6) Locate the source of contamination in the West Ditch Outfall. (7) Reconnect the two oil/water separators that discharge into the storm sewerage system. (8) Investigate the source of methylene chloride coming on the base. (9) Investigate the source of mercury at Fuel Cell Repair, building 7005.« less

  19. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  20. Characterization of Crew Refuse Returned from Shuttle Missions with Permanent Gas, Volatile Organic Compound, and Microbial Analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.

    In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.

  1. Prolonged aerobic degradation of shredded and pre-composted municipal solid waste: report from a 21-year study of leachate quality characteristics.

    PubMed

    Grisey, Elise; Aleya, Lotfi

    2016-01-01

    The objective of this study was to assess the degree of long-term waste maturation at a closed landfill (Etueffont, France) over a period of 21 years (1989-2010) through analysis of the physicochemical characteristics of leachates as well as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and metal content in waste. The results show that the leachates, generated in two different sections (older and newer) of the landfill, have low organic, mineral, and metallic loads, as the wastes were mainly of household origin from a rural area where sorting and composting were required. Based on pH and BOD/COD assessments, leachate monitoring in the landfill's newer section showed a rapid decrease in the pollution load over time and an early onset of methanogenic conditions. The closing of the older of the two sections contributed to a significant decline for the majority of parameters, attributable to degradation and leaching. A gradual decreasing trend was observed after waste placement had ceased in the older section, indicating that degradation continued and the waste mass had not yet fully stabilized. At the end of monitoring, leachates from the two landfill linings contained typical old leachates in the maturation period, with a pH ≥ 7 and a low BOD/COD ratio indicating a low level of waste biodegradability. Age actually contributes to a gradual removal of organic, inorganic, and metallic wastes, but it is not the only driving factor behind advanced degradation. The lack of compaction and cover immediately after deposit extended the aerobic degradation phase, significantly reducing the amount of organic matter. In addition, waste shredding improved water infiltration into the waste mass, hastening removal of polluting components through percolation.

  2. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    NASA Astrophysics Data System (ADS)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  3. Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Fisher, John W.

    2012-01-01

    The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications.

  4. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF)more » and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.« less

  5. Water Balance Covers For Waste Containment: Principles and Practice

    EPA Science Inventory

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  6. Waste management, informal recycling, environmental pollution and public health.

    PubMed

    Yang, Hong; Ma, Mingguo; Thompson, Julian R; Flower, Roger J

    2018-03-01

    With rapid population growth, especially in low-income and middle-income countries, the generation of waste is increasing at an unprecedented rate. For example, annual global waste arising from waste electrical and electronic equipment alone will have increased from 33.8 to 49.8 million tonnes between 2010 and 2018. Despite incineration and other waste treatment techniques, landfill still dominates waste disposal in low-income and middle-income countries. There is usually insufficient funding for adequate waste management in these countries and uptake of more advanced waste treatment technologies is poor. Without proper management, many landfills represent serious hazards as typified by the landslide in Shenzhen, China on 20 December 2015. In addition to formal waste recycling systems, approximately 15million people around the world are involved in informal waste recycling, mainly for plastics, metals, glass and paper. This review examines emerging public health challenges, in particular within low-income and middle-income countries, associated with the informal sector. While informal recyclers contribute to waste recycling and reuse, the relatively primitive techniques they employ, combined with improper management of secondary pollutants, exacerbate environmental pollution of air, soil and water. Even worse, insufficient occupational health measures expose informal waste workers to a range of pollutants, injuries, respiratory and dermatological problems, infections and other serious health issues that contribute to low life expectancy. Integration of the informal sector with its formal counterparts could improve waste management while addressing these serious health and livelihood issues. Progress in this direction has already been made notably in several Latin American countries where integrating the informal and formal sectors has had a positive influence on both waste management and poverty alleviation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. EPA versus Colorado: national unity versus state flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.

    When the Environmental Protection Agency (EPA) reviewed Colorado's National Pollutant Discharge Elimination System (NPDES) permit program under the federal Clean Water Act, it found a conflict between federal and state perspectives on how much flexibility from national norms is allowable for state peculiarities. Colorado's hydrology and geography seemed to justify a water quality program providing for various opportunities to review water quality decisions before requiring advanced waste treatment (AWT), and to avoid AWT when justified. Conflict arose because few streams in Colorado provide mixing zones or dilution that Eastern streams enjoy. The author reviews the legal developments as EPA arguedmore » for national uniformity and Colorado for flexibility. States might be tempted to return permitting programs to EPA if they cannot retain enough flexibility in the law to protect their interests.« less

  8. SUPERFUND TREATABILITY CLEARINGHOUSE ...

    EPA Pesticide Factsheets

    This newsletter reports on the Huber Technology Groups (HTG) high temperature advanced hazardous waste treatment technology capable of very high destruction and removal efficiencies of various hazardous wastes. This newsletter addresses the destruction of PCBs in an EPA certification test of the HTG Advanced Electric Reactor. provide information

  9. Advancement of Double Effect Absorption Cycle by Input of Low Temperature Waste Heat

    NASA Astrophysics Data System (ADS)

    Kojima, Hiroshi; Edera, Masaru; Nakamura, Makoto; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao

    Energy conservation is becoming important for global environmental protection. New simple techniques of more efficient1y using the waste heat of gas co-generation systems for refrigerationare required. In first report, a new method of using the low temperature waste heat for refrigeration was proposed, and the basic characteristics of the promising methods of recovering waste heat were c1arified. In this report, the more detailed simulation model of the series flow type double effect absorption refrigerator with auxiliary heat exchanger was constructed and the static characteristics were investigated. Then experiments on this advanced absorption refrigerator were carried out, and the results of the calculation and experiments were compared and discussed. Moreover, the betterment of the simulation model of this advanced absorption refrigerator was carried out.

  10. Variable-Volume Flushing (V-VF) device for water conservation in toilets

    NASA Technical Reports Server (NTRS)

    Jasper, Louis J., Jr.

    1993-01-01

    Thirty five percent of residential indoor water used is flushed down the toilet. Five out of six flushes are for liquid waste only, which requires only a fraction of the water needed for solid waste. Designers of current low-flush toilets (3.5-gal. flush) and ultra-low-flush toilets (1.5-gal. flush) did not consider the vastly reduced amount of water needed to flush liquid waste versus solid waste. Consequently, these toilets are less practical than desired and can be improved upon for water conservation. This paper describes a variable-volume flushing (V-VF) device that is more reliable than the currently used flushing devices (it will not leak), is simple, more economical, and more water conserving (allowing one to choose the amount of water to use for flushing solid and liquid waste).

  11. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showedmore » that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.« less

  12. Low-Activity Radioactive Wastes

    EPA Pesticide Factsheets

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  13. 40 CFR 421.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart: There shall be no discharge of process waste water pollutants to navigable waters. (b) During any calendar month there may be discharged from the overflow of a process waste water impoundment either a volume of process waste water equal to the difference between the precipitation for that month that falls...

  14. 77 FR 6548 - Environmental Impact Statement for the Implementation of Energy, Water, and Solid Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... of Energy, Water, and Solid Waste Sustainability Initiatives at Fort Bliss, TX AGENCY: Department of... associated with the implementation of the Energy, Water, and Solid Waste Initiatives at Fort Bliss. These initiatives will work to enhance the energy and water security of Fort Bliss, Texas, which is operationally...

  15. Effect of Fruits Waste in Biopore Infiltration Hole Toward The Effectiveness of Water Infiltration Rate on Baraya Campus Land of Hasanuddin University

    NASA Astrophysics Data System (ADS)

    Santosa, Slamet

    2018-03-01

    The infiltration of water into the soil decreases due to the transfer of soill function or the lack of soil biopores. This study aims to determine the effectiveness of the use of fruits waste toward the water infiltration rate. Observation of the water level decrease is done every 5 minutes interval. Observation of biopore water infiltration rate was done after fruits waste decomposed for 15 and 30 days. Result of standard water infiltration rate at the first of 5 minutes is 2.18 mm/min, then decreases at interval of 5 minutes on next time as the soil begins to saturate the water. Baraya campus soil observed in soil depths of 100cm has a dusty texture character, grayish brown color and clumping structure. Soil character indicates low porosity. While biopore water infiltration rate at the first of 5 minute interval is 6.61and 6.95 mm/min on banana waste; 5.55 and 6.61mm/min on papaya waste and 4.26 and 5.39 mm/min on mango waste. The effectiveness of water infiltration rate is 44.45% and 41.93% on banana; 44.61% and 30.09% on papaya and 15.79% and 28.36% on mango. Study concluded that banana waste causes the water infiltration rate most effective in biopore infiltration hole.

  16. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.M. McEligot; K. G. Condie; G. E. McCreery

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less

  18. Water: Too Precious to Waste.

    ERIC Educational Resources Information Center

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  19. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    USGS Publications Warehouse

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  20. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post processing. For the Phase II test the water recovery rate ranged from 95 to 98%, depending on the processor. LMLSTP Phase III, the fourth test of the series, had a duration of 91 days and included four crew members. The test demonstrated an integration of physicochemical and biological technologies for air revitalization, water recovery and waste processing. Wheat supplemented the physicochemical air revitalization systems by providing approximately 25% of the oxygen required for the 4-person crew. The water recovery system included immobilized cell and trickling filter bioreactors for primary water treatment, reverse osmosis and air evaporation systems for secondary water treatment, followed by post processing. The 8 day initial supply of water was recycled through the chamber and crew 10 times over the course of the test. Grain from the wheat together with fresh lettuce from a small growth chamber within the crew chamber provided supplementation to the stored food system, but at a level less than 5% of the crew s caloric requirement. An incinerator was used to demonstrate mineralization of the crew s solid waste, with the combustion products (mainly carbon dioxide) returned to the wheat for conversion to oxygen.

  1. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  2. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water

    PubMed Central

    Rivera-Vega, Loren J.; Krosse, Sebastian; de Graaf, Rob M.; Garvi, Josef; Garvi-Bode, Renate D.; van Dam, Nicole M.

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4–7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325

  3. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource

    NASA Astrophysics Data System (ADS)

    Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.

  4. SUPERFUND TREATABILITY CLEARINGHOUSE: ADVANCED ELECTRIC REACTOR (AER) FOR THE TREATMENT OF DIOXIN- CONTAMINATED SOILS

    EPA Science Inventory

    This newsletter reports on the Huber Technology Groups (HTG) high temperature advanced hazardous waste treatment technology capable of very high destruction and removal efficiencies of various hazardous wastes. This newsletter addresses the destruction of PCBs in an EPA certifi...

  5. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  6. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  7. 77 FR 46771 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... emissions and waste water (urine, grey- water, and human solid waste. All wastes would be packaged and... (NSF) has received a waste management permit application for Quark Expeditions' cruise ships to conduct...-8030. SUPPLEMENTARY INFORMATION: NSF's Antarctic Waste Regulation, 45 CFR Part 671, requires all U.S...

  8. Process for treating waste water having low concentrations of metallic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  9. 40 CFR 35.917-5 - Public participation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification and evaluation of locations for waste water treatment facilities and of alternative treatment... treatment, reduce waste water volume, and encourage multiple use of facilities; (3) The evaluation of social... planning issues and decisions. (b) Basic Public Participation Program. Since waste water treatment...

  10. Integrated waste and water management system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  11. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  12. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  13. 216-B-3 expansion ponds closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steammore » condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.« less

  14. Warm water aquaculture using waste heat and water from zero discharge power plants in the Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckmann, R.A.; Winget, R.N.; Infanger, R.C.

    1984-01-31

    Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less

  15. (Hydrogeology of hazardous waste, Sede Boker Campus, Ben-Gurion University, Israel)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stow, S.H.

    1990-03-29

    This trip report describes progress made by the International Commission on the Hydrogeology of Hazardous Waste in preparing a document on hydrogeologic and environmental issues associated with siting of hazardous waste disposal facilities. This document follows the successful completion of a commission report on siting of facilities for subsurface disposal of liquid wastes. Also contained in this trip report are descriptions of water and waste management activities throughout the southern part of Israel. Water availability and the need to protect the country's limited water supplies from contamination resulting from waste disposal are issues of paramount importance to Israel.

  16. Assessment of Cr and Ni phytotoxicity from cutlery-washing waste-waters using biomass and chlorophyll production tests on mustard Sinapis alba L. seedlings.

    PubMed

    Fargasová, Agáta; Molnárová, Marianna

    2010-01-01

    The aim of this work was to determine phytotoxicity of washing waste-waters from a cutlery production line with high content of Cr and Ni. These waters were previously classified, without verification, as dangerous and it is now necessary to question the justice of the present classification under the new legislation for waste management (Waste Law No. 223/2001) in the Slovak Republic. Young seedling of the dicotyledon terrestrial plant mustard Sinapis alba L. were used for determination of the dry and fresh root and shoot biomass and photosynthetic pigment production. Observed parameters were evaluated in laboratory experiments with three types of washing waste-waters from a cutlery production line. All contamination of tested washing waste-waters came from heavy metals (Ni, Cr), non-polar extractable compounds (NEC; residues of oils and waxes from polishing of stainless steel cutlery) and detergents (used for cutlery degreasing). Photosynthetic pigments (chlorophyll a, b, and total carotenoids) were extracted in 96% ethanol and measured spectrophotometrically at 665, 649, and 470 nm. All phytotoxicity tests were carried out in triplicate, and they included a control in tap water. All tested washing waters reduced root dry mass, whereas the shoot dry mass was either unaffected or it increased. The tested washing waters' effect was stronger on fresh mass production than on dry mass production. This indicated problems in water reception and translocation. The adverse effect on photosynthetic pigments production increased only slowly with remaining washing waste-water concentration. Almost all Chl a/b ratios were the same as for the control and this indicated no significant differences in the reduction of either a or b chlorophylls. As opposed to chlorophylls, carotenoids content increased in the presence of tested washing waste-waters and equaled or exceeded their content in the control. As the ratio of Chl(a + b)/Car was lower than that for the control for almost all tested samples, a stronger reduction in chlorophylls than in carotenoids was confirmed. The phytotoxicity of waste-waters from cutlery production line washing reservoirs was evaluated and the effects on dry and fresh mass production and photosynthetic pigments amount was discussed as Cr and Ni toxicity. It is concluded from the present study that washing waste-waters from cutlery production line are quite toxic to plants, thus reducing biomass and photosynthetic pigment production and influencing water translocation through the plant. These determined adverse effects of washing waste-waters from this cutlery production line classified them as too dangerous to be spread on open-land soil. On the basis of this study, high toxicity of the presented waste-waters from metal surface-finishing as well as justness of their liquidation as hazardous wastes by legally assigned persons were recommended.

  17. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  18. Applied technology for mine waste water decontamination in the uranium ores extraction from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejenaru, C.; Filip, G.; Vacariu, V.T.

    1996-12-31

    The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less

  19. Development of an Advanced Recycle Filter Tank Assembly for the ISS Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Carter, Donald Layne; Higbie, Scott

    2010-01-01

    Recovering water from urine is a process that is critical to supporting larger crews for extended missions aboard the International Space Station. Urine is collected, preserved, and stored for processing into water and a concentrated brine solution that is highly toxic and must be contained to avoid exposure to the crew. The brine solution is collected in an accumulator tank, called a Recycle Filter Tank Assembly (RFTA) that must be replaced monthly and disposed in order to continue urine processing operations. In order to reduce resupply requirements, a new accumulator tank is being developed that can be emptied on orbit into existing ISS waste tanks. The new tank, called the Advanced Recycle Filter Tank Assembly (ARFTA) is a metal bellows tank that is designed to collect concentrated brine solution and empty by applying pressure to the bellows. This paper discusses the requirements and design of the ARFTA as well as integration into the urine processor assembly.

  20. Environmental Systems Test Stand

    NASA Astrophysics Data System (ADS)

    Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.

    A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.

  1. 40 CFR 421.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: There shall be no discharge of process waste water pollutants to navigable waters. (b) During any calendar month there may be discharged from the overflow of a process waste water impoundment either a volume of process waste water equal to the difference between the precipitation for that month that falls...

  2. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less

  3. Developing and Integrating Advanced Movement Features Improves Automated Classification of Ciliate Species

    PubMed Central

    Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L.; Weibel, Robert

    2015-01-01

    Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. PMID:26680591

  4. STS-46 ESA MS Nicollier conducts IFM on OV-104's waste collection system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier, wearing goggles, face mask, and rubber gloves, reviews inflight maintenance (IFM) checklist procedures before starting waste collection system (WCS) fan separator repair. One of two fan separators used to transfer waster water from the waste management compartment (WMC) to the waste water tank has failed. The suspected accumulation of water in the separator was believed to have occurred during a test dumping of waste water at a lower than normal pressure to evaluate the performance of new nozzles. The WMC is located on the middeck of Atlantis, Orbiter Vehicle (OV) 104.

  5. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  6. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  7. 40 CFR 445.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... saturation which has been contaminated by activities associated with waste disposal. (b) Contaminated storm water means storm water which comes in direct contact with landfill wastes, the waste handling and... a landfill that may produce contaminated storm water include (but are not limited to): the open face...

  8. 40 CFR 445.2 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... saturation which has been contaminated by activities associated with waste disposal. (b) Contaminated storm water means storm water which comes in direct contact with landfill wastes, the waste handling and... a landfill that may produce contaminated storm water include (but are not limited to): the open face...

  9. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  10. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  11. Glacial geology and stratigraphy of Western New York Nuclear Service Center and vicinity, Cattaraugus and Erie Counties, New York

    USGS Publications Warehouse

    LaFleur, Robert G.

    1979-01-01

    A detailed glacial geologic map at a scale of 1:24,000, embracing a 165 square-mile area in Erie and Cattaraugus Counties, NY, shows 27 mapping units, including the till complex in which the West Valley radioactive-waste burial site is located. Stratigraphic relationships at 24 boreholes at the burial site and 6 newly described exposures indicate the age of the till complex to be early late Woodfordian (post-Kent, pre-Lake Escarpment, Valley Heads), equivalent to the Lavery glacial advance. Correlations of mapping units and measured sections with Woodfordian and older glacial and deglacial episodes are proposed. The Lavery till is confined to the valleys of Cattaraugus Creek and its major tributaries. At the waste-burial site in Buttermilk Creek Valley, the Lavery is an interfingering complex of clayey-silt till and thinner beds of deformed, poorly stratified lacustrine clay and silt. Ice readvance after the Kent glacial recession and Erie Interstade erosion imponded proglacial lake water in Buttermilk Creek Valley and covered post-Kent kame deltas and Erie channel gravels with as much as 130 feet of till. The Lavery till thins southward to a thickness of 80 feet at the waste-burial site and to less than 16 feet near the hamlet of West Valley. Water from the Lavery till may flow through subjacent Erie channel gravel and Kent-recessional kame delta sand to the bluffs along Buttermilk Creek, where discharge of water from these exposed pervious deposits appears to cause major slumps. (USGS)

  12. Interaction of potato production systems and the environment: a case of waste water irrigation in central Washington.

    PubMed

    Wang, H Holly; Tan, Tih Koon; Schotzko, R Thomas

    2007-02-01

    Potato production and processing are very important activities in the agricultural economy of the Pacific Northwest. Part of the reason for the development of this industry has been the availability of water for both growing and processing. A great amount of water is used in processing potato products, such as frozen French fries, and the waste water is a pollutant because it contains high levels of nitrate and other nutrients. Using this waste water to irrigate the fields can be a suitable disposal method. Field application will reduce potato fertilizer costs, but it can also cause underground water contamination if over-applied to the field. In this econometric study, we used field data associated with current waste water applications in central Washington to examine the yield response as well as the soil nitrogen content response to waste water applications. Our results from the production model show that both water and nitrogen positively affect crop yields at the current levels of application, but potassium has been over applied. This implies that replacing some waste water with fresh water and nitrogen fertilizer will increase production. The environmental model results show that applying more nitrogen to the soil leads to more movement below the root zone. The results also suggest that higher crop yields lead to less nitrogen in the soil, and applying more water increases crop yields, which can reduce the nitrogen left in the soil. Therefore, relative to the current practice, waste water application rates should be reduced and supplemented with fresh water to enhance nitrogen use by plants and reduce residual nitrogen in the soil.

  13. IN-PACKAGE CHEMISTRY ABSTRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less

  14. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  15. Estimation of packaged water consumption and associated plastic waste production from household budget surveys

    NASA Astrophysics Data System (ADS)

    Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim

    2017-08-01

    Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.

  16. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactormore » integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.« less

  17. Using artificial sweeteners to identify contamination sources and infiltration zones in a coupled river-aquifer system

    NASA Astrophysics Data System (ADS)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2014-05-01

    In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE at elevated concentrations in aquifer zones dominated by local recharge indicated another point-source of domestic waste water. The combined analysis of ACE and conventional hydrochemical data proved to be useful to identify different sources of waste water. It is shown that the combination of physicochemical parameters and artificial sweeteners allow for a clear delineation of infiltration areas in the investigated aquifer system.

  18. 7 CFR 1779.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.1 General. (a) This part contains the regulations for Water and Waste Disposal (WW) loans guaranteed by the Agency and applies to lenders, holders... or improvement of water and waste projects serving the financially needy communities in rural areas...

  19. Caffeine and pharmaceuticals as indicators of waste water contamination in wells

    USGS Publications Warehouse

    Seiler, R.L.; Zaugg, S.D.; Thomas, J.M.; Howcroft, D.L.

    1999-01-01

    The presence of caffeine or human pharmaceuticals in ground water with elevated nitrate concentrations can provide a clear, unambiguous indication that domestic waste water is a source of some of the nitrate. Water from domestic, public supply, and monitoring wells in three communities near Reno, Nevada, was sampled to test if caffeine or pharmaceuticals are common, persistent, and mobile enough in the environment that they can be detected in nitrate-contaminated ground water and, thus, can be useful indicators of recharge from domestic waste water. Results of this study indicate that these compounds can be used as indicators of recharge from domestic waste water, although their usefulness is limited because caffeine is apparently nonconservative and the presence of prescription pharmaceuticals is unpredictable. The absence of caffeine or pharmaceuticals in ground water with elevated nitrate concentrations does not demonstrate that the aquifer is free of waste water contamination. Caffeine was detected in ground water samples at concentrations up to 0.23 ??g/L. The human pharmaceuticals chlorpropamide, phensuximide, and carbamazepine also were detected in some samples.

  20. To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal

    NASA Astrophysics Data System (ADS)

    Thakur, Juhi

    2016-04-01

    Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

  1. Translations on Environmental Quality No. 139

    DTIC Science & Technology

    1977-06-20

    appropriate measures to treat the waste water of everyday life, industry , and livestock and poultry farms. The widespread use of large quantities of...being given in the industrially developed countries. In these countries, industrial wastes are the primary cause of water pollution; water is also...polluted by oil. radioactive substances and the water used to cool power generating centers. Industrial wastes containing organic compounds, such

  2. Vortex Stabilized Plasma for Rapid Water Disinfection & Pharmaceutical Degradation

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2016-10-01

    Good quality drinking water is dwindling for large segments of the world population. Aggravating the problem is proliferation of antibiotics in the water supply, which give rise to drug resistant pathogens. One option for water supply increase is recycling waste and polluted water by inexpensive, environmentally friendly methods. Presently disinfection uses chemicals and UV radiation. Chemicals are limited by residual toxicity, while UV consumes much electricity. Current methods can remove only certain classes of drugs due to their large variety of physical and chemical properties. Plasmas in water are very attractive for degrading all pharmaceuticals and deactivating pathogens: intense arc current can physically break up any molecular bonds. UV radiation, ozone, etc. generation inside the water volume disinfects. Present utilized plasmas: glow, pulsed arcs are not power efficient; vortex stabilized plasmas are power efficient that can advance water treatment state-of-the-art by orders of magnitude. Proposed techniquefeatures novel components facilitating large diameter vortex stabilized in-water arcs with optimized plasma parameters for maximal UV-C emission; and harvests hydrogen centered by the vortex.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Darrell; Poinssot, Christophe; Begg, Bruce

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less

  4. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia.

    PubMed

    Ong, Khai Lun; Kaur, Guneet; Pensupa, Nattha; Uisan, Kristiadi; Lin, Carol Sze Ki

    2018-01-01

    Staggering amounts of food waste are being generated in Asia by means of agricultural processing, food transportation and storage, and human food consumption activities. This along with the recent sustainable development goals of food security, environmental protection, and energy efficiency are the key drivers for food waste valorization. The aim of this review is to provide an insight on the latest trends in food waste valorization in Asian countries such as India, Thailand, Singapore, Malaysia and Indonesia. Landfilling, incineration, and composting are the first-generation food waste processing technologies. The advancement of valorisation alternatives to tackle the food waste issue is the focus of this review. Furthermore, a series of examples of key food waste valorization schemes in this Asian region as case studies to demonstrate the advancement in bioconversions in these countries are described. Finally, important legislation aspects for food waste disposal in these Asian countries are also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... on- site in the pickle acid and low level radioactive wastewater treatment systems. Support... water production waste treatment system. Once- through non-contact cooling water does not require... production (deionized and make- up non-contact cooling water) treatment system and once through non- contact...

  6. 75 FR 74000 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... 306C Water & Waste Disposal (WWD) Loans & Grants. OMB Control Number: 0572-0109. Summary of Collection... access to or are not served by adequate affordable water supply systems or waste disposal facilities. The loans and grants will be available to provide water and waste disposal facilities and services to these...

  7. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  8. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  9. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  10. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  11. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  12. Cascade Distiller System Performance Testing Interim Results

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  13. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  15. Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.

    PubMed

    Dodemaide, David T; Matthews, Ty G; Iervasi, Dion; Lester, Rebecca E

    2018-03-01

    Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in macrophyte assemblages between raw-water storages and natural water bodies. These similarities illustrate that anthropogenic water storages support representative populations of some aquatic biota across the landscape, and thus, may provide important refuge following disturbance where dispersal capabilities allow. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  17. A prototype for understanding the effects of TMDL standards: Tying property values to sediment loads in the Lake Tahoe Basin

    USGS Publications Warehouse

    Tracy, J.C.; Bernknopf, R.; Forney, W.; Hill, K.

    2004-01-01

    The Federal Clean Water Act (Section 303(d)) mandates that states develop Total Maximum Daily Load (TMDL) plans for water bodies that are on the Section 303(d) list. To be placed on the 303(d) list, a water body must be found to have water quality conditions that limit its ability to meet its designated beneficial uses. The TMDL for a water body is defined in 40 CFR 130 as the sum of waste load allocations from identified points sources and non-point sources within the water body's watershed. The TMDL plan for a listed water body should identify the current waste loads to the water body, the waste load capacity of the water body and then allocate the waste load capacity to the known point and non-point sources of pollution within the water body's watershed. Copyright 2004 ASCE.

  18. The Challenges in the Development of a Long Duration Space Mission Food System

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Swango, Beverly; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Advanced Food System at Johnson Space Center/NASA will be responsible for supplying food to the crew for long duration exploratory missions. These missions require development of both a Transit Food System and of a Planetary Food System. The Transit Food System will consist of pre-packaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. The challenge is to develop a food system with a shelf life of 3 - 5 years that will use minimal power and create minimal waste from the food packaging. The Planetary Food System will allow for food processing of crops grown on the planetary surface due to the presence of some gravitational force. Crops will be processed to final products to provide a nutritious and acceptable diet for the crew. The food system must be flexible due to crop variation, availability, and shelf life. Crew meals, based on thesc: crops, must be nutritious, high quality, safe, and contain variety. The Advanced Food System becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safety, waste production, volumes, water usage, etc.).

  19. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  20. Presence, distribution, and potential sources of nitrate and selected pesticides in the surficial aquifer along the Straight River in north-central Minnesota, 1992-93

    USGS Publications Warehouse

    Ruhl, J.F.

    1995-01-01

    Upgradient to downgradient mean or individual nitrogen isotope δ15N values in %o (delta units in parts per thousand) determined for sampled monitoring wells along the direction of ground-water flow through the five land-use settings were: (1) 5.1 %o and 4.0 %o for the feedlot and adjacent manured field; (2) 1.1 %o and 0.9 %o for the cultivated croplands irrigated with waste water; (3) 3.8 %o and 2.7 %o for the cultivated croplands irrigated with ground water; (4) 3.4 %o and 4.9 %o for the residential development; and (5) 1.7 %o and 3.0 %o for the three waste-water lagoons. Nitrate from fertilizer appeared to have been present in ground water at the waste-water lagoons, cultivated croplands irrigated with waste water, and cultivated croplands irrigated with ground water. Nitrate from soil organic matter rather than from animal waste appeared to have been present in ground water at the feedlot and adjacent manured field.

  1. Honeywell Cascade Distiller System Performance Testing Interim Results

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam

    2014-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. The Cascade Distillation System (CDS) is a vacuum rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. The CDS was previously under development through Honeywell and NASA. In 2009, an assessment was performed to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. Based on the results of this testing, an expert panel concluded that the CDS showed adequate development maturity, TRL-4, together with the best product water quality and competitive weight and power estimates to warrant further development. The Advanced Exploration Systems (AES) Water Recovery Project (WRP) worked to address weaknesses identified by The Panel; namely bearing design and heat pump power efficiency. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades. The CDS will also have been challenged with ISS analog waste streams and a subset of those being considered for Exploration architectures. This paper details interim results of the AES WRP CDS performance testing.

  2. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  3. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    DTIC Science & Technology

    2001-02-01

    Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is

  4. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chemical wastes in, or otherwise polluting any waters, water holes, streams or other areas within any... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a...

  5. 40 CFR 35.928-1 - Approval of the industrial cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...

  6. 40 CFR 35.928-1 - Approval of the industrial cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...

  7. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.

    PubMed

    Ellison, Michael B; de Nys, Rocky; Paul, Nicholas A; Roberts, David A

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in "clean" water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.

  8. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  9. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  10. Development of an Exploration-Class Cascade Distillation Subsystem: Performance Testing of the Generation 1.0 Prototype

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water is crucial for realizing long-term human space missions. The National Aeronautics and Space Admininstration and Honeywell co-developed a five-stage vacuum rotary distillation water recovery system referred to as the Cascade Distillation Subsystem (CDS). Over the past three years, NASA's Advanced Exploration Systems (AES) Water Recovery Project (WRP) has been working toward the development of a flight-forward CDS design. In 2012 the original CDS prototype underwent a series of incremental upgrades and tests intened to both demonstrate the feasibility of a on-orbit demonstration of the system and to collect operational and performance data to be used to inform a second generation design. The latest testing of the CDS Generation 1.0 prototype was conducted May 29 through July 2, 2014. Initial system performance was benchmarked by processing deionized water and sodium chloride. Following, the system was challenged with analogue urine waste stream solutions stabilized with an Oxone-based and the two International Space Station baseline and alternative pretreatment solutions. During testing, the system processed more than 160 kilograms of wastewater with targeted water recoveries between 75 and 85% depending on the specific waste stream tested. For all wastewater streams, contaminant removals from wastewater feed to product water distillate, were estimated at greater than 99%. The average specific energy of the system was less than 120 Watt-hours/kilogram. The following paper provides detailed information and data on the performance of the CDS as challenged per the WRP test objectives.

  11. [Habitability and biological life support systems for man].

    PubMed

    Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia

    1990-01-01

    This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.

  12. Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2012-09-01

    Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

  13. Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2013-01-01

    Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

  14. Analysis of relevant proteins from bone graft harvested using the reamer irrigator and aspirator system (RIA) versus iliac crest (IC) bone graft and RIA waste water.

    PubMed

    Crist, Brett D; Stoker, Aaron M; Stannard, James P; Cook, James L

    2016-08-01

    Femoral reaming using a Reamer Irrigator Aspirator (RIA) can produce greater than three liters of waste water per procedure, which contains cells and proteins that could promote bone healing. This purpose of this study was to determine the protein profile of RIA waste water and compare protein synthesis by cells harvested via RIA versus iliac crest (IC) bone graft. Bone graft was collected from 30 patients-15 using RIA from the femur and 15 harvested from the iliac crest. Waste water collected during the RIA procedure was analyzed in 12 patients. Cells from each graft were cultured in monolayer using growth media for 14days and inductive media for the next 14days. Media samples were collected on days 14, 21, and 28. Proteins for analysis were chosen based on their potential in bone healing, pro-inflammatory, and anti-inflammatory processes. Proteins present in RIA waste water indicate the potential for clinical use of this filtrate as an adjunct for enhancing bone production, healing, and remodeling. Similarly, cells cultured from RIA bone graft harvests compared favorably to those from iliac crest bone grafts with respect to their potential to aid in bone healing. RIA waste water has potential to serve as an autogenic and allogenic enhancer for bone healing. Continued development of processing protocols for viable commercial use of the waste water and pre-clinical studies designed to evaluate RIA waste water products for bone healing are ongoing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pharmaceutical wastewater being composite mixture of environmental pollutants may be associated with mutagenicity and genotoxicity.

    PubMed

    Sharif, Ali; Ashraf, Muhammad; Anjum, Aftab Ahmed; Javeed, Aqeel; Altaf, Imran; Akhtar, Muhammad Furqan; Abbas, Mateen; Akhtar, Bushra; Saleem, Ammara

    2016-02-01

    Pharmaceutical industries are amongst the foremost contributor to industrial waste. Ecological well-being is endangered owing to its facile discharge. In the present study, heavy metals and organic contaminants in waste water were characterized using atomic absorption spectrophotometer and GC-MS, respectively. Mutagenicity and genotoxic potential of pharmaceutical waste water were investigated through bacterial reverse mutation assay and in vitro comet assay, respectively. Ames test and comet assay of first sample were carried out at concentrations of 100, 50, 25, 12.5, 6.25 % v/v effluent with distilled water. Chromium (Cr), lead (Pb), arsenic (As), and cadmium (Cd) were found in high concentrations as compared to WHO- and EPA-recommended maximum limits. Arsenic was found to be the most abundant metal and its maximum concentration was 0.8 mg.L(-1). GC-MS revealed the presence of lignocaine, digitoxin, trimethoprim, caffeine, and vitamin E in waste water. Dose-dependent decrease in mutagenic index was observed in both strains. Substantial increase in mutagenicity was observed for TA-100, when assay was done by incorporating an enzyme activation system, whereas a slight increase was detected for TA-102. In vitro comet assay of waste water exhibited decrease in damage index and percentage fragmentation with the increase in dilution of waste water. Tail length also decreased with an increase in the dilution factor of waste water. These findings suggest that pharmaceutical waste water being a mix of different heavy metals and organic contaminants may have a potent mutagenic and genotoxic effect on exposed living organisms.

  16. Optimization of Deep Borehole Systems for HLW Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone havingmore » a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.« less

  17. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  18. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi

    1994-01-01

    A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  19. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi.

    1994-08-23

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  20. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.

    PubMed

    Gammoun, A; Tahiri, S; Albizane, A; Azzi, M; Moros, J; Garrigues, S; de la Guardia, M

    2007-06-25

    In this paper, the ability of chrome shavings to remove motor oils, oily wastes and hydrocarbons from water has been studied. To determine amount of hydrocarbons sorbed on tanned wastes, a FT-NIR methodology was used and a multivariate calibration based on partial least squares (PLS) was employed for data treatment. The light density, porous tanned waste granules float on the surface of water and remove hydrocarbons and oil films. Wastes fibers from tannery industry have high sorption capacity. These tanned solid wastes are capable of absorbing many times their weight in oil or hydrocarbons (6.5-7.6g of oil and 6.3g of hydrocarbons per gram of chrome shavings). The removal efficiency of the pollutants from water is complete. The sorption of pollutants is a quasi-instantaneous process.

  1. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, T.

    1992-01-01

    This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  2. Advanced Water Purification System for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extraterrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtration material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removal technique. Our studies have shown a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  3. Advanced Water Purification System for In Situ Resource Utilization Project

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  4. Turning nuclear waste into glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  5. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  6. 40 CFR 63.1980 - What records and reports must I keep and submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquids other than leachate in a controlled fashion to the waste mass and do not comply with the... of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other water losses...

  7. 40 CFR 63.1980 - What records and reports must I keep and submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquids other than leachate in a controlled fashion to the waste mass and do not comply with the... of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other water losses...

  8. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...

  9. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...

  10. 7 CFR 1777.21 - Use of funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Construct, enlarge, extend, or otherwise improve community water and/or waste disposal systems. Otherwise... connecting individuals to the community water and/or waste disposal system. Loan funds can only be used for... needed to allow use of the water and/or waste disposal system. (4) Grants can be made up to 100 percent...

  11. 78 FR 6149 - Final Interim Staff Guidance Assessing the Radiological Consequences of Accidental Releases of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...

  12. 40 CFR 35.929-1 - Approval of the user charge system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...

  13. 40 CFR 35.929-1 - Approval of the user charge system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...

  14. 40 CFR 35.929-1 - Approval of the user charge system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...

  15. 40 CFR 35.929-1 - Approval of the user charge system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...

  16. 40 CFR 35.929-1 - Approval of the user charge system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...

  17. 2015 Groundwater Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  19. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  20. Hazardous Waste and You. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Ontario Waste Management Corp., Toronto.

    This teaching guide provides an interactive introduction to hazardous waste, with particular emphasis on personal responsibility and action. Nine lessons engage advanced grade 10 and grade 11-12 science students in group discussions and actions that help them develop awareness of hazardous waste, understanding of the hazardous waste situation in…

  1. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of these cases on oxygen availability and consequently spent fuel alteration and radionuclide release will be considered.

  2. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  3. 7 CFR 1980.311 - Loan limitations and special provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and right-of-ways, the construction of streets, water and water/waste disposal systems, and utilities... maintenance of the streets and the water and water/waste disposal systems. A dwelling served by a homeowners...

  4. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  5. Identification of Entamoeba moshkovskii in Treated Waste Water Used for Agriculture.

    PubMed

    Fonseca, Jairo Andres; Heredia, Rubén Darío; Ortiz, Carolina; Mazo, Martín; Clavijo-Ramírez, Carlos Arturo; Lopez, Myriam Consuelo

    2016-03-01

    We conducted an observational study to determine the prevalence of Entamoeba spp., in samples collected in a waste water treatment plant that provides water for agricultural irrigation. Samples were collected weekly over a period of 10 weeks at representative contamination stages from within the treatment plant. Protozoan identification was performed via light microscopy and culture. PCR amplification of small subunit rRNA gene sequences of E. histolytica/dispar/moshkovskii was performed in culture positive samples. Light microscopy revealed the presence of Entamoeba spp., in 70% (14/20) of the raw waste water samples and in 80% (8/10) of the treated water samples. PCR amplification after culture at both 24 and 37°C revealed that 100% (29/29) of the raw waste water samples and 78.6% (11/14) of the treated waste water were positive for E. moshkovskii. We report the first isolation of E. moshkovskii in Colombia, confirmed by PCR. Recent reports of E. moshkovskii pathogenic potential suggest this finding could constitute a public health risk for people exposed to this water.

  6. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  7. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  8. Facts and Figures about Materials, Waste and Recycling

    EPA Pesticide Factsheets

    The area will transform MSW info included in our Advancing SMM report to better serve our audience’s needs and will also hold data on certain industrial wastes, related job creation, and in the future, hazardous waste.

  9. Performance characterization of water recovery and water quality from chemical/organic waste products

    NASA Technical Reports Server (NTRS)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  10. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water was 29%, while the moisture content, the mass of water divided by total wet mass of solid waste, was 28%. Near the sloped sides of the landfill, PTT results indicated that only 7.1% of the pore space was filled with water, while the moisture content was estimated to be 6.9%. These measurements are in close agreement with gravimetric measurements made on solid waste samples collected after each PTT: moisture content of 27% in the center of the landfill and only 6% near the edge of the landfill. We discuss these measurements in detail, the limitations of the PTT method for landfills, and operational guidelines for achieving unbiased measurements of moisture content in landfills using the PTT method.

  11. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    PubMed

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  12. Effectiveness of waste prevention program in primary students' schools.

    PubMed

    Zorpas, Antonis A; Voukkali, Irene; Loizia, Pantelitsa

    2017-06-01

    Even though reducing waste is at the top of the waste hierarchy, no real decoupling between waste generation and consumption has been demonstrated. Several waste directives had been published from EU, but they have only brought minor changes within the key objective of reducing waste generation. Most efforts have been targeted towards greater amounts of recycling and better management of waste disposal. While these are necessary and socially beneficial goals, they are not adequate for the achievement of long-term sustainability goals. The purpose of this study is to understand students' knowledge, attitudes and behavioural changes in relation to the water plastic bottle of 500 ml. Understanding waste prevention behaviour (WPB) could enable schools' principals, local authorities and committees as well as decision makers to design and implement more effective policies for reducing the amount of specific waste streams that is generated. Students in a daily base bring their own water containers of 500 ml or buy water from the school as they do not feel safe to use other sources of water. Nine hundred ninety-eight refilling stainless steel water refilling bottles (SSWRB-of 600 ml) were shared to the students in four primary schools. The results indicated that the students are presented with different behaviours from class to class for many reasons; most of them are related with what their parents believe, and how themselves or the synergies between them reacts and affected.

  13. Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: A minireview.

    PubMed

    Lü, Fan; Shao, Li-Ming; Zhang, Hua; Fu, Wen-Ding; Feng, Shi-Jin; Zhan, Liang-Tong; Chen, Yun-Min; He, Pin-Jing

    2018-01-01

    Bio-stability is a key feature for the utilization and final disposal of biowaste-derived residues, such as aerobic compost or vermicompost of food waste, bio-dried waste, anaerobic digestate or landfilled waste. The present paper reviews conventional methods and advanced techniques used for the assessment of bio-stability. The conventional methods are reclassified into two categories. Advanced techniques, including spectroscopic (fluorescent, ultraviolet-visible, infrared, Raman, nuclear magnetic resonance), thermogravimetric and thermochemolysis analysis, are emphasized for their application in bio-stability assessment in recent years. Their principles, pros and cons are critically discussed. These advanced techniques are found to be convenient in sample preparation and to supply diversified information. However, the viability of these techniques as potential indicators for bio-stability assessment ultimately lies in the establishment of the relationship of advanced ones with the conventional methods, especially with the methods based on biotic response. Furthermore, some misuses in data explanation should be noted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of Volume F Trash from Four Recent STS Missions: Weights, Categorization, Water Content

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The fate of space-generated solid wastes, including trash, for future missions is under consideration by NASA. Several potential treatment options are under consideration and active technology development. Potential fates for space-generated solid wastes are: Storage without treatment; storage after treatment(s) including volume reduction, water recovery, sterilization, and recovery plus recycling of waste materials. Recycling might be important for partial or full closure scenarios because of the prohibitive costs associated with resupply of consumable materials. For this study, we determined the composition of trash returned from four recent STS missions. The trash material was 'Volume F' trash and other trash, in large zip-lock bags, that accompanied the Volume F trash. This is the first of two submitted papers on these wastes. This one will cover trash content, weight and water content. The other will report on the microbial Characterization of this trash. STS trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were catalogued and placed into one of the following categories: food waste (and containers), drink containers, personal hygiene items - including EVA maximum absorbent garments (MAGs)and Elbow packs (daily toilet wipes, etc), paper, and packaging materials - plastic firm and duct tape. Trash generation rates for the four STS missions: Total wet trash was 0.602 plus or minus 0.089 kg(sub wet) crew(sup -1) d(sup -1) containing about 25% water at 0.154 plus or minus 0.030 kg(sub water) crew(sup -1) d(sup -1) (avg plus or minus stdev). Cataloguing by category: personal hygiene wastes accounted for 50% of the total trash and 69% of the total water for the four missions; drink items were 16% of total weight and 16% water; food wastes were 22% of total weight and 15% of the water; office waste and plastic film were 2% and 11% of the total waste and did not contain any water. The results can be used by NASA to determine requirements and criteria for Waste Management Systems on future missions.

  15. Section 10: Ground Water - Waste Characteristics & Targets

    EPA Pesticide Factsheets

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  16. Canine scent detection and microbial source tracking of human waste contamination in storm drains.

    PubMed

    Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A

    2014-06-01

    Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.

  17. Sister Earth, Our Common Home: Toward a Sustainable, Planet Friendly Approach to Dialysis, a Paradigm of High Technology Medicine.

    PubMed

    Piccoli, Giorgina Barbara; Mery, David

    2017-11-01

    In our high-technology, highly polluted world, medicine plays an important role balancing saving lives with the expenses of growing amounts of waste products, not only biologically dangerous (the potentially "contaminated" or "hazardous" waste) but also potentially harmful for the planet (nonrecyclable, plastic waste). Dialysis, the prototype of high-technology medicine, is central to these problems, as the present treatment of about 2 million patients produces an enormous quantity of waste (considering hazardous waste only about 2 kg per session, with 160 sessions per year, that is 320 kg per patient, or about 640,000 tons of hazardous waste per year for 2 million patients, roughly corresponding to 6 nuclear aircraft carriers). Furthermore, obsolete dialysis machines, and water treatments are discharged, adding to the "technological waste." Water produced by the reverse osmosis is also discharged; this is the only nonhazardous, nonpolluting waste, but in particular in dry areas, wasting water is a great ecologic concern. The present review is aimed at discussing strategies already in place and to be further implemented for reducing this particular "uremic toxin" for the earth: dialysis waste, including dialysis disposables, water, and dialysis machines. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  19. Lost water and nitrogen resources due to EU consumer food waste

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bouraoui, F.; Leip, A.; Grizzetti, B.; Bidoglio, G.

    2015-08-01

    The European Parliament recently called for urgent measures to halve food waste in the EU, where consumers are responsible for a major part of total waste along the food supply chain. Due to a lack of data on national food waste statistics, uncertainty in (consumer) waste quantities (and the resulting associated quantities of natural resources) is very high, but has never been previously assessed in studies for the EU. Here we quantify: (1) EU consumer food waste, and (2) associated natural resources required for its production, in term of water and nitrogen, as well as estimating the uncertainty of these values. Total EU consumer food waste averages 123 (min 55-max 190) kg/capita annually (kg/cap/yr), i.e. 16% (min 7-max 24%) of all food reaching consumers. Almost 80%, i.e. 97 (min 45-max 153) kg/cap/yr is avoidable food waste, which is edible food not consumed. We have calculated the water and nitrogen (N) resources associated with avoidable food waste. The associated blue water footprint (WF) (the consumption of surface and groundwater resources) averages 27 litre per capita per day (min 13-max 40 l/cap/d), which slightly exceeds the total blue consumptive EU municipal water use. The associated green WF (consumptive rainwater use) is 294 (min 127-max 449) l/cap/d, equivalent to the total green consumptive water use for crop production in Spain. The nitrogen (N) contained in avoidable food waste averages 0.68 (min 0.29-max 1.08) kg/cap/yr. The food production N footprint (any remaining N used in the food production process) averages 2.74 (min 1.02-max 4.65) kg/cap/yr, equivalent to the use of mineral fertiliser by the UK and Germany combined. Among all the food product groups wasted, meat accounts for the highest amounts of water and N resources, followed by wasted cereals. The results of this study provide essential insights and information on sustainable consumption and resource efficiency for both EU policies and EU consumers.

  20. In-Package Chemistry Abstraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less

  1. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  2. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    PubMed

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam.

    PubMed

    McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U

    2012-10-15

    Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.

  4. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...

  5. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...

  6. 77 FR 34194 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 [NRC-1999-0005] Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending...

  7. 40 CFR 445.2 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Contaminated storm water means storm water which comes in direct contact with landfill wastes, the waste... specific areas of a landfill that may produce contaminated storm water include (but are not limited to... sanitary wastewater, non-contaminated storm water, contaminated ground water, and wastewater from recovery...

  8. 40 CFR 445.2 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Contaminated storm water means storm water which comes in direct contact with landfill wastes, the waste... specific areas of a landfill that may produce contaminated storm water include (but are not limited to... sanitary wastewater, non-contaminated storm water, contaminated ground water, and wastewater from recovery...

  9. 40 CFR 445.2 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Contaminated storm water means storm water which comes in direct contact with landfill wastes, the waste... specific areas of a landfill that may produce contaminated storm water include (but are not limited to... sanitary wastewater, non-contaminated storm water, contaminated ground water, and wastewater from recovery...

  10. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  11. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE PAGES

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; ...

    2017-08-30

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  12. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    PubMed Central

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; Gibson, Christopher T.; Sibley, Alexander; Slattery, Ashley D.; Campbell, Jonathan A.; Alboaiji, Salah F. K.; Muller, Katherine A.; Young, Jason; Adamson, Nick; Gascooke, Jason R.; Jampaiah, Deshetti; Sabri, Ylias M.; Bhargava, Suresh K.; Ippolito, Samuel J.; Lewis, David A.; Quinton, Jamie S.; Ellis, Amanda V.; Johs, Alexander; Bernardes, Gonçalo J. L.

    2017-01-01

    Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. PMID:28763123

  13. What's the Deal with Dialysis?

    MedlinePlus

    ... Then they mix the waste with a little water. That's what urine is — body waste mixed in water. The urine goes to your bladder, which you empty when you pee. Goodbye, waste! When Kidneys Don't Work Right In addition ...

  14. 7 CFR 1775.36 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...

  15. 7 CFR 1775.36 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...

  16. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and...

  17. Reuse of treated wastewater in agriculture: Physicochemical quality and environmental risks. Case of wastewater treatment plant of Baraki and Beni Messous. Algeria

    NASA Astrophysics Data System (ADS)

    Djemil, Wafa; Hannouche, Mani; Belksier, Mohamed Salah

    2018-05-01

    The region of ourstudy has two treatment plants; respectively West and South the Beni Messous and Baraki polluted water treatment plant `PWTP'. Which provide a comprehensive treatment of waste water in the region. The aim of ourworkis to highlight the possibility of reusing the treated waste water from the two Waste water Treatment Plant 'WWTPs' in agriculture. This has been achieved by a comparative study of physicochemical parameters with the WHO and FAO standards recommended for irrigation. Apart from the WWTP Baraki's values of N-NH4, BOD5, COD and Total Chromium for long-term irrigation. Which exceed the standards all other parameters fall in the recommended standards. So It was concluded that the treated waste water from the Beni Messous WWTP isbetter for irrigation than Baraki's. Thus we concluded that the treated waste water from the Beni Messous WWTP is more beneficial for irrigation than Baraki's. The contents of the heavy metals Cr, Pb and Cd recorded in the twotreatment plants do not constitute a danger for the environment. The waste water undergoes different stages of treatment to becomepurified water receivable by the natural environment without environmental impact and to satisfy the strictest ecological constraint. Given the needs and the deficit of the water resources in Algeria. The climatic context, the increasing urbanization and the water stress, some recommendations have been formulated to improve the environmental impact.

  18. Noise control of waste water pipes

    NASA Astrophysics Data System (ADS)

    Lilly, Jerry

    2005-09-01

    Noise radiated by waste water pipes is a major concern in multifamily housing projects. While the most common solution to this problem is to use cast-iron pipes in lieu of plastic pipes, this may not be sufficient in high-end applications. It should also be noted that many (if not most) multifamily housing projects in the U.S.A. are constructed with plastic waste piping. This paper discusses some of the measures that developers are currently using to control noise from both plastic and cast-iron waste pipes. In addition, results of limited noise measurements of transient water flow in plastic and cast-iron waste pipes will be presented.

  19. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  20. Development of a membrane-based process for the treatment of oily waste waters. Final report, March 4, 1992--March 5, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, S.B.

    1994-05-25

    This is a final report from Bend Research, Inc., (BRI) to the U.S. Department of Energy (DOE) for work performed under Contract No. DE-AC22-92MT92005, titled {open_quotes}Development of a Membrane-Based Process for the Treatment of Oily Waste Waters.{close_quotes} This report covers the period from March 4, 1992, to March 5, 1994. The overall goal of this program was to develop an economical oily-water treatment system based on reverse osmosis (RO). The RO system would be used to (1) reduce oil production costs by reducing the volume of waste water that must be disposed of, (2) form the basis of a genericmore » waste-water treatment system that can easily be integrated into oil-field operations, especially at production facilities that are small or in remote locations; and (3) produce water clean enough to meet existing and anticipated environmental regulations. The specific focus of this program was the development of a hollow-fiber membrane module capable of treating oily waste waters.« less

  1. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol. Georg Thieme Verlag KG Stuttgart · New York.

  2. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) for the Space Station Freedom and future colonization of the Moon and Mars presents new challenges for present technologies. Current plans call for a crew of 8 to live in a safe, shirt-sleeve environment for 90 days without ground support. Because of these requirements, all life support systems must be self-sufficient and reliable. The ECLSS is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. Because it is impractical, if not impossible, to supply the station with enough fresh air and water for the duration of the space station's extended mission, these elements are recycled. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The approach chosen to solve this problem is to divide the design into three phases. The first phase is to research the ECLSS as a whole system and then concentrate efforts on the automation of a single subsystem. The AR subsystem was chosen for our focus. During the second phase, the system control process will then be applied to the AR subsystem.

  3. Analysis of Water Recovery Rate from the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and any remaining free water in the trash by evaporation. The temperature settings of the heated surfaces are usually kept above the saturation temperature of water but below the melting temperature of the plastic in the waste during this step to avoid any encapsulation of wet trash which would reduce the amount of recovered water by blocking the vapor escape. In this paper, we analyze the water recovery rate during Phase B where the trash is heated and water leaves the waste chamber as vapor, for operation of the HMC in reduced gravity. We pursue a quasi-one-dimensional model with and without sidewall heating to determine the water recovery rate and the trash drying time. The influences of the trash thermal properties, the amount of water loading, and the distribution of the water in the trash on the water recovery rates are determined.

  4. 40 CFR 265.118 - Post-closure plan; amendment of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the wastes, application of advanced technology, or alternative disposal, treatment, or re-use.... 265.118 Section 265.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...

  5. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei

    Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.

  6. Processing liquid organic wastes at the NNL Preston laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera

    2013-07-01

    Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal.more » The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range of materials to be successfully treated. (authors)« less

  7. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... direct access from a street, road, or driveway. Streets and roads must be hard surface or all-weather surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water...

  8. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... direct access from a street, road, or driveway. Streets and roads must be hard surface or all-weather surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water...

  9. 7 CFR 1980.313 - Site and building requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... direct access from a street, road, or driveway. Streets and roads must be hard surface or all-weather surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water...

  10. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  11. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOEpatents

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  12. Reuse and Securing of Mining Waste : Need of the hour

    NASA Astrophysics Data System (ADS)

    Mehta, Neha; Dino, Giovanna; Ajmone-Marsan, Franco; De Luca, Domenico Antonio

    2016-04-01

    With recent advancements in technology and rising standards of living the demand for minerals has increased drastically. Increased reliance on mining industry has led to unmanageable challenges of Mining waste generated out of Mining and Quarrying activities. According to Statistics from EuroStat Mining and Quarrying generated 734 million Tons in Europe in 2012 which accounted for 29.19 % of the total waste, becoming second most important sector in terms of waste generation after Construction Industry. Mining waste can be voluminous and/ or chemically active and can cause environmental threats like groundwater pollution due to leaching of pollutants, surface water pollution due to runoffs during rainy season, river and ocean pollution due to intentional dumping of tailings by mining companies. Most of the big mining companies have not adopted policies against dumping of tailings in rivers and oceans. Deep Sea Tailings Placement (DSTP) is creating havoc in remote and pristine environment of deep-sea beds e.g. Bismarck Sea. Furthermore, mining waste is contaminating soil in nearby areas by disturbing soil microbial activity and other physio-chemical and biological properties of soil (e.g. Barruecopardo village - Spain). Mining waste stored in heaps and dams has led to many accidents and on an average, worldwide, there is one major accident in a year involving tailings dams (e.g. Myanmar, Brazil, 2015). Pollution due to tailings is causing local residents to relocate and become 'ecological migrants'. The above issues linked to mining waste makes reuse and securing of mining waste one of the urgent challenge to deal with. The studies done previously on mining show that most of the researches linked with mining waste reuse and securing are very site specific. For instance, the type of recovery method should not only provide environmental clean-up but also economic benefits to promise sustainability of the method. Environmental risk assessment of using mining waste as agricultural soils can depend on Bio-accumulation factor, Translocation factor of heavy metals, species of plant grown and type of the natural biota of the surroundings and effect of different exposure routes. This also leads to the fact that more research is required in this area. Accordingly the same problem statement was chosen as part of a PhD research Project. The PhD research is part of REMEDIATE project (A Marie Sklodowska-Curie Action Initial Training Network for Improved decision making in contaminated land site investigation and risk assessment, Grant Agreement No. 643087). In this project the researcher will select a mining site in Italy to find possible solutions to the environmental impact of mining waste collected there. The project will focus on 1) physical and chemical characterization of waste 2)environmental risk assessment study of the mining waste 3) impact of mining waste on water bodies and soil 4) to discover possible routes of reuse and recovery of minerals from the waste. Thus project focuses on environmental sustainability of mining waste reuse and clean up. Keywords : Mining waste ; environmental risk assessment ;reuse and recovery.

  13. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    NASA Astrophysics Data System (ADS)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  14. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  15. TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials)

    MedlinePlus

    ... and Titanium Mining Wastes Rare Earths Mining Wastes Uranium Mining Wastes Copper Mining and Production Wastes Bauxite and Alumina Production Wastes Energy production Oil and Gas Production Wastes Coal Combustion Residuals ​Water ...

  16. An overview: recycling nutrients from crop residues for space applications.

    PubMed

    Strayer, R F; Atkinson, C F

    1997-01-01

    Without some form of regenerative life support system, long duration space habitation or travel will be limited severely by the prohibitive costs of resupplying air, water, and food from Earth. Components under consideration for inclusion in a regenerative life support system are based on either physicochemical or biological processes. Physicochemical systems would use filtration and elemental phase changes to convert waste materials into usable products, while biological systems would use higher plants and bioreactors to supply crew needs. Neither a purely biological nor strictly a physicochemical approach can supply all crew needs, thus, the best each approach can offer will be combined into a hybrid regenerative life support system. Researchers at Kennedy Space Center (KSC) Advanced Life Support Breadboard Project have taken the lead on bioregenerative aspects of space life support. The major focus has been on utilization of higher plants for production of food, oxygen, and clean water. However, a key to any regenerative life support system is recycling and recovery of resources (wastes). In keeping with the emphasis at KSC on bioregenerative systems and with the focus on plants, this paper focuses on research with biologically-based options for resource recovery from inedible crop residues.

  17. An overview: recycling nutrients from crop residues for space applications

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Atkinson, C. F.

    1997-01-01

    Without some form of regenerative life support system, long duration space habitation or travel will be limited severely by the prohibitive costs of resupplying air, water, and food from Earth. Components under consideration for inclusion in a regenerative life support system are based on either physicochemical or biological processes. Physicochemical systems would use filtration and elemental phase changes to convert waste materials into usable products, while biological systems would use higher plants and bioreactors to supply crew needs. Neither a purely biological nor strictly a physicochemical approach can supply all crew needs, thus, the best each approach can offer will be combined into a hybrid regenerative life support system. Researchers at Kennedy Space Center (KSC) Advanced Life Support Breadboard Project have taken the lead on bioregenerative aspects of space life support. The major focus has been on utilization of higher plants for production of food, oxygen, and clean water. However, a key to any regenerative life support system is recycling and recovery of resources (wastes). In keeping with the emphasis at KSC on bioregenerative systems and with the focus on plants, this paper focuses on research with biologically-based options for resource recovery from inedible crop residues.

  18. Rapid Start-up and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    NASA Technical Reports Server (NTRS)

    Meyer, Caitlin E.; Pensinger, Stuart; Pickering, Karen D.; Barta, Daniel; Shull, Sarah A.; Vega, Letticia M.; Christenson, Dylan; Jackson, W. Andrew

    2015-01-01

    Membrane aerated bioreactors (MABR) are attached-growth biological systems used for simultaneous nitrification and denitrification to reclaim water from waste. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal and implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to under two weeks, and that despite low ammonium removal rates, the MABRs are oversized.

  19. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    NASA Astrophysics Data System (ADS)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  20. 40 CFR 422.55 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Process waste water pollutants from a cooling water recirculation system designed, constructed... whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged whenever the water level equals or...

  1. 40 CFR 422.55 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Process waste water pollutants from a cooling water recirculation system designed, constructed... whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged whenever the water level equals or...

  2. 40 CFR 422.55 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Process waste water pollutants from a cooling water recirculation system designed, constructed... whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged whenever the water level equals or...

  3. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges...) § 250.248 What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and...

  4. Hydraulic impact end effector final test report. Automation and robotics section, ER/WM-AT Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, S.

    1994-02-18

    One tool being developed for dislodging and fragmenting the hard salt cake waste in the single-shell nuclear waste tanks at the Hanford Reservation near Richland, Washington, is the hydraulic impact end effector (HIEE). This total operates by discharging 11-in. slugs of water at ultrahigh pressures. The HIEE was designed, built, and initially tested in 1992. Work in 1993 included advanced developments of the HIEE to further investigate its fragmentation abilities and to determine more effective operating procedures. These tests showed that more fragmentation can be achieved by increasing the charge pressure of 40 kpsi to 55 kpsi and by themore » use of different operating procedures. The size of the material and the impact energy of the water slug fired from the HIEE are believed to be major factors in material fragmentation. The material`s ability to fracture also appears to depend on the distance a fracture or crack line must travel to a free surface. Thus, larger material is more difficult to fracture than smaller material. Discharge pressures of 40 kpsi resulted in little penetration or fracturing of the material. At 55 kpsi, however, the size and depth of the fractures increased. Nozzle geometry had a significant effect on fragment size and quantity. Fragmentation was about an order of magnitude greater when the HIEE was discharged into drilled holes rather than onto the material surface. Since surface shots tend to create craters, a multi-shot procedure, coupled with an advanced nozzle design, was used to drill (crater) deep holes into large material. With this procedure, a 600-lb block was reduced to smaller pieces without the use of any additional equipment. Through this advanced development program, the HIEE has demonstrated that it can quickly fragment salt cake material into small, easily removable fragments. The HIEE`s material fragmentation ability can be substantially increased through the use of different nozzle geometries and operating procedures.« less

  5. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    NASA Technical Reports Server (NTRS)

    Lunn, Griffin Michael; Spencer, LaShelle E.; Ruby, Anna Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  6. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in the...

  7. On eco-efficient technologies to minimize industrial water consumption

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  8. Impact of animal waste application on runoff water quality in field experimental plots.

    PubMed

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers present after the simulated rainfall events were above 200/100 ml of sample water. It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoff water.

  9. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    PubMed Central

    Hill, Dagne D.; Owens, William E.; Tchounwou, Paul B.

    2005-01-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers present after the simulated rainfall events were above 200/100 ml of sample water. It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoff water. PMID:16705834

  10. Tritium Plume Dynamics in the Shallow Unsaturated Zone Adjacent to an Arid Waste Disposal Facility

    NASA Astrophysics Data System (ADS)

    Maples, S.; Andraski, B. J.; Stonestrom, D. A.; Cooper, C. A.; Michel, R. L.; Pohll, G. M.

    2012-12-01

    Previous studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in southern Nevada have documented two plumes of tritiated water-vapor (3HHOg) adjacent to a closed, commercial low-level radioactive waste disposal facility. Wastes were disposed on-site from 1962-92. Tritium has moved long distances (> 400 m) through a shallow (1-2-m depth) dry gravelly layer—orders of magnitude further than anticipated by standard transport models. Geostatistical methods, spatial moment analyses and tritium flux calculations were applied to assess shallow plume dynamics. A grid-based plant-water sampling method was utilized to infer detailed, field-scale 3HHOg concentrations at 5-yr intervals during 2001-11. Results indicate that gravel-layer 3HHOg mass diminished faster than would be expected from radioactive decay (~70% in 10 yr). Both plumes exhibited center-of-mass stability, suggesting that bulk-plume movement is minimal during the period of study. Nonetheless, evidence of localized lateral advancement along some margins, combined with increases in the spatial covariance of concentration distribution, indicates intra-plume mass redistribution is ongoing. Previous studies have recognized that vertical movement of tritiated water from sub-root-zone gravel into the root-zone contributes to atmospheric release via evapotranspiration. Estimates of lateral and vertical tritium fluxes during the study period indicate (1) vertical tritiated water fluxes were dominated by diffusive-vapor fluxes (> 90%), and (2) vertical diffusive-vapor fluxes were roughly an order of magnitude greater than lateral diffusive-vapor fluxes. This behavior highlights the importance of the atmosphere as a tritium sink. Estimates of cumulative vertical diffusive-vapor flux and radioactive decay with time were comparable to observed declines in total shallow plume mass with time. This suggests observed changes in plume mass may (1) be attributed, in considerable part, to these removal mechanisms, and (2) appreciable input from the adjacent disposal facility is not occurring at this time.

  11. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  12. Sources, interactions, and ecological impacts of organic contaminants in water, soil, and sediment: an introduction to the special series.

    PubMed

    Pignatello, Joseph J; Katz, Brian G; Li, Hui

    2010-01-01

    Agricultural and urban activities result in the release of a large number of organic compounds that are suspected of impacting human health and ecosystems: herbicides, insecticides, human and veterinary pharmaceuticals, natural and synthetic hormones, personal care products, surfactants, plasticizers, fire retardants, and others. Sorbed reservoirs of these compounds in soil represent a potentially chronic source of water contamination. This article is an introduction to a series of technical papers stemming from a symposium at the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 2008 Annual Meeting, which was held jointly with The Geological Society of America, The Gulf Coast Association of Geological Scientists, and the Houston Geological Society, under one of the Joint Meeting's overarching themes: Emerging Trace Contaminants in Surface and Ground Water Generated from Waste Water and Solid Waste Application. The symposium emphasized the role of soils as sources, sinks, and reaction catalysts for these contaminants and the occurrence and fate of these contaminants in surface and underground water supplies. Topics covered included novel advances in analytical techniques, transport of infectious agents, occurrence and fate of veterinary pharmaceuticals, characterization of sorption mechanism, biotic and abiotic transformation reactions, the role of soil components, occurrence and fate in wastewater treatment systems, transport of engineered nanoparticles, groundwater contamination resulting from urban runoff, and issues in water reuse. Overviews of the reports, trends, gaps in our knowledge, and topics for further research are presented in this special series of papers. The technical papers in this special series reflect current gains in knowledge and simultaneously underscore how poorly we are able to predict the fate and, hence, the associated risk to ecological and human receptors of these contaminants.

  13. Development of the water-analysis screening tool used in the initial screening for the Pennsylvania State Water Plan update of 2008

    USGS Publications Warehouse

    Stuckey, Marla H.

    2008-01-01

    The Water Resources Planning Act, Act 220 of 2002, requires the Pennsylvania Department of Environmental Protection (PaDEP) to update the State Water Plan by 2008. As part of this update, a water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in cooperation with the PaDEP, to provide assistance to the state in the identification of critical water-planning areas. The WAST has two primary inputs: net withdrawals and the initial screening criteria. A comprehensive water-use database that includes data from registration, estimation, discharge monitoring reports, mining data, and other sources was developed as input into the WAST. Water use in the following categories was estimated using water-use factors: residential, industrial, commercial, agriculture, and golf courses. A percentage of the 7-day, 10-year low flow is used for the initial screenings using the WAST to identify potential critical water-planning areas. This quantity, or initial screening criteria, is 50 percent of the 7-day, 10-year low flow for most streams. Using a basic water-balance equation, a screening indicator is calculated that indicates the potential influences of net withdrawals on aquatic-resource uses for watersheds generally larger than 15 square miles. Points representing outlets of these watersheds are colored-coded within the WAST to show the screening criteria for each watershed.

  14. Upgrading and extended testing of the MSC integrated water and waste management hardware

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.; Hurley, T. L.; Jasionowski, W. J.

    1972-01-01

    The results are presented of upgrading and testing an integrated water and waste management system, which uses the compression distillation, reverse osmosis, adsorption filtration and ion-exchange processes to recover potable water from urine, flush water and used wash water. Also included is the development of techniques for extending the useful biological life of biological filters, activated carbon filters and ion-exchange resins to at least 30 days, and presterilizing ion-exchange resins so that sterile water can be recovered from waste water. A wide variety of reverse osmosos materials, surfactants and germicides were experimentally evaluated to determine the best combination for a wash water subsystem. Full-scale module tests with real wash water demonstrated that surface fouling is a major problem.

  15. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    USDA-ARS?s Scientific Manuscript database

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  16. 40 CFR 426.111 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glass furnace or furnaces. (c) The term “oil” shall mean those components of a waste water amenable to... analysis of grease in polluted waters, waste waters, and effluents, such as “Standard Methods,” 13th...

  17. 40 CFR 426.121 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... glass furnace or furnaces. (c) The term “oil” shall mean those components of a waste water amenable to... analysis of grease in polluted waters, waste waters, and effluents, such as “Standard Methods,” 13th...

  18. 40 CFR 426.81 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... furnace or furnaces. (c) The term “oil” shall mean those components of a waste water amenable to... analysis of grease in polluted waters, waste waters, and effluents, such as “Standard Methods,” 13th...

  19. 40 CFR 426.81 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... furnace or furnaces. (c) The term “oil” shall mean those components of a waste water amenable to... analysis of grease in polluted waters, waste waters, and effluents, such as “Standard Methods,” 13th...

  20. 40 CFR 426.111 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... glass furnace or furnaces. (c) The term “oil” shall mean those components of a waste water amenable to... analysis of grease in polluted waters, waste waters, and effluents, such as “Standard Methods,” 13th...

  1. 40 CFR 426.121 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glass furnace or furnaces. (c) The term “oil” shall mean those components of a waste water amenable to... analysis of grease in polluted waters, waste waters, and effluents, such as “Standard Methods,” 13th...

  2. Fact Sheet: Water Monitoring Reveals More Well Contamination

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  3. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, San Rafael Swell, Utah

    USGS Publications Warehouse

    Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg

    2008-01-01

    During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace-element concentrations for aquatic life water-quality standards. The proximity of the uranium waste dumps in the Tomsich Butte area near Muddy Creek, coupled with the elevated concentration of trace elements, increases the offsite impact potential to water resources. Future assessment and remediation priority of these areas may be done by using GIS-based risk-mapping techniques, such as Sensitive Catchment Integrated Mapping and Analysis Project.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  5. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  6. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  7. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  8. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    PubMed

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Zirconia-magnesia inert matrix fuel and waste form: Synthesis, characterization and chemical performance in an advanced fuel cycle

    NASA Astrophysics Data System (ADS)

    Holliday, Kiel Steven

    There is a significant buildup in plutonium stockpiles throughout the world, because of spent nuclear fuel and the dismantling of weapons. The radiotoxicity of this material and proliferation risk has led to a desire for destroying excess plutonium. To do this effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the generation of more plutonium. This requires an inert matrix to volumetrically dilute the fissile plutonium. Zirconia-magnesia dual phase ceramic has been demonstrated to be a favorable material for this task. It is neutron transparent, zirconia is chemically robust, magnesia has good thermal conductivity and the ceramic has been calculated to conform to current economic and safety standards. This dissertation contributes to the knowledge of zirconia-magnesia as an inert matrix fuel to establish behavior of the material containing a fissile component. First, the zirconia-magnesia inert matrix is synthesized in a dual phase ceramic containing a fissile component and a burnable poison. The chemical constitution of the ceramic is then determined. Next, the material performance is assessed under conditions relevant to an advanced fuel cycle. Reactor conditions were assessed with high temperature, high pressure water. Various acid solutions were used in an effort to dissolve the material for reprocessing. The ceramic was also tested as a waste form under environmental conditions, should it go directly to a repository as a spent fuel. The applicability of zirconia-magnesia as an inert matrix fuel and waste form was tested and found to be a promising material for such applications.

  10. 40 CFR 422.52 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water... paragraph (c) of this section, whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged...

  11. 40 CFR 422.52 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water... paragraph (c) of this section, whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged...

  12. 40 CFR 422.52 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water... paragraph (c) of this section, whenever chronic or catastrophic precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must be treated and discharged...

  13. Water diffusion membranes 3 (pervaporation and heat rejection through composite membranes)

    NASA Technical Reports Server (NTRS)

    Cabasso, I.

    1977-01-01

    The problem of waste management in space is discussed for manned space flight. It is shown that such waste can be accounted for in one of four ways: (1) the waste may be dumped into space; (2) it may be accumulated for return to earth; (3) the waste may be separated into two fractions, one fraction (water) to be dumped into space and the remaining portion to be returned to earth; or (4) the waste components may be beneficially reused.

  14. Performance Monitoring of Residential Hot Water Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purposemore » of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.« less

  15. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    PubMed

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore, the need for actions to be taken to reduce entry of e-waste pollutants into Ghana's aquatic environment is real and is immediate.Heavy metals (e.g., lead, cadmium, copper and zinc) and organic pollutants (e.g.,PCDD/Fs and PBDEs) have been detected in the sediments of local water bodies in quantities that greatly exceed background levels. This fact alone suggests that aquatic organisms that live in the affected water bodies are highly exposed to these toxic, bio-accumulative, and persistent contaminants. These contaminants have been confirmed to result from the primitive methods used to recycle and process e-waste within the local environment.Only limited local data exist on the threats posed by these e-waste-related contaminants on nearby natural resources, especially aquatic organisms. In this review,we have addressed the potential toxicity of selected heavy metals and organic pollutants on aquatic organisms. Since there are no data on concentrations of contaminants in the water column, we have based our predictions of effects on pollutant release rates from sediments. Pollutants that are attached to sediments are routinely released into the water column from diffusion and advection, the rate of which depends on pH and Eh of the sediments. E-waste contaminants have the potential to produce deleterious effects on the behavior, physiology, metabolism, reproduction,development and growth of many aquatic organisms. Because it is confirmed that both heavy metal and organic contaminants are reaching the biota of Ghana's local waterways, we presume that they are producing adverse effects. Because local data on the aquatic toxicity of these contaminants are as yet unavailable, we strongly recommend that future research be undertaken to examine, on a large scale and long-term basis, both contamination levels in biota, and adverse effects on biota of the nearby water bodies.

  16. ADVANCES IN ENCAPSULATION TECHNOLOGIES FOR THE MANAGEMENT OF MERCURY-CONTAMINATED HAZARDOUS WASTES

    EPA Science Inventory

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of ongoing hazardous waste generation and historic operations that have led to signif...

  17. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Bozler, Carl; Harburg, Daniel V.; Omenetto, Fiorenzo; Rogers, John A.

    2015-01-01

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  18. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Kim, Dong-Sang; Vienna, John D.

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout the WTP flowsheet and the underlying mechanisms that dictate its partitioning between streams within the LAW vitrification facility. These studies are aimed at increasing the single-pass Tc retention in glass and the potential use of high-temperature mineral phases to capture Tc. The Tc-bearing mineral phases would be thermally stable and resistant to Tc release during feed melting reactions or they could serve as alternative waste forms. The LAW glass research and development is focused on reducing the total volume of LAW glass produced and minimizing the impact of (or potentially eliminating) the need for recycle.« less

  19. Gaseous fuel production from nonrecyclable paper wastes by using supported metal catalysts in high-temperature liquid water.

    PubMed

    Yamaguchi, Aritomo; Hiyoshi, Norihito; Sato, Osamu; Bando, Kyoko K; Shirai, Masayuki

    2010-06-21

    Paper wastes are used for the production of gaseous fuels over supported metal catalysts. The gasification of the nonrecyclable paper wastes, such as shredded documents and paper sludge, is carried out in high-temperature liquid water. The order of the catalytic activity for the gasification is found to be ruthenium>rhodium>platinum>palladium. A charcoal-supported ruthenium catalyst (Ru/C) is the most effective for the gasification of paper and cellulose. Paper wastes are gasified to a limited degree (32.6 carbon %) for 30 min in water at 523 K to produce methane and carbon dioxide, with a small amount of hydrogen. At 573 K, more complete gasification with almost 100 carbon % is achieved within 10 min in water. At 523 K, the gas yield of paper gasification over Ru/C is higher than that of cellulose powder. The gas yields are increased by ball-milling treatment of the recycled paper and cellulose powder. Printed paper wastes are also gasified at 523 K in water.

  20. Manufacturing with the Sun

    NASA Astrophysics Data System (ADS)

    Murphy, L. M.; Hauser, S. G.; Clyne, R. J.

    1992-05-01

    Concentrated solar radiation is now a viable alternative energy source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar-induced surface transformation of materials (SISTM), solar-based manufacturing, and solar-pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offers even greater potential for tomorrow, especially as applied to the radiation-abundant environment available in space and on the lunar surface.

  1. Manufacturing with the Sun

    NASA Astrophysics Data System (ADS)

    Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.

    1991-12-01

    Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.

  2. Manufacturing with the Sun

    NASA Technical Reports Server (NTRS)

    Murphy, Lawrence M.; Hauser, Steven G.; Clyne, Richard J.

    1991-01-01

    Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface.

  3. Contract Example: Monrovia, CA

    EPA Pesticide Factsheets

    Example Residential and Commercial Solid Waste Franchise Agreement designed to advance zero waste goals between the city of Monrovia and Arakelian Enterprises, Inc. dba Athens Services, a California corporation.

  4. Advanced ceramic materials for next-generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

  5. Equilibrium Temperature Profiles within Fission Product Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  6. 40 CFR 136.3 - Identification of test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment, Water, and Wastes. Environmental Monitoring and Support Laboratory, U.S. Environmental Protection... Water and Wastes,” Environmental Protection Agency, Environmental Monitoring Systems Laboratory....3 Section 136.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...

  7. 40 CFR 136.3 - Identification of test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment, Water, and Wastes. Environmental Monitoring and Support Laboratory, U.S. Environmental Protection... Water and Wastes,” Environmental Protection Agency, Environmental Monitoring Systems Laboratory....3 Section 136.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...

  8. A Survey of the Freshwater Mussel Fauna of the Little Kanawha River Basin,

    DTIC Science & Technology

    Mussels, * Aquatic biology, Surveys, Rivers, Basins(Geographic), Natural resources, Population, Distribution, Sampling, Environmental impact...Chemical analysis, Pesticides, Metals, Water quality, Waste water , Waste management, Decision making, West Virginia, Fresh water , Workshops

  9. Financing electronic waste recycling Californian households' willingness to pay advanced recycling fees.

    PubMed

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-09-01

    The growth of electronic waste (e-waste) is of increasing concern because of its toxic content and low recycling rates. The e-waste recycling infrastructure needs to be developed, yet little is known about people's willingness to fund its expansion. This paper examines this issue based on a 2004 mail survey of California households. Using an ordered logit model, we find that age, income, beliefs about government and business roles, proximity to existing recycling facilities, community density, education, and environmental attitudes are significant factors for explaining people's willingness to pay an advanced recycling fee (ARF) for electronics. Most respondents are willing to support a 1% ARF. Our results suggest that policymakers should target middle-aged and older adults, improve programs in communities with existing recycling centers or in rural communities, and consider public-private partnerships for e-waste recycling programs.

  10. Flowsheets and source terms for radioactive waste projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  11. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruhlke, J.M.; Galpin, F.L.

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less

  12. Extreme scenarios for nuclear waste repositories.

    PubMed

    Brown, M J; Crouch, E

    1982-09-01

    Two extreme scenarios for release of radioactive waste have been constructed. In the first, a volcanic eruption releases 1 km2 of an underground nuclear waste repository, while in the second, waste enters the drinking water reservoir of a major city. With pessimistic assumptions, upper bounds on the number of cancers due to radiation are calculated. In the volcano scenario, the effects of the water are smaller than the effects of natural radioactivity in the volcanic dust if the delay between emplacement and eruption exceeds 2000 yr. The consequences of the waste in drinking water depend on the survival time of the canisters and the rate of leaching of the nuclides from the waste matrix. For a canister life of 400 yr and a leach time of 6300 yr the cancer rate in the affected area would increase by 25%.

  13. Invertebrates as indicators for chemical stress in sewage-influenced stream systems: toxic and endocrine effects in gammarids and reactions at the community level in two tributaries of Lake Constance, Schussen and Argen.

    PubMed

    Peschke, Katharina; Geburzi, Jonas; Köhler, Heinz-R; Wurm, Karl; Triebskorn, Rita

    2014-08-01

    The present study investigates the impact of releases from waste water treatment plants and storm water overflow basins on gammarids and other macrozoobenthos. The study relates to a recent upgrading of a waste water treatment plant (Langwiese) at the Schussen river, an important tributary to Lake Constance. Samples were taken at different sites at the Schussen river upstream and downstream of a storm water overflow basin and the waste water treatment plant Langwiese and, in parallel, at the Argen river, a less polluted reference stream. We assessed the influence of water quality on the distribution of macrozoobenthos and on the health of gammarid populations by a variety of ecotoxicological methods including biomarkers prior to the expansion of the waste water treatment plant. Through histopathological studies, the impact of parasites on host tissue health was evaluated. Analyses of heat shock protein (hsp70) levels allowed us to draw conclusions about the proteotoxicity-related stress status of the organisms. Furthermore, gammarid populations from all sites were investigated in respect to sex ratio, parasitism rate, and fecundity. Macrozoobenthos community integrity was determined by means of the saprobic index and the abundance as well as by the number of taxa. In gammarids, the sex ratio was significantly shifted towards females, fecundity was significantly decreased, and the hsp70 level was significantly increased downstream of the waste water treatment plant Langwiese, compared to the upstream sampling site. Similarly, these effects could be detected downstream of three small storm water overflow basins. In the macrozoobenthos communities, the abundance of taxa, the number of taxa, the number of ephemeroptera, plecoptera, and trichoptera taxa (EPT-taxa), and the number of sensitive taxa decreased downstream of the storm water overflow basin Mariatal as well as downstream of the waste water treatment plant Langwiese. Our study showed, that waste water treatment plants and storm water overflow basins affected macroinvertebrate communities and the health of gammarids. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. NITRATE CONTAMINATION OF GROUND WATER FROM LAND APPLICATION OF SWINE WASTE: CASE STUDY AND GENERAL CONSIDERATIONS

    EPA Science Inventory

    Guidelines for land application of CAFO waste may not be sufficient to prevent ground water contamination by nitrate. A case study is presented illustrating the problem for one field site disposing of swine waste. Data are discussed in context with documented land application ...

  15. 40 CFR 264.97 - General ground-water monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General ground-water monitoring requirements. 264.97 Section 264.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste...

  16. 25 CFR 211.47 - Diligence, drainage and prevention of waste.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., drainage and prevention of waste. The lessee shall: (a) Exercise diligence in mining, drilling and... the prevention of waste of oil or gas or other minerals, the entrance of water through wells drilled..., or fresh water aquifers, the preservation and conservation of the property for future productive...

  17. 25 CFR 211.47 - Diligence, drainage and prevention of waste.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., drainage and prevention of waste. The lessee shall: (a) Exercise diligence in mining, drilling and... the prevention of waste of oil or gas or other minerals, the entrance of water through wells drilled..., or fresh water aquifers, the preservation and conservation of the property for future productive...

  18. 25 CFR 211.47 - Diligence, drainage and prevention of waste.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., drainage and prevention of waste. The lessee shall: (a) Exercise diligence in mining, drilling and... the prevention of waste of oil or gas or other minerals, the entrance of water through wells drilled..., or fresh water aquifers, the preservation and conservation of the property for future productive...

  19. Strategy of Water Pollution Control Base On Social Economic Activitiy, in Karang Mumus River, Samarinda East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pramaningsih, Vita; Suprayogi, Slamet; Purnama, Setyawan

    2018-02-01

    Water Pollution in Karang Mumus River caused society behavior along the river. Daily activity such as bath, washing and defecate at the river. Garbage, sediment, domestic waste and flood are river problems should be solved. Purpose this research is make strategy of water pollution control in the Karang Mumus River. Method used observation in the field, interview to the society, industry, public activity along the river and government of environment department. Further create data using tool of Analysis Hierarchy Process (AHP) to get the strategy to control water pollution in the river. Actors have contribute pollution control are government, industry and society. Criteria to pollution control are society participation, low, human resources and sustainable. Alternative of pollution control are unit garbage storage; license loyalty for industry and waste; communal waste water installation; monitoring of water quality. Result for actor priority are government (0.4); Industry (0.4); Society (0.2). Result for priority criteria are society participation (0.338), low (0.288), human resources (0.205) and sustainable (0.169). Result for priority alternative are unit garbage storage (0.433); license loyalty for industry and waste (0.238); communal waste water installation (0.169); monitoring of water quality (0.161).

  20. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less

  1. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  2. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258.51 Section 258.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A...

  3. A Novel Water Delivery System for Administering Volatile Chemicals while Minimizing Chemical Waste in Rodent Toxicity Studies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drin...

  4. A novel water delivery system for administering volatile chemicals while minimizing chemical waste in rodent toxicity sutdies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drinki...

  5. A Review on overboard CEOR discharged produced water treatment and remediation

    NASA Astrophysics Data System (ADS)

    Rawindran, H.; Krishnan, S.; Sinnathambi, C. M.

    2017-06-01

    Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.

  6. 40 CFR 422.53 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal... cause the water level in the pond to rise into the surge capacity. Process waste water must be treated...

  7. 40 CFR 422.53 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal... cause the water level in the pond to rise into the surge capacity. Process waste water must be treated...

  8. 40 CFR 422.43 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... shall be no discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge... precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must...

  9. 40 CFR 422.43 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall be no discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge... precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must...

  10. 40 CFR 422.53 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal... cause the water level in the pond to rise into the surge capacity. Process waste water must be treated...

  11. 40 CFR 422.43 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... shall be no discharge of process wastewater pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge... precipitation events cause the water level in the pond to rise into the surge capacity. Process waste water must...

  12. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system.

    PubMed

    Toyoda, Sakae; Suzuki, Yuuri; Hattori, Shohei; Yamada, Keita; Fujii, Ayako; Yoshida, Naohiro; Kouno, Rina; Murayama, Kouki; Shiomi, Hiroshi

    2011-02-01

    Wastewater treatment processes are believed to be anthropogenic sources of nitrous oxide (N(2)O) and methane (CH(4)). However, few studies have examined the mechanisms and controlling factors in production of these greenhouse gases in complex bacterial systems. To elucidate production and consumption mechanisms of N(2)O and CH(4) in microbial consortia during wastewater treatment and to characterize human waste sources, we measured their concentrations and isotopomer ratios (elemental isotope ratios and site-specific N isotope ratios in asymmetric molecules of NNO) in water and gas samples collected by an advanced treatment system in Tokyo. Although the estimated emissions of N(2)O and CH(4) from the system were found to be lower than those from the typical treatment systems reported before, water in biological reaction tanks was supersaturated with both gases. The concentration of N(2)O, produced mainly by nitrifier-denitrification as indicated by isotopomer ratios, was highest in the oxic tank (ca. 4000% saturation). The dissolved CH(4) concentration was highest in in-flow water (ca. 3000% saturation). It decreased gradually during treatment. Its carbon isotope ratio indicated that the decrease resulted from bacterial CH(4) oxidation and that microbial CH(4) production can occur in anaerobic and settling tanks.

  13. Simulation of soluble waste transport and buildup in surface waters using tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1993-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.

  14. Simulation of soluble waste transport and buildup in surface waters using tracers

    USGS Publications Warehouse

    Kilpatrick, Frederick A.

    1992-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges.The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals on dye tracing with emphasis on the expanded use of time-of-travel type data.

  15. Laboratory measurements of radiance and reflectance spectra of a dilute biosolid industrial waste product

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Experimental measurements were made of upwelled spectral signatures of various concentrations of industrial waste products mixed with water in a large water tank. Radiance and reflectance spectra for a biosolid waste product (sludge) mixed with conditioned tap water and natural river water are reported. Results of these experiments indicate that reflectance increases with increasing concentration of the sludge at practically all wavelengths for concentration of total suspended solids up to 117 ppm in conditioned tap water and 171 ppm in natural river water. Significant variations in the spectra were observed and may be useful in defining spectral characteristics for this waste product. No significant spectral differences were apparent in the reflectance spectra of the two experiments, especially for wavelengths greater than 540 nm. Reflectance values, however, were generally greater in natural river water for wavelengths greater than 540 nm. Reflectance may be considered to increase linearly with concentration of total suspended solids from 5 to 171 ppm at all wavelengths without introducing errors larger than 10 percent.

  16. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  17. Soil, plant, and structural considerations for surface barriers in arid environments: Application of results from studies in the Mojave Desert near Beatty, Nevada

    USGS Publications Warehouse

    Andraski, Brian J.; Prudic, David E.; ,

    1997-01-01

    The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial and fluvial deposits (Nichols, 1987). Vegetation is sparse; creosote bush is the dominant species. The waste facility has been used for burial of low-level radioactive waste (1962-1992) and hazardous chemical waste (1970 to present). Burial-trench construction includes excavation of native soil, emplacement of waste, and backfilling with previously stockpiled soil. Only the most recently closed hazardous-waste trench (1991) incorporates a plastic liner in the cover. The surfaces of completed burial trenches and perimeter areas are kept free of vegetation.

  18. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflowmore » zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices.« less

  19. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China.

    PubMed

    Song, Guobao; Li, Mingjing; Semakula, Henry Musoke; Zhang, Shushen

    2015-10-01

    Strategies for reducing food waste and developing sustainable diets require information about the impacts of consumption behavior and waste generation on climatic, water, and land resources. We quantified the carbon, water, and ecological footprints of 17,110 family members of Chinese households, covering 1935 types of foods, by combining survey data with available life-cycle assessment data sets. We also summarized the patterns of both food consumption and waste generation and analyzed the factors influencing the observed trends. The average person wasted (consumed) 16 (415) kg of food at home annually, equivalent to 40 (1080) kg CO2e, 18 (673) m(3), and 173 (4956) gm(2) for the carbon, water and ecological footprints, respectively. The generation of food waste was highly correlated with consumption for various food groups. For example, vegetables, rice, and wheat were consumed the most and accounted for the most waste. In addition to the three plant-derived food groups, pork and aquatic products also contributed greatly to embedded footprints. The data obtained in this study could be used for assessing national food security or the carrying capacity of resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Back-Up Generator Facility and Associated Project Environmental Assessment Dyess Air Force Base, Texas

    DTIC Science & Technology

    2007-07-01

    waste, or solid waste management would be expected with implementation of the no-action alternative. Soils and Water. Impacts to soils and water...resources would be negligible. Construction would disturb about 2.5 acres, but best management practices such as silt fencing and soil surface watering...Intergovernmental Coordination for Environmental Planning tpy U.S. tons per year United States IWMP Integrated Waste Management Plan USACE United States

  1. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  2. Environmental Sciences Division annual progress report for period ending September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  3. ECONOMIC ASSESSMENT OF WASTE WATER AQUACULTURE TREATMENT SYSTEMS

    EPA Science Inventory

    This study attempted to ascertain the economic viability of aquaculture as an alternative to conventional waste water treatment systems for small municipalities in the Southwestern region of the United States. A multiple water quality objective level cost-effectiveness model was ...

  4. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior.

    PubMed

    Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E

    2015-07-07

    The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.

  5. [ASSESSMENT OF POTENTIAL RISK FOR CONTAMINATION OF SURFACE WATER RESERVOIRS BY PATHOGENS OF HUMAN PARASITIC DISEASES].

    PubMed

    Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh

    2015-01-01

    Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.

  6. Easing food waste could reduce pressure on natural resources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    Calls to reduce food waste and enhance agricultural water efficiency were among the points raised during the 27 August opening session of World Water Week in Stockholm, Sweden. “More than one fourth of all the water we use worldwide is taken to grow over one billion tons of food that nobody eats. That water, together with the billions of dollars spent to grow, ship, package, and purchase the food, is sent down the drain,” said Torgny Holmgren, executive director of the Stockholm International Water Institute, which organizes World Water Week. “Reducing the waste of food is the smartest and most direct route to relieve pressure on water and land resources. It's an opportunity we cannot afford to overlook,” he added.

  7. Advanced Life Support Systems: Opportunities for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.

    1994-01-01

    NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers opportunities for licensing to commercial entities. In the case of the HRWRS, commercial markets with broad applications have not been identified but some terrestrial applications are being explored where this approach has advantages over other methods of waste water processing. Although these potential applications do not appear to have the same broad attraction from the standpoint of rapid commercialization, they represent niches where commercialization possibilities as well as social benefits could be realized.

  8. Tempe Waste Water Degradation Using TiO2-N/Bentonite alginate Granule Photocatalyst with Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Khoirun Nisaa', Aldila; Wardhani, Sri; Purwonugroho, Danar; Darjito

    2018-01-01

    Tempe waste water stew has high ammonia concentration which causes odor due to polluting by anaerobic decay. Free ammonia in the waste has exceeded the limit, thus endangering the aquatic environment. This research aims to determine the activity of photocatalyst granule TiO2-N/bentonite-alginate as decomposers of compounds in the photodegradation process. Photodegradation is the decomposition process of compounds by semiconductors with light. Results expected includes the photocatalyst activity of TiO2-N/bentonite-alginate granule produced by ultraviolet rays is known based on the effect of dopant N concentration on the catalyst and the effect of photocatalytic ratio toward tempe waste water. Methods proposed in this research are activation of bentonite using H2SO4 0.8 M, TiO2-N synthesize by sonication method with urea as the source of N, then TiO2-N impregnation into bentonite. Photocatalyst in granule form synthesized with alginate was then dripped with syringe pump into 3% (w/v) CaCl2. The photocatalyst characterization will be performed using XRD. The optimum tempe waste water degradation at the concentration of TiO2-N 0.4 (g/g) bentonite is 53.66%. The ratio of photocatalyst and tempe waste water, optimum at 150 mg of photocatalyst with 25 mL of waste equal to 53.66%.

  9. Cost Benefit Analysis of a Utility Scale Waste-to-Energy/Concentrating Solar Power Hybrid Facility at Fort Bliss

    DTIC Science & Technology

    2012-06-01

    installations for Energy, Waste, and Water. This means Fort Bliss will strive to become Net Zero Energy, Net Zero Waste , and Net Zero Water in the coming...years. Net Zero Energy requires Fort Bliss to produce as much energy on-installation as it consumes annually. Net Zero Waste aims to reduce, reuse...become Net Zero Energy and Net Zero Waste by 2020. A WtE facility actually goes well beyond Fort Bliss’ Net Zero Energy mission. That mission

  10. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Jin, T.; Miura, O.

    2010-11-01

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  11. Environmental management aspects for TBT antifouling wastes from the shipyards.

    PubMed

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires extended areas of land. Other treatment methods, such as thermal and electrochemical treatment, are promising options but due to the large amounts of dredged material, they have high capital and operational costs.

  12. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    NASA Astrophysics Data System (ADS)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  13. Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397

    DTIC Science & Technology

    1994-06-01

    radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of

  14. Water, Society and the future of water resources research (Invited)

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  15. Power Efficient Plasma Technique for Rapid Water Sterilization

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2015-11-01

    Water especially good quality drinking water is a dwindling resource for significant segments of the world population. The BBC quoted this article (http://www.ft.com/cms/s/2/8e42bdc8-0838-11e4-9afc-00144feab7de.html) for a claim that water shortage is a bigger problem than climate change. One option for increasing the water supply is to recycle waste and polluted water by inexpensive, environmentally friendly methods. First steps involve filtrations while the last step is water disinfection. Presently disinfection is done chemically and/or UV radiation. Some chemicals cannot be used in large quantity due to residual toxicity, while UV disinfection systems consume a great deal electricity. Plasmas in water are very attractive for water sterilization due to UV radiation, ozone, etc. generation inside the water volume. Commercially available devices like NK-03 Blue Ballast System are used aboard ships for water purification. But, presently utilized plasmas: glow, pulsed arcs are not power efficient. Vortex stabilized plasmas, which are power efficient, can even degrade medications (antibiotics) advancing the state-of-the-art by orders of magnitude, especially when combined with electron beams. Disinfection scheme will be presented. Work supported by Contract No. DE-AC02-98CH1-886 with the US DOE.

  16. 40 CFR 35.929-2 - General requirements for all user charge systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the user charges or ad valorem taxes which are attributable to waste water treatment services. (g... than every 2 years the waste water contribution of users and user classes, the total costs of operation... subscribers receiving waste treatment services from the grantee shall adopt user charge systems in accordance...

  17. 40 CFR 35.929-2 - General requirements for all user charge systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the user charges or ad valorem taxes which are attributable to waste water treatment services. (g... than every 2 years the waste water contribution of users and user classes, the total costs of operation... subscribers receiving waste treatment services from the grantee shall adopt user charge systems in accordance...

  18. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  19. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    NASA Astrophysics Data System (ADS)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200°C sintering temperature to 3.03 g/cm 3 with a 29% waste loading and sintered at 1100°C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ˜650°C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300°C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200°C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200°C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100°C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.

  20. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

Top