Science.gov

Sample records for advanced wavefront sensing

  1. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  2. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  3. Wavefront error sensing

    NASA Technical Reports Server (NTRS)

    Tubbs, Eldred F.

    1986-01-01

    A two-step approach to wavefront sensing for the Large Deployable Reflector (LDR) was examined as part of an effort to define wavefront-sensing requirements and to determine particular areas for more detailed study. A Hartmann test for coarse alignment, particularly segment tilt, seems feasible if LDR can operate at 5 microns or less. The direct measurement of the point spread function in the diffraction limited region may be a way to determine piston error, but this can only be answered by a detailed software model of the optical system. The question of suitable astronomical sources for either test must also be addressed.

  4. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  5. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  6. Wavefront sensing, control, and pointing

    NASA Technical Reports Server (NTRS)

    Pitts, Thomas; Sevaston, George; Agronin, Michael; Bely, Pierre; Colavita, Mark; Clampin, Mark; Harvey, James; Idell, Paul; Sandler, Dave; Ulmer, Melville

    1992-01-01

    A majority of future NASA astrophysics missions from orbiting interferometers to 16-m telescopes on the Moon have, as a common requirement, the need to bring light from a large entrance aperture to the focal plane in a way that preserves the spatial coherence properties of the starlight. Only by preserving the phase of the incoming wavefront, can many scientific observations be made, observations that range from measuring the red shift of quasi-stellar objects (QSO's) to detecting the IR emission of a planet in orbit around another star. New technologies for wavefront sensing, control, and pointing hold the key to advancing our observatories of the future from those already launched or currently under development. As the size of the optical system increases, either to increase the sensitivity or angular resolution of the instrument, traditional technologies for maintaining optical wavefront accuracy become prohibitively expensive or completely impractical. For space-based instruments, the low mass requirement and the large temperature excursions further challenge existing technologies. The Hubble Space Telescope (HST) is probably the last large space telescope to rely on passive means to keep its primary optics stable and the optical system aligned. One needs only look to the significant developments in wavefront sensing, control, and pointing that have occurred over the past several years to appreciate the potential of this technology for transforming the capability of future space observatories. Future developments in space-borne telescopes will be based in part on developments in ground-based systems. Telescopes with rigid primary mirrors much larger than 5 m in diameter are impractical because of gravity loading. New technologies are now being introduced, such as active optics, that address the scale problem and that allow very large telescopes to be built. One approach is a segmented design such as that being pioneered by the W.M. Keck telescope now under

  7. Wavefront Sensing via High Speed DSP

    NASA Technical Reports Server (NTRS)

    Smith, J. Scott; Dean, Bruce

    2004-01-01

    Future light-weighted and segmented primary mirror systems require active optical control to maintain mirror positioning and figure to within nanometer tolerances. Current image-based wavefront sensing approaches rely on post-processing techniques to return an estimate of the aberrated optical wavefront with accuracies to the nanometer level. But the lag times between wavefront sensing, and then control, contributes to a significant latency in the wavefront sensing implementation. In this analysis we demonstrate accelerated image-based wavefront sensing performance using multiple digital signal processors (DSP's). The computational architecture is discussed as well as the heritage leading to the approach.

  8. Advanced image processing and wavefront sensing with real-time phase diversity.

    PubMed

    Dolne, Jean J; Menicucci, Paul; Miccolis, David; Widen, Ken; Seiden, Harold; Vachss, Frederick; Schall, Harold

    2009-01-01

    This paper will describe a state-of-the-art approach to real-time wavefront sensing and image enhancement. It will explore Boeing's existing technology to realize a 50 Hz frame rate (with a path to 1 KHz and higher). At this higher rate, phase diversity will be readily applicable to compensate for distortions of large dynamic bandwidth such as those of the atmosphere. We will describe various challenges in aligning a two-camera phase diversity system. Such configurations make it almost impossible to process the captured images without additional upgrade in the algorithm to account for alignment errors. An example of an error is the relative misalignment of the two images, the "best-focus" and the diversity image, where it is extremely hard to maintain alignment to less than a fraction of 1 pixel. We will show that the algorithm performance increases dramatically when we account for these errors in the estimation process. Preliminary evaluation has assessed a National Imagery Interpretability Rating Scale increase of approximately 3 from the best-focus to the enhanced image. Such a performance improvement would greatly increase the operating range (or, equivalently, decrease the weight) of many optical systems.

  9. ARGOS wavefront sensing: from detection to correction

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, Gilles; Bonaglia, M.; Borelli, J.; Busoni, L.; Connot, C.; Esposito, S.; Gaessler, W.; Kulas, M.; Mazzoni, T.; Puglisi, A.; Rabien, S.; Storm, J.; Ziegleder, J.

    2014-08-01

    Argos is the ground-layer adaptive optics system for the Large Binocular Telescope. In order to perform its wide-field correction, Argos uses three laser guide stars which sample the atmospheric turbulence. To perform the correction, Argos has at disposal three different wavefront sensing measurements : its three laser guide stars, a NGS tip-tilt, and a third wavefront sensor. We present the wavefront sensing architecture and its individual components, in particular: the finalized Argos pnCCD camera detecting the 3 laser guide stars at 1kHz, high quantum efficiency and 4e- noise; the Argos tip-tilt sensor based on a quad-cell avalanche photo-diodes; and the Argos wavefront computer. Being in the middle of the commissioning, we present the first wavefront sensing configurations and operations performed at LBT, and discuss further improvements in the measurements of the 3 laser guide star slopes as detected by the pnCCD.

  10. Recent developments of interferometric wavefront sensing

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Yang, Yongying; Chen, Xiaoyu; Ling, Tong; Zhang, Lei; Bai, Jian; Shen, Yibing

    2015-08-01

    Recent trends of interferometric wavefront sensing tend to focus on high precision, anti-vibration, compact, along with much more involved of electric and computer technology. And the optical principles employed not only limit to interference but also include diffraction, scattering, polarization, etc. In this paper, some selected examples basing on the research works in our group will be given to illustrate the trends mentioned above. To achieve extra high accuracy, phase-shifting point diffraction interferometry (PS-PDI) is believed to be a good candidate as it employs a nearly perfect point diffraction spherical wavefront as the reference and also takes advantage of the high precision of phase-shifting algorithms. Cyclic radial shearing interferometry (C-RSI) successively demonstrate the anti-vibration characteristic and can diagnose transient wavefront with only one single shot by employing a three-mirror common-path configuration and a synchronizing system. In contrast sharply with those early interferometers, interferometers with very compact configuration are more suitable to develop portable wavefront sensing instruments. Cross-grating lateral shearing interferometer (CG-LSI) is a very compact interferometer that adopts a cross-grating of millimeters to produce lateral shearing of the diffraction wave of the test wavefront. Be aware that, computer technique has been used a lot in all of the above interferometers but the non-null annual sub-aperture stitching interferometer (NASSI) for general aspheric surface testing mostly relies on the computer model of the physical interferometer setup and iterative ray-tracing optimization. The principles of the above mentioned interferometric wavefront sensing methods would be given in detail.

  11. Wavefront sensing using a photonic lantern

    NASA Astrophysics Data System (ADS)

    Corrigan, Mark; Harris, Robert J.; Thomson, Robert R.; MacLachlan, David G.; Allington-Smith, Jeremy; Myers, Richard; Morris, Tim

    2016-07-01

    The need for high speed wavefront sensing within astronomical adaptive optics is growing, especially when scaling existing systems to ELTs. A photonic lantern (PL) could be advantageous with such systems because the output can be formatted onto a fast 1D CCD array separated from the telescope focal plane. We investigate the coupling of light from the focal plane into a simple four mode PL via simulations within RSoft. The output intensity distribution of the single mode cores when the input wavefront is affected by tip or tilt is analysed and compared with a quad cell of detector pixels typically used for a Shack-Hartmann.

  12. Static optical designs for Wavefront Curvature Sensing

    NASA Astrophysics Data System (ADS)

    Bharmal, Nazim A.

    2006-06-01

    A bulk optic is presented, the Parallel Output Beamsplitter, which allows simultaneous imaging of two planes either side of the focus using static imaging optics. The POB is used to create novel optical configurations for Wavefront Curvature Sensing and two designs are presented. The first is suited to small-amplitude aberration measurements in situations where compactness, a large field of view, and high optical throughput are desirable. A laboratory experiment using a POB to make such a wavefront sensor was undertaken, and results are presented. The second design is a conceptual idea which offers image-scale invariant imaging of two planes whose conjugation satisfies the requirements of a conventional Wavefront Curvature Sensor concept.

  13. High order dark wavefront sensing simulations

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Arcidiacono, Carmelo; Farinato, Jacopo; Viotto, Valentina; Bergomi, Maria; Dima, Marco; Magrin, Demetrio; Marafatto, Luca; Greggio, Davide; Carolo, Elena; Vassallo, Daniele

    2016-07-01

    Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to "see" an object in one path of a two-arm interferometer using an as low as desired amount of light actually "hitting" the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical "perfect" dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.

  14. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  15. Implementation of a Wavefront-Sensing Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  16. SAPHIRA detector for infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.

    2014-08-01

    The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1μm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg(1-x)CdxTe. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the

  17. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing

    PubMed Central

    Rueckel, Markus; Mack-Bucher, Julia A.; Denk, Winfried

    2006-01-01

    The image quality of a two-photon microscope is often degraded by wavefront aberrations induced by the specimen. We demonstrate here that resolution and signal size in two-photon microcopy can be substantially improved, even in living biological specimens, by adaptive wavefront correction based on sensing the wavefront of coherence-gated backscattered light (coherence-gated wavefront sensing, CGWS) and wavefront control by a deformable mirror. A nearly diffraction-limited focus can be restored even for strong aberrations. CGWS-based wavefront correction should be applicable to samples with a wide range of scattering properties and it should be possible to perform real-time pixel-by-pixel correction even at fast scan speeds. PMID:17088565

  18. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  19. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets

  20. Fundamental Limits to Wavefront Sensing in the Submillimeter

    NASA Technical Reports Server (NTRS)

    Serabyn, Eugene

    2006-01-01

    With the advent of large-format submillimeter wavelength detector arrays, and a new 25 m diameter submillimeter telescope under consideration, the question of optimal wavefront sensing methods is timely. Indeed, not only should bolometric array detectors allow the use of a variety of wavefront sensing techniques already in use in the optical/infrared, but in some cases it should actually be easier to apply these techniques because of the more benign temporal properties of the atmosphere at long wavelengths. This paper thus addresses the fundamental limits to wavefront sensing at submillimeter wavelengths, in order to determine how well a telescope surface can be measured in the submillimeter band. First several potential measurement approaches are discussed and compared. Next the theoretical accuracy of a fringe phase measurement in the submillimeter is discussed. It is concluded that with Mars as the source, wavefront sensing at the micron level should be achievable at submillimeter wavelengths in quite reasonable integration times.

  1. Experimental results for correlation-based wavefront sensing

    SciTech Connect

    Poyneer, L A; Palmer, D W; LaFortune, K N; Bauman, B

    2005-07-01

    Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.

  2. Filter Function for Wavefront Sensing Over a Field of View

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A filter function has been derived as a means of optimally weighting the wavefront estimates obtained in image-based phase retrieval performed at multiple points distributed over the field of view of a telescope or other optical system. When the data obtained in wavefront sensing and, more specifically, image-based phase retrieval, are used for controlling the shape of a deformable mirror or other optic used to correct the wavefront, the control law obtained by use of the filter function gives a more balanced optical performance over the field of view than does a wavefront-control law obtained by use of a wavefront estimate obtained from a single point in the field of view.

  3. Multi-layer surface profiling using gated wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Nordin, Nur Dalilla; Tik, Eddy Chow Mun; Tan, ChingSeong; Chew, Kuew Wai; Menoni, Carmen

    2015-01-01

    Recently, multi-layer surface profiling and inspection has been considered an emerging topic that can be used to solve various manufacturing inspection problems, such as graded index lenses, TSV (Thru-Silicon Via), and optical coating. In our study, we proposed a gated wavefront sensing approach to estimate the multi-layer surface profile. In this paper, we set up an experimental platform to validate our theoretical models and methods. Our test bed consists of pulse laser, collimator, prism, well-defined focusing lens, testing specimen, and gated wavefront sensing assembly (e.g., lenslet and gated camera). Typical wavefront measurement steps are carried out for the gated system, except the reflectance is timed against its time of flight as well as its intensity profile. By synchronizing the laser pulses to the camera gate time, it is possible to discriminate a multi-layer wavefront from its neighbouring discrete layer reflections.

  4. Method and apparatus for wavefront sensing

    DOEpatents

    Bahk, Seung-Whan

    2016-08-23

    A method of measuring characteristics of a wavefront of an incident beam includes obtaining an interferogram associated with the incident beam passing through a transmission mask and Fourier transforming the interferogram to provide a frequency domain interferogram. The method also includes selecting a subset of harmonics from the frequency domain interferogram, individually inverse Fourier transforming each of the subset of harmonics to provide a set of spatial domain harmonics, and extracting a phase profile from each of the set of spatial domain harmonics. The method further includes removing phase discontinuities in the phase profile, rotating the phase profile, and reconstructing a phase front of the wavefront of the incident beam.

  5. Testbed for extended-scene Shack-Hartmann and phase retrieval wavefront sensing

    NASA Technical Reports Server (NTRS)

    Morgan, Rhonda M.; Ohara, Catherine M.; Green, Joseph J.; Roberts, Jennifer; Sidick, Erkin; Shcheglov, Kirill

    2005-01-01

    We have implemented a testbed to demonstrate wavefront sensing and control on an extended scene using Shack-Hartmann and MGS phase retrieval simultaneously. This dual approach allows for both high sensitivity and high dynamic range wavefront sensing.

  6. Comparative study of infrared wavefront sensing solutions for adaptive optics

    NASA Astrophysics Data System (ADS)

    Plantet, C.; Fusco, T.; Guerineau, N.; Derelle, S.; Robert, C.

    2016-07-01

    The development of new low-noise infrared detectors, such as RAPID (CEA LETI/Sofradir) or SAPHIRA (Selex), has given the possibility to consider infrared wavefront sensing at low ux. We propose here a comparative study of near infrared (J and H bands) wavefront sensing concepts for mid and high orders estimation on a 8m- class telescope, relying on three existing wavefront sensors: the Shack-Hartmann sensor, the pyramid sensor and the quadri-wave lateral shearing interferometer. We consider several conceptual designs using the RAPID camera, making a trade-off between background flux, optical thickness and compatibility with a compact cryostat integration. We then study their sensitivity to noise in order to compare them in different practical scenarios. The pyramid provides the best performance, with a gain up to 0.5 magnitude, and has an advantageous setup.

  7. Wavefront Sensing for WFIRST with a Linear Optical Model

    NASA Technical Reports Server (NTRS)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  8. Wavefront sensing for WFIRST with a linear optical model

    NASA Astrophysics Data System (ADS)

    Jurling, Alden S.; Content, David A.

    2012-09-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  9. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  10. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  11. Revisiting static modulation in pyramid wavefront sensing

    NASA Astrophysics Data System (ADS)

    Marafatto, L.; Ragazzoni, R.; Vassallo, D.; Bergomi, M.; Biondi, F.; Farinato, J.; Greggio, D.; Magrin, D.; Viotto, V.

    2016-07-01

    The Pyramid Sensor (PS) is based on the Focault knife-edge test, yielding then, in geometrical approximation, only the sign of the wavefront slope. To provide linear measurements of the wavefront slopes the PS relies on a technique known as modulation, which also plays a central role to improve the linear range of the pyramid WFS, very small in the nonmodulated case. In the main PS using modulation so far, this task is achieved by moving optical components in the WFS, increasing the complexity of the system. An attractive idea to simplify the optical and mechanical design of a pyramid WFS is to work without any dynamic modulation. This concept was only merely described and functionally tested in the framework of MAD, and subsequently, with a holographic diffuser. The latter produce a sort of random distribution of the light coming out from the pupil plane, leading to sort of inefficient modulation, as most of the rays are focused in the central region of the light diffused by such device. The bi-dimensional original grating is, in contrast, producing a well defined deterministic distribution of the light onto a specifically shaped pattern. A crude option has been already discussed as a possibility, and it is here generalized to holographic plates leading to various distribution of lights, including a circle whose diameter would match the required modulation pattern, or more cost effective approaches like the one of a square pattern. These holographic diffusers would exhibit also zero-th and high order patterns and the actual size of the equivalent modulation would be linearly wavelength dependent, leading to colour effects that requires a careful handling in order to properly choose the right amount of equivalent modulation.

  12. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature

  13. Low order wavefront sensing and control for WFIRST coronagraph

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Balasubramanian, Kunjithapatham; Bartos, Randall; Hein, Randall; Lam, Raymond; Mandic, Milan; Moore, Douglas; Moore, James; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Truong, Tuan; Wallace, James K.; Wang, Xu; Wilson, Daniel W.

    2016-07-01

    To maintain the required WFIRST Coronagraph starlight suppression performance in a realistic space environment, a low order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C uses the rejected stellar light from coronagraph to sense and suppress the telescope pointing drift and jitter as well as the low order wavefront errors due to changes in thermal loading on the telescope and the rest of the observatory. In this paper we will present an overview of the low order wavefront sensing and control subsystem for the WFIRST Coronagraph and describe the WFIRST Coronagraph LOWFS function, its design, and modeled performance. We will present experimental results on a dedicated LOWFS/C testbed that show that the LOWFS/C subsystem not only can sense pointing errors better than 0.2 mas but has also experimentally demonstrated closed loop pointing error suppression with residuals better than 0.4 mas rms per axis for the vast majority of observatory reaction wheel speeds.

  14. Parallel-Computing Architecture for JWST Wavefront-Sensing Algorithms

    DTIC Science & Technology

    2011-09-01

    Hubble Space Telescope and will be NASA’s premier observatory of the next decade. Image-based wavefront sensing (phase retrieval) is the primary...INTRODUCTION The James Webb Space Telescope (JWST) is the next-generation successor to the Hubble Space Telescope . It is a large, space -based infrared...ABSTRACT The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope and will be NASA?s premier

  15. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  16. Preparing for JWST wavefront sensing and control operations

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Lallo, Matthew D.; Allen, Marsha; Baggett, Wayne; Barker, Elizabeth; Comeau, Thomas; Coppock, Eric; Dean, Bruce H.; Hartig, George; Hayden, William L.; Jordan, Margaret; Jurling, Alden; Kulp, Trey; Long, Joseph; McElwain, Michael W.; Meza, Luis; Nelan, Edmund P.; Soummer, Remi; Stansberry, John; Stark, Christopher; Telfer, Randal; Welsh, Andria L.; Zielinski, Thomas P.; Zimmerman, Neil T.

    2016-07-01

    The James Webb Space Telescopes segmented primary and deployable secondary mirrors will be actively con- trolled to achieve optical alignment through a complex series of steps that will extend across several months during the observatory's commissioning. This process will require an intricate interplay between individual wavefront sensing and control tasks, instrument-level checkout and commissioning, and observatory-level calibrations, which involves many subsystems across both the observatory and the ground system. Furthermore, commissioning will often exercise observatory capabilities under atypical circumstances, such as fine guiding with unstacked or defocused images, or planning targeted observations in the presence of substantial time-variable offsets to the telescope line of sight. Coordination for this process across the JWST partnership has been conducted through the Wavefront Sensing and Control Operations Working Group. We describe at a high level the activities of this group and the resulting detailed commissioning operations plans, supporting software tools development, and ongoing preparations activities at the Science and Operations Center. For each major step in JWST's wavefront sensing and control, we also explain the changes and additions that were needed to turn an initial operations concept into a flight-ready plan with proven tools. These efforts are leading to a robust and well-tested process and preparing the team for an efficient and successful commissioning of JWSTs active telescope.

  17. Wavefront Sensing With Switched Lenses for Defocus Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    In an alternative hardware design for an apparatus used in image-based wavefront sensing, defocus diversity is introduced by means of fixed lenses that are mounted in a filter wheel (see figure) so that they can be alternately switched into a position in front of the focal plane of an electronic camera recording the image formed by the optical system under test. [The terms image-based, wavefront sensing, and defocus diversity are defined in the first of the three immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] Each lens in the filter wheel is designed so that the optical effect of placing it at the assigned position is equivalent to the optical effect of translating the camera a specified defocus distance along the optical axis. Heretofore, defocus diversity has been obtained by translating the imaging camera along the optical axis to various defocus positions. Because data must be taken at multiple, accurately measured defocus positions, it is necessary to mount the camera on a precise translation stage that must be calibrated for each defocus position and/or to use an optical encoder for measurement and feedback control of the defocus positions. Additional latency is introduced into the wavefront sensing process as the camera is translated to the various defocus positions. Moreover, if the optical system under test has a large focal length, the required defocus values are large, making it necessary to use a correspondingly bulky translation stage. By eliminating the need for translation of the camera, the alternative design simplifies and accelerates the wavefront-sensing process. This design is cost-effective in that the filterwheel/lens mechanism can be built from commercial catalog components. After initial calibration of the defocus value of each lens, a selected defocus value is introduced by simply rotating the filter wheel to place the corresponding lens in front of the camera. The rotation of the

  18. Curvature wavefront sensing for the large synoptic survey telescope.

    PubMed

    Xin, Bo; Claver, Chuck; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian

    2015-10-20

    The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from four curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1 mm on either side of focus. In this paper, we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intrafocal and extrafocal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.

  19. Wavefront sensing for anisotropic turbulence using digital holography

    NASA Astrophysics Data System (ADS)

    Thurman, Samuel T.; Gatt, Philip; Alley, Thomas

    2016-09-01

    We report on digital holographic imaging through atmospheric turbulence. Data recorded with aberrations is corrected during post processing using an iterative sharpness-metric maximization algorithm. Assuming the correction cancels the actual wavefront error, this process is equivalent to wavefront sensing. Much of our past work focused on imaging through isotropic turbulence with phase corrections using a Zernike-polynomial expansion. Here, we describe algorithm modifications for imaging through anisotropic turbulence, similar to what is seen when looking through the aero-optic boundary layer surrounding a moving aircraft. Specifically, we explore tradeoffs associated with switching from a Zernike representation to Karhunen-Loève basis functions. In some cases, the dimensionality of the phase correction estimation algorithm can be reduced significantly by this change. This reduces the computational burden

  20. Interferometric focusing of guide-stars for direct wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, Xiaodong; Dean, Ziah; Chien, Christopher; Azucena, Oscar; Kubby, Joel

    2013-03-01

    Optical microscopy allows noninvasive imaging of biological tissues at a subcellular level. However, the optimal performance of the microscope is hard to achieve because of aberrations induced from tissues. The shallow penetration depth and degraded resolution provide a limited degree of information for biologists. In order to compensate for aberrations, adaptive optics with direct wavefront sensing, where guide-stars are used for wavefront measurement, has been applied in microscopy. The scattering effect limits the intensity of a guide-star and hence reduces the signal to noise ratio of the wavefront measurement. In this paper, we propose to use interferometric focusing of excitation light onto a guide-star embedded deeply in tissue to increase its fluorescence intensity, thus overcoming the signal loss caused by scattering. With interferometric focusing of light, we increase the signal to noise ratio of the laser guide-star through scattering tissue by more than two times as well as potentially extending the thickness of tissue that can be corrected using AO microscopy.

  1. Three-dimensional particle imaging by wavefront sensing.

    PubMed

    Towers, Catherine E; Towers, David P; Campbell, Heather I; Zhang, Sijiong; Greenaway, Alan H

    2006-05-01

    We present two methods for three-dimensional particle metrology from a single two-dimensional view. The techniques are based on wavefront sensing where the three-dimensional location of a particle is encoded into a single image plane. The first technique is based on multiplanar imaging, and the second produces three-dimensional location information via anamorphic distortion of the recorded images. Preliminary results show that an uncertainty of 8 microm in depth can be obtained for low-particle density over a thin plane, and an uncertainty of 30 microm for higher particle density over a 10 mm deep volume.

  2. Wavefront sensing with Hypertelescope Laser-Guide-Stars

    NASA Astrophysics Data System (ADS)

    Nuñez, P. D.; Labeyrie, L.

    2014-04-01

    A Hypertelescope with a spherical architecture is an attractive solution to simultaneously use tens to hundreds of mirrors in a ˜ 100 m interferometric array. Provided that phasing is possible, such an instrument will allow us to obtain direct images as well as to push the limiting magnitude in optical interferometry. In order to achieve this a modified laser guide star technique has been proposed. We summarize the status of recent simulation studies of wavefront-sensing with hypertelescopes equipped with laser-guide-stars.

  3. Recent Advances in Seismic Wavefront Tracking Techniques and Their Applications

    NASA Astrophysics Data System (ADS)

    Sambridge, M.; Rawlinson, N.; Hauser, J.

    2007-12-01

    In observational seismology, wavefront tracking techniques are becoming increasingly popular as a means of predicting two point traveltimes and their associated paths. Possible applications include reflection migration, earthquake relocation and seismic tomography at a wide variety of scales. Compared with traditional ray based techniques such as shooting and bending, wavefront tracking has the advantage of locating traveltimes between the source and every point in the medium; in many cases, improved efficiency and robustness; and greater potential for tracking multiple arrivals. In this presentation, two wavefront tracking techniques will be considered: the so-called Fast Marching Method (FMM), and a wavefront construction (WFC) scheme. Over the last several years, FMM has become a mature technique in seismology, with a number of improvements to the underlying theory and the release of software tools that allow it to be used in a variety of applications. At its core, FMM is a grid based solver that implicitly tracks a propagating wavefront by seeking finite difference solutions to the eikonal equation along an evolving narrow band. Recent developments include the use of source grid refinement to improve accuracy, the introduction of a multi-stage scheme to allow reflections and refractions to be tracked in layered media, and extension to spherical coordinates. Implementation of these ideas has led to a number of different applications, including teleseismic tomography, wide-angle reflection and refraction tomography, earthquake relocation, and ambient noise imaging using surface waves. The WFC scheme represents the wavefront surface as a set of points in 6-D phase space; these points are advanced in time using local initial value ray tracing in order to form a sequence of wavefront surfaces that fill the model volume. Surface refinement and simplification techniques inspired by recent developments in computer graphics are used to maintain a fixed density of nodes

  4. System and Method for Null-Lens Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)

    2015-01-01

    A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.

  5. TRL-6 for JWST Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; Sabatke, Erin; Schwenker, John; Towell, Tim; Carey, Larkin; Contos, Adam; Shi, Fang; Mesa, Luis

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  6. TRL-6 for JWST wavefront sensing and control

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee D.; Dean, Bruce H.; Aronstein, David L.; Bowers, Charles W.; Hayden, William; Lyon, Richard G.; Shiri, Ron; Smith, J. Scott; Acton, D. Scott; Carey, Larkin; Contos, Adam; Sabatke, Erin; Schwenker, John; Shields, Duncan; Towell, Tim; Shi, Fang; Meza, Luis

    2007-09-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.

  7. Wavefront sensing based on phase contrast theory and coherent optical processing

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Qi, Bian; Chenlu, Zhou; Tenghao, Li; Mali, Gong

    2016-07-01

    A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making high-density detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.

  8. Wavefront sensing using a liquid-filled photonic crystal fiber.

    PubMed

    Valente, Denise; Rativa, Diego; Vohnsen, Brian

    2015-05-18

    A novel wavefront sensor based on a microstructural array of waveguides is proposed. The method is based on the sensitivity in light-coupling efficiency to the wavefront gradient present at the entrance aperture of each waveguide in an array, and hence the amount of incident light that couples is influenced by wavefront aberrations. The concept is illustrated with wavefront measurements that have been performed using a liquid-filled photonic crystal fiber (LF-PCF) working as a coherent fiber bundle. The pros and cons of the LF-PCF based sensor are discussed.

  9. Wavefront Sensing Analysis of Grazing Incidence Optical Systems

    NASA Technical Reports Server (NTRS)

    Rohrbach, Scott; Saha, Timo

    2012-01-01

    Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined

  10. Wavefront phase retrieval with multi-aperture Zernike filter for atmospheric sensing and adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Bordbar, Behzad; Farwell, Nathan H.; Vorontsov, Mikhail A.

    2016-09-01

    A novel scintillation resistant wavefront sensor based on a densely packed array of classical Zernike filters, referred to as the multi-aperture Zernike wavefront sensor (MAZ-WFS), is introduced and analyzed through numerical simulations. Wavefront phase reconstruction in the MAZ-WFS is performed using iterative algorithms that are optimized for phase aberration sensing in severe atmospheric turbulence conditions. The results demonstrate the potential of the MAZ-WFS for high-resolution retrieval of turbulence-induced phase aberrations in strong scintillation conditions for atmospheric sensing and adaptive optics applications.

  11. Wavefront Sensing with the Fine Guidance Sensor for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Smith, J. Scott; Aronstein, David; Dean, Bruce H.; Howard,Joe; Shiri, Ron

    2008-01-01

    An analysis is presented that utilizes the Fine Guidance Sensor (FGS) for focal-plane wavefront sensing (WFS) for the James Webb Space Telescope (JWST). WFS with FGS increases the number of wavefront measurements taken in field of the telescope, but has many challenges over the other JWST instruments that make it unique, such as; less sampling of the Point Spread Function (PSF), a smaller diversity-defocus range, a smaller image detector size, and a polychromatic object or source. Additionally, presented is an analysis of sampling for wavefront sensing. Results are shown based on simulations of flight and the cryogenic optical testing at NASA Johnson Space Center.

  12. Pupil phase discontinuity measurement: comparison of different wavefront sensing concepts

    NASA Astrophysics Data System (ADS)

    El Hadi, K.; Sauvage, J.-F.; Dohlen, K.; Fusco, T.; Neichel, B.; Marchis, F.; N'Diaye, M.

    2016-07-01

    The Laboratoire d'Astrophysique de Marseille is involved in the preparation of the E-ELT instrumentation framework: In particular, an ESO-EELT M1 mirror segment (1.5 m) has been demonstrated and different wavefront sensing (WFS) concepts among which Pyramid, Zernike phase mask sensor (ZELDA), Phase diversity or still NL Curvature) are also investigated. Segmented mirrors are widely used today in diverse domains: fiber coupling, laser beam shaping, microscopy or retina imaging. If, these mirrors offer a solution to realize important monolithic sizes for giant telescopes in astronomy, they also raise the problem of segments cophasing and measurement of phase discontinuities. In this work, we aim to investigate a suitable WFS approach for pupil phase discontinuity measurement. Coupling a segmented PTT mirror (Iris AO) with four different WFS (Shack-Hartmann, Quadriwave Lateral Shearing Interferometer, Pyramid and Zernike Phase Mask), we study their sensitivity to segmented pupil: in particular, segment phasing, stability, saturation, flat, or still the addressing mode are then performed and compared.

  13. Prototype pipeline for LSST wavefront sensing and reconstruction

    NASA Astrophysics Data System (ADS)

    Claver, Charles F.; Chandrasekharan, Srinivasan; Liang, Ming; Xin, Bo; Alagoz, Enver; Arndt, Kirk; Shipsey, Ian P.

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) uses an Active Optics System (AOS) to maintain system alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from 4 curvature based wavefront sensors located on the corners of the inscribed square within the 3.5 degree field of view. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the development of the Active Optics Pipeline prototype that simulates processing the raw image data from the wavefront sensors through to wavefront estimation on to the active optics corrective actions. We also describe various wavefront estimation algorithms under development for the LSST active optics system. The algorithms proposed are comprised of the Zernike compensation routine which improve the accuracy of the wavefront estimate. Algorithm development has been aided by a bench top optical simulator which we also describe. The current software prototype combines MATLAB modules for image processing, tomographic reconstruction, atmospheric turbulence and Zemax for optical ray-tracing to simulate the closed loop behavior of the LSST AOS. We describe the overall simulation model and results for image processing using simulated images and initial results of the wavefront estimation algorithms.

  14. Low order wavefront sensing and control for WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Balasubramanian, Kunjithapatham; Bartos, Randall; Hein, Randall; Kern, Brian; Krist, John; Lam, Raymond; Moore, Douglas; Moore, James; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Truong, Tuan; Wallace, Kent; Wang, Xu; Wilson, Dan

    2015-09-01

    To maintain the required WFIRST Coronagraph starlight suppression performance in a realistic space environment, a low order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C uses the rejected stellar light from coronagraph to sense and suppress the telescope pointing drift and jitter as well as the low order wavefront errors due to changes in thermal loading on the telescope and the rest of the observatory. In this paper we will present an overview of the low order wavefront sensing and control subsystem for the WFIRST Coronagraph. We will describe LOWFS/C's Zernike wavefront sensor concept and control design, and present an overview of sensing performance analysis and modeling, predicted line-of-sight jitter suppression loop performance, as well as the low order wavefront error correction with the coronagraph's deformable mirror. We will also report the LOWFS/C testbed design and the preliminary in-air test results, which show promising performance of the Zernike wavefront sensor and FSM feedback loop.

  15. Tomographic wave-front sensing with a single guide star

    NASA Astrophysics Data System (ADS)

    Hart, Michael; Jefferies, Stuart; Hope, Douglas

    2016-09-01

    Adaptive optics or numerical restoration algorithms that restore high resolution imaging through atmospheric turbulence are subject to isoplanatic wave-front errors. Mitigating those errors requires that the wave-front aberrations be estimated within the 3D volume of the atmosphere. Present techniques rely on multiple beacons, either natural stars or laser guide stars, to probe the atmospheric aberration along different lines of sight, followed by tomographic projection of the measurements onto layers at defined ranges. In this paper we show that a three-dimensional estimate of the wave-front aberration can be recovered from measurements by a single guide star in the case where the aberration is stratified, provided that the telescope tracks across the sky with non-uniform angular velocity. This is generally the case for observations of artificial earth-orbiting satellites, and the new method is likely to find application in ground-based telescopes used for space situational awareness.

  16. Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Dainty, Christopher; Lara, David

    2007-02-01

    Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and all factors that influence the sensor data. We present detailed probability density functions for the output of the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack-Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estimation can significantly increase the dynamic range of a Shack-Hartmann sensor with four detectors and that it can reduce the residual wavefront error when compared with traditional methods.

  17. Zonal wavefront sensing using a grating array printed on a polyester film

    SciTech Connect

    Pathak, Biswajit; Boruah, Bosanta R.; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  18. Wavefront sensing and control architecture for the Spherical Primary Optical Telescope (SPOT)

    NASA Astrophysics Data System (ADS)

    Dean, Bruce H.; Smith, Jeff S.; Budinoff, Jason G.; Feinberg, Lee

    2006-06-01

    Testbed results are presented demonstrating high-speed image-based wavefront sensing and control for a spherical primary optical telescope (SPOT). The testbed incorporates a phase retrieval camera coupled to a 3-Mirror Vertex testbed (3MV) at the NASA Goddard Space Flight Center. Actuator calibration based on the Hough transform is discussed as well as several supercomputing architectures for image-based wavefront sensing. Timing results are also presented based on various algorithm implementations using a cluster of 64 TigerSharc TS101 DSP's (digital-signal processors).

  19. Common-Path Interferometric Wavefront Sensing for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent

    2011-01-01

    This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.

  20. Improving wavefront sensing with a Shack-Hartmann device.

    PubMed

    Rais, Martin; Morel, Jean-Michel; Thiebaut, Carole; Delvit, Jean-Marc; Facciolo, Gabriele

    2016-10-01

    To achieve higher resolutions, current earth observation satellites use larger, lightweight primary mirrors that can deform over time, affecting the image quality. To overcome this problem, we evaluated the possibility of combining a deformable mirror with a Shack-Hartman wavefront sensor (SHWFS) directly in the satellite. The SHWFS's performance depends entirely on the accuracy of the shift estimation algorithm employed, which should be computationally cheap to execute onboard. We analyzed the problem of fast, accurate shift estimation in this context and have proposed a new algorithm, based on a global optical flow method that estimates the shifts in linear time. Based on our experiments, we believe our method has proven to be more accurate and stable, as well as less sensitive to noise, than all current state-of-the-art methods, permitting a more precise onboard wavefront estimation.

  1. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    SciTech Connect

    Codona, Johanan L.; Kenworthy, Matthew

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.

  2. Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems

    DTIC Science & Technology

    2007-12-01

    WAVEFRONT SENSING FOR CONTROL OF SPACE BASED ADAPTIVE OPTICS SYSTEMS by Richard J Schgallis December 2007 Thesis Advisor: Brij Agrawal...J Schgallis Approved by: Dr. Brij Agrawal Thesis Advisor Dr. Andres Larraza Co-Advisor Dr. Jae-Jun Kim Second Reader Dr...Control ..................................................................................... 35 B. EXPERIMENTS AND RESULTS

  3. Advanced wavefront measurement and analysis of laser system modeling

    SciTech Connect

    Wolfe, C.R.; Auerback, J.M.

    1994-11-15

    High spatial resolution measurements of the reflected or transmitted wavefronts of large aperture optical components used in high peak power laser systems is now possible. These measurements are produced by phase shifting interferometry. The wavefront data is in the form of 3-D phase maps that reconstruct the wavefront shape. The emphasis of this work is on the characterization of wavefront features in the mid-spatial wavelength range (from 0.1 to 10.0 mm) and has been accomplished for the first time. Wavefront structure from optical components with spatial wavelengths in this range are of concern because their effects in high peak power laser systems. At high peak power, this phase modulation can convert to large magnitude intensity modulation by non-linear processes. This can lead to optical damage. We have developed software to input the measured phase map data into beam propagation codes in order to model this conversion process. We are analyzing this data to: (1) Characterize the wavefront structure produced by current optical components, (2) Refine our understanding of laser system performance, (3) Develop a database from which future optical component specifications can be derived.

  4. Sensing wavefronts on resolved sources with pyramids on ELTs

    NASA Astrophysics Data System (ADS)

    Feldt, Markus; Hippler, Stefan; Obereder, Andreas; Stuik, Remko; Bertram, Thomas

    2016-07-01

    Pyramid wavefront sensors (PWFS) have been agreed to provide a superior faint-end performance with respect to Shack-Hartmann systems (SHS) quite some time ago. However, much of the advantage relies on the fact that PWFSs exploit the full resolution limit of the telescope. ELTs will thus confront PWFSs with an unprecedented number of resolved targets. To analyze the behavior of PWFS on extended targets in detail observationally is difficult. We will present the result of simulations representing the Single-Conjugated Adaptive Optics (SCAO) system of METIS on the European ELT (E-ELT).

  5. Wavefront sensing and adaptive control in phased array of fiber collimators

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change

  6. Curvature wavefront sensing based on a single defocused image and intensity compensation.

    PubMed

    Wu, Zhixu; Bai, Hua; Cui, Xiangqun

    2016-04-01

    Curvature wavefront sensing usually requires the measurement of two defocused images at equal distances before and after the focus. In this paper, a new wavefront recovery algorithm based on only one defocused image is proposed. This algorithm contains the following four steps: response matrix calculation, establishment of intensity distribution equations, Zernike coefficients solution derived from the least squares method, and defocused image compensation with the solved Zernike coefficients. The performance of the algorithm in a large obscuration ratio and fast focal ratio optical system on axis and the edge of the field of view (FOV) is examined. Two optical systems of the Hubble telescope and a modified Paul-Baker telescope are employed to test the algorithm. The simulations show that the proposed algorithm outperforms in structural simplicity, and applications are expected in the wavefront recovery of the extreme environment (i.e., in space and the Antarctic).

  7. STIR: Advanced Quantum Sensing

    DTIC Science & Technology

    2014-07-18

    STIR: Advanced Quantum Sensing Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to- noise...Quantum Sensing Report Title Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to-noise ratio. We...Kevin Lyons, Andrew N. Jordan, Trent M. Graham, Paul G. Kwiat. Strengthening weak- value amplification with recycled photons , Physical Review A, (08

  8. Testbed Demonstration of Low Order Wavefront Sensing and Control Technology for WFIRST Coronagraph

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Balasubramanian, K.; Cady, E.; Kern, B.; Lam, R.; Mandic, M.; Patterson, K.; Poberezhskiy, I.; Shields, J.; Seo, J.; Tang, H.; Truong, T.; Wilson, D.

    2017-01-01

    NASA’s WFIRST-AFTA Coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. To maintain the required coronagraph performance in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C will use the rejected stellar light to sense and suppress the telescope pointing drift and jitter as well as low order wavefront errors due to the changes in thermal loading of the telescope and the rest of the observatory. The LOWFS/C uses a Zernike phase contrast wavefront sensor with the phase shifting disk combined with the stellar light rejecting occulting mask, a key concept to minimize the non-common path error. Developed as a part of the Dynamic High Contrast Imaging Testbed (DHCIT), the LOWFS/C subsystem also consists of an Optical Telescope Assembly Simulator (OTA-S) to generate the realistic line-of-sight (LoS) drift and jitter as well as low order wavefront error from WFIRST-AFTA telescope’s vibration and thermal drift. The entire LOWFS/C subsystem have been integrated, calibrated, and tested in the Dynamic High Contrast Imaging Testbed. In this presentation we will show the results of LOWFS/C performance during the dynamic coronagraph tests in which we have demonstrated that LOWFS/C is able to maintain the coronagraph contrast with the presence of WFIRST like line-of-sight drift and jitter as well as low order wavefront drifts.

  9. Wavefront sensing in space from the PICTURE-B sounding rocket

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Chakrabarti, Supriya

    2016-07-01

    A NASA sounding rocket for high contrast imaging with a visible nulling coronagraph, the Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B) payload has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. We present results from the November 2015 launch demonstrating active wavefront sensing in space with a piezoelectric mirror stage and a micromachine deformable mirror along with precision pointing and lightweight optics in space.

  10. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  11. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  12. Low-order wavefront sensing and control for WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Balasubramanian, Kunjithapatham; Hein, Randall; Lam, Raymond; Moore, Douglas; Moore, James; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Truong, Tuan; Wallace, J. Kent; Wang, Xu; Wilson, Daniel

    2016-01-01

    To maintain the required Wide-Field Infrared Survey Telescope (WFIRST) coronagraph performance in a realistic space environment, a low-order wavefront sensing and control (LOWFS/C) subsystem is necessary. The LOWFS/C uses the rejected stellar light from the coronagraph to sense and suppress the telescope pointing errors as well as low-order wavefront errors (WFEs) due to changes in thermal loading of the telescope and the rest of the observatory. We will present a conceptual design of a LOWFS/C subsystem for the WFIRST-AFTA coronagraph. This LOWFS/C uses a Zernike phase contrast wavefront sensor (ZWFS) with a phase shifting disk combined with the stellar light rejecting occulting masks, a key concept to minimize the noncommon path error. We will present our analysis of the sensor performance and evaluate the performance of the line-of-sight jitter suppression loop, as well as the low-order WFE correction loop with a deformable mirror on the coronagraph. We will also report the LOWFS/C testbed design and the preliminary in-air test results, which show a very promising performance of the ZWFS.

  13. Fine optical alignment correction of astronomical spectrographs via in-situ full-field moment-based wavefront sensing

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Tuttle, Sarah E.; Vattiat, Brian L.

    2012-09-01

    The image moment-based wavefront sensing (IWFS) utilizes moments of focus-modulated focal plane images to determine modal wavefront aberrations. This permits fast, easy, and accurate measurement of wavefront error (WFE) on any available finite-sized isolated targets across the entire focal plane (FP) of an imaging system, thereby allowing not only in-situ full-field image quality assessment, but also deterministic fine alignment correction of the imaging system. We present an experimental demonstration where fine alignment correction of a fast camera system in a fiber-fed astronomical spectrograph, called VIRUS, is accomplished by using IWFS.

  14. Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor.

    PubMed

    Meimon, Serge; Fusco, Thierry; Michau, Vincent; Plantet, Cédric

    2014-05-15

    We propose here a novel way to analyze Shack-Hartmann wavefront sensor images in order to retrieve more modes than the two centroid coordinates per sub-aperture. To do so, we use the linearized focal-plane technique (LIFT) phase retrieval method for each sub-aperture. We demonstrate that we can increase the number of modes sensed with the same computational burden per mode. For instance, we show the ability to control a 21×21 actuator deformable mirror using a 10×10 lenslet array.

  15. Wavefront Sensing and Control Technology for Submillimeter and Far-Infrared Space Telescopes

    NASA Technical Reports Server (NTRS)

    Redding, Dave

    2004-01-01

    The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.

  16. Transverse translation diversity wavefront sensing with limited position and pupil illumination knowledge

    NASA Astrophysics Data System (ADS)

    Moore, Dustin B.; Fienup, James R.

    2014-08-01

    Transverse translation diversity phase retrieval (TTDPR) is an image-based wavefront sensing technique where a mask with a known transmission distribution translates through a pupil plane of the system under test while point spread functions are acquired. Usually this requires knowledge of the translation of the mask, knowledge of the pupil illumination due to the system's aperture stop and a target that does not move between frames. We demonstrate, by Monte-Carlo simulation, a multi-stage bootstrapping technique capable of estimating pupil phase with hundredth wave RMS error even when all of these requirements are unmet.

  17. C-RED one: ultra-high speed wavefront sensing in the infrared made possible

    NASA Astrophysics Data System (ADS)

    Gach, J.-L.; Feautrier, Philippe; Stadler, Eric; Greffe, Timothee; Clop, Fabien; Lemarchand, Stéphane; Carmignani, Thomas; Boutolleau, David; Baker, Ian

    2016-07-01

    First Light Imaging's CRED-ONE infrared camera is capable of capturing up to 3500 full frames per second with a subelectron readout noise. This breakthrough has been made possible thanks to the use of an e-APD infrared focal plane array which is a real disruptive technology in imagery. We will show the performances of the camera, its main features and compare them to other high performance wavefront sensing cameras like OCAM2 in the visible and in the infrared. The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944.

  18. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  19. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in

  20. Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.

    1998-01-01

    As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.

  1. Distributed computing architecture for image-based wavefront sensing and 2D FFTs

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-06-01

    Image-based wavefront sensing provides significant advantages over interferometric-based wavefront sensors such as optical design simplicity and stability. However, the image-based approach is computationally intensive, and therefore, applications utilizing the image-based approach gain substantial benefits using specialized high-performance computing architectures. The development and testing of these computing architectures are essential to missions such as James Webb Space Telescope (JWST), Terrestrial Planet Finder-Coronagraph (TPF-C and CorSpec), and the Spherical Primary Optical Telescope (SPOT). The algorithms implemented on these specialized computing architectures make use of numerous two-dimensional Fast Fourier Transforms (FFTs) which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of digital signal processors (DSPs) and multiple DSP field programmable gate arrays (FPGAs), offering a novel application of low-diameter graph theory. Timing results and performance analysis are presented. The solutions offered could be applied to other computationally complex all-to-all communication problems.

  2. Comparison of laser ray-tracing and skiascopic ocular wavefront-sensing devices

    PubMed Central

    Bartsch, D-UG; Bessho, K; Gomez, L; Freeman, WR

    2009-01-01

    Purpose To compare two wavefront-sensing devices based on different principles. Methods Thirty-eight healthy eyes of 19 patients were measured five times in the reproducibility study. Twenty eyes of 10 patients were measured in the comparison study. The Tracey Visual Function Analyzer (VFA), based on the ray-tracing principle and the Nidek optical pathway difference (OPD)-Scan, based on the dynamic skiascopy principle were compared. Standard deviation (SD) of root mean square (RMS) errors was compared to verify the reproducibility. We evaluated RMS errors, Zernike terms and conventional refractive indexes (Sph, Cyl, Ax, and spherical equivalent). Results In RMS errors reading, both devices showed similar ratios of SD to the mean measurement value (VFA: 57.5±11.7%, OPD-Scan: 53.9±10.9%). Comparison on the same eye showed that almost all terms were significantly greater using the VFA than using the OPD-Scan. However, certain high spatial frequency aberrations (tetrafoil, pentafoil, and hexafoil) were consistently measured near zero with the OPD-Scan. Conclusion Both devices showed similar level of reproducibility; however, there was considerable difference in the wavefront reading between machines when measuring the same eye. Differences in the number of sample points, centration, and measurement algorithms between the two instruments may explain our results. PMID:17571088

  3. Study of an instrument for sensing errors in a telescope wavefront

    NASA Technical Reports Server (NTRS)

    Golden, L. J.; Shack, R. V.; Slater, P. N.

    1974-01-01

    Focal plane sensors for determining the error in a telescope wavefront were investigated. The construction of three candidate test instruments and their evaluation in terms of small wavefront error aberration measurements are described. A laboratory wavefront simulator was designed and fabricated to evaluate the test instruments. The laboratory wavefront error simulator was used to evaluate three tests; a Hartmann test, a polarization shearing interferometer test, and an interferometric Zernike test.

  4. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  5. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  6. Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing.

    PubMed

    Gilles, L; Ellerbroek, B L

    2008-05-15

    We recently introduced matched filtering in the context of astronomical Shack-Hartmann wavefront sensing with elongated sodium laser beacons [Appl. Opt. 45, 6568 (2006)]. Detailed wave optics Monte Carlo simulations implementing this technique for the Thirty Meter Telescope dual conjugate adaptive optics system have, however, revealed frequent bursts of degraded closed loop residual wavefront error [Proc. SPIE 6272, 627236 (2006)]. The origin of this problem is shown to be related to laser guide star jitter on the sky that kicks the filter out of its linear dynamic range, which leads to bursts of nonlinearities that are reconstructed into higher-order wavefront aberrations, particularly coma and trifoil for radially elongated subaperture spots. An elegant reformulation of the algorithm is proposed to extend its dynamic range using a set of linear constraints while preserving its improved noise rejection and Monte Carlo performance results are reported that confirm the benefits of the method.

  7. Digital holography wavefront sensing in the pupil-plane recording geometry for distributed-volume atmospheric aberrations

    NASA Astrophysics Data System (ADS)

    Banet, Matthias T.; Spencer, Mark F.; Raynor, Robert A.; Marker, Dan K.

    2016-09-01

    Digital holography in the pupil-plane recording geometry shows promise as a wavefront sensor for use in adaptive-optics systems. Because current wavefront sensors suffer from decreased performance in the presence of turbulence and thermal blooming, there is a need for a more robust wavefront sensor in such distributed-volume atmospheric conditions. Digital holography fulfills this roll by accurately estimating the wrapped phase of the complex optical field after propagation through the atmosphere to the pupil plane of an optical system. This paper examines wave-optics simulations of spherical-wave propagation through both turbulence and thermal blooming; it also quantifies the performance of digital holography as a wavefront sensor by generating field-estimated Strehl ratios as a function of the number of pixels in the detector array, the Rytov number, and the Fried coherence diameter. Altogether the results indicate that digital holography wavefront sensing in the pupil-plane recording geometry is a valid and accurate method for estimating the wrapped phase of the complex optical field in the presence of distributed-volume atmospheric aberrations.

  8. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  9. Directional property of the retinal reflection measured with optical coherence tomography and wavefront sensing

    NASA Astrophysics Data System (ADS)

    Gao, Weihua

    orientation of the photoreceptor and ganglion axons that compose the layers, respectively. The reflectance of HFL and RNFL were consistent with scattering from cylindrical structures. Apparent thickness and brightness of HFL varied significantly with pupil entry position. Brightness of RNFL also varied significantly with entry position, but its apparent thickness did not. The overall retinal directionality was found consistent with the optical SCE reported in the literature. The third objective evaluated a second optical method, based on Shack-Hartman wavefront sensing (SHWS), for measuring the optical SCE. Using a modified research-grade SHWS with custom algorithm, I demonstrated that the retinal reflectance can be readily extracted from the SHWS measurement and the spatial distribution of which is consistent with the optical SCE. This new method represents an attractive alternative to the conventional, highly customized instruments traditionally used for measuring the optical SCE and provides a more complete description of the eye's optical performance than currently implemented with SHWS technology.

  10. Study of an instrument for sensing errors in a telescope wavefront

    NASA Technical Reports Server (NTRS)

    Golden, L. J.; Shack, R. V.; Slater, D. N.

    1973-01-01

    Partial results are presented of theoretical and experimental investigations of different focal plane sensor configurations for determining the error in a telescope wavefront. The coarse range sensor and fine range sensors are used in the experimentation. The design of a wavefront error simulator is presented along with the Hartmann test, the shearing polarization interferometer, the Zernike test, and the Zernike polarization test.

  11. A test bench for ARGOS: integration of sub-systems and validation of the wavefront sensing

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, Gilles; Rabien, Sebastian

    2012-07-01

    ARGOS, the wide eld Laser Guide Stars adaptive optics system for the Large Binocular Telescope, is now entering its installation phase. In the meanwhile, we have started a test bench in order to integrate various Argos sub-systems and demonstrate its wavefront measurements. To this objective, we rst validate three key components of the Argos wavefront sensor which we then integrate together. The test bench therefore comprises the Argos wavefront camera system - including a large frame, fast framerate, high quantum eciency and low readout noise pnCCD -, the slope computer, and a optical gating unit. While we present here the demonstration of those three key components, it is also a step to their system level integration that enables us to validate the wavefront measurements in term of noises, timing and computation. In the near future, those system will be integrated to the wavefront sensor system of ARGOS.

  12. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  13. Optical solutions for accommodating ELT LGS wave-front sensing to small format detectors

    NASA Astrophysics Data System (ADS)

    Gendron, E.

    2016-07-01

    Sodium laser guide stars (LGS) will be used on extremely large telescopes (ELT) for increasing the sky coverage of adaptive optics systems. The thickness of the sodium layer combined with a perspective effect makes the laser beacon to appear as an elongated plume when observed from a pupil location distant from the laser launch telescope. The wave-front sensing with a Shack-Hartmann on such a peculiar object requires a large number of pixels per sub-aperture in order to cope with the required field of view. As a large number of sub-apertures is required on an ELT, this leads to detector formats exceeding 1500 × 1500 pixels. It is worth noticing however that most of these numerous pixels are useless, as many of them won't receive any light due to the arrangement of the pattern of spots. We present in this article some potential optical solutions for relaxing the requirements of the detector format by a significant amount. This is obtained by re-arranging the pattern of the elongated spots in order to avoid any loss of space between them. Depending on the geometry of the system, a factor of ≍2 on the pixel count can be gained along both directions.

  14. High-speed Imaging and Wavefront Sensing with an Infrared Avalanche Photodiode Array

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Atkinson, Dani; Riddle, Reed; Hall, Donald; Jacobson, Shane; Law, Nicholas M.; Chun, Mark

    2015-08-01

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e- in the lab, and a total noise of 2.52 e- on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  15. Shack-Hartmann mask/pupil registration algorithm for wavefront sensing in segmented mirror telescopes.

    PubMed

    Piatrou, Piotr; Chanan, Gary

    2013-11-10

    Shack-Hartmann wavefront sensing in general requires careful registration of the reimaged telescope primary mirror to the Shack-Hartmann mask or lenslet array. The registration requirements are particularly demanding for applications in which segmented mirrors are phased using a physical optics generalization of the Shack-Hartmann test. In such cases the registration tolerances are less than 0.1% of the diameter of the primary mirror. We present a pupil registration algorithm suitable for such high accuracy applications that is based on the one used successfully for phasing the segments of the Keck telescopes. The pupil is aligned in four degrees of freedom (translations, rotation, and magnification) by balancing the intensities of subimages formed by small subapertures that straddle the periphery of the mirror. We describe the algorithm in general terms and then in the specific context of two very different geometries: the 492 segment Thirty Meter Telescope, and the seven "segment" Giant Magellan Telescope. Through detailed simulations we explore the accuracy of the algorithm and its sensitivity to such effects as cross talk, noise/counting statistics, atmospheric scintillation, and segment reflectivity variations.

  16. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    SciTech Connect

    Baranec, Christoph; Atkinson, Dani; Hall, Donald; Jacobson, Shane; Chun, Mark; Riddle, Reed; Law, Nicholas M.

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible and infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.

  17. Performance of a Novel PMMA Polymer Imaging Bundle for Field Acquisition and Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Richards, S. N.; Leon-Saval, S.; Goodwin, M.; Zheng, J.; Lawrence, J. S.; Bryant, J. J.; Bland-Hawthorn, J.; Norris, B.; Cvetojevic, N.; Argyros, A.

    2017-01-01

    Imaging bundles provide a convenient way to translate a spatially coherent image, yet conventional imaging bundles made from silica fibre optics typically remain expensive with large losses due to poor filling factors ( 40%). We present the characterisation of a novel polymer imaging bundle made from poly(methyl methacrylate) (PMMA) that is considerably cheaper and a better alternative to silica imaging bundles over short distances ( 1 m; from the middle to the edge of a telescope's focal plane). The large increase in filling factor (92% for the polymer imaging bundle) outweighs the large increase in optical attenuation from using PMMA (1 dB/m) instead of silica (10-3 dB/m). We present and discuss current and possible future multi-object applications of the polymer imaging bundle in the context of astronomical instrumentation including: field acquisition, guiding, wavefront sensing, narrow-band imaging, aperture masking, and speckle imaging. The use of PMMA limits its use in low-light applications (e.g., imaging of galaxies); however, it is possible to fabricate polymer imaging bundles from a range of polymers that are better suited to the desired science.

  18. Pyramid wavefront sensing with a laser guide star for an ELT

    NASA Astrophysics Data System (ADS)

    Le Roux, Brice

    2010-07-01

    The wavefront sensor [WFS] is a key element of an Adaptive Optics [AO] system. It gives access to a direct measurement of the turbulent phase, its curvature or its slope, from which the mirror voltages are computed. The ability of the system to correct efficiently the atmospheric turbulence is strongly dependent on the performance of the WFS in estimating the turbulent phase. The Shack-Hartmann [SH] WFS has been for a long time the standard used in AO systems. In 1996, it has been proposed1 a new generation WFS, the pyramid WFS. It is a focal plane WFS, based on the principle of a Foucault knife-edge. It has been demonstrated that it provides a consistent gain with respect to the Shack-Hartmann.2,5-7 More recently, improvements were proposed to increase the pyramid performance.3, 4 On the framework of the developpement of extremely large telescopes, the interest of a pyramid wave front sensor appears clearly. But its behaviour with laser guide stars [LGS], most probably necessary in any Extremely Large Telescope [ELT], is still relatively unknown. Some WFS dedicated to LGS wave front sensing has already been proposed8,9 but a full study of the pyramid WFS behaviour is still necessary. This work's aim is to bring answers to this topic.

  19. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  20. Wavefront sensing for deformable space-based optics exploiting natural and synthetic guide stars

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Friedman, Edward J.

    2002-08-01

    Natural and synthetic guide stars can serve as beacons for Shack-Hartmann wavefront sensors in space-based applications. In this paper, the authors determine the key equations that govern the optimization of the wavefront sensor employed on a space- based imaging system. There are two major products of this analysis. First, the number of subapertures can be optimized. Second, the number of modes used in the wavefront recovery can be optimized. Finally, the process for optimizing these values is explained. For the examples shown, the optimal number of retrieved modes and the optimal number of subapertures are determined.

  1. High resolution retinal image restoration with wavefront sensing and self-extracted filtering

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu; Erry, Gavin; Nemeth, Sheila; Mitra, Sunanda; Soliz, Peter

    2005-04-01

    Diagnosis and treatment of retinal diseases such as diabetic retinopathy commonly rely on a clear view of the retina. The challenge in obtaining high quality retinal image lies in the design of the imaging system that can reduce the strong aberrations of the human eye. Since the amplitudes of human eye aberrations decrease rapidly as the aberration order goes up, it is more cost-effective to correct low order aberrations with adaptive optical devices while process high order aberrations through image processing. A cost effective fundus imaging device that can capture high quality retinal images with 2-5 times higher resolution than conventional retinal images has been designed [1]. This imager improves image quality by attaching complementary adaptive optical components to a conventional fundus camera. However, images obtained with the high resolution camera are still blurred due to some uncorrected aberrations as well as defocusing resulting from non-isoplanatic effect. Therefore, advanced image restoration algorithms have been employed for further improvement in image quality. In this paper, we use wavefront-based and self-extracted blind deconvolution techniques to restore images captured by the high resolution fundus camera. We demonstrate that through such techniques, pathologies that are critical to retinal disease diagnosis but not clear or not observable in the original image can be observed clearly in the restored images. Image quality evaluation is also used to finalize the development of a cost-effective, fast, and automated diagnostic system that can be used clinically.

  2. Differential focal anisoplanatism in laser guide star wavefront sensing on extremely large telescopes.

    PubMed

    Muller, Nicolas; Michau, Vincent; Robert, Clélia; Rousset, Gérard

    2011-10-15

    Laser guide stars (LGSs) aim at increasing the sky coverage of adaptive optics (AO) as this is highly restricted when using only natural guide stars. With such three-dimensional extended objects, spot elongation may limit the measurement accuracy of wavefronts. We evaluate the effect of differential focal anisoplanatism, induced solely by the longitudinal extension of a side-launched LGS, on the slope measurements performed by a Shack-Hartmann for a 40 m class telescope. We also take this effect into account in the wavefront reconstruction and derive estimations of the resulting wavefront error in a multi-LGS AO system. We find an error of 100 nm in the worst case at the subaperture level and a small error of the order of 10 nm for six LGSs after wavefront reconstruction.

  3. Adaptive optics confocal fluorescence microscopy with direct wavefront sensing for brain tissue imaging

    NASA Astrophysics Data System (ADS)

    Tao, Xiaodong; Fernandez, Bautista; Chen, Diana C.; Azucena, Oscar; Fu, Min; Zuo, Yi; Kubby, Joel

    2011-03-01

    Recently, there has been a growing interest in deep tissue imaging for the study of neurons. Unfortunately, because of the inhomogeneous refractive index of the tissue, the aberrations degrade the resolution and brightness of the final image. In this paper, we describe an adaptive optics confocal fluorescence microscope (AOCFM) which can correct aberrations based on direct wavefront measurements using a point source reference beacon and a Shack-Hartmann Wavefront Sensor (SHWS). Mouse brain tissues with different thicknesses are tested. After correction, both the signal intensity and contrast of the image are improved.

  4. Implementation of adaptive optics in fluorescent microscopy using wavefront sensing and correction

    NASA Astrophysics Data System (ADS)

    Azucena, Oscar; Crest, Justin; Cao, Jian; Sullivan, William; Kner, Peter; Gavel, Donald; Dillon, Daren; Olivier, Scot; Kubby, Joel

    2010-02-01

    Adaptive optics (AO) improves the quality of astronomical imaging systems by using real time measurement of the turbulent medium in the optical path using a guide star (natural or artificial) as a point source reference beacon [1]. AO has also been applied to vision science to improve the view of the human eye. This paper will address our current research focused on the improvement of fluorescent microscopy for biological imaging utilizing current AO technology. A Shack-Hartmann wavefront sensor (SHWS) is used to measure the aberration introduced by a Drosophila Melanogaster embryo with an implanted 1 micron fluorescent bead that serves as a point source reference beacon. Previous measurements of the wavefront aberrations have found an average peak-to-valley and root-mean-square (RMS) wavefront error of 0.77 micrometers and 0.15 micrometers, respectively. Measurements of the Zernike coefficients indicated that the correction of the first 14 Zernike coefficients is sufficient to correct the aberrations we measured. Here we show that a MEMS deformable mirror with 3.5 microns of stroke and 140 actuators is sufficient to correct these aberrations. The design, assembly and initial results for the use of a MEMS deformable mirror, SHWS and implanted fluorescent reference beacon for wavefront correction are discussed.

  5. Experimental Verification of Sparse Aperture Mask for Low Order Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, N. Jeremy

    2017-01-01

    To directly image exoplanets, future space-based missions are equipped with coronagraphs which manipulate the diffraction of starlight and create regions of high contrast called dark holes. Theoretically, coronagraphs can be designed to achieve the high level of contrast required to image exoplanets, which are billions of times dimmer than their host stars, however the aberrations caused by optical imperfections and thermal fluctuations cause the degradation of contrast in the dark holes. Focal plane wavefront control (FPWC) algorithms using deformable mirrors (DMs) are used to mitigate the quasi-static aberrations caused by optical imperfections. Although the FPWC methods correct the quasi-static aberrations, they are blind to dynamic errors caused by telescope jitter and thermal fluctuations. At Princeton's High Contrast Imaging Lab we have developed a new technique that integrates a sparse aperture mask with the coronagraph to estimate these low-order dynamic wavefront errors. This poster shows the effectiveness of a SAM Low-Order Wavefront Sensor in estimating and correcting these errors via simulation and experiment and compares the results to other methods, such as the Zernike Wavefront Sensor planned for WFIRST.

  6. Wavefront sensing and control performance modeling of the Thirty Meter telescope for systematic trade analyses

    NASA Astrophysics Data System (ADS)

    Nissly, Carl; Seo, Byoung-Joon; Troy, Mitchell; Chanan, Gary; Roberts, Scott; Rogers, John

    2014-08-01

    We have developed an integrated optical model of the semi-static performance of the Thirty Meter Telescope. The model includes surface and rigid body errors of all telescope optics as well as a model of the Alignment and Phasing System Shack-Hartmann wavefront sensors and control algorithms. This integrated model allows for simulation of the correction of the telescope wavefront, including optical errors on the secondary and tertiary mirrors, using the primary mirror segment active degrees of freedom. This model provides the estimate of the predicted telescope performance for system engineering and error budget development. In this paper we present updated performance values for the TMT static optical errors in terms of Normalized Point Source Sensitivity and RMS wavefront error after Adaptive Optics correction. As an example of a system level trade, we present the results from an analysis optimizing the number of Shack-Hartmann lenslets per segment. We trade the number of lenslet rings over each primary mirror segment against the telescope performance metrics of PSSN and RMS wavefront error.

  7. Novel Adaptive Optics concepts : wavefront sensing with sodium laser guide stars at Extemely Large Telescopes and simultaneous differential imaging

    NASA Astrophysics Data System (ADS)

    Kellner, Stephan Albert

    2005-12-01

    Since more than 15 years, Adaptive Optics (AO) is a proven concept to reach diffraction limited imaging at modern astronomical telescopes. In the case of next generation telescopes (Extremely Large Telescopes (ELTs)) with aperture diameters of up to 100m, sodium laser guide star based multi-conjugated-AO systems will be a basic requirement to exploit their full capability in terms of resolution and light concentration. A drawback of such an approach emerges in the finite distance and vertical extent of the sodium beacon in the mesosphere with respect to the telescope. This induces effects such as perspective elongation, where conventional wavefront sensing mechanisms will fail. Although several engineering concepts are under development to counteract these constraints at the cost of overall light efficiency and increased system complexity, this thesis proposes a novel kind of wavefront sensing technique to overcome the imposed limitations in a more natural way. The sensing technique is composed of two independently working sensors, a reflective rod and a mask with circular slits, each a representative of a novel wavefront sensor class, the so called z-invariant and Inverse Bessel Beam technique. Both are discussed in this thesis with a focus on the Inverse Bessel Beam technique. The latter is compared to alternative concepts such as temporal gating, with respect to the photon efficiency. Furthermore, the reflective rod was tested for its feasibility in laboratory conditions and in a more realistic environment at the William Herschel Telescope (WHT) at La Palma. With this test run its sensing principle has been verified. A novel technique already intensively used at 8m class telescopes is Simultaneous Differential Imaging. The direct detection of giant extra-solar planets is and will be a major science driver for galactic astronomy in the coming years. Modern telescope facilities such as the VLT reach, by means of adaptive optics, potentially the capability in terms

  8. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model

    NASA Astrophysics Data System (ADS)

    Holzlöhner, R.; Taubenberger, S.; Rakich, A. P.; Noethe, L.; Schipani, P.; Kuijken, K.

    2016-08-01

    We study a novel focal plane wavefront sensing and active optics control scheme at the VST on Cerro Paranal, an f/5.5 survey telescope with a 1x1 degree field of view and a 2.6m primary mirror. This scheme analyzes the elongation pattern of stellar PSFs across the full science image (256 Mpixels) and compares their second moments with an analytical model based on 5th-order geometrical optics. We consider 11 scalar degrees of freedom in mirror misalignments and deformations (M2 piston, tip/tilt and lateral displacement, detector tip/tilt, plus M1 figure astigmatism and trefoil). Using a numerical optimization method, we extract up to 4000 stars and complete the fitting process in under one minute. We demonstrate successful closed-loop active optics control based on maximum likelihood filtering.

  9. First Experimental Results Using Sparse Aperture Mask for Low Order Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Eldorado Riggs, A. J.

    2016-01-01

    We can determine the existence of life outside of earth by analyzing the spectra of exoplanets. Such direct imaging will provide the capability to thoroughly characterize an exoplanet's atmosphere. Direct imaging of exoplanets, however, has many technical challenges and difficulties: scattering and diffraction of light and the large difference in contrast, which is the ratio of brightness between the bright star and the dimmer planet. A coronagraph is an optical device that manipulates the diffraction of starlight and creates a region of high contrast (dark hole) where the dimmer planets can be seen. While in principle the level of contrast required for direct imaging of exoplanets can be achieved by stellar coronagraphic imaging, the resulting dark hole is highly sensitive to phase aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph such as tip-tilt, defocus and coma must be determined and compensated for. A sparse-aperture mask (SAM) can be integrated in the telescopic imaging system to make precise estimate of low-order wavefront aberrations. In this technique, the starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a detector and the phase aberrations are inferred from this fringe pattern. At Princeton's High Contrast Imaging Lab (HCIL), we have numerically proved this concept and we are currently working on verifying it experimentally.

  10. Coronagraphic wavefront sensing with COFFEE: high spatial-frequency diversity and other news

    NASA Astrophysics Data System (ADS)

    Mugnier, L. M.; Sauvage, J.-F.; Herscovici-Schiller, O.; Baudoz, P.; Galicher, R.; Le Duigou, J.-M.

    2016-07-01

    The final performance of current and future instruments dedicated to exoplanet detection and characterization is limited by intensity residuals in the scientific image plane, which originate in uncorrected optical aberrations. In order to reach very high contrasts, these aberrations needs to be compensated for. We have proposed a focalplane wave-font sensor called COFFEE (for COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection), which consists in an extension of conventional phase diversity to a coronagraphic system. In this communication, we study the extension of COFFEE to the joint estimation of the phase and the amplitude in the context of space-based coronagraphic instruments: we optimize the diversity phase in order to minimize the reconstruction error; we also propose and optimize a novel low-amplitude high-frequency diversity that should allow the phase-diverse images to still be used for science. Lastly, we perform a first experimental validation of COFFEE in the very high, space-like contrast conditions of the THD bench and show that COFFEE is able to distinguish between phase and amplitude aberrations.

  11. Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.

    PubMed

    Clare, Richard M; Le Louarn, Miska; Béchet, Clementine

    2011-02-01

    We propose ground-layer adaptive optics (GLAO) to improve the seeing on the 42 m European Extremely Large Telescope. Shack-Hartmann wavefront sensors (WFSs) with laser guide stars (LGSs) will experience significant spot elongation due to off-axis observation. This spot elongation influences the design of the laser launch location, laser power, WFS detector, and centroiding algorithm for LGS GLAO on an extremely large telescope. We show, using end-to-end numerical simulations, that with a noise-weighted matrix-vector-multiply reconstructor, the performance in terms of 50% ensquared energy (EE) of the side and central launch of the lasers is equivalent, the matched filter and weighted center of gravity centroiding algorithms are the most promising, and approximately 10×10 undersampled pixels are optimal. Significant improvement in the 50% EE can be observed with a few tens of photons/subaperture/frame, and no significant gain is seen by adding more than 200 photons/subaperture/frame. The LGS GLAO is not particularly sensitive to the sodium profile present in the mesosphere nor to a short-timescale (less than 100 s) evolution of the sodium profile. The performance of LGS GLAO is, however, sensitive to the atmospheric turbulence profile.

  12. Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology

    NASA Astrophysics Data System (ADS)

    Rammage, Ron R.; Neal, Daniel R.; Copland, Richard J.

    2002-11-01

    Human vision correction optics must be produced in quantity to be economical. At the same time every human eye is unique and requires a custom corrective solution. For this reason the vision industries need fast, versatile and accurate methodologies for characterizing optics for production and research. Current methods for measuring these optics generally yield a cubic spline taken from less than 10 points across the surface of the lens. As corrective optics have grown in complexity this has become inadequate. The Shack-Hartmann wavefront sensor is a device that measures phase and irradiance of light in a single snapshot using geometric properties of light. Advantages of the Shack-Hartmann sensor include small size, ruggedness, accuracy, and vibration insensitivity. This paper discusses a methodology for designing instruments based on Shack-Hartmann sensors. The method is then applied to the development of an instrument for accurate measurement of transmissive optics such as gradient bifocal spectacle lenses, progressive addition bifocal lenses, intrarocular devices, contact lenses, and human corneal tissue. In addition, this instrument may be configured to provide hundreds of points across the surface of the lens giving improved spatial resolution. Methods are explored for extending the dynamic range and accuracy to meet the expanding needs of the ophthalmic and optometric industries. Data is presented demonstrating the accuracy and repeatability of this technique for the target optics.

  13. Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Fan; Hong, Xin; Miller, Donald T.; Thibos, Larry N.; Bradley, Arthur

    2004-05-01

    A corneal aberrometer based on Shack-Hartmann wave-front sensing was developed and validated by using calibrated aspheric surfaces. The aberrometer was found to accurately measure corneal reflective aberrations, from which corneal topography and corneal refractive aberrations were derived. Measurements of reflective aberrations correlated well with theory (R^2=0.964 to 0.994). The sag error root mean square (RMS) was small, ranging from 0.1 to 0.17 µm for four of the five calibrated surfaces with the fifth at 0.36 µm as a result of residual defocus. Measured refractive aberrations matched with theory and whole-eye aberrometry to within a small fraction of a wavelength. Measurements on three human corneas revealed very large refractive astigmatism (0.65-1.2 µm) and appreciable levels of trefoil (0.08-0.47 µm), coma (0.14-0.19 µm), and spherical aberration (0.18-0.25 µm). The mean values of these aberrations were significantly larger than the RMS in repeated measurements.

  14. Field application of moment-based wavefront sensing to in-situ alignment and image quality assessment of astronomical spectrographs: results and analysis of aligning VIRUS unit spectrographs

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Tuttle, Sarah E.; Noyola, Eva; Peterson, Trent; Vattiat, Brian L.

    2014-07-01

    Teague introduced a phase retrieval method that uses the image shape moments. More recently, an independent study arrived at a similar technique, which was then applied to in-situ full-field image-quality evaluation of spectroscopic systems. This moment-based wavefront sensing (MWFS) method relies on the geometric relation between the image shape moments and the geometric wavefront modal coefficients. The MWFS method allows a non-iterative determination of the modal coefficients from focus-modulated images at arbitrary spatial resolutions. The determination of image moments is a direct extension of routine centroid and image size calculation, making its implementation easy. Previous studies showed that the MWFS works well in capturing large low-order modes, and is quite suitable for in-situ alignment diagnostics. At the Astronomical Instrumentation conference in 2012, we presented initial results of the application of the moment-based wavefront sensing to a fiber-fed astronomical spectrograph, called VIRUS (a set of replicated 150 identical integral-field unit spectrographs contained in 75 unit pairs). This initial result shows that the MWFS can provide accurate full-field image-quality assessment for efficiently aligning these 150 spectrographs. Since then, we have assembled more than 24 unit pairs using this technique. In this paper, we detail the technical update/progress made so far for the moment-based wavefront sensing method and the statistical estimates of the before/after alignment aberrations, image-quality, and various efficiency indicators of the unit spectrograph alignment process.

  15. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Cortes, Daniel; Pascual, Daniel; Marcos, Susana

    2015-03-01

    Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects' natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques.

  16. Phase-Controlled Magnetic Mirror for Wavefront Correction

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the

  17. X-ray wavefront characterization with two-dimensional wavefront sensors: shearing interferometers and Hartmann wavefront sensors

    NASA Astrophysics Data System (ADS)

    Baker, Kevin L.

    2012-10-01

    Phase reconstructions from a two-dimensional shearing interferometer, based on two orthogonal phase gratings in a single plane, and a Hartmann sensor are compared. Design alternatives for both wavefront sensors are given and simulated performance of both the two-dimensional x-ray shearing interferometer and Hartmann wavefront sensor are presented for two different phase profiles. The first comparison is an evaluation of metrology on DT ice layers in an inertial confinement fusion capsule and the second comparison is a high frequency "asterisk" phase profile. Both of these sensors can measure the two-dimensional wave-front gradient of an x-ray beam, as well as the x-ray absorption. These instruments measure the two-dimensional wave-front gradient in a single measurement and the wavefront sensor is located in a single plane making them much less sensitive to vibrations than most other wavefront sensing techniques.

  18. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

    PubMed Central

    Vinas, Maria; Dorronsoro, Carlos; Cortes, Daniel; Pascual, Daniel; Marcos, Susana

    2015-01-01

    Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects’ natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques. PMID:25798317

  19. Bringing it all together: a unique approach to requirements for wavefront sensing and control on the James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Contos, Adam R.; Acton, D. Scott; Atcheson, Paul D.; Barto, Allison A.; Lightsey, Paul A.; Shields, Duncan M.

    2006-06-01

    The opto-mechanical design of the 6.6 meter James Webb Space Telescope (JWST), with its actively-controlled secondary and 18-segment primary mirror, presents unique challenges from a system engineering perspective. To maintain the optical alignment of the telescope on-orbit, a process called wavefront sensing and control (WFS&C) is employed to determine the current state of the mirrors and calculate the optimal mirror move updates. The needed imagery is downloaded to the ground, where the WFS&C algorithms to process the images reside, and the appropriate commands are uploaded to the observatory. Rather than use a dedicated wavefront sensor for the imagery as is done in most other applications, a science camera is used instead. For the success of the mission, WFS&C needs to perform flawlessly using the assets available among the combination of separate elements (ground operations, spacecraft, science instruments, optical telescope, etc.) that cross institutional as well as geographic borders. Rather than be yet another distinct element with its own set of requirements to flow to the other elements as was originally planned, a novel approach was selected. This approach entails reviewing and auditing other documents for the requirements needed to satisfy the needs of WFS&C. Three actions are taken: (1) when appropriate requirements exist, they are tracked by WFS&C ; (2) when an existing requirement is insufficient to meet the need, a requirement change is initiated; and finally (3) when a needed requirement is missing, a new requirement is established in the corresponding document. This approach, deemed a "best practice" at the customer's independent audit, allows for program confidence that the necessary requirements are complete, while still maintaining the responsibility for the requirement with the most appropriate entity. This paper describes the details and execution of the approach; the associated WFS&C requirements and verification documentation; and the

  20. High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD

    NASA Astrophysics Data System (ADS)

    Zhu, Zhao-Yi; Li, Da-Yu; Hu, Li-Fa; Mu, Quan-Quan; Yang, Cheng-Liang; Cao, Zhao-Liang; Xuan, Li

    2016-09-01

    High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device (EMCCD) applied in the Shack-Hartmann wavefront sensor (S-H WFS) in adaptive optics (AO). However, when the brightness of the target changes in a large scale, the fixed electron multiplying (EM) gain will not be suited to the sensing limitation. Therefore an auto-gain-control method based on the brightness of light-spots array in S-H WFS is proposed in this paper. The control value is the average of the maximum signals of every light spot in an array, which has been demonstrated to be kept stable even under the influence of some noise and turbulence, and sensitive enough to the change of target brightness. A goal value is needed in the control process and it is predetermined based on the characters of EMCCD. Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust, the sensing SNR reaches the maximum for the corresponding signal level, and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 61205021, and 61405194) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  1. Wavefront Measurement in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl

    Wavefront sensing or aberration measurement in the eye is a key problem in refractive surgery and vision correction with laser. The accuracy of these measurements is critical for the outcome of the surgery. Practically all clinical methods use laser as a source of light. To better understand the background, we analyze the pre-laser techniques developed over centuries. They allowed new discoveries of the nature of the optical system of the eye, and many served as prototypes for laser-based wavefront sensing technologies. Hartmann's test was strengthened by Platt's lenslet matrix and the CCD two-dimensional photodetector acquired a new life as a Hartmann-Shack sensor in Heidelberg. Tscherning's aberroscope, invented in France, was transformed into a laser device known as a Dresden aberrometer, having seen its reincarnation in Germany with Seiler's help. The clinical ray tracing technique was brought to life by Molebny in Ukraine, and skiascopy was created by Fujieda in Japan. With the maturation of these technologies, new demands now arise for their wider implementation in optometry and vision correction with customized contact and intraocular lenses.

  2. Numerical analysis of wavefront measurement characteristics by using plenoptic camera

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Ma, Haotong; Zhang, Xuanzhe; Ning, Yu; Xu, Xiaojun

    2016-01-01

    To take advantage of the large-diameter telescope for high-resolution imaging of extended targets, it is necessary to detect and compensate the wave-front aberrations induced by atmospheric turbulence. Data recorded by Plenoptic cameras can be used to extract the wave-front phases associated to the atmospheric turbulence in an astronomical observation. In order to recover the wave-front phase tomographically, a method of completing the large Field Of View (FOV), multi-perspective wave-front detection simultaneously is urgently demanded, and it is plenoptic camera that possesses this unique advantage. Our paper focuses more on the capability of plenoptic camera to extract the wave-front from different perspectives simultaneously. In this paper, we built up the corresponding theoretical model and simulation system to discuss wave-front measurement characteristics utilizing plenoptic camera as wave-front sensor. And we evaluated the performance of plenoptic camera with different types of wave-front aberration corresponding to the occasions of applications. In the last, we performed the multi-perspective wave-front sensing employing plenoptic camera as wave-front sensor in the simulation. Our research of wave-front measurement characteristics employing plenoptic camera is helpful to select and design the parameters of a plenoptic camera, when utilizing which as multi-perspective and large FOV wave-front sensor, which is expected to solve the problem of large FOV wave-front detection, and can be used for AO in giant telescopes.

  3. Digital pyramid wavefront sensor with tunable modulation.

    PubMed

    Akondi, Vyas; Castillo, Sara; Vohnsen, Brian

    2013-07-29

    The pyramid wavefront sensor is known for its high sensitivity and dynamic range that can be tuned by mechanically altering its modulation amplitude. Here, a novel modulating digital scheme employing a reflecting phase only spatial light modulator is demonstrated. The use of the modulator allows an easy reconfigurable pyramid with digital control of the apex angle and modulation geometry without the need of any mechanically moving parts. Aberrations introduced by a 140-actuator deformable mirror were simultaneously sensed with the help of a commercial Hartmann-Shack wavefront sensor. The wavefronts reconstructed using the digital pyramid wavefront sensor matched very closely with those sensed by the Hartmann-Shack. It is noted that a tunable modulation is necessary to operate the wavefront sensor in the linear regime and to accurately sense aberrations. Through simulations, it is shown that the wavefront sensor can be extended to astronomical applications as well. This novel digital pyramid wavefront sensor has the potential to become an attractive option in both open and closed loop adaptive optics systems.

  4. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

  5. An achromatic low-order wavefront sensor

    NASA Astrophysics Data System (ADS)

    Brousseau, Denis; Allain, Guillaume; Thibault, Simon; Véran, Jean-Pierre

    2016-07-01

    Many wavefront sensors have been developed over the years, but most are not well suited for the photon-limited regime of coronagraphs designed for 10-9 contrast ratios and small inner working angles (IWAs). To meet current coronagraphs low-order wavefront sensing requirements, it is essential to have a method that offers high sensitivity and preferably a linear response. We propose an innovative low-order wavefront sensor (LOWFS) design that is both achromatic and near free of non-common path aberrations (NCPAs).

  6. Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms

    SciTech Connect

    Fischer, N; Tarasow, T; Tok, J B

    2007-01-09

    As part of its own defense mechanism, most bacteria have developed an innate ability to enable toxic secretion to ward off potential predators or invaders. However, this naturally occurring process has been abused since over production of the bacteria's toxin molecules could render them as potential bioweapons. As these processes (also known as ''black biology'') can be clandestinely performed in a laboratory, the threat of inflicting enormous potential damage to a nation's security and economy is invariably clear and present. Thus, efficient detection of these biothreat agents in a timely and accurate manner is highly desirable. A wealth of publications describing various pathogen immuno-sensing advances has appeared over the last few years, and it is not the intent of this review article to detail each reported approach. Instead, we aim to survey a few recent highlights in hopes of providing the reader an overall sense of the breath of these sensing systems and platforms. Antigen targets are diverse and complex as they encompass proteins, whole viruses, and bacterial spores. The signaling processes for these reported immunoassays are usually based on colorimetric, optical, or electrochemical changes. Of equal interest is the type of platform in which the immunoassay can be performed. A few platforms suitable for pathogen detection are described.

  7. X-ray wavefront characterization with two-dimensional wavefront sensors: shearing interferometers and Hartmann wavefront sensors

    NASA Astrophysics Data System (ADS)

    Baker, Kevin L.

    2013-02-01

    Phase reconstructions from a two-dimensional shearing interferometer, based on two orthogonal phase gratings in a single plane, and a Hartmann sensor are compared. Design alternatives for both wavefront sensors are given, and simulated performance of both the two-dimensional x-ray shearing interferometer and Hartmann wavefront sensor are presented for two different phase profiles. The first comparison is an evaluation of metrology on deuterium-tritium (DT) ice layers in an inertial confinement fusion capsule, and the second comparison is a high frequency "asterisk" phase profile, which tests the ability of these wavefront sensors to detect spikes of ablator material seen in DT fuel capsule implosions. Both of these sensors can measure the two-dimensional wavefront gradient of an x-ray beam, as well as the x-ray absorption. These instruments measure the two-dimensional wavefront gradient in a single measurement, and the wavefront sensor is located in a single plane, making them much less sensitive to vibrations than most other wavefront sensing techniques.

  8. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  9. Wavefront control for extreme adaptive optics

    NASA Astrophysics Data System (ADS)

    Poyneer, Lisa A.; Macintosh, Bruce A.

    2003-12-01

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  10. Wavefront Control for Extreme Adaptive Optics

    SciTech Connect

    Poyneer, L A

    2003-07-16

    Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems can result in very good temporal performance, provided specific design constraints are followed. The spatially-filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static phase aberration with use of spatial filtering.

  11. Proposal for a field experiment of elongated Na LGS wave-front sensing in the perspective of the E-ELT

    NASA Astrophysics Data System (ADS)

    Rousset, G.; Gratadour, D.; Gendron, E.; Buey, T.; Myers, R.; Morris, T.; Basden, A.; Talbot, G.; Bonaccini Calia, D.; Marchetti, E.; Pfrommer, T.

    2014-08-01

    Wavefront (WF) sensing using Sodium (Na) Laser Guide Stars (LGS) is a key concern for the design of a number of first generation Extremely Large Telescope (ELT) Adaptive Optics (AO) modules. One of the main challenges is the mitigation of the effects induced by extreme LGS spot elongation on the WF measurements. Before the final design studies of the E-ELT instruments, a Na LGS WF sensing on-sky experiment at the E-ELT scale is mandatory to achieve the full validation of the proposed mitigation strategies and their performance. This experiment will provide unique spatial and temporal WF measurements on a true Na LGS, perturbed by the atmospheric turbulence and mesospheric variability. The fine comparative analysis of such data with synchronously acquired WF measurements on at least one natural guide star (NGS) will be fundamental to test a number of algorithms, configurations for spot sampling and truncation and WF reconstruction schemes including multi-LGS configurations. A global error budget for the whole experiment will be derived with time to feed into the numerical simulation and the design of subsequent E-ELT LGS-AO modules. The data produced will be made available to the E-ELT community. We propose to use CANARY, the Multi-Object AO demonstrator installed at the 4.2m WHT which is a modular AO platform, equipped with several NGS WF Sensor (WFS) and Rayleigh multi-LGS unit and WFS. The transportable 20W Sodium laser unit (WLGSU), developed at ESO, will be positioned at a varying distance from the WHT to provide off-axis launching (up to 40m), simulating the whole range of LGS spot elongations obtained on the E-ELT. In such a case, the WHT pupil will represent an off-axis sub-pupil of the main E-ELT pupil. In addition, this experiment will include a Na layer profiler and the capability for open and closed loop operations. The experiment is scheduled before the end of 2016.

  12. Advancing remote sensing of volcanic clouds

    NASA Astrophysics Data System (ADS)

    Rose, William I.

    A second international workshop on the remote sensing of volcanic clouds was recently held to improve and expand the use of satellite-based remote sensing data for hazard mitigation and other research purposes, such as volcano-atmosphere interactions and chemical and meteorological effects on the troposphere and stratosphere. Forty-six researchers attended, representing 11 countries, 10 universities, and several government meteorological and volcanological organizations. Also represented were the Volcanic Ash Aviation Centers in Washington, D.C.; Anchorage; Montreal; Darwin; London; and Tokyo, which monitor volcanic ash plumes and predict their displacement within their areas of responsibility The nine VAACs were established by the International Civil Aviation Organization (ICAO) to address various aviation concerns related to volcanic ash.

  13. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  14. Wavefront Control Testbed (WCT) Experiment Results

    NASA Technical Reports Server (NTRS)

    Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III

    2004-01-01

    The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.

  15. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  16. Relaying an optical wavefront

    DOEpatents

    Sweatt, William C.; Vawter, G. Allen

    2007-03-06

    A wavefront rely devices samples an incoming optical wavefront at different locations, optically relays the samples while maintaining the relative position of the samples and the relative phase between the samples. The wavefront is reconstructed due to interference of the samples. Devices can be designed for many different wavelengths, including for example the ultraviolet, visible, infrared and even longer wavelengths such as millimeter waves. In one application, the device function as a telescope but with negligible length.

  17. Coronagraphic Wavefront Control for the ATLAST-9.2m Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, RIchard G.; Oegerle, William R.; Feinberg, Lee D.; Bolcar, Matthew R.; Dean, Bruce H.; Mosier, Gary E.; Postman, Marc

    2010-01-01

    The Advanced Technology for Large Aperture Space Telescope (ATLAST) concept was assessed as one of the NASA Astrophysics Strategic Mission Concepts (ASMC) studies. Herein we discuss the 9.2-meter diameter segmented aperture version and its wavefront sensing and control (WFSC) with regards to coronagraphic detection and spectroscopic characterization of exoplanets. The WFSC would consist of at least two levels of sensing and control: (i) an outer coarser level of sensing and control to phase and control the segments and secondary mirror in a manner similar to the James Webb Space Telescope but operating at higher temporal bandwidth, and (ii) an inner, coronagraphic instrument based, fine level of sensing and control for both amplitude and wavefront errors operating at higher temporal bandwidths. The outer loop would control rigid-body actuators on the primary and secondary mirrors while the inner loop would control one or more segmented deformable mirror to suppress the starlight within the coronagraphic field-of view. Herein we discuss the visible nulling coronagraph (VNC) and the requirements it levies on wavefront sensing and control and show the results of closed-loop simulations to assess performance and evaluate the trade space of system level stability versus control bandwidth.

  18. Wavefront autocorrelation of femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Grunwald, Ruediger; Neumann, Uwe J.; Griebner, Uwe; Reimann, Klaus; Steinmeyer, Guenter; Kebbel, Volker

    2004-06-01

    Spatially resolved wavefront sensing and time-resolved autocorrelation measurement of ultrashort pulses are usually separated procedures. For few-cycle pulses with significant spatial inhomogeneities and poor beam quality, a fully spatio-temporal beam characterization is necessary. Here we report on a new concept for a joint two-dimensional mapping of local temporal coherence and local wavefront tilt based on the combination of collinear autocorrelation and Shack-Hartmann wavefront sensing. Essentially for this "wavefront autocorrelation" is a splitting of the beam into a matrix of Bessel-like sub-beams by an array of thin-film microaxicons. The sub-beams are further processed by a two-dimensional collinear autocorrelation setup. The second harmonic distribution of sub-beams at a defined distance is imaged onto a CCD camera. The nondiffractive sub-beams ensure an extended depth of focus and a low sensitivity towards angular misalignment or axial displacement. With low-dispersion small-angle refractive-reflective shapers, wavefront-sensing of Ti:sapphire laser wavepackets was demonstrated experimentally for the first time.

  19. The Role of Advanced Sensing in Smart Cities

    PubMed Central

    Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.

    2013-01-01

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603

  20. The role of advanced sensing in smart cities.

    PubMed

    Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P

    2012-12-27

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.

  1. Recent Advances in VLF Remote Sensing

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    In this work, we present a complete analysis of a new signal processing method for MSK-modulated VLF signals with the purpose to produce reliable amplitude and phase measurements for ionospheric remote sensing. We analyze the bit-error rate and the resulting amplitude and phase measurements as a function of signal-to-noise ratio under different background noise environments. We also compare the new method to other methods presently in use. We highlight the transient response characteristics by analyzing naturally occurring ionospheric events observed in the Northern and Southern hemispheres. We apply the method to observations of solar X-ray flares, lightning-induced electron precipitation, and transient luminous events.

  2. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  3. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  4. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  5. An Improved Wavefront Control Algorithm for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Basinger, Scott A.; Redding, David C.

    2008-01-01

    Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.

  6. Advanced FBG sensing through rapid spectral interrogation

    NASA Astrophysics Data System (ADS)

    Kunzler, Wesley; Newman, Jason; Wilding, Daniel; Zhu, Zixu; Lowder, Tyson; Selfridge, Richard; Schultz, Stephen; Wirthlin, Michael

    2008-03-01

    A fiber Brag grating sensor interrogator has been developed which is capable of gathering vectors of information from individual fiber Bragg gratings by capturing the full optical spectrum 3 kHz. Using a field programmable gate array with high speed digital-to-analog converters and analog-to-digital components, plus a kilohertz rate MEMS optical filter, the optical spectrum can be scanned at rates in excess of 10 million nanometers per second, allowing sensor sampling rates of many kilohertz while maintaining the necessary resolution to understand sensor changes. The autonomous system design performs all necessary detection and processing of multiple sensors and allows spectral measurements to be exported as fast as Ethernet, USB, or RS232 devices can receive it through a memory mapped interface. The high speed - full spectrum - fiber Bragg grating sensor interrogator enables advanced interrogation of dynamic strain and temperature gradients along the length of a sensor, as well as the use of each sensor for multiple stimuli, such as in temperature compensation. Two examples are described, showing interrogation of rapid laser heating in an optical fiber, as well as complex strain effects in a beam that had an engineered defect.

  7. Advanced laser sensing receiver concepts based on FPA technology.

    SciTech Connect

    Jacobson, P. L.; Petrin, R. R.; Jolin, J. L.; Foy, B. R.; Lowrance, J. L.; Renda, G.

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  8. Z-View diffractive wavefront sensor: principle and applications

    NASA Astrophysics Data System (ADS)

    Liu, Yueai; Warden, Laurence; Dillon, Keith; Mills, Gary; Dreher, Andreas

    2005-12-01

    A novel wavefront sensor (Z-View TM) using a two dimensional diffractive grating has been developed at Ophthonix, Inc. Based on the Talbot self-imaging theory, a CMOS camera is placed behind the grating to capture the first Talbot image of the aberrated wavefront. This captured Talbot image is analyzed to recover the wavefront aberration. The diffractive grating wavefront sensor has been used in Ophthonix's Z-View Aberrometer, an objective refractive vision assessment system which is now commercially used in optometrist's offices/clinics across the United States of America. Coupled with a deformable mirror and other auxiliary optics systems, Z-View wavefront sensor forms the A-View adaptive optic vision correction system at Ophthonix. This A-View system is used to study the effect of complete wavefront correction in human vision, and has potential application in prescribing Ophthonix's wavefront-guided iZon TM lenses. In this paper, the wavefront sensing principle of this novel diffractive wavefront sensor and its applications will be discussed.

  9. Advances in remote sensing of vegetation function and traits

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; Fisher, Joshua B.; Skidmore, Andrew K.

    2015-12-01

    Remote sensing of vegetation function and traits has advanced significantly over the past half-century in the capacity to retrieve useful plant biochemical, physiological and structural quantities across a range of spatial and temporal scales. However, the translation of remote sensing signals into meaningful descriptors of vegetation function and traits is still associated with large uncertainties due to complex interactions between leaf, canopy, and atmospheric mediums, and significant challenges in the treatment of confounding factors in spectrum-trait relations. This editorial provides (1) a background on major advances in the remote sensing of vegetation, (2) a detailed timeline and description of relevant historical and planned satellite missions, and (3) an outline of remaining challenges, upcoming opportunities and key research objectives to be tackled. The introduction sets the stage for thirteen Special Issue papers here that focus on novel approaches for exploiting current and future advancements in remote sensor technologies. The described enhancements in spectral, spatial and temporal resolution and radiometric performance provide exciting opportunities to significantly advance the ability to accurately monitor and model the state and function of vegetation canopies at multiple scales on a timely basis.

  10. Curvature sensor for ocular wavefront measurement.

    PubMed

    Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O

    2006-08-01

    We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.

  11. Interactive and cooperative sensing and control for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1993-01-01

    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decisionmaking between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. The Sensing-Knowledge-Command (SKC) fusion network is proposed as a fundamental architecture for implementing cooperative and interactive sensing and control. Simulation results are shown.

  12. Efficacy of Wavefront-guided Photorefractive Keratectomy with Iris Registration for Management of Moderate to High Astigmatism by Advanced Personalized Treatment Nomogram

    PubMed Central

    Mohammadpour, Mehrdad; Hashemi, Hassan; Jabbarvand, Mahmoud; Rahmatnejad, Kamran; Sabet, Fatemeh Alsadat

    2016-01-01

    Purpose: To evaluate the efficacy of photorefractive keratectomy (PRK) using the advanced personalized treatment (APT) nomogram for correction of moderate to high astigmatism. Methods: This prospective interventional case series included 60 consecutive eyes of 30 patients undergoing wavefront-guided PRK (Zyoptix 217 Z100 excimer laser, Bausch & Lomb, Munich, Germany) using the APT nomogram and iris registration for myopic astigmatism. Mitomycin-C was applied intraoperatively in all eyes. Ophthalmic examination was performed preoperatively and 1, 3 and 6 months postoperatively. Results: Preoperatively, mean sphere was -1.68 ± 2.08 diopters (D), mean refractive astigmatism was -3.04 ± 1.05 D and mean spherical equivalent (SE) was -3.12 ± 1.77 D. Six months postoperatively, mean sphere was + 0.60 ± 0.64 D (P < 0.005), mean cylinder was -0.43 ± 0.46 D (P < 0.005) and mean SE was + 0.28 ± 0.48 D (P < 0.005). Hyperopic overcorrection (≥ +1.0 D) occurred in 3 (5%) eyes. Postoperatively, root mean square (RMS) of higher order aberrations (HOAs) was significantly increased (P = 0.041). RMS of spherical aberration (Z [4, 0]) showed no significant change after surgery (P = 0.972). Conclusion: Considering the acceptable residual refractive error, low rate of hyperopic overcorrection, acceptable uncorrected visual acuity, and low risk of postoperative corneal haze, PRK using the APT nomogram with iris registration and mitomycin-C use is a safe and effective modality for treatment of moderate to high astigmatism. PMID:27413491

  13. Advances in remote sensing for vegetation dynamics and agricultural management

    NASA Astrophysics Data System (ADS)

    Tucker, C. J.; Puma, M. J.

    2015-12-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  14. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  15. Wavefront shaping for single fiber fluorescence endoscopy

    NASA Astrophysics Data System (ADS)

    Caravaca-Aguirre, Antonio M.; Piestun, Rafael

    2016-03-01

    Recent advances in wavefront control, spatial light modulators, and computational power enable the use of a single multimode fiber as a fluorescence scanning microscope. We explore multimode fibers with different characteristics (diameter, index profile, etc.) and compare their performance regarding robustness against external perturbations and quality of the scanning focus.

  16. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  17. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  18. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  19. MOSAIC: a new wavefront metrology

    SciTech Connect

    Anderson, Christopher; Naulleau, Patrick

    2009-02-02

    MOSAIC is a new wavefront metrology that enables complete wavefront characterization from print or aerial image based measurements. Here we describe MOSAIC and verify its utility with a model-based proof of principle.

  20. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  1. Two-photon Shack-Hartmann wavefront sensor.

    PubMed

    Xia, Fei; Sinefeld, David; Li, Bo; Xu, Chris

    2017-03-15

    We introduce a simple wavefront sensing scheme for aberration measurement of pulsed laser beams in near-infrared wavelengths (<2200  nm), where detectors are not always available or are very expensive. The method is based on two-photon absorption in a silicon detector array for longer wavelengths detection. We demonstrate the simplicity of such implementations with a commercially available Shack-Hartmann wavefront sensor and discuss the detection sensitivity of this method.

  2. Improving active space telescope wavefront control using predictive thermal modeling

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  3. Huygens-Fresnel wavefront tracing

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Létourneau, P.-D.; Zhao, A.

    2017-03-01

    We present initial results from a novel numerical method describing wave propagation in slowly non-uniform media. Following Huygens-Fresnel's principle, we model the wavefront as an array of point sources that emit wavelets, which interfere. We then identify a set of new points where the electric field has equal phase. In fact, without losing generality, we find zeros of the electric field, by means of the bisection method. This obviously corresponds to a specific phase-advance, but is easily generalized, e.g. by phase-shifting all sources. The points found form the new wavefront, then the process is reiterated. One of the advantages of the method is that it includes diffraction. Two examples provided are diffraction around an obstacle and the finite waist of a focused Gaussian beam. Refraction is also successfully modeled, both in slowly-varying media as well as in the presence of discontinuities. The calculations were performed in two dimensions, but can be easily extended to three dimensions. We also discuss the extension to anisotropic, birefringent, absorbing media.

  4. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  5. A Wavefront Sensor to Detect Dim Objects

    NASA Astrophysics Data System (ADS)

    Mateen, M.; Guyon, O.; Hart, M.; Codona, J.

    2014-09-01

    In this paper we present the progress made towards building the non-linear Curvature wavefront sensor (nlCWFS) to be used in an adaptive optics system for the direct imaging of exoplanets without the use of a laser guide star (LGS). Commonly used wavefront sensors such as the Shack Hartmann wavefront sensor (SHWFS) do a good job of reconstructing high order modes but due to design limitations are poor at reconstructing low order modes. The nlCWFS is able to use the full spatial coherence of the pupil allowing it to reconstruct all spatial frequencies equally well. The nlCWFS senses at the diffraction limit as opposed to the SHWFS which senses at the seeing limit. This awards the nlCWFS a gain in flux of (D/r0)2. In this paper we present results from putting the nlCWFS on the 6.5m MMT Observatory and detail the progress being made to build the nlCWFS for the 1.5 m Air Force Research Laboratory/RDS Optics Division telescope.

  6. Adaptive Full Aperture Wavefront Sensor Study

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This grant and the work described was in support of a Seven Segment Demonstrator (SSD) and review of wavefront sensing techniques proposed by the Government and Contractors for the Next Generation Space Telescope (NGST) Program. A team developed the SSD concept. For completeness, some of the information included in this report has also been included in the final report of a follow-on contract (H-27657D) entitled "Construction of Prototype Lightweight Mirrors". The original purpose of this GTRI study was to investigate how various wavefront sensing techniques might be most effectively employed with large (greater than 10 meter) aperture space based telescopes used for commercial and scientific purposes. However, due to changes in the scope of the work performed on this grant and in light of the initial studies completed for the NGST program, only a portion of this report addresses wavefront sensing techniques. The wavefront sensing techniques proposed by the Government and Contractors for the NGST were summarized in proposals and briefing materials developed by three study teams including NASA Goddard Space Flight Center, TRW, and Lockheed-Martin. In this report, GTRI reviews these approaches and makes recommendations concerning the approaches. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities: Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form a space telescope with large aperture. Provide very large (greater than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or

  7. Enabling Possibility: Women Associate Professors' Sense of Agency in Career Advancement

    ERIC Educational Resources Information Center

    Terosky, Aimee LaPointe; O'Meara, KerryAnn; Campbell, Corbin M.

    2014-01-01

    In this multimethod, qualitative study we examined associate women professors' sense of agency in career advancement from the rank of associate to full. Defining agency as strategic perspectives or actions toward goals that matter to the professor, we explore the perceptions of what helps and/or hinders a sense of agency in career advancement. Our…

  8. A role for AVIRIS in the Landsat and Advanced Land Remote Sensing Systems program

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Simmonds, John J.

    1993-01-01

    As a calibrated imaging spectrometer flying at a 20 km altitude, AVIRIS may contribute to the Landsat and the Advanced Land Remote Sensing System efforts. These contributions come in the areas of: (1) on-orbit calibration, (2) specification of new spectral bands, (3) validation of algorithms, and (4) investigation of an imaging spectrometer of the Advanced Land Remote Sensing System.

  9. Advanced nanoimprint patterning for functional electronics and biochemical sensing

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    Nano-fabrication has been widely used for a variety of disciplines, including electronics, material science, nano-optics, and nano-biotechnology. This dissertation focuses on nanoimprint lithography (NIL) based novel nano-patterning techniques for fabricating functional structures, and discusses their applications in advanced electronics and high-sensitivity molecular sensing. In this dissertation, examples of using nano-fabricated structures for promising electronic applications are presented. For instance, 10 nm and 18 nm features are NIL-fabricated for Si/SiGe heterojunction tunneling transistors and graphene nano-ribbon transistors, using shadow evaporation and line-width shrinking techniques, respectively. An ultrafast laser melting based method is applied on flexible plastic substrates to correct defects of nano-features. Nano-texturing of sapphire substrate is developed to improve the light extraction of GaN light emitting diodes (LEDs) by 70 %. A novel multi-layer nano-patterned Si-mediated catalyst is discovered to grow straight and uniform Si nanowires with optimized properties in size, location, and crystallization on amorphous SiO2 substrate. Nano-structures are also functionalized into highly sensitive bio-chemical sensors. Plasmonic nano-bar antenna arrays are demonstrated to effectively sense infrared molecules >10 times better than conventional plasmonic sensors. As small as 20 nm wide nano-channel fluidic devices are developed to linearize and detect DNA molecules for potential DNA sequencing. An integrated fluidic system is built to incorporate plasmonic nano-structures for 30X-enhanced fluorescence detection of large DNA molecules.

  10. Framework to trade optimality for local processing in large-scale wavefront reconstruction problems.

    PubMed

    Haber, Aleksandar; Verhaegen, Michel

    2016-11-15

    We show that the minimum variance wavefront estimation problems permit localized approximate solutions, in the sense that the wavefront value at a point (excluding unobservable modes, such as the piston mode) can be approximated by a linear combination of the wavefront slope measurements in the point's neighborhood. This enables us to efficiently compute a wavefront estimate by performing a single sparse matrix-vector multiplication. Moreover, our results open the possibility for the development of wavefront estimators that can be easily implemented in a decentralized/distributed manner, and in which the estimate optimality can be easily traded for computational efficiency. We numerically validate our approach on Hudgin wavefront sensor geometries, and the results can be easily generalized to Fried geometries.

  11. Adaptive Optics Correction in Real-Time for Dynamic Wavefront Errors

    DTIC Science & Technology

    1990-03-15

    This paper reports on the principles for the use of, and the experimental results obtained from, an adaptive optics system for correcting dynamic...control system. Keywords: Adaptive optics ; Wavefront sensing; Deformable mirror; Chinese translations.

  12. Fiber coupler end face wavefront surface metrology

    NASA Astrophysics Data System (ADS)

    Compertore, David C.; Ignatovich, Filipp V.; Marcus, Michael A.

    2015-09-01

    Despite significant technological advances in the field of fiber optic communications, one area remains surprisingly `low-tech': fiber termination. In many instances it involves manual labor and subjective visual inspection. At the same time, high quality fiber connections are one of the most critical parameters in constructing an efficient communication link. The shape and finish of the fiber end faces determines the efficiency of a connection comprised of coupled fiber end faces. The importance of fiber end face quality becomes even more critical for fiber connection arrays and for in the field applications. In this article we propose and demonstrate a quantitative inspection method for the fiber connectors using reflected wavefront technology. The manufactured and polished fiber tip is illuminated by a collimated light from a microscope objective. The reflected light is collected by the objective and is directed to a Shack-Hartmann wavefront sensor. A set of lenses is used to create the image of the fiber tip on the surface of the sensor. The wavefront is analyzed by the sensor, and the measured parameters are used to obtain surface properties of the fiber tip, and estimate connection loss. For example, defocus components in the reflected light indicate the presence of bow in the fiber end face. This inspection method provides a contact-free approach for quantitative inspection of fiber end faces and for estimating the connection loss, and can potentially be integrated into a feedback system for automated inspection and polishing of fiber tips and fiber tip arrays.

  13. JWST Wavefront Control Toolbox

    NASA Technical Reports Server (NTRS)

    Shin, Shahram Ron; Aronstein, David L.

    2011-01-01

    A Matlab-based toolbox has been developed for the wavefront control and optimization of segmented optical surfaces to correct for possible misalignments of James Webb Space Telescope (JWST) using influence functions. The toolbox employs both iterative and non-iterative methods to converge to an optimal solution by minimizing the cost function. The toolbox could be used in either of constrained and unconstrained optimizations. The control process involves 1 to 7 degrees-of-freedom perturbations per segment of primary mirror in addition to the 5 degrees of freedom of secondary mirror. The toolbox consists of a series of Matlab/Simulink functions and modules, developed based on a "wrapper" approach, that handles the interface and data flow between existing commercial optical modeling software packages such as Zemax and Code V. The limitations of the algorithm are dictated by the constraints of the moving parts in the mirrors.

  14. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    NASA Astrophysics Data System (ADS)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  15. Advances in remote sensing and modeling of terrestrial hydro-meteorological processes and extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is an indispensable tool for monitoring and detecting the evolution of the Earth’s hydro-meteorological processes. Fast-growing remote sensing observations and technologies have been a primary impetus to advancing our knowledge of hydro-meteorological processes and their extremes ove...

  16. Beam characterization by wavefront sensor

    DOEpatents

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  17. Beam characterization by wavefront sensor

    DOEpatents

    Neal, Daniel R.; Alford, W. J.; Gruetzner, James K.

    1999-01-01

    An apparatus and method for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed.

  18. The NGS Pyramid wavefront sensor for ERIS

    NASA Astrophysics Data System (ADS)

    Riccardi, A.; Antichi, J.; Quirós-Pacheco, F.; Esposito, S.; Carbonaro, L.; Agapito, G.; Biliotti, V.; Briguglio, R.; Di Rico, G.; Dolci, M.; Ferruzzi, D.; Pinna, E.; Puglisi, A.; Xompero, M.; Marchetti, E.; Fedrigo, E.; Le Louarn, M.; Conzelmann, R.; Delabre, B.; Amico, P.; Hubin, N.

    2014-07-01

    ERIS is the new Single Conjugate Adaptive Optics (AO) instrument for VLT in construction at ESO with the collaboration of Max-Planck Institut fuer Extraterrestrische Physik, ETH-Institute for Astronomy and INAF - Osservatorio Astrofisico di Arcetri. The ERIS AO system relies on a 40×40 sub-aperture Pyramid Wavefront Sensor (PWFS) for two operating modes: a pure Natural Guide Star high-order sensing for high Strehl and contrast correction and a low-order visible sensing in support of the Laser Guide Star AO mode. In this paper we present in detail the preliminary design of the ERIS PWFS that is developed under the responsibility of INAF-Osservatorio Astrofisico di Arcetri in collaboration with ESO.

  19. Modal wavefront estimation from its slopes by numerical orthogonal transformation method over general shaped aperture.

    PubMed

    Ye, Jingfei; Wang, Wei; Gao, Zhishan; Liu, Zhiying; Wang, Shuai; Benítez, Pablo; Miñano, Juan C; Yuan, Qun

    2015-10-05

    Wavefront estimation from the slope-based sensing metrologies zis important in modern optical testing. A numerical orthogonal transformation method is proposed for deriving the numerical orthogonal gradient polynomials as numerical orthogonal basis functions for directly fitting the measured slope data and then converting to the wavefront in a straightforward way in the modal approach. The presented method can be employed in the wavefront estimation from its slopes over the general shaped aperture. Moreover, the numerical orthogonal transformation method could be applied to the wavefront estimation from its slope measurements over the dynamic varying aperture. The performance of the numerical orthogonal transformation method is discussed, demonstrated and verified by the examples. They indicate that the presented method is valid, accurate and easily implemented for wavefront estimation from its slopes.

  20. Advancing Adventure Education Using Digital Motion-Sensing Games

    ERIC Educational Resources Information Center

    Shih, Ju-Ling; Hsu, Yu-Jen

    2016-01-01

    This study used the Xbox Kinect and Unity 3D game engine to develop two motion-sensing games in which the participants, in simulated scenarios, could experience activities that are unattainable in real life, become immersed in collaborative activities, and explore the value of adventure education. Adventure Education involves courses that…

  1. Advanced and applied remote sensing of environmental conditions

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    "Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.

  2. Estimate Low and High Order Wavefront Using P1640 Calibrator Measurements

    NASA Technical Reports Server (NTRS)

    Zhai, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; Crepp, J.; Dekany, R.; Hillenbrand, L.; Hinkley, S.; Parry, I.; Pueyo, L.; Rice, E.; Roberts, L. C. Jr.; Sivaramakrishnan, A.; Soummer, R.; Tang, H.; Vescelus, F.; Wallace, K.; Zimmerman, N.

    2013-01-01

    P1640 high contrast imaging system on the Palomar 200 inch Telescope consists of an apodized-pupil Lyot coronagraph, the PALM-3000 adaptive optics (P3K-AO), and P1640 Calibrator (CAL). Science images are recorded by an integral field spectrograph covering J-H bands for detecting and characterizing stellar companions. With aberrations from atmosphere corrected by the P3K-AO, instrument performance is limited mainly by the quasi-static speckles due to noncommon path wavefront aberrations for the light to propagate to the P3K-AO wavefront sensor and to the coronagraph mask. The non-common path wavefront aberrations are sensed by CAL, which measures the post-coronagraph E-field using interferometry, and can be effectively corrected by offsetting the P3K-AO deformable mirror target position accordingly. Previously, we have demonstrated using CAL measurements to correct high order wavefront aberrations, which is directly connected to the static speckles in the image plane. Low order wavefront, on the other hand, usually of larger amplitudes, causes light to leak through the coronagraph making the whole image plane brighter. Knowledge error in low order wavefront aberrations can also affect the estimation of the high order wavefront. Even though, CAL is designed to sense efficiently high order wavefront aberrations, the low order wavefront front can be inferred with less sensitivity. Here, we describe our method for estimating both low and high order wavefront aberrations using CAL measurements by propagating the post-coronagraph E-field to a pupil before the coronagraph. We present the results from applying this method to both simulated and experiment data.

  3. Recent advances in electrochemical sensing for hydrogen peroxide: a review.

    PubMed

    Chen, Wei; Cai, Shu; Ren, Qiong-Qiong; Wen, Wei; Zhao, Yuan-Di

    2012-01-07

    Due to the significance of hydrogen peroxide (H(2)O(2)) in biological systems and its practical applications, the development of efficient electrochemical H(2)O(2) sensors holds a special attraction for researchers. Various materials such as Prussian blue (PB), heme proteins, carbon nanotubes (CNTs) and transition metals have been applied to the construction of H(2)O(2) sensors. In this article, the electrocatalytic H(2)O(2) determinations are mainly focused on because they can provide a superior sensing performance over non-electrocatalytic ones. The synergetic effect between nanotechnology and electrochemical H(2)O(2) determination is also highlighted in various aspects. In addition, some recent progress for in vivo H(2)O(2) measurements is also presented. Finally, the future prospects for more efficient H(2)O(2) sensing are discussed.

  4. Wavefront Curvature Sensing from Image Projections

    DTIC Science & Technology

    2006-09-01

    rows 1 and 3. . . . . . . . . . . . . . . . . . . . . . . . 3-12 4.1 At left: geometric interpretation of Young �s double slit experiment. At right...elds are combined, periodic fringe patterns are visible in the resulting intensity. The classic examples involve the Michelson interferometer and Young ... Young �s double slit experiment. At right: diagram of a Michelson interferometer. The basic formula for interference fringe patterns can be derived for

  5. Recent advances in understanding the extracellular calcium-sensing receptor

    PubMed Central

    Colella, Matilde; Gerbino, Andrea; Hofer, Aldebaran M.; Curci, Silvana

    2016-01-01

    The extracellular calcium-sensing receptor (CaR), a ubiquitous class C G-protein-coupled receptor (GPCR), is responsible for the control of calcium homeostasis in body fluids. It integrates information about external Ca 2+ and a surfeit of other endogenous ligands into multiple intracellular signals, but how is this achieved? This review will focus on some of the exciting concepts in CaR signaling and pharmacology that have emerged in the last few years. PMID:27803801

  6. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    SciTech Connect

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  7. The DeMi CubeSat: Wavefront Control with a MEMS Deformable Mirror in Space

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Bendek, Eduardo; Marinan, Anne; Belikov, Ruslan; Merck, John; Cahoy, Kerri Lynn

    2017-01-01

    High-contrast imaging instruments on future space telescopes will require precise wavefront correction to detect small exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide a compact form of wavefront control. The 6U DeMi CubeSat will demonstrate wavefront control with a MEMS deformable mirror over a yearlong mission. The payload includes both an internal laser source and a small telescope, with both focal plane and pupil plane sensing, for deformable mirror characterization. We detail the DeMi payload design, and describe future astrophysics enabled by high-actuator count deformable mirrors and small satellites.

  8. Pyramidal Wavefront Sensor Demonstrator at INO

    NASA Astrophysics Data System (ADS)

    Martin, Olivier; Véran, Jean-Pierre; Anctil, Geneviève; Bourqui, Pascal; Châteauneuf, François; Gauvin, Jonny; Goyette, Philippe; Lagacé, François; Turbide, Simon; Wang, Min

    2014-08-01

    Wavefront sensing is one of the key elements of an Adaptive Optics System. Although Shack-Hartmann WFS are the most commonly used whether for astronomical or biomedical applications, the high-sensitivity and large dynamic-range of the Pyramid-WFS (P-WFS) technology is promising and needs to be further investigated for proper justification in future Extremely Large Telescopes (ELT) applications. At INO, center for applied research in optics and technology transfer in Quebec City, Canada, we have recently set to develop a Pyramid wavefront sensor (P-WFS), an option for which no other research group in Canada had any experience. A first version had been built and tested in 2013 in collaboration with NRC-HIA Victoria. Here we present a second iteration of demonstrator with an extended spectral range, fast modulation capability and low-noise, fast-acquisition EMCCD sensor. The system has been designed with compactness and robustness in mind to allow on-sky testing at Mont Mégantic facility, in parallel with a Shack- Hartmann sensor so as to compare both options.

  9. Hartmann wavefront measurements at FLASH

    NASA Astrophysics Data System (ADS)

    Keitel, Barbara; Flöter, Bernhard; Kreis, Svea; Kuhlmann, Marion; Mann, Klaus; Mey, Tobias; Plönjes, Elke; Schäfer, Bernd; Tiedtke, Kai

    2013-05-01

    We report on online measurements of photon beam parameters during mirror alignment in the soft x-ray spectral region of FLASH, the free-electron laser in Hamburg. A compact Hartmann sensor operating in the wavelength range from 6 to 35nm was used to determine the wavefront quality of individual free-electron laser (FEL) pulses during the alignment procedure as well as aberrations. Beam characterization and alignment of beamline BL3 was performed with λ13.5??/ 116 accuracy for wavefront rms (W???). Second moment beam parameters are computed using a spherical reference wavefront generated by a 5μm pinhole. The Hartmann sensor was used for alignment of the ellipsoidal focusing mirror of beamline BL3, resulting in a reduction of (W???;) by 33%.

  10. Potential Rainwater Harvesting Improvement Using Advanced Remote Sensing Applications

    PubMed Central

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2014-01-01

    The amount of water on earth is the same and only the distribution and the reallocation of water forms are altered in both time and space. To improve the rainwater harvesting a better understanding of the hydrological cycle is mandatory. Clouds are major component of the hydrological cycle; therefore, clouds distribution is the keystone of better rainwater harvesting. Remote sensing technology has shown robust capabilities in resolving challenges of water resource management in arid environments. Soil moisture content and cloud average distribution are essential remote sensing applications in extracting information of geophysical, geomorphological, and meteorological interest from satellite images. Current research study aimed to map the soil moisture content using recent Landsat 8 images and to map cloud average distribution of the corresponding area using 59 MERIS satellite imageries collected from January 2006 to October 2011. Cloud average distribution map shows specific location in the study area where it is always cloudy all the year and the site corresponding soil moisture content map came in agreement with cloud distribution. The overlay of the two previously mentioned maps over the geological map of the study area shows potential locations for better rainwater harvesting. PMID:25114973

  11. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants, are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated via optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, and temperature have been developed, and their preliminary laboratory characterization in Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a spacesuit prototype is presented.

  12. Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda

    2015-01-01

    Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated by optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, oxygen, and ammonia have been developed, and their preliminary characterization in the laboratory using Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a space suit prototype is presented.

  13. [Advances in researches on hyperspectral remote sensing forestry information-extracting technology].

    PubMed

    Wu, Jian; Peng, Dao-Li

    2011-09-01

    The hyperspectral remote sensing technology has become one of the leading technologies in forestry remote sensing domain. In the present review paper, the advances in researches on hyperspectral remote sensing technology in forestry information extraction both at home and abroad were reviewed, and the five main research aspects including the hyperspectral classification and recognition of forest tree species, the hyperspectral inversion and extraction of forest ecological physical parameters, the hyperspectral monitoring and diagnosis of forest nutrient element, the forest crown density information extraction and the hyperspectral monitoring of forest disasters were summarized. The unresolved problems of hyperspectral technology in the forestry remote sensing applications were pointed out and the possible ways to solve these problems were expounded. Finally, the application prospect of hyperspectral remote sensing technology in forestry was analyzed.

  14. Advanced LIGO: length sensing and control in a dual recycled interferometric gravitational wave antenna

    NASA Astrophysics Data System (ADS)

    Izumi, Kiwamu; Sigg, Daniel

    2017-01-01

    Length sensing and control is vital for Advanced LIGO and its goal of performing astrophysical searches. The current kilometer scale gravitational wave antennae are dual recycled Michelson interferometers enhanced with Fabry-Perot resonators in the arms. Observation requires the lengths of all optical cavities to be precisely servoed in the vicinity of a resonance using feedback controls. Simultaneously achieving robustness and low-noise is challenging due to cross-couplings between the multiple coupled optical resonators. We analytically derive the Advanced LIGO sensing and control scheme, calculate the effects of radiation pressure forces and review the current strategies of minimizing the coupling of noise into the gravitational wave readout.

  15. Satellite oceanic remote sensing; Advances in Geophysics. Volume 27

    SciTech Connect

    Saltzman, B.

    1985-01-01

    Oceanic remote sensing by several NASA sponsored satellite systems is described, and the results of these measurements are discussed. Papers are presented on the Seasat, Nimbus-7, and TIROS-N observations; analysis and interpretation of altimeter sea echo; oceanic surface winds; surface and internal ocean wave observations; and microwave wind and rain observations in severe tropical and midlatitude marine storms. Consideration is given to sea surface temperature determinations, ocean color measurements, observations of the polar regions from satellites using active and passive microwave techniques, precipitation in tropical cyclones, and living marine resources applications. Additional papers provide details of the remote sensors involved in these oceanic studies, details of the Seasat validation program, and a summary of the data availability.

  16. Recent advances in radar remote sensing of forest

    NASA Technical Reports Server (NTRS)

    Letoan, Thuy

    1993-01-01

    On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.

  17. Recent Advances in Maya Studies Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Sever, Tom; Irwin, Daniel; Arnold, James E. (Technical Monitor)

    2001-01-01

    The Peten region of northern Guatemala is one of the last places on earth where major archeological sites remain to be discovered. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper and IKONOS satellite and airborne Star3i radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as cities, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the baJos, which are seasonally flooded swamps that cover over 40% of the land surface. The use of bajos for farming has been a source of debate within the professional community for many years. But the recent detection and verification of cultural features within the bajo system by our research team are providing conclusive evidence that the ancient Maya had adapted well to wetland environments from the earliest times and utilized them until the time of the Maya collapse. The combination of water management and bajo farming is an important resource for the future of the current inhabitants who are experiencing rapid population growth. Remote sensing imagery is also demonstrating that in the Preclassic period (600 BC- AD 250), the Maya had already achieved a high organizational level as evidenced by the construction of massive temples and an elaborate inter-connecting roadway system. Although they experienced several setbacks such as droughts and hurricanes, the Maya nevertheless managed the delicate forest ecosystem successfully for several centuries. However, around AD 800, something happened to the Maya to cause their rapid decline and eventual disappearance from the region. The evidence indicates that at this time there was increased climatic dryness, extensive deforestation, overpopulation, and widespread warfare. This raises a

  18. Advanced polychromator systems for remote chemical sensing (LDRD project 52575).

    SciTech Connect

    Sinclair, Michael B.; Pfeifer, Kent Bryant; Allen, James Joe

    2005-01-01

    The objective of this LDRD project was to develop a programmable diffraction grating fabricated in SUMMiT V{trademark}. Two types of grating elements (vertical and rotational) were designed and demonstrated. The vertical grating element utilized compound leveraged bending and the rotational grating element used vertical comb drive actuation. This work resulted in two technical advances and one patent application. Also a new optical configuration of the Polychromator was demonstrated. The new optical configuration improved the optical efficiency of the system without degrading any other aspect of the system. The new configuration also relaxes some constraint on the programmable diffraction grating.

  19. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.

    PubMed

    Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li

    2016-10-17

    The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.

  20. Recent Advances in Maya Studies Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Sever, Tom; Irwin, Daniel; Arnold, James E. (Technical Monitor)

    2001-01-01

    The Peten region of northern Guatemala is one of the last places on earth where major archeological sites remain to be discovered. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper and IKONOS satellite and airborne Star3i radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as cities, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. The use of baJos for farming has been a source of debate within the professional community for many years. But the recent detection and verification of cultural features within the baJo system by our research team are providing conclusive evidence that the ancient Maya had adapted well to wetland environments from the earliest times and utilized them until the time of the Maya collapse. The combination of water management and baJo farming is an important resource for the future of the current inhabitants who are experiencing rapid population growth. Remote sensing imagery is also demonstrating that in the Preclassic period (600 BC- AD 250), the Maya had already achieved a high organizational level as evidenced by the construction of massive temples and an elaborate inter-connecting roadway system. Although they experienced several setbacks such as droughts and hurricanes, the Maya nevertheless managed the delicate forest ecosystem successfully for several centuries. However, around AD 800, something happened to the Maya to cause their rapid decline and eventual disappearance from the region. The evidence indicates that at this time there was increased climatic dryness, extensive deforestation, overpopulation, and widespread warfare. This raises a

  1. Advances in Data Management in Remote Sensing and Climate Modeling

    NASA Astrophysics Data System (ADS)

    Brown, P. G.

    2014-12-01

    Recent commercial interest in "Big Data" information systems has yielded little more than a sense of deja vu among scientists whose work has always required getting their arms around extremely large databases, and writing programs to explore and analyze it. On the flip side, there are some commercial DBMS startups building "Big Data" platform using techniques taken from earth science, astronomy, high energy physics and high performance computing. In this talk, we will introduce one such platform; Paradigm4's SciDB, the first DBMS designed from the ground up to combine the kinds of quality-of-service guarantees made by SQL DBMS platforms—high level data model, query languages, extensibility, transactions—with the kinds of functionality familiar to scientific users—arrays as structural building blocks, integrated linear algebra, and client language interfaces that minimize the learning curve. We will review how SciDB is used to manage and analyze earth science data by several teams of scientific users.

  2. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  3. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme.

  4. Wavefront Deconvolution Studies.

    DTIC Science & Technology

    1980-05-01

    WORK UNIT NUMBERS 50 Moulton Street -�E Cambridge MA 02238 C22108/ 11. CONTROLLING OFFICE NAME AND ADDRESS . . -... E.BOT ATE Defense Advanced... Controlling Office) IS. SECURITY CLASS. (of this report) UNCLASSIFIED Rome Air Development Center (OCSE) Griffiss AFB NY 13441 Is. DECLASSIFICATION... nonuniqueness , sensitivity of algorithms to initial guess, etc., the ancillary mathematical details being set out in appendices. Some illustrative

  5. Closed-loop focal plane wavefront control with the SCExAO instrument

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  6. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  7. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.

  8. Performance of wavefront-sensorless adaptive optics using modal and zonal correction

    NASA Astrophysics Data System (ADS)

    Anzuola, Esdras; Segel, Max; Gladysz, Szymon; Stein, Karin

    2016-10-01

    Unconventional wavefront sensing strategies are being developed to provide alternatives for measuring the wavefront deformation of a laser beam propagating through strong turbulence and/or along a horizontal-path. In this paper we present results from two "wavefront-sensorless" approaches: stochastic parallel gradient descent (SPGD) and its modal version (M-SPGD). We compare the performance of both algorithms through experimental measurements under emulated dynamic atmospheric turbulence by using the coupling efficiency in a single mode fiber as performance metric. We estimate probability density function of coupling efficiency for free-space optical links using adaptive optics (AO) as a function of key parameters such us turbulence strength and AO loop rate. We demonstrate faster convergence rate of the M-SPGD algorithm as compared to the traditional SPGD, although classic SPGD achieves higher correction. Additionally, we constrain the main temporal requirements of an AO system using wavefront-sensorless architectures.

  9. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  10. Analysis of wavefront reconstruction in 8 meter ring solar telescope

    NASA Astrophysics Data System (ADS)

    Dai, Yichun; Jin, Zhenyu

    2016-07-01

    Chinese Giant Solar Telescope (CGST) is the next generation infrared and optical solar telescope of China, which is proposed and pushed by the solar astronomy community of China and listed into the National Plans of Major Science and Technology Infrastructures. CGST is currently proposed to be an 8 meter Ring Solar Telescope (RST) with width of 1 meter, the hollow and symmetric structure of such an annular aperture facilitates the thermal control and high precision magnetic field measurement for a solar telescope. Adaptive optics (AO) is an indispensable tool of RST to obtain diffraction limited observations. How to realize AO involved wavefront sensing and correcting, and the degree of compensating in a narrow annular aperture is the primary problem of AO implementation of RST. Wavefront reconstruction involved problems of RST are first investigated and discussed in this paper using end to end simulation based on Shack-Hartmann wavefront sensing (SHWFS). The simulation results show that performance of zonal reconstruction with measurement noise no more than 0.05 arc sec can meets the requirement of RST for diffraction-limited imaging at wavelength of 1μm, which satisfies most science cases of RST in near infrared waveband.

  11. Multivariate assimilation of satellite-derived land remote sensing datasets: Advances, gaps and challenges

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Peters-Lidard, C. D.; Mocko, D. M.; Jasinski, M. F.; Reichle, R. H.; Zaitchik, B. F.; Getirana, A.; Rodell, M.; Xia, Y.; Ek, M. B.

    2015-12-01

    Remote sensing advancements in recent years have enabled monitoring of the Earth's land surface with unprecedented scale and frequency. In the past decade, remote sensing observations of the land surface have become available from a number of satellite instruments and platforms including soil moisture (AMSR-E, ASCAT, AMSR2, SMOS, SMAP), snow depth (AMSR-E, AMSR2), snow cover (MODIS, VIIRS), terrestrial water storage (GRACE) and land surface temperature (MODIS, VIIRS, GOES). To support the effective exploitation of the information content of the remote sensing observations, computational tools such as data assimilation are necessary. In this presentation, I will describe the efforts towards the concurrent use of all available remote sensing observations in a multivariate data assimilation configuration in the North American Land Data Assimilation System (NLDAS). Though NLDAS has produced over 34 years (Jan 1979 to present) of hourly land-surface meteorology and surface states using the best-available observations and reanalyses for "off-line" land surface model (LSM) simulations, to-date it has not included the assimilation of relevant hydrological remote sensing datasets. The new phase of NLDAS attempts to bridge this gap by assimilating all land relevant datasets in the NLDAS configuration using the NASA Land Information System (LIS). The results from individually assimilating the soil moisture, snow and terrestrial water storage datasets indicate that improvements can be obtained not only in soil moisture and snow states, but also on evapotranspiration and streamflow estimates. The results from the multivariate, multisensor assimilation of the above-mentioned remote sensing datasets in NLDAS and an evaluation of the resulting improvements and trends in soil moisture, snowpack, evapotranspiration and streamflow will also be presented. Through this talk, I will describe the advances made towards the effective utilization of remote sensing data for hydrologic

  12. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules.

    PubMed

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-10-13

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing.

  13. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  14. Recent Advances Combining Remote Sensing Data with Advanced Models to Assess Disturbance Related Plant-Climate Interactions.

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Terrestrial ecosystem dynamics are strongly influenced by processes of disturbance and recovery across a range of spatial and temporal scales, from large catastrophic events including tropical cyclones, fires, and pest outbreaks, to fine-scale forest canopy gap dynamics. Natural disturbances episodically alter vegetation structure and create important fluxes of carbon from vegetation to coarse woody debris and litter, and can alter land surface properties important for climate. Similarly, anthropogenic disturbances have the capacity to alter important land surface properties. Recovery following disturbances tends to restore vegetation structure and carbon over longer time scales as vegetation regrows and debris decomposes and land surface properties are restored. The complex spatial pattern from a legacy of past events, together with ongoing and potentially changing future events, presents a challenge not only for understanding, but also for prediction. As many disturbance processes are climate related, being climate driven and/or producing affects on climate through biophysical or biogeochemical alterations of the land surface, disturbance is a critical link in understanding plant-climate interactions. Here we review past progress, current results, and future priorities for utilizing remote sensing data in advanced models to understand of the role of disturbance in plant-climate interactions. Recent advances have helped to quantify the long term impacts of hurricanes on forests, account for recent forest disturbance events, quantify the vulnerability of ecosystems to potential future disturbance rates, and project future vegetation change in response to climate change, and reduce uncertainty through improved initial conditions accounting for the history of past disturbance events. Now, a new generation of land use data are being developed constrained by remote sensing to drive the next generation of Earth system models to estimate the effects of anthropogenic

  15. Broadband, Common-path, Interferometric Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent (Inventor)

    2015-01-01

    Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.

  16. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.

    PubMed

    Yu, Xiaoqing; Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang

    2017-03-15

    Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties. Therefore, great quantities of sensors with high sensitivity, selectivity, and stability have been created in recent years. In this review, we focus on the recent advances in the fabrication technologies of GCFs and their specific sensing applications. In addition, the relationship between the properties of GCFs and sensing performance is concentrated on. Finally, the personal perspectives and key challenges of GCFs are mentioned in the hope to shed a light on their potential future research directions.

  17. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  18. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish

  19. Recent Advances in Compressed Sensing: Discrete Uncertainty Principles and Fast Hyperspectral Imaging

    DTIC Science & Technology

    2015-03-26

    medical imaging , e.g., magnetic resonance imaging (MRI). Since the early 1980s, MRI has granted doctors the ability to distinguish between healthy tissue...chemical composition of a star. Conventional hyperspectral cameras are slow. Different methods of hyperspectral imaging either require time to process ...Recent Advances in Compressed Sensing: Discrete Uncertainty Principles and Fast Hyperspectral Imaging THESIS MARCH 2015 Megan E. Lewis, Second

  20. Virtual pyramid wavefront sensor for phase unwrapping.

    PubMed

    Akondi, Vyas; Vohnsen, Brian; Marcos, Susana

    2016-10-10

    Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.

  1. Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc

    NASA Astrophysics Data System (ADS)

    Percivall, George; Simonis, Ingo

    2016-06-01

    The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.

  2. Zernike-like Orthogonal Basis Functions for Wavefront Characterization over Sampled, Irregular Apertures

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Dean, Bruce H.; Smith, J. Scott

    2007-01-01

    For optical systems with circular apertures, wavefronts are often analyzed using Zernike polynomials, and individual Zernike functions are associated with familiar optical aberrations. For systems with noncircular apertures, or in practical situations in which wavefronts are measured at a limited number of points in the aperture, the Zernike polynomials are no longer an orthogonal basis for the measured data. Although there are an endless number of ways to create a basis for such measured data, a "Zernike-like" basis is useful to connect with our experience with the usual optical aberrations. In this paper, the steps required to identify a Zernike-like basis for wavefronts over sampled, irregular apertures are presented, based on the Gram-Schmidt orthogonalization technique. The benefits of analyzing optical wavefronts using an orthogonal basis specific to an optical system's aperture shape and wavefront sampling, instead of using the traditional Zernike polynomials, are detailed in two examples, from image-based wavefront sensing on a segmented-aperture telescope (the James Webb Space Telescope Testbed Telescope at Ball Aerospace) and from interferometer characterization for surface metrology of a hexagonal mirror segment.

  3. X-ray grating interferometer for in situ and at-wavelength wavefront metrology.

    PubMed

    Kayser, Yves; David, Christian; Flechsig, Uwe; Krempasky, Juraj; Schlott, Volker; Abela, Rafael

    2017-01-01

    A wavefront metrology setup based on the X-ray grating interferometry technique for spatially resolved, quantitative, in situ and at-wavelength measurements of the wavefront at synchrotron radiation and hard X-ray free-electron laser beamlines is reported. Indeed, the ever-increasing demands on the optical components to preserve the wavefront shape and the coherence of the delivered X-ray beam call for more and more sensitive diagnostic instruments. Thanks to its angular sensitivity, X-ray grating interferometry has been established in recent years as an adequate wavefront-sensing technique for quantitatively assessing the quality of the X-ray wavefront under working conditions and hence for the in situ investigation of X-ray optical elements. In order to characterize the optical elements at any given beamline by measuring the aberrations introduced in the wavefront, a transportable X-ray grating interferometry setup was realised at the Swiss Light Source (SLS). The instrument, which is expected to be a valuable tool for investigating the quality of the X-ray beam delivered at an endstation, will be described hereafter in terms of the hardware setup and the related data analysis procedure. Several exemplary experiments performed at the X05DA Optics beamline of the SLS will be presented.

  4. Optical characterization of MEMS micro-mirror arrays using digital holographic Shack-Hartmann wavefront sensor: a new technique

    NASA Astrophysics Data System (ADS)

    Anisimov, Igor; Dooley, Sarah B.

    2011-05-01

    Micro-Electro-Mechanical Systems (MEMS) Micro-Mirror Arrays (MMAs) are widely used in advanced laser beam steering systems and as adaptive optical elements. The new generation of MEMS MMAs are fabricated by bulk micromachining of a single Silicon-On-Insulator wafer. Optical characterization of MEMS MMAs can be done by direct detection of the reflected beams or by using more advanced wavefront measuring techniques, such as a phase-shifting interferometer or Shack-Hartmann wavefront sensor. In the case of an interferometer, the geometry of the tested MMA can be calculated after performing the phase unwrapping procedure, which can be quite complex. In the latter case of the Shack-Hartmann wavefront sensor, careful selection of a highquality array of microlenses is required in order to match the capabilities of the wavefront sensor to the measured wavefront produced by the MMA. The presented digital Shack-Hartmann technique is a modified approach for wavefront characterization based on digital processing of the interferometer data. The optical wavefront from the tested MMA is mixed with the reference wavefront. Then the recorded interference intensity image is Fourier transformed producing digitally synthesized images of the optical beams in the far field. Therefore, the digital version of the Shack-Hartmann wavefront sensor does not require the use of an array of microlenses and is primarily limited by the detector array geometry. One can digitally generate any configuration of subapertures corresponding to various geometries of microlenses. However, this new technique does require coherent optical mixing of the two wavefronts in order to produce the interference pattern.

  5. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  6. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    NASA Technical Reports Server (NTRS)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline

    2014-01-01

    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  7. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  8. Bicubic uniform B-spline wavefront fitting technology applied in computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Sun, Jun-qiang; Chen, Guo-jie

    2006-02-01

    This paper presented a bicubic uniform B-spline wavefront fitting technology to figure out the analytical expression for object wavefront used in Computer-Generated Holograms (CGHs). In many cases, to decrease the difficulty of optical processing, off-axis CGHs rather than complex aspherical surface elements are used in modern advanced military optical systems. In order to design and fabricate off-axis CGH, we have to fit out the analytical expression for object wavefront. Zernike Polynomial is competent for fitting wavefront of centrosymmetric optical systems, but not for axisymmetrical optical systems. Although adopting high-degree polynomials fitting method would achieve higher fitting precision in all fitting nodes, the greatest shortcoming of this method is that any departure from the fitting nodes would result in great fitting error, which is so-called pulsation phenomenon. Furthermore, high-degree polynomials fitting method would increase the calculation time in coding computer-generated hologram and solving basic equation. Basing on the basis function of cubic uniform B-spline and the character mesh of bicubic uniform B-spline wavefront, bicubic uniform B-spline wavefront are described as the product of a series of matrices. Employing standard MATLAB routines, four kinds of different analytical expressions for object wavefront are fitted out by bicubic uniform B-spline as well as high-degree polynomials. Calculation results indicate that, compared with high-degree polynomials, bicubic uniform B-spline is a more competitive method to fit out the analytical expression for object wavefront used in off-axis CGH, for its higher fitting precision and C2 continuity.

  9. Reliable Welding of HSLA Steels by Square Wave Pulsing Using an Advanced Sensing (EDAP) Technique.

    DTIC Science & Technology

    1986-04-30

    situation is the result of welding on A710 steel . (A similar effect on welding on HY80 ?) The following is offered by Woods and Milner (Ref. 12): "The...AD-R69 762 RELIABLE MELDING OF HSLA STEELS BY SQUARE MAVE PULSING 1/2 USING AN ADV NCED.. (U) APPLIED FUSION TECHNOLOGIES INC FORT COLLINS CO C...6 p . 0 Report 0001 AZ AD-A 168 762 I "RELIABLE WELDING OF HSLA STEELS BY SQUARE WAVE PULSING USING AN ADVANCED SENSING (EDAP) TECHNIQUE- Preliminary

  10. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  11. Advances in atmospheric light scattering theory and remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Sun, Wenbo; Gong, Wei

    2017-02-01

    This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].

  12. Individual eye model based on wavefront aberration

    NASA Astrophysics Data System (ADS)

    Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan

    2005-03-01

    Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.

  13. Performance simulation of the ERIS pyramid wavefront sensor module in the VLT adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Agapito, Guido; Riccardi, Armando; Esposito, Simone; Le Louarn, Miska; Marchetti, Enrico

    2012-07-01

    This paper presents the performance analysis based on numerical simulations of the Pyramid Wavefront sensor Module (PWM) to be included in ERIS, the new Adaptive Optics (AO) instrument for the Adaptive Optics Facility (AOF). We have analyzed the performance of the PWM working either in a low-order or in a high-order wavefront sensing mode of operation. We show that the PWM in the high-order sensing mode can provide SR > 90% in K band using bright guide stars under median seeing conditions (0.85 arcsec seeing and 15 m/s of wind speed). In the low-order sensing mode, the PWM can sense and correct Tip-Tilt (and if requested also Focus mode) with the precision required to assist the LGS observations to get an SR > 60% and > 20% in K band, using up to a ~16.5 and ~19.5 R-magnitude guide star, respectively.

  14. Time series analysis of Adaptive Optics wave-front sensor telemetry data

    SciTech Connect

    Poyneer, L A; Palmer, D

    2004-03-22

    Time series analysis techniques are applied to wave-front sensor telemetry data from the Lick Adaptive Optics System. For 28 fully-illuminated subapertures, telemetry data of 4096 consecutive slope estimates for each subaperture are available. The primary problem is performance comparison of alternative wave-front sensing algorithms. Using direct comparison of data in open loop and closed-loop trials, we analyze algorithm performance in terms of gain, noise and residual power. We also explore the benefits of multi-input Wiener filtering and analyze the open-loop and closed-loop spatial correlations of the sensor measurements.

  15. Feasibility study of a layer-oriented wavefront sensor for solar telescopes: reply.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-11-10

    We appreciate the thoughtful comments by Kellerer [Appl. Opt.53, 7643 (2014)10.1364/AO.53.007643] to our recent study [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685] in which we evaluate the practicability of a layer-oriented wavefront sensing approach suggested for use in solar multiconjugate adaptive optics. After careful review of Kellerer's comment, we remain cautious about the feasibility of a solar-layer-oriented Shack-Hartmann wavefront sensor. However, we strongly encourage further analysis and proof-of-concept work that addresses the difficulties outlined in our original paper and that demonstrates the operating principles behind such an instrument.

  16. Scalable analog wavefront sensor with subpixel resolution

    NASA Astrophysics Data System (ADS)

    Wilcox, Michael

    2006-06-01

    Standard Shack-Hartman wavefront sensors use a CCD element to sample position and distortion of a target or guide star. Digital sampling of the element and transfer to a memory space for subsequent computation adds significant temporal delay, thus, limiting the spatial frequency and scalability of the system as a wavefront sensor. A new approach to sampling uses information processing principles in an insect compound eye. Analog circuitry eliminates digital sampling and extends the useful range of the system to control a deformable mirror and make a faster, more capable wavefront sensor.

  17. Static wavefront correction by Linnik interferometry.

    NASA Astrophysics Data System (ADS)

    Artzner, G.

    1989-04-01

    The author considers optical systems with residual peak to valley wavefront errors below 150 nm. The interference figure for λ = 633 nm may then be adjusted and photographed as to hold out at every point of the image of the pupil a one to one relationship between the optical density of the interferogram and the magnitude of the wavefront error. An enduring interference figure is secured by means of a tiny reflecting aluminized spot on a bare substrate located on the image of a distant point source. The author investigates how subsequent photoreproduction of an interferogram upon a photoresist coating may act as a transmitting or reflecting wavefront corrector.

  18. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  19. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Li, Xinyang

    2011-04-01

    Optimizing the system performance metric directly is an important method for correcting wavefront aberrations in an adaptive optics (AO) system where wavefront sensing methods are unavailable or ineffective. An appropriate "Deformable Mirror" control algorithm is the key to successful wavefront correction. Based on several stochastic parallel optimization control algorithms, an adaptive optics system with a 61-element Deformable Mirror (DM) is simulated. Genetic Algorithm (GA), Stochastic Parallel Gradient Descent (SPGD), Simulated Annealing (SA) and Algorithm Of Pattern Extraction (Alopex) are compared in convergence speed and correction capability. The results show that all these algorithms have the ability to correct for atmospheric turbulence. Compared with least squares fitting, they almost obtain the best correction achievable for the 61-element DM. SA is the fastest and GA is the slowest in these algorithms. The number of perturbation by GA is almost 20 times larger than that of SA, 15 times larger than SPGD and 9 times larger than Alopex.

  20. Generation of acoustic helical wavefronts using metasurfaces

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Lissek, Herve; Mosig, Juan R.

    2017-01-01

    It has been shown that acoustic waves with helical wavefronts can carry angular momentum, which can be transmitted towards a propagating medium. Such a wave field can be achieved by using a planar array of electroacoustic transducers, forming a given spatial distribution of phased sound sources which produce the desired helical wavefronts. Here, we introduce a technique to generate acoustic vortices, based on the passive acoustic metasurface concept. The proposed metasurface is composed of space-coiled cylindrical unit cells transmitting sound pressure with a controllable phase shift, which are arranged in a discretized circular configuration, and thus passively transforming an incident plane wavefront into the desired helical wavefront. This method presents the advantage of overcoming the restrictions on using many acoustic sources, and it is implemented with a transmitting metasurface which can be easily three-dimensionally printed. The proposed straightforward design principle can be adopted for easy production of acoustic angular momentum with minimum complexity and using a single source.

  1. Wavefront control system for the Keck telescope

    SciTech Connect

    Brase, J. M., LLNL

    1998-03-01

    The laser guide star adaptive optics system currently being developed for the Keck 2 telescope consists of several major subsystems: the optical bench, wavefront control, user interface and supervisory control, and the laser system. The paper describes the design and implementation of the wavefront control subsystem that controls a 349 actuator deformable mirror for high order correction and tip-tilt mirrors for stabilizing the image and laser positions.

  2. Reconfigurable wavefront sensor for ultrashort pulses.

    PubMed

    Bock, Martin; Das, Susanta Kumar; Fischer, Carsten; Diehl, Michael; Börner, Peter; Grunwald, Ruediger

    2012-04-01

    A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.

  3. An ocular wavefront sensor based on binary phase element: design and analysis

    NASA Astrophysics Data System (ADS)

    Mishra, Sanjay Kumar; Gupta, Arun Kumar; Sharma, Anurag

    2012-07-01

    A modal wavefront sensor for ocular aberrations exhibits two main advantages compared to a conventional Shack-Hartmann sensor. As the wavefront is detected in the Fourier plane, the method is robust against local loss of information (e.g. local opacity of ocular lens as in the case of cataract), and is not dependent on the spatial distribution of wavefront sampling. We have proposed a novel method of wavefront sensing for ocular aberrations that directly detects the strengths of Zernike aberrations. A multiplexed Fourier computer-generated hologram has been designed as the binary phase element (BPE) for the detection of second-order and higher-order ocular aberrations (HOAs). The BPE design has been validated by comparing the simulated far-field pattern with the experimental results obtained by displaying it on a spatial light modulator. Simulation results have demonstrated the simultaneous wavefront detection with an accuracy better that ∼λ/30 for a measurement range of ±2.1λ with reduced cross-talk. Sensor performance is validated by performing a numerical experiment using the City data set for test waves containing second-order and HOAs and measurement errors of 0.065 µm peak-to-valley (PV) and 0.08 µm (PV) have been obtained, respectively.

  4. Laser guide star spot shrinkage for affordable wavefront sensors

    NASA Astrophysics Data System (ADS)

    Jahn, Wilfried; Hugot, Emmanuel; Fusco, Thierry; Neichel, Benoit; Ferrari, Marc; Correia, Carlos; Pueyo, Laurent; Dohlen, Kjetil; Pascal, Sandrine; Vola, Pascal; Sauvage, Jean-François; El Hadi, Kacem; Gach, Jean Luc

    2016-07-01

    Innovative optical designs allow tackling the spot elongation issues in Shack-Hartman based laser guide star wavefront sensors. We propose two solutions using either a combination of two arrays of freeform microlenses, or a combination of freeform optics, to perform a shrinkage of the laser spots as well as a magnification of the SH focal plane. These approaches will drastically reduce the number of needed pixels, thus making possible the use of existing detectors. We present the recent advances on this activity as well as the estimation of performance, linearity and sensitivity of the compressed system in presence of aberrations.

  5. The design of wavefront coded imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Shun; Cen, Zhaofeng; Li, Xiaotong

    2016-10-01

    Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.

  6. Earth resources programs at the Langley Research Center. Part 1: Advanced Applications Flight Experiments (AAFE) and microwave remote sensing program

    NASA Technical Reports Server (NTRS)

    Parker, R. N.

    1972-01-01

    The earth resources activity is comprised of two basic programs as follows: advanced applications flight experiments, and microwave remote sensing. The two programs are in various stages of implementation, extending from experimental investigations within both the AAFE program and the microwave remote sensing program, to multidisciplinary studies and planning. The purpose of this paper is simply to identify the main thrust of the Langley Research Center activity in earth resources.

  7. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  8. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  9. Recent advances in cortisol sensing technologies for point-of-care application.

    PubMed

    Kaushik, Ajeet; Vasudev, Abhay; Arya, Sunil K; Pasha, Syed Khalid; Bhansali, Shekhar

    2014-03-15

    Everyday lifestyle related issues are the main cause of psychological stress, which contributes to health disparities experienced by individuals. Prolonged exposure to stress leads to the activation of signaling pathways from the brain that leads to release of cortisol from the adrenal cortex. Various biomarkers have been affected by psychological stress, but cortisol "a steroid hormone" is known as a potential biomarker for its estimation. Cortisol can also be used as a target analyte marker to determine the effect of exposure such as organophosphates on central nervous system, which alters the endocrine system, leading to imbalance in cortisol secretion. Cortisol secretion of individuals depends on day-night cycle and field environment hence its detection at point-of-care (POC) is deemed essential to provide personalized healthcare. Chromatographic techniques have been traditionally used to detect cortisol. The issues relating to assay formation, system complexity, and multistep extraction/purification limits its application in the field. In order to overcome these issues and to make portable and effective miniaturized platform, various immunoassays sensing strategies are being explored. However, electrochemical immunosensing of cortisol is considered as a recent advancement towards POC application. Highly sensitive, label-free and selective cortisol immunosensor based on microelectrodes are being integrated with the microfluidic system for automated diurnal cortisol monitoring useful for personalized healthcare. Although the reported sensing devices for cortisol detection may have a great scope to improve portability, electronic designing, performance of the integrated sensor, data safety and lifetime for point-of-care applications, This review is an attempt to describe the various cortisol sensing platforms and their potential to be integrated into a wearable system for online and continuous monitoring of cortisol rhythm at POC as a function of one

  10. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  11. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  12. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  13. Development of a Pyramid Wave-front Sensor

    NASA Astrophysics Data System (ADS)

    El Hadi, Kacem; Vignaux, Mael; Fusco, Thierry

    2013-12-01

    Within the framework of the E-ELT studies, several laboratories are involved on some instruments: HARMONY with its ATLAS adaptive optics [AO] system, EAGLE or EPICS. Most of the AO systems will probably integrate one or several pyramidal wavefront sensors, PWFS (R. Ragazzoni [1]). The coupling in an AO loop and the control in laboratory (then on sky) of this type of sensor is fundamental for the continuation of the projects related to OA systems on the E-ELT. LAM (Laboratory of Astrophysics of Marseille) is involved in particular in the VLT-SPHERE, ATLAS, EPICS projects. For the last few years, our laboratory has been carrying out different R&D activities in AO instrumentation for ELTs. An experimental AO bench is designed and being developed to allow the validation of new wave-front sensing and control concepts [2]. One the objectives of this bench, is the experimental validation of a pyramid WFS. Theoretical investigations on its behavior have been already made. The world's fastest and most sensitive camera system (OCAM2) has been recently developed at LAM (J.L Gach [3], First Light Imaging). Conjugating this advantage with the pyramid concept, we plan to demonstrate a home made Pyramid sensor for Adaptive Optics whose the speed and the precision are the key points. As a joint collaboration with ONERA and Shaktiware, our work aims at the optimization (measurement process, calibration and operation) in laboratory then on the sky of a pyramid sensor dedicated to the first generation instruments for ELTs. The sensor will be implemented on the ONERA ODISSEE AO bench combining thus a pyramid and a Shack-Hartmann wavefront sensors. What would give the possibility to compare strictly these two WFS types and make this bench unique in France and even in Europe. Experimental work on laboratory demonstration is undergoing. The status of our development will presented at the conference.

  14. A Broad-Band Phase-Contrast Wave-Front Sensor

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric; Wallace, J. Kent

    2005-01-01

    A broadband phase-contrast wave-front sensor has been proposed as a real-time wave-front sensor in an adaptive-optics system. The proposed sensor would offer an alternative to the Shack-Hartmann wave-front sensors now used in high-order adaptive-optics systems of some astronomical telescopes. Broadband sensing gives higher sensitivity than does narrow-band sensing, and it appears that for a given bandwidth, the sensitivity of the proposed phase-contrast sensor could exceed that of a Shack-Hartmann sensor. Relative to a Shack-Hartmann sensor, the proposed sensor may be optically and mechanically simpler. As described below, an important element of the principle of operation of a phase-contrast wave-front sensor is the imposition of a 90deg phase shift between diffracted and undiffracted parts of the same light beam. In the proposed sensor, this phase shift would be obtained by utilizing the intrinsic 90 phase shift between the transmitted and reflected beams in an ideal (thin, symmetric) beam splitter. This phase shift can be characterized as achromatic or broadband because it is 90deg at every wavelength over a broad wavelength range.

  15. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  16. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  17. Remotely-Sensed Glacial Velocities: Mt. Shasta Advance vs. Sierra Nevada Retreat

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Bookhagen, B.; Burbank, D. W.

    2008-12-01

    Monitoring changes in alpine glaciers is crucial to understanding the impacts of global climate change because alpine glacier systems respond quickly to changes in the earth´s climate. The glaciers of the Sierra Nevada and southern Cascades are of particular interest because they provide a major water reservoir to the state of California. Oddly, while most glaciers worldwide (including in the Sierra Nevada) are retreating, glaciers in northern California are advancing, and examining differences between these two locations will help resolve this paradox. Whereas previous studies have mapped the spatial extents of glaciers from aerial and satellite imagery, this study utilizes glacial velocities as a monitoring tool to examine the differences of the glaciers in the Sierra Nevada and on Mount Shasta. Using the program COSI-Corr in ENVI, horizontal surface ice flow velocities are calculated at the subpixel level from a time-series of co-registered, orthorectified, and correlated, late-summer satellite imagery. Through a combination of 15-meter Advanced Spaceborne Thermal Emission Radiometer (ASTER) and 5-meter SPOT imagery, orthorectified using a 15-meter resampled Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM), glacial velocities are derived on major glaciers on Mount Shasta and in the Palisades of the Sierra Nevada for 2000-2008. This study demonstrates the utility of combining various types of remote sensing imagery to create a complete time record, and from this record derive glacial velocities for use in monitoring climate change effectively.

  18. Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer

    PubMed Central

    Ginis, Harilaos S; Plainis, Sotiris; Pallikaris, Aristophanis

    2004-01-01

    Background Recently, instruments for the measurement of wavefront aberration in the living human eye have been widely available for clinical applications. Despite the extensive background experience on wavefront sensing for research purposes, the information derived from such instrumentation in a clinical setting should not be considered a priori precise. We report on the variability of such an instrument at two different pupil sizes. Methods A clinical aberrometer (COAS Wavefront Scienses, Ltd) based on the Shack-Hartmann principle was employed in this study. Fifty consecutive measurements were perfomed on each right eye of four subjects. We compared the variance of individual Zernike expansion coefficients as determined by the aberrometer with the variance of coefficients calculated using a mathematical method for scaling the expansion coefficients to reconstruct wavefront aberration for a reduced-size pupil. Results Wavefront aberration exhibits a marked variance of the order of 0.45 microns near the edge of the pupil whereas the central part appears to be measured more consistently. Dispersion of Zernike expansion coefficients was lower when calculated by the scaling method for a pupil diameter of 3 mm as compared to the one introduced when only the central 3 mm of the Shack – Hartmann image was evaluated. Signal-to-noise ratio was lower for higher order aberrations than for low order coefficients corresponding to the sphero-cylindrical error. For each subject a number of Zernike expansion coefficients was below noise level and should not be considered trustworthy. Conclusion Wavefront aberration data used in clinical care should not be extracted from a single measurement, which represents only a static snapshot of a dynamically changing aberration pattern. This observation must be taken into account in order to prevent ambiguous conclusions in clinical practice and especially in refractive surgery. PMID:15018630

  19. Fast modulation and dithering on a pyramid wavefront sensor bench

    NASA Astrophysics Data System (ADS)

    van Kooten, Maaike; Bradley, Colin; Veran, Jean-Pierre; Herriot, Glen; Lardiere, Olivier

    2016-07-01

    A pyramid wavefront sensor (PWFS) bench has been setup at NRC-Herzberg (Victoria, Canada) to investigate, first, the feasibility of a double roof prism PWFS, and second, test the proposed pyramid wavefront sensing methodology to be used in NFIRAOS for the Thirty Meter Telescope. Traditional PWFS require shallow angles and strict apex tolerances, making them difficult to manufacture. Roof prisms, on the other hand, are common optical components and can easily be made to the desired specifications. Understanding the differences between a double roof prism PWFS and traditional PWFS will allow for the double roof prism PWFS to become more widely used as an alternative to the standard pyramid, especially in a laboratory setting. In this work, the response of the double roof prism PWFS as the amount of modulation is changed, is compared to an ideal PWFS modelled using the adaptive optics toolbox, OOMAO in MATLAB. The object oriented toolbox uses physical optics to model complete AO systems. Fast modulation and dithering using a PI mirror has been implemented using a micro-controller to drive the mirror and trigger the camera. The various trade offs of this scheme, in a controlled laboratory environment, are studied and reported.

  20. Telescope interferometers: an alternative to classical wavefront sensors

    NASA Astrophysics Data System (ADS)

    Hénault, F.

    2008-07-01

    Several types of Wavefront Sensors (WFS) are nowadays available in the field of Adaptive Optics (AO). Generally speaking, their basic principle consists in measuring slopes or curvatures of Wavefront Errors (WFE) transmitted by a telescope, subsequently reconstructing WFEs digitally. Such process, however, does not seem to be well suited for evaluating co-phasing or piston errors of future large segmented telescopes in quasi real-time. This communication presents an original, recently proposed technique for direct WFE sensing. The principle of the device, which is named "Telescope-Interferometer" (TI), is based on the addition of a reference optical arm into the telescope pupil plane. Then incident WFEs are deduced from Point Spread Function (PSF) measurements at the telescope focal plane. Herein are described two different types of TIs, and their performance are discussed in terms of intrinsic measurement accuracy and spatial resolution. Various error sources are studied by means of numerical simulations, among which photon noise sounds the most critical. Those computations finally help to define the application range of the TI method in an AO regime, including main and auxiliary telescope diameters and magnitude of the guide star. Some practical examples of optical configurations are also described and commented.

  1. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  2. Wavefront control for the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Veran, J; Dillon, D; Severson, S; Macintosh, B

    2006-04-14

    The wavefront control strategy for the proposed Gemini Planet Imager, an extreme adaptive optics coronagraph for planet detection, is presented. Two key parts of this strategy are experimentally verified in a testbed at the Laboratory for Adaptive Optics, which features a 32 x 32 MEMS device. Detailed analytic models and algorithms for Shack-Hartmann wavefront sensor alignment and calibration are presented. It is demonstrated that with these procedures, the spatially filtered WFS and the Fourier Transform reconstructor can be used to flatten to the MEMS to 1 nm RMS in the controllable band. Performance is further improved using the technique of modifying the reference slopes using a measurement of the static wavefront error in the science leg.

  3. Model-Based Wavefront Control for CCAT

    NASA Technical Reports Server (NTRS)

    Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David

    2011-01-01

    The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.

  4. Wave-front correctors by diamond turning

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Stacy, J. E.; Saito, T. T.; Patterson, S. R.

    1986-01-01

    The production of wave-front correctors by single-point diamond turning is reported. Interferograms are shown which demonstrate excellent agreement between the diamond-turned surface and the desired surface. It is concluded from this experiment that it is now feasible by means of single-point diamond turning to make generalized wave-front control surfaces or to produce any unusual surface desired by the optical designer. The maximum departure from the nearest regular surface is set by the dynamic range and maximum diamond point acceleration permitted by the machine.

  5. [From scattering to wavefront. Healing optics].

    PubMed

    Semchishen, V; Mrokhen, M

    2004-01-01

    The purpose of this report, made within research in progress, was to discuss the optical effect of irregular surface structures that might be associated with complicated refractive procedures related with the retinal image quality. We concentrated our discussion on the range of surface structures between the known scattering effects and wavefront aberrations of higher orders. The case study demonstrates that the surface irregularities of the cornea might induce, after refractive laser surgery, significant optical aberrations that are much too different from the classical wavevront or scattering errors. Such optical errors, however, cannot be correctly measured by current commercial wavefront sensors. Finally, the influence of the healing process on Strehl ratio is under discussion.

  6. Wavefront sets and polarizations on supermanifolds

    NASA Astrophysics Data System (ADS)

    Dappiaggi, Claudio; Gimperlein, Heiko; Murro, Simone; Schenkel, Alexander

    2017-02-01

    In this paper, we develop the foundation for microlocal analysis on supermanifolds. Making use of pseudodifferential operators on supermanifolds as introduced by Rempel and Schmitt, we define a suitable notion of super-wavefront set for superdistributions which generalizes Dencker's polarization sets for vector-valued distributions to supergeometry. In particular, our super-wavefront sets detect polarization information of the singularities of superdistributions. We prove a refined pullback theorem for superdistributions along supermanifold morphisms, which as a special case establishes criteria when two superdistributions may be multiplied. As an application of our framework, we study the singularities of distributional solutions of a supersymmetric field theory.

  7. QUEN - The APL wavefront array processor

    SciTech Connect

    Dolecek, Q.E. )

    1989-09-01

    Developments in computer networks are making parallel processing machines accessible to an increasing number of scientists and engineers. Several vector and array processors are already commercially available, as are costly systolic, wavefront, and massive parallel processors. This article discusses the Applied Physics Laboratory's entry: a low-cost, memory-linked wavefront array processor that can be used as a peripheral on existing computers. Available today as the family of QUEN processors, it is the first commercial parallel processor to bring Cray 1 computation speeds into the minicomputer price range. 5 refs.

  8. Modular, Reconfigurable, and Rapid Response Space Systems: The Remote Sensing Advanced Technology Microsatellite

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Andary, Jim; Oberright, John; So, Maria; Wegner, Peter; Hauser, Joe

    2004-01-01

    Modular, Reconfigurable, and Rapid-response (MR(sup 2)) space systems represent a paradigm shift in the way space assets of all sizes are designed, manufactured, integrated, tested, and flown. This paper will describe the MR(sup 2) paradigm in detail, and will include guidelines for its implementation. The Remote Sensing Advanced Technology microsatellite (RSAT) is a proposed flight system test-bed used for developing and implementing principles and best practices for MR(sup 2) spacecraft, and their supporting infrastructure. The initial goal of this test-bed application is to produce a lightweight (approx. 100 kg), production-minded, cost-effective, and scalable remote sensing micro-satellite capable of high performance and broad applicability. Such applications range from future distributed space systems, to sensor-webs, and rapid-response satellite systems. Architectures will be explored that strike a balance between modularity and integration while preserving the MR(sup 2) paradigm. Modularity versus integration has always been a point of contention when approaching a design: whereas one-of-a-kind missions may require close integration resulting in performance optimization, multiple and flexible application spacecraft benefit &om modularity, resulting in maximum flexibility. The process of building spacecraft rapidly (< 7 days), requires a concerted and methodical look at system integration and test processes and pitfalls. Although the concept of modularity is not new and was first developed in the 1970s by NASA's Goddard Space Flight Center (Multi-Mission Modular Spacecraft), it was never modernized and was eventually abandoned. Such concepts as the Rapid Spacecraft Development Office (RSDO) became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years technology has advanced considerably, and the time is ripe to reconsider modularity in its own right, as enabler of R(sup 2), and as a key element of transformational systems. The

  9. Wavefront-error performance characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) science instruments

    NASA Astrophysics Data System (ADS)

    Aronstein, David L.; Smith, J. S.; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-07-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) f/# and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil-geometry predictions for each SI field point tested, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse-translation diversity (TTD) sweeps instead of focus sweeps, in which a subaperture is translated and/or rotated across the exit pupil of the system from one image to the next. Several optical-performance requirements that were verified during this ISIM Element-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also gives an overview of the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis

  10. Concepts, laboratory, and telescope test results of the plenoptic camera as a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Montilla, I.; Fernández-Valdivia, J. J.; Trujillo-Sevilla, J. L.; Rodríguez-Ramos, J. M.

    2012-07-01

    The plenoptic camera has been proposed as an alternative wavefront sensor adequate for extended objects within the context of the design of the European Solar Telescope (EST), but it can also be used with point sources. Originated in the field of the Electronic Photography, the plenoptic camera directly samples the Light Field function, which is the four - dimensional representation of all the light entering a camera. Image formation can then be seen as the result of the photography operator applied to this function, and many other features of the light field can be exploited to extract information of the scene, like depths computation to extract 3D imaging or, as it will be specifically addressed in this paper, wavefront sensing. The underlying concept of the plenoptic camera can be adapted to the case of a telescope by using a lenslet array of the same f-number placed at the focal plane, thus obtaining at the detector a set of pupil images corresponding to every sampled point of view. This approach will generate a generalization of Shack-Hartmann, Curvature and Pyramid wavefront sensors in the sense that all those could be considered particular cases of the plenoptic wavefront sensor, because the information needed as the starting point for those sensors can be derived from the plenoptic image. Laboratory results obtained with extended objects, phase plates and commercial interferometers, and even telescope observations using stars and the Moon as an extended object are presented in the paper, clearly showing the capability of the plenoptic camera to behave as a wavefront sensor.

  11. Advances in Remote Sensing Approaches for Hazard Mitigation and Natural Resource Protection in Pacific Latin America: A Workshop for Advanced Graduate Students, Post- Doctoral Researchers, and Junior Faculty

    NASA Astrophysics Data System (ADS)

    Gierke, J. S.; Rose, W. I.; Waite, G. P.; Palma, J. L.; Gross, E. L.

    2008-12-01

    Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety, they often lack resources for advancing the development and practice of remote sensing. All countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development. With National Science Foundation support from the Partnerships in International Research and Education program, we are developing a new educational system of applied research and engineering for advancing collaborative linkages among agencies and institutions in Pacific Latin American countries (to date: Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, and Ecuador) in the development of remote sensing tools for hazard mitigation and water resources management. The project aims to prepare students for careers in science and engineering through their efforts to solve suites of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. The ultimate goal of integrating research with education is to encourage cross-disciplinary, creative, and critical thinking in problem solving and foster the ability to deal with uncertainty in analyzing problems and designing appropriate solutions. In addition to traditional approaches for graduate and undergraduate research, we have built new educational systems of applied research and engineering: (1) the Peace Corp/Master's International program in Natural Hazards which features a 2-year field assignment during service in the U.S. Peace Corps, (2) the Michigan Tech Enterprise program for undergraduates, which gives teams of students from different disciplines the opportunity to work for three years in a business-like setting to solve real-world problems, and (3) a unique university exchange

  12. A wavefront interpretation of the singularity expansion method

    NASA Astrophysics Data System (ADS)

    Heyman, E.; Felsen, L. B.

    1985-07-01

    Felsen (1984) has shown that transient fields scattered by an object may be synthesized in terms of progressing waves (wavefronts) or oscillatory waves (resonances). The present paper is concerned with multiple interaction and resonance phenomena in a broad sense, taking into account the employment of ray terminology to identify wave transport and interaction trajectories. Along those trajectories, the time harmonic field may be expressed by the ray approximation and is then subject to the rules and constraints of the geometrical theory of diffraction (GTD). However, the field may be expressed more generally by a 'better' wave function, for example a ray integral spanning a spectrum of local plane waves whose stationary phase approximation yields GTD but which, when kept intact, is uniformly valid in transition regions where GTD fails. Attention is given to the singularity expansion method (SEM) formulation, the ray formulation, the flow graph representation, and the illustration of the presented concepts with the aid of an example.

  13. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    PubMed Central

    Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio

    2013-01-01

    Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919

  14. High-speed SPGD wavefront controller for an adaptive optics system without wavefront sensor

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Li, Xinyang; Li, Mei; Ye, Jongwei; Chen, Bo

    2010-10-01

    A non-conventional adaptive optics system based on direct system performance metric optimization is illustrated. The system does not require wave-front sensor which is difficult to work under the poor condition such as beam cleanup for the anomalous light beam. The system comprises a high speed wavefront controller based on Stochastic Parallel Gradient Descent (SPGD) Algorithm, a deformable mirror, a tip/tilt mirror and a far-field system performance metric sensor. The architecture of the wave-front controller is based on a combination of Field Programmable Gate Array (FPGA) and floating-point Digital Signal Processor (DSP). The Zernike coefficient information is applied to improve the iteration speed. The experimental results show that the beam cleanup system based on SPGD keep a high iteration speed. The controller can compensate the wavefront aberration and tilt excursion effectively.

  15. Exact wavefront surface refracted by a smooth arbitrary surface considering a plane wavefront incident

    NASA Astrophysics Data System (ADS)

    Avendaño-Alejo, Maximino M.

    2015-08-01

    We study the formation of wavefronts produced by smooth arbitrary surfaces with symmetry of revolution considering a plane wavefront propagating parallel to the optical axis and impinging on the refracting surface. The wavefronts are obtained by using the Malus-Dupin theorem and they represent the monochromatic aberrations which can be called image errors, furthermore their shapes could be modified by changing the parameters of the lens in such a way that if a caustic surface is vanished the optical system produces a perfect image, on the other hand for a caustic possessing a large area it could be applied to design non-imaging optical systems. The shape of the wavefront depends only on the indices of refraction and geometrical properties of the refracting surface such as the first derivative and their parameters associated. This analytic formula has potential applications in the microscopy field, illumination or corrector plates.

  16. Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,

    DTIC Science & Technology

    2007-11-02

    Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first

  17. X-ray pulse wavefront metrology using speckle tracking.

    PubMed

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-07-01

    An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology.

  18. X-ray pulse wavefront metrology using speckle tracking

    PubMed Central

    Berujon, Sebastien; Ziegler, Eric; Cloetens, Peter

    2015-01-01

    An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is presented and its processing method explained. The system relies on the X-ray speckle tracking principle to accurately measure the phase gradient of the X-ray beam from which beam optical aberrations can be deduced. The key component of this instrument, a semi-transparent scintillator emitting visible light while transmitting X-rays, allows simultaneous recording of two speckle images at two different propagation distances from the X-ray source. The speckle tracking procedure for a reference-less metrology mode is described with a detailed account on the advanced processing schemes used. A method to characterize and compensate for the imaging detector distortion, whose principle is also based on speckle, is included. The presented instrument is expected to find interest at synchrotrons and at the new X-ray free-electron laser sources under development worldwide where successful exploitation of beams relies on the availability of an accurate wavefront metrology. PMID:26134791

  19. Fourier optics for wavefront engineering and wavelength control of lasers

    NASA Astrophysics Data System (ADS)

    Blanchard, Romain

    Since their initial demonstration in 1994, quantum cascade lasers (QCLs) have become prominent sources of mid-infrared radiation. Over the years, a large scientific and engineering effort has led to a dramatic improvement in their efficiency and power output, with continuous wave operation at room temperature and Watt-level output power now standard. However, beyond this progress, new functionalities and capabilities need to be added to this compact source to enable its integration into consumer-ready systems. Two main areas of development are particularly relevant from an application standpoint and were pursued during the course of this thesis: wavelength control and wavefront engineering of QCLs. The first research direction, wavelength control, is mainly driven by spectroscopic applications of QCLs, such as trace gas sensing, process monitoring or explosive detection. We demonstrated three different capabilities, corresponding to different potential spectroscopic measurement techniques: widely tunable single longitudinal mode lasing, simultaneous lasing on multiple well-defined longitudinal modes, and simultaneous lasing over a broad and continuous range of the spectrum. The second research direction, wavefront engineering of QCLs, i.e. the improvement of their beam quality, is relevant for applications necessitating transmission of the QCL output over a large distance, for example for remote sensing or military countermeasures. To address this issue, we developed plasmonic lenses directly integrated on the facets of QCLs. The plasmonic structures designed are analogous to antenna arrays imparting directionality to the QCLs, as well as providing means for polarization control. Finally, a research interest in plasmonics led us to design passive flat optical elements using plasmonic antennas. All these projects are tied together by the involvement of Fourier analysis as an essential design tool to predict the interaction of light with various gratings and periodic

  20. Inverse pupil wavefront optimization for immersion lithography.

    PubMed

    Han, Chunying; Li, Yanqiu; Dong, Lisong; Ma, Xu; Guo, Xuejia

    2014-10-10

    As the critical dimension of integrated circuits is continuously shrunk, thick mask induced aberration (TMIA) cannot be ignored in the lithography image process. Recently, a set of pupil wavefront optimization (PWO) approaches has been proposed to compensate for TMIA, based on a wavefront manipulator in modern scanners. However, these prior PWO methods have two intrinsic drawbacks. First, the traditional methods fell short in building up the analytical relationship between the pupil wavefront and the cost function, and used time-consuming algorithms to solve for the PWO problem. Second, in traditional methods, only the spherical aberrations were optimized to compensate for the focus exposure matrix tilt and best focus shift induced by TMIA. Thus, the degrees of freedom were limited during the optimization procedure. To overcome these restrictions, we build the analytical relationship between the pupil wavefront and the cost function based on Abbe vector imaging theory. With this analytical model and the Fletcher-Reeves conjugate-gradient algorithm, an inverse PWO method is innovated to balance the TMIA including 37 Zernike terms. Simulation results illustrate that our approach significantly improves image fidelity within a larger process window. This demonstrates that TMIA is effectively compensated by our inverse PWO approach.

  1. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, J.S.

    1995-04-25

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.

  2. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, John S.

    1995-01-01

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.

  3. Tomographic wavefront correction for the LSST

    SciTech Connect

    Phillion, D W; Olivier, S S; Baker, K; Seppala, L; Hvisc, S

    2006-05-03

    The Large Synoptic Survey Telescope (LSST) is a three mirror modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary followed by a 3-element refractive corrector producing a 3.5 degree field of view. This design produces image diameters of <0.3 arcsecond 80% encircled energy over its full field of view. The image quality of this design is sufficient to ensure that the final images produced by the telescope will be limited by the atmospheric seeing at an excellent astronomical site. In order to maintain this image quality, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations. By measuring the optical wavefront produced by the telescope at multiple points in the field, mirror deformations and rigid body motions that produce a good optical wavefront across the entire field may be determined. We will describe the details of the techniques for obtaining these solutions. We will show that, for the expected mirror deformations and rigid body misalignments, the solutions that are found using these techniques produce an image quality over the field that is close to optimal. We will discuss how many wavefront sensors are needed and the tradeoffs between the number of wavefront sensors, their layout and noise sensitivity.

  4. Improved wavefront reconstruction algorithm from slope measurements

    NASA Astrophysics Data System (ADS)

    Phuc, Phan Huy; Manh, Nguyen The; Rhee, Hyug-Gyo; Ghim, Young-Sik; Yang, Ho-Soon; Lee, Yun-Woo

    2017-03-01

    In this paper, we propose a wavefront reconstruction algorithm from slope measurements based on a zonal method. In this algorithm, the slope measurement sampling geometry used is the Southwell geometry, in which the phase values and the slope data are measured at the same nodes. The proposed algorithm estimates the phase value at a node point using the slope measurements of eight points around the node, as doing so is believed to result in better accuracy with regard to the wavefront. For optimization of the processing time, a successive over-relaxation method is applied to iteration loops. We use a trial-and-error method to determine the best relaxation factor for each type of wavefront in order to optimize the iteration time and, thus, the processing time of the algorithm. Specifically, for a circularly symmetric wavefront, the convergence rate of the algorithm can be improved by using the result of a Fourier Transform as an initial value for the iteration. Various simulations are presented to demonstrate the improvements realized when using the proposed algorithm. Several experimental measurements of deflectometry are also processed by using the proposed algorithm.

  5. [Research advance in the function of quorum sensing in the biological aggregates].

    PubMed

    Dai, Xin; Zhou, Jia-Heng; Zhu, Liang; Xu, Xiang-Yang

    2014-04-01

    Quorum sensing is a microbial phenomenon that microorganisms use signal molecules to perceive environmental conditions and regulate specific gene expressions. As the communication function of quorum sensing is increasingly highlighted in the microbial field, researches on quorum sensing in the formation process of biological aggregates (biofilm and granules) attract wide attentions. The paper reviewed autoinducers (AI) classification and the corresponding regulation methods in quorum sensing, and provided an up-to-date account on research progress of AIs regulating biological aggregates formation and structural stability. New territories and future of quorum sensing were also outlined.

  6. Program plan and summary, remote fluvial experimental (REFLEX) series: Research experiments using advanced remote sensing technologies with emphasis on hydrologic transport, and hydrologic-ecologic interactions

    SciTech Connect

    Wobber, F.J.

    1986-10-01

    This document describes research designed to evaluate advanced remote sensing technologies for environmental research. A series of Remote Fluvial Experiments (REFLEX) - stressing new applications of remote sensing systems and use of advanced digital analysis methods - are described. Program strategy, experiments, research areas, and future initiatives are summarized. The goals of REFLEX are: (1) to apply new and developing aerial and satellite remote sensing technologies - including both advanced sensor systems and digital/optical processing - for interdisciplinary scientific experiments in hydrology and to hydrologic/ecologic interactions; (2) to develop new concepts for processing and analyzing remote sensing data for general scientific application; and (3) to demonstrate innovative analytical technologies that advance the state of the art in applying information from remote sensing systems, for example, supercomputer processing and analysis.

  7. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  8. Can the natural diversity of quorum-sensing advance synthetic biology?

    PubMed

    Davis, René Michele; Muller, Ryan Yue; Haynes, Karmella Ann

    2015-01-01

    Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.

  9. Accurate laser guide star wavefront sensor simulation for the E-ELT first light adaptive optics module

    NASA Astrophysics Data System (ADS)

    Patti, Mauro; Schreiber, Laura; Arcidiacono, Carmelo; Bregoli, Giovanni; Ciliegi, Paolo; Diolaiti, Emiliano; Esposito, Simone; Feautrier, Philippe; Lombini, Matteo

    2016-07-01

    MAORY will be the multi-conjugate adaptive optics module for the E-ELT first light. The baseline is to operate wavefront sensing using 6 Sodium Laser Guide Stars and 3 Natural Guide Stars to solve intrinsic limitations of artificial beacons and to mitigate the impact of the sodium layer structure and variability. In particular, some critical components of MAORY require to be designed and dimensioned in order to reduce the spurious effects arising from the Sodium Layer density distribution and variation. The MAORY end-to-end simulation code has been designed to accurately model the Laser Guide Star image in the Shack-Hartmann wavefront sensor sub-apertures and to allow sodium profile temporal evolution. The fidelity with which the simulation code translates the sodium profiles in Laser Guide Star images at the wavefront sensor focal plane has been verified using a laboratory Prototype.

  10. A First Order Wavefront Estimation Algorithm for P1640 Calibrator

    NASA Technical Reports Server (NTRS)

    Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; Crepp, J.; Dekany, R.; Hinkley, S.; Hillenbrand, L.; Parry, I.; Pueyo, L.; Rice, E.; Roberts, L. C. Jr.; Sivaramakrishnan, A.; Soummer, R.; Vescelus, F.; Wallace, K.; Zimmerman, N.

    2012-01-01

    P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.

  11. Experimental study of an optimised Pyramid wave-front sensor for Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Bond, Charlotte Z.; El Hadi, Kacem; Sauvage, Jean-François; Correia, Carlos; Fauvarque, Olivier; Rabaud, Didier; Lamb, Masen; Neichel, Benoit; Fusco, Thierry

    2016-07-01

    Over the last few years the Laboratoire d'Astrophysique de Marseille (LAM) has been heavily involved in R&D for adaptive optics systems dedicated to future large telescopes, particularly in preparation for the European Extremely Large Telescope (E-ELT). Within this framework an investigation into a Pyramid wave-front sensor is underway. The Pyramid sensor is at the cutting edge of high order, high precision wave-front sensing for ground based telescopes. Investigations have demonstrated the ability to achieve a greater sensitivity than the standard Shack-Hartmann wave-front sensor whilst the implementation of a Pyramid sensor on the Large Binocular Telescope (LBT) has provided compelling operational results.1, 2 The Pyramid now forms part of the baseline for several next generation Extremely Large Telescopes (ELTs). As such its behaviour under realistic operating conditions must be further understood in order to optimise performance. At LAM a detailed investigation into the performance of the Pyramid aims to fully characterise the behaviour of this wave-front sensor in terms of linearity, sensitivity and operation. We have implemented a Pyramid sensor using a high speed OCAM2 camera (with close to 0 readout noise and a frame rate of 1.5kHz) in order to study the performance of the Pyramid within a full closed loop adaptive optics system. This investigation involves tests on all fronts, from theoretical models and numerical simulations to experimental tests under controlled laboratory conditions, with an aim to fully understand the Pyramid sensor in both modulated and non-modulated configurations. We include results demonstrating the linearity of the Pyramid signals, compare measured interaction matrices with those derived in simulation and evaluate the performance in closed loop operation. The final goal is to provide an on sky comparison between the Pyramid and a Shack-Hartmann wave-front sensor, at Observatoire de la Côte d'Azur (ONERA-ODISSEE bench). Here we

  12. Adaptable Diffraction Gratings With Wavefront Transformation

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  13. Prediction of Visual Acuity from Wavefront Aberrations

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2013-01-01

    A method for generating a visual acuity metric, based on wavefront aberrations (WFAs), associated with a test subject and representing classes of imperfections, such as defocus, astigmatism, coma and spherical aberrations, of the subject's visual system. The metric allows choices of different image template, can predict acuity for different target probabilities, can incorporate different and possibly subject-specific neural transfer functions, can predict acuity for different subject templates, and incorporates a model of the optotype identification task.

  14. Wavefront reconstruction using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Schmidt, Oliver A.; Duparré, Michael

    2012-02-01

    We propose a new method to determine the wavefront of a laser beam, based on modal decomposition using computer-generated holograms (CGHs). Thereby the beam under test illuminates the CGH with a specific, inscribed transmission function that enables the measurement of modal amplitudes and phases by evaluating the first diffraction order of the hologram. Since we use an angular multiplexing technique, our method is innately capable of real-time measurements of amplitude and phase, yielding the complete information about the optical field. A measurement of the Stokes parameters, respectively of the polarization state, provides the possibility to calculate the Poynting vector. Two wavefront reconstruction possibilities are outlined: reconstruction from the phase for scalar beams and reconstruction from the Poynting vector for inhomogeneously polarized beams. To quantify single aberrations, the reconstructed wavefront is decomposed into Zernike polynomials. Our technique is applied to beams emerging from different kinds of multimode optical fibers, such as step-index, photonic crystal and multicore fibers, whereas in this work results are exemplarily shown for a step-index fiber and compared to a Shack-Hartmann measurement that serves as a reference.

  15. Specialized wavefront sensors for adaptive optics

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Mansell, J. D.; Gruetzner, James K.; Morgan, R.; Warren, Mial E.

    1995-08-01

    The performance of an adaptive optical system is strongly dependent upon correctly measuring the wavefront of the arriving light. The most common wavefront measurement techniques used to date are the shearing interferometer and the Shack-Hartmann sensor. Shack-Hartmann sensors rely on the use of lenslet arrays to sample the aperture appropriately. These have traditionally been constructed using MLM or step and repeat technology, and more recently with binary optics technology. Diffractive optics fabrication methodology can be used to remove some of the limitations of the previous technologies and can allow for low-cost production of sophisticated elements. We have investigated several different specialized wavefront sensor configurations using both Shack-Hartmann and shearing interferometer principles. We have taken advantage of the arbitrary nature of these elements to match pupil shapes of detector and telescope aperture and to introduce magnification between the lenslet array and the detector. We have fabricated elements that facilitate matching the sampling to the current atmospheric conditions. The sensors were designed using a far-field diffraction model and a photolithography layout program. They were fabricated using photolithography and RIE etching. Several different designs are presented with some experimental results from a small-scale adaptive optics brass-board.

  16. Laboratory test of a pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Esposito, Simone; Feeney, Orla; Riccardi, Armando

    2000-07-01

    A laboratory characterization of a new wavefront sensor for adaptive optics applications called a pyramid sensor is presented. This characterization is aimed at establishing the sensor accuracy and sensitivity. To investigate the operation of the sensor in low and high order correction adaptive optics systems, its behavior for different amplitudes of incoming wavefront aberrations is studied. The sensor characterization is carried out using a two arm optical set-up that allows the comparison of the PS measurements with those of a commercial Fizeau interferometer. This is done when a certain aberration is introduced into the optical path of both instruments via a deformable mirror. The experimental data are analyzed and discussed using both geometrical and diffractive optics theory. The closed loop sensor accuracy is investigated experimentally and demonstrates closed loop wavefront correction down to 30 nm root mean square for starting aberrations whose root mean square ranges from 170 nm to 300 nm. Modal noise propagation coefficients are determined and are compared with Shack-Hartmann sensor coefficients.

  17. Measurement of the absolute wavefront curvature radius in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2010-09-01

    We present an analytical derivation of the coupling parameter relating the angle between two interfering beams in a heterodyne interferometer to the differential phase signals detected by a quadrant photodiode. This technique, also referred to as differential wavefront sensing, is commonly used in space-based gravitational wave detectors to determine the attitude of a test mass in one of the interferometer arms from the quadrant diode signals. Successive approximations to the analytical expression are made to simplify the investigation of parameter dependencies. Motivated by our findings, we propose what we believe to be a new measurement method to accurately determine the absolute wavefront curvature of a single measurement beam. We also investigate the change in the coupling parameter when the interferometer "test mirror" is moved from its nominal position, an effect which mediates the coupling of mirror displacement noise into differential phase measurements.

  18. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  19. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice.

    PubMed

    Jian, Yifan; Xu, Jing; Gradowski, Martin A; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2014-02-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo.

  20. PREFACE: 3rd International Symposium on Laser Ultrasonics and Advanced Sensing

    NASA Astrophysics Data System (ADS)

    2014-06-01

    Based on the use of laser as a coherent and intense light source, the photo-acoustics originated from the discovery made by Alexander Graham Bell was extended to laser-ultrasonics (LU), and it has been applied to wide area of ultrasonics, optics, material characterization and nondestructive inspection. In 1996, a research group for LU was started in the Japanese Society for Nondestructive Inspection (JSNDI), and researches on LU and related topics such as noncontact measurements and elastic wave theories were discussed. Similar activities were pursued also in North America and in Europe. The international symposium on LU was started in Montreal, Canada in 2008 by Jean Pierre Monchalin in order to offer a forum for involved with basic researches and industrial applications of LU. In the second symposium in Bordeaux, France nearly 120 papers were presented. It is our honor to have organized the third symposium, LU2013 on 25-28 June in Yokohama, Japan. The articles published here provide a sample of achievements presented there. In LU2013, we focused on the laser generation and/or detection of acoustic waves, application to nondestructive testing, ultrafast-optoacoustics and innovative instruments. Research achievements in biomedical applications, advanced sensing including noncontact, micro/nanoscale or nonlinear measurements, as well as theory and simulation of ultrasound were also included, considering the interdisciplinary nature of this field. We enjoyed very excellent and informative 3 plenary talks, 11 invited talks, 81 oral and 41 poster presentations with 168 attendees. According to requests, we organized a post deadline poster session to give an opportunity to present recent achievements after the deadline. Contributions of the participants, the scientific and organizing committees are highly appreciated. The conference tour was a dinner cruise to the Tokyo bay, and we hope this experience will remain as a pleasant memory in attendees. As decided in the

  1. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric

  2. Wavefronts and mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Idema, Timon; Dubuis, Julien; Manning, Lisa; Nelson, Philip; Liu, Andrea

    2012-02-01

    Mitosis in the early syncytial Drosophila embryo has a high degree of spatial and temporal correlations, visible as mitotic wavefronts that travel across the embryo. This mitosis wavefront is preceded by another wavefront which corresponds to chromosome condensation. The two wavefronts are separated by a time interval that is independent of cell cycle and propagate at the same speed for a given embryo in a given cycle. We study the wavefronts in the context of excitable medium theory, using two different models, one with biochemical signaling and one with mechanical signaling. We find that the dependence of wavefront speed on cell cycle number is most naturally explained via a mechanical signaling, and that the entire process suggests a scenario in which biochemical and mechanical signaling are coupled.

  3. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.

    PubMed

    Shatokhina, Iuliia; Obereder, Andreas; Rosensteiner, Matthias; Ramlau, Ronny

    2013-04-20

    We present a fast method for the wavefront reconstruction from pyramid wavefront sensor (P-WFS) measurements. The method is based on an analytical relation between pyramid and Shack-Hartmann sensor (SH-WFS) data. The algorithm consists of two steps--a transformation of the P-WFS data to SH data, followed by the application of cumulative reconstructor with domain decomposition, a wavefront reconstructor from SH-WFS measurements. The closed loop simulations confirm that our method provides the same quality as the standard matrix vector multiplication method. A complexity analysis as well as speed tests confirm that the method is very fast. Thus, the method can be used on extremely large telescopes, e.g., for eXtreme adaptive optics systems.

  4. Wave-front analysis using Fresnel lens arrays.

    PubMed

    Spektor, B; Shamir, J

    1995-07-01

    A compact wave-front sensor is implemented by an array of two-beam common path inversion interferometers. Each element of the array consists of two Fresnel lenses in a confocal configuration. The wave-front data can be extracted from a superposition of the zero-order undiffracted wave and the twice-diffracted first-order wave. The result is a high-sensitivity, compact, and stable interferometric wave-front sensor.

  5. Dynamics and Stability of Acoustic Wavefronts in the Ocean

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Dynamics and Stability of Acoustic Wavefronts in the Ocean...trajectories. • To investigate and quantify effects on underwater acoustic wavefronts of internal gravity waves, sea swell, “spice,” and other small-scale...predictability of acoustic wavefronts and timefronts. 2. To quantify horizontal refraction of sound by random meso-scale inhomogeneities at O(1)Mm

  6. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  7. Post-Coronagraph Wavefront Sensor for Gemini Planet Imager

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick; Pueyo, Laurent; Soummer, Remi; Shelton, Chris; Bartos, Randall; Fregoso, Felipe; Nemati, Bijan; Best, Paul; Angione, John

    2009-01-01

    The calibration wavefront system for the Gemini Planet Imager (GPI) will measure the complex wavefront at the apodized pupil and provide slow phase errors to the AO system to mitigate against image plane speckles that would cause a loss in contrast. This talk describes both the low-order and high-order sensors in the calibration wavefront sensor and how the information is combined to form the wavefront estimate before the coronagraph. We will show laboratory results from our calibration testbed that demonstrate the subsystem performance at levels commensurate with those required on the final instrument.

  8. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  9. Tip-tilt mirror suspension: beam steering for advanced laser interferometer gravitational wave observatory sensing and control signals.

    PubMed

    Slagmolen, Bram J J; Mullavey, Adam J; Miller, John; McClelland, David E; Fritschel, Peter

    2011-12-01

    We describe the design of a small optic suspension system, referred to as the tip-tilt mirror suspension, used to isolate selected small optics for the interferometer sensing and control beams in the advanced LIGO gravitational wave detectors. The suspended optics are isolated in all 6 degrees of freedom, with eigenmode frequencies between 1.3 Hz and 10 Hz. The suspended optic has voice-coil actuators which provide an angular range of ±4 mrad in the pitch and yaw degrees of freedom.

  10. Auto gain control of EMCCD in Shack-Hartmann wavefront sensor for adaptive optics

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaoyi; Li, Dayu; Hu, Lifa; Mu, QuanQuan; Cao, Zhaoliang; Wang, Yukun; Wang, Shaoxin; Xuan, Li

    2016-12-01

    Electron multiplying charge-coupled-device (EMCCD) applied in Shack-Hartmann wavefront sensor (S-H WFS) makes the wavefront sensing more efficient for adaptive optics (AO). However when the brightness of the observed target changes in large ranges in a few minutes, a fixed electron multiplying (EM) gain may not be optimum. Thus an auto-gain-control (AGC) method based on the spots image of the S-H WFS is proposed. The designed control value is the average value of the maximum signals of all the light spots in a frame. It has been demonstrated in the experiments that the control value is sensitive to the change of the target brightness, and is stable in the presence of detecting noises and turbulence influence. The goal value for control is predetermined based on the linear relation of the signal with the EM gain and the number of photons collected in sub-apertures. The conditions of the self-protection of the EMCCD are also considered for the goal value. Simulations and experiments indicate that the proposed control method is efficient, and keeps the sensing in a high SNR which reaches the upper SNR limit when sensing with EMCCD. The self-protection of the EMCCD is avoided during the whole sensing process.

  11. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    SciTech Connect

    Schalkoff, Robert J.

    1999-06-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology.

  12. [Advances in the research on hyperspectral remote sensing in biodiversity and conservation].

    PubMed

    He, Cheng; Feng, Zhong-Ke; Yuan, Jin-Jun; Wang, Jia; Gong, Yin-Xi; Dong, Zhi-Hai

    2012-06-01

    With the species reduction and the habitat destruction becoming serious increasingly, the biodiversity conservation has become one of the hottest topics. Remote sensing, the science of non-contact collection information, has the function of corresponding estimates of biodiversity, building model between species diversity relationship and mapping the index of biodiversity, which has been used widely in the field of biodiversity conservation. The present paper discussed the application of hyperspectral technology to the biodiversity conservation from two aspects, remote sensors and remote sensing techniques, and after, enumerated successful applications for emphasis. All these had a certain reference value in the development of biodiversity conservation.

  13. Advanced feed-through systems for in-well optical fibre sensing

    NASA Astrophysics Data System (ADS)

    Shiach, G.; Nolan, A.; McAvoy, S.; McStay, D.; Prel, C.; Smith, M.

    2007-07-01

    A new optical fibre feed-through for use in subsea in-well optical fibre sensing systems is reported. The new feed-through is compatible for use with standard subsea Christmas Tree penetrators and allows multiple re-mating of the feed-through over the lifetime of the device. The system has been extensively tested under in-well conditions and found to conform to the performance requirements. The new feed-through is planned to be used in one of the first subsea optical fibre in-well sensing systems.

  14. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  15. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  16. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  17. Microcollimated laser diode with low wavefront aberration

    SciTech Connect

    Ogata, S.; Sekii, H.; Maeda, T.; Goto, H.; Yamashita, T.; Imanaka, K. )

    1989-11-01

    The authors developed microcollimated laser diode( MCLD) utilizing a 1 mm short focal length, phi, lc 0.5 mm small diameter micro Fresnel lens (MFL) for the first time as the collimating lens. The MCLD is assembled with a 780 nm quantum-well laser diode dice and an MFL in the smallest commercial available laser package. The radiated laser beam form the MCLD has higher than 2mW power at 50 mA driving current, narrow enough as a phi 2 mm beam diameter with nearly Gaussian intensity profile, and low wavefront aberration less than {lambda}14 (rms value) measured at 1 m distance.

  18. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  19. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-08-30

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  20. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    PubMed Central

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  1. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

    PubMed Central

    Zheng, Liufeng; Zhang, Wei; Zhou, Yuanfei; Li, Fengna; Wei, Hongkui; Peng, Jian

    2016-01-01

    The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs), especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1)-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9) and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1) also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR) T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity. PMID:27690010

  2. Lenses that provide the transformation between two given wavefronts

    NASA Astrophysics Data System (ADS)

    Criado, C.; Alamo, N.

    2016-12-01

    We give an original method to design four types of lenses solving the following problems: focusing a given wavefront in a given point, and performing the transformation between two arbitrary incoming and outgoing wavefronts. The method to design the lenses profiles is based on the optical properties of the envelopes of certain families of Cartesian ovals of revolution.

  3. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  4. Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Kang, Louis; Idema, Timon; Liu, Andrea; Lubensky, Tom

    2013-03-01

    Mitosis in the early Drosophila embryo demonstrates spatial and temporal correlations in the form of wavefronts that travel across the embryo in each cell cycle. This coordinated phenomenon requires a signaling mechanism, which we suggest is mechanical in origin. We have constructed a theoretical model that supports nonlinear wavefront propagation in a mechanically-excitable medium. Previously, we have shown that this model captures quantitatively the wavefront speed as it varies with cell cycle number, for reasonable values of the elastic moduli and damping coefficient of the medium. Now we show that our model also captures the displacements of cell nuclei in the embryo in response to the traveling wavefront. This new result further supports that mechanical signaling may play an important role in mediating mitotic wavefronts.

  5. Recent advances in M13 bacteriophage-based optical sensing applications

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Moon, Jong-Sik; Oh, Jin-Woo

    2016-10-01

    Recently, M13 bacteriophage has started to be widely used as a functional nanomaterial for various electrical, chemical, or optical applications, such as battery components, photovoltaic cells, sensors, and optics. In addition, the use of M13 bacteriophage has expanded into novel research, such as exciton transporting. In these applications, the versatility of M13 phage is a result of its nontoxic, self-assembling, and specific binding properties. For these reasons, M13 phage is the most powerful candidate as a receptor for transducing chemical or optical phenomena of various analytes into electrical or optical signal. In this review, we will overview the recent progress in optical sensing applications of M13 phage. The structural and functional characters of M13 phage will be described and the recent results in optical sensing application using fluorescence, surface plasmon resonance, Förster resonance energy transfer, and surface enhanced Raman scattering will be outlined.

  6. Guaranteeing Failsafe Operation of Extended-Scene Shack-Hartmann Wavefront Sensor Algorithm

    NASA Technical Reports Server (NTRS)

    Sidick, Erikin

    2009-01-01

    A Shack-Hartmann sensor (SHS) is an optical instrument consisting of a lenslet array and a camera. It is widely used for wavefront sensing in optical testing and astronomical adaptive optics. The camera is placed at the focal point of the lenslet array and points at a star or any other point source. The image captured is an array of spot images. When the wavefront error at the lenslet array changes, the position of each spot measurably shifts from its original position. Determining the shifts of the spot images from their reference points shows the extent of the wavefront error. An adaptive cross-correlation (ACC) algorithm has been developed to use scenes as well as point sources for wavefront error detection. Qualifying an extended scene image is often not an easy task due to changing conditions in scene content, illumination level, background, Poisson noise, read-out noise, dark current, sampling format, and field of view. The proposed new technique based on ACC algorithm analyzes the effects of these conditions on the performance of the ACC algorithm and determines the viability of an extended scene image. If it is viable, then it can be used for error correction; if it is not, the image fails and will not be further processed. By potentially testing for a wide variety of conditions, the algorithm s accuracy can be virtually guaranteed. In a typical application, the ACC algorithm finds image shifts of more than 500 Shack-Hartmann camera sub-images relative to a reference sub -image or cell when performing one wavefront sensing iteration. In the proposed new technique, a pair of test and reference cells is selected from the same frame, preferably from two well-separated locations. The test cell is shifted by an integer number of pixels, say, for example, from m= -5 to 5 along the x-direction by choosing a different area on the same sub-image, and the shifts are estimated using the ACC algorithm. The same is done in the y-direction. If the resulting shift

  7. COxSwAIN: Compressive Sensing for Advanced Imaging and Navigation

    NASA Technical Reports Server (NTRS)

    Kurwitz, Richard; Pulley, Marina; LaFerney, Nathan; Munoz, Carlos

    2015-01-01

    The COxSwAIN project focuses on building an image and video compression scheme that can be implemented in a small or low-power satellite. To do this, we used Compressive Sensing, where the compression is performed by matrix multiplications on the satellite and reconstructed on the ground. Our paper explains our methodology and demonstrates the results of the scheme, being able to achieve high quality image compression that is robust to noise and corruption.

  8. Advances in textile sensing and actuation for e-textile applications.

    PubMed

    Paradiso, Rita; De Rossi, Danilo

    2008-01-01

    SMART fabrics and interactive textiles (SFIT) are conceived as innovative textile structure integrating sensing, actuation, electronic, and power and/or communication functions. Due to their multifunctional interactivity, enabled by wearable devices that are flexible and conformable to the human body, e-textiles are considered relevant promoters of a higher quality of life and progress in biomedicine, as well as in several health-focused disciplines, such as biomonitoring, rehabilitation, telemedicine, teleassistance, ergonomics and sport medicine.

  9. [Research advances in simulating regional crop growth under water stress by remote sensing].

    PubMed

    Zhang, Li; Wang, Shili; Ma, Yuping

    2005-06-01

    It is of practical significance to simulate the regional crop growth under water stress, especially at regional scale. Combined with remote sensing information, crop growth simulation model could provide an effective way to estimate the regional crop growth, development and yield formation under water stress. In this paper, related research methods and results were summarized, and some problems needed to be further studied and resolved were discussed.

  10. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  11. Earth remote sensing as an effective tool for the development of advanced innovative educational technologies

    NASA Astrophysics Data System (ADS)

    Mayorova, Vera; Mayorov, Kirill

    2009-11-01

    Current educational system is facing a contradiction between the fundamentality of engineering education and the necessity of applied learning extension, which requires new methods of training to combine both academic and practical knowledge in balance. As a result there are a number of innovations being developed and implemented into the process of education aimed at optimizing the quality of the entire educational system. Among a wide range of innovative educational technologies there is an especially important subset of educational technologies which involve learning through hands-on scientific and technical projects. The purpose of this paper is to describe the implementation of educational technologies based on small satellites development as well as the usage of Earth remote sensing data acquired from these satellites. The increase in public attention to the education through Earth remote sensing is based on the concern that although there is a great progress in the development of new methods of Earth imagery and remote sensing data acquisition there is still a big question remaining open on practical applications of this kind of data. It is important to develop the new way of thinking for the new generation of people so they understand that they are the masters of their own planet and they are responsible for its state. They should desire and should be able to use a powerful set of tools based on modern and perspective Earth remote sensing. For example NASA sponsors "Classroom of the Future" project. The Universities Space Research Association in United States provides a mechanism through which US universities can cooperate effectively with one another, with the government, and with other organizations to further space science and technology, and to promote education in these areas. It also aims at understanding the Earth as a system and promoting the role of humankind in the destiny of their own planet. The Association has founded a Journal of Earth System

  12. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    NASA Astrophysics Data System (ADS)

    Wilby, M. J.; Keller, C. U.; Snik, F.; Korkiakoski, V.; Pietrow, A. G. M.

    2017-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental Non-Common Path Errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This combines the Apodizing Phase Plate (APP) coronagraph with a holographic modal wavefront sensor to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing with the science point-spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor is able to successfully recover diffraction-limited coronagraph performance over an effective dynamic range of ±2.5 radians root-mean-square (rms) wavefront error within 2-10 iterations, with performance independent of the specific choice of mode basis. We then present the results of initial on-sky testing at the William Herschel Telescope, which demonstrate that the sensor is capable of NCPE sensing under realistic seeing conditions via the recovery of known static aberrations to an accuracy of 10 nm (0.1 radians) rms error in the presence of a dominant atmospheric speckle foreground. We also find that the sensor is capable of real-time measurement of broadband atmospheric wavefront variance (50% bandwidth, 158 nm rms wavefront error) at a cadence of 50 Hz over an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of

  13. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and geographic information systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated in ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  14. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and Geographic Information Systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  15. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  16. Advances in AlGaInN laser diode technology for defence, security and sensing applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisnieski, P.; Czernecki, R.; Targowski, G.

    2016-10-01

    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., 380nm, to the visible 530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications including displays and imaging systems, free-space and underwater telecommunications and the latest quantum technologies such as optical atomic clocks and atom interferometry.

  17. AIS wavefront sensor: a robust optical test of exposure tools using localized wavefront curvature

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan; Zhou, Xibin; Goldstein, Michael; Ashworth, Dominic; Cummings, Kevin; Fan, Yu-Jen; Shroff, Yashesh; Denbeaux, Greg; Kandel, Yudhi; Naulleau, Patrick

    2014-04-01

    We present an update of the AIS wavefront sensor, a diagnostic sensor set for insertion in the upgraded 0.5 NA SEMATECH Albany and Berkeley METs. AIS works by using offset monopole illumination to probe localized regions of the test optic pupil. Variations in curvature manifest as focus shifts, which are measured using a photodiode- based grating-on- grating contrast monitor, and the wavefront aberrations are reconstructed using a least-squares approach. We present results from an optical prototype of AIS demonstrating an accuracy of better than λ/30 rms for Zernike polynomials Z4 through Z10. We also discuss integration strategies and requirements as well as specifications on system alignment.

  18. A hierarchical wavefront reconstruction algorithm for gradient sensors

    NASA Astrophysics Data System (ADS)

    Bharmal, Nazim; Bitenc, Urban; Basden, Alastair; Myers, Richard

    2013-12-01

    ELT-scale extreme adaptive optics systems will require new approaches tocompute the wavefront suitably quickly, when the computational burden ofapplying a MVM is no longer practical. An approach is demonstrated here whichis hierarchical in transforming wavefront slopes from a WFS into a wavefront,and then to actuator values. First, simple integration in 1D is used to create1D-wavefront estimates with unknown starting points at the edges of independentspatial domains. Second, these starting points are estimated globally. By thesestarting points are a sub-set of the overall grid where wavefront values are tobe estimated, sparse representations are produced and numerical complexity canbe chosen by the spacing of the starting point grid relative to the overallgrid. Using a combination of algebraic expressions, sparse representation, anda conjugate gradient solver, the number of non-parallelized operations forreconstruction on a 100x100 sub-aperture sized problem is ~600,000 or O(N^3/2),which is approximately the same as for each thread of a MVM solutionparallelized over 100 threads. To reduce the effects of noise propagationwithin each domain, a noise reduction algorithm can be applied which ensuresthe continuity of the wavefront. To apply this additional step has a cost of~1,200,000 operations. We conclude by briefly discussing how the final step ofconverting from wavefront to actuator values can be achieved.

  19. Concept of an advanced hyperspectral remote sensing system for pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Keskin, Göksu; Teutsch, Caroline D.; Lenz, Andreas; Middelmann, Wolfgang

    2015-10-01

    Areas occupied by oil pipelines and storage facilities are prone to severe contamination due to leaks caused by natural forces, poor maintenance or third parties. These threats have to be detected as quickly as possible in order to prevent serious environmental damage. Periodical and emergency monitoring activities need to be carried out for successful disaster management and pollution minimization. Airborne remote sensing stands out as an appropriate choice to operate either in an emergency or periodically. Hydrocarbon Index (HI) and Hydrocarbon Detection Index (HDI) utilize the unique absorption features of hydrocarbon based materials at SWIR spectral region. These band ratio based methods require no a priori knowledge of the reference spectrum and can be calculated in real time. This work introduces a flexible airborne pipeline monitoring system based on the online quasi-operational hyperspectral remote sensing system developed at Fraunhofer IOSB, utilizing HI and HDI for oil leak detection on the data acquired by an SWIR imaging sensor. Robustness of HI and HDI compared to state of the art detection algorithms is evaluated in an experimental setup using a synthetic dataset, which was prepared in a systematic way to simulate linear mixtures of selected background and oil spectra consisting of gradually decreasing percentages of oil content. Real airborne measurements in Ettlingen, Germany are used to gather background data while the crude oil spectrum was measured with a field spectrometer. The results indicate that the system can be utilized for online and offline monitoring activities.

  20. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites - Final Report

    SciTech Connect

    Schalkoff, R.J.

    2000-12-01

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includes quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested.

  1. Advances in NO2 sensing with individual single-walled carbon nanotube transistors.

    PubMed

    Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.

  2. Telescope Multi-Field Wavefront Control with a Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Redding, David; Sigrist, Norbert; Basinger, Scott

    2008-01-01

    An effective multi-field wavefront control (WFC) approach is demonstrated for an actuated, segmented space telescope using wavefront measurements at the exit pupil, and the optical and computational implications of this approach are discussed. The integration of a Kalman Filter as an optical state estimator into the wavefront control process to further improve the robustness of the optical alignment of the telescope will also be discussed. Through a comparison of WFC performances between on-orbit and ground-test optical system configurations, the connection (and a possible disconnection) between WFC and optical system alignment under these circumstances are analyzed. Our MACOS-based computer simulation results will be presented and discussed.

  3. Wavefront correction with a 37-actuator ferrofluid deformable mirror.

    PubMed

    Brousseau, Denis; Borra, Ermanno F; Thibault, Simon

    2007-12-24

    This paper discusses an innovative low-cost deformable mirror made of a magnetic liquid (ferrofluid) whose surface is actuated by an hexagonal array of small current carrying coils. Predicted and experimental performances of a 37-actuator ferrofluid deformable mirror are presented along with wavefront correction examples. We show the validity of the model used to compute the actuators currents to obtain a desired wavefront shape. We demonstrate that the ferrofluid deformable mirror can correct a 11 microm low order aberrated wavefront to a residual RMS error of 0.05 microm corresponding to a Strehl ratio of 0.82.

  4. Initial Performance of the Keck AO Wavefront Controller System

    SciTech Connect

    Johansson, E M; Acton, D S; An, J R; Avicola, K; Beeman, B V; Brase, J M; Carrano, C J; Gathright, J; Gavel, D T; Hurd, R L; Lai, O; Lupton, W; Macintosh, B A; Max, C E; Olivier, S S; Shelton, J C; Stomski, P J; Tsubota, K; Waltjen, K E; Watson, J A; Wizinowich, P L

    2001-03-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements to the controller performance are discussed.

  5. Initial performance of the Keck AO wavefront controller system

    NASA Astrophysics Data System (ADS)

    Johansson, Erik M.; Acton, D. Scott; An, Jong R.; Avicola, Kenneth; Beeman, Bart V.; Brase, James M.; Carrano, Carmen J.; Gathright, John; Gavel, Donald T.; Hurd, Randall L.; Lai, Olivier; Lupton, William; Macintosh, Bruce A.; Max, Claire E.; Olivier, Scot S.; Shelton, J. Christopher; Stomski, Paul J.; Tsubota, Kevin; Waltjen, Kenneth E.; Watson, James A.; Wizinowich, Peter L.

    2000-07-01

    The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements to the controller performance are discussed.

  6. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  7. Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.

    PubMed

    Rigante, Sara; Scarbolo, Paolo; Wipf, Mathias; Stoop, Ralph L; Bedner, Kristine; Buitrago, Elizabeth; Bazigos, Antonios; Bouvet, Didier; Calame, Michel; Schönenberger, Christian; Ionescu, Adrian M

    2015-05-26

    Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates. We also provide an analytical insight of the concept of sensitivity for the electronic integration of sensors. N-channel fully depleted FinFETs with critical dimensions on the order of 20 nm and HfO2 as a high-k gate insulator have been developed and characterized, showing excellent electrical properties, subthreshold swing, SS ∼ 70 mV/dec, and on-to-off current ratio, Ion/Ioff ∼ 10(6), at room temperature. The same FinFET architecture is validated as a highly sensitive, stable, and reproducible pH sensor. An intrinsic sensitivity close to the Nernst limit, S = 57 mV/pH, is achieved. The pH response in terms of output current reaches Sout = 60%. Long-term measurements have been performed over 4.5 days with a resulting drift in time δVth/δt = 0.10 mV/h. Finally, we show the capability to reproduce experimental data with an extended three-dimensional commercial finite element analysis simulator, in both dry and wet environments, which is useful for future advanced sensor design and optimization.

  8. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    PubMed Central

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  9. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.

    PubMed

    Engineer, Cawas B; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordström, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian I

    2016-01-01

    Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate.

  10. Synthesis by pulsed laser ablation of 2D nanostructures for advanced biomedical sensing

    NASA Astrophysics Data System (ADS)

    Trusso, S.; Zanchi, C.; Bombelli, A.; Lucotti, A.; Tommasini, M.; de Grazia, U.; Ciusani, E.; Romito, L. M.; Ossi, P. M.

    2016-05-01

    Au nanoparticle arrays with controlled nanostructure were produced by pulsed laser ablation on glass. Such substrates were optimized for biomedical sensing by means of SERS keeping fixed all process parameters but the laser pulse (LP) number that is a key deposition parameter. It allows to fine-tune the Au surface nanostructure with a considerable improvement in the SERS response towards the detection of apomorphine in blood serum (3.3 × 10-6 M), when LP number is increased from 1 × 104 to 2 × 104. This result is the starting point to correlate the intensity of selected SERS signals of apomorphine to its concentration in the blood of patients with Parkinson's disease.

  11. Advanced feature extraction in remote sensing using artificial intelligence and geographic information systems

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Friedl, Mark A.; Star, Jeffrey L.

    1988-01-01

    Traditional computer-assisted image-analysis techniques in remote sensing lag well behind human abilities in terms of both speed and accuracy. A fundamental limitation of computer-assisted techniques is their inability to assimilate a variety of different data types leading to an interpretation in a manner similar to human image interpretation. Expert systems and computer-vision techniques are proposed as a potential solution to these limitations. Some aspects of human expertise in image analysis may be codified into expert systems. Image understanding and symbolic reasoning provide a means of assimilating spatial information and spatial reasoning into the analysis procedure. Knowledge-based image-analysis systems incorporate many of these concepts and have been implemented for some well defined problem domains. Geographic information systems represent an excellent environment for this type of analysis, providing both analytic tools and contextual information to the analysis procedure.

  12. Advances in soil erosion modelling through remote sensing data availability at European scale

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Karydas, Christos; Borrelli, Pasqualle; Ballabio, Cristiano; Meusburger, Katrin

    2014-08-01

    Under the European Union's Thematic Strategy for Soil Protection, the European Commission's Directorate-General for the Environment (DG Environment) has identified the mitigation of soil losses by erosion as a priority area. Policy makers call for an overall assessment of soil erosion in their geographical area of interest. They have asked that risk areas for soil erosion be mapped under present land use and climate conditions, and that appropriate measures be taken to control erosion within the legal and social context of natural resource management. Remote sensing data help to better assessment of factors that control erosion, such as vegetation coverage, slope length and slope angle. In this context, the data availability of remote sensing data during the past decade facilitates the more precise estimation of soil erosion risk. Following the principles of the Universal Soil Loss Equation (USLE), various options to calculate vegetative cover management (C-factor) have been investigated. The use of the CORINE Land Cover dataset in combination with lookup table values taken from the literature is presented as an option that has the advantage of a coherent input dataset but with the drawback of static input. Recent developments in the Copernicus programme have made detailed datasets available on land cover, leaf area index and base soil characteristics. These dynamic datasets allow for seasonal estimates of vegetation coverage, and their application in the G2 soil erosion model which represents a recent approach to the seasonal monitoring of soil erosion. The use of phenological datasets and the LUCAS land use/cover survey are proposed as auxiliary information in the selection of the best methodology.

  13. The role of the society of Latin American specialists on remote sensing (SELPER) in the analysis and actions related to the main advances and needs of spatial remote sensing for Latin America

    NASA Astrophysics Data System (ADS)

    Araya, Mauricio F.

    The existence of SELPER (Sociedad de Especialistas Latinoamericanos en Percepción Remota / Society of Latinamerican Specialists on Remote Sensing) has filled a great gap among latinamerican countries. SELPER was formed in 1980 and several important activities, having international support, have been performed and are planned in the near future. SELPER consolidation will help develop several important regional cooperation programs and the next years look very promisory in this sense. Different steps are planned but the most important is related with the formation of such a Latin American Council on Remote Sensing, having official support from different countries of the region; SELPER can help this important objective. Main advances and needs are summarized in this paper and it is possible to conclude that SELPER will be important for regional and inter-regional scientific and technical cooperation on remote sensing.

  14. Development of a pyramidal wavefront sensor test-bench at INO

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François

    2013-12-01

    The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P

  15. Potential of advanced photoplethysmography sensing for noninvasive vascular diagnostics and early screening

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Kukulis, Indulis; Fridenberga, Eva; Venckus, Girts

    2002-06-01

    Advanced sensor device for shape analysis of the tissue- reflected mean single period photoplethysmography (SPPPG) signals has been designed and clinically tested. The SPPPG signal shape reveals individual features of the patient's cardio-vascular state. Clinical studies of several patient groups (e.g. diabetes mellitus, atherosclerosis obliterans, Raynaud's syndrome) made possible to specify components of the SPPPG signal that are sensitive to the corresponding organic or functional pathologies. Comparison of the right and left arm finger SPPPG signal shapes, for instance, appears to be efficient tool for early screening of unilateral atherosclerosis obliterans.

  16. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    SciTech Connect

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  17. Advances in Remote Sensing for Assessing High Altitude Glacio-Hydrology - with a Focus on High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Bolch, T.

    2014-12-01

    Meltwater released by glaciers can be of high importance for the overall run-off and thus affect society and development of mountainous regions and their forelands. However, glaciers are mostly located in harsh and remote environment and detailed in-situ measurements are impossible or limited to few glaciers. This lack of measurements of glacier characteristics (e.g. area, debris cover, flow) and mass budgets hampers a correct glacio-hydrologic modelling and representation of processes in advanced simulation models. Remote sensing has been proven a powerful tool in providing essential data to fill this gap. The most basic information in this respect is the location and area of the glaciers. A global and some regional inventories exist, but the uncertainties and differences among them are high, especially with respect to the upper accumulation area and debris cover. I here present a multi-method approach to map glaciers more precisely based on remote sensing data and combining image ratioing (using visible, infrared and thermal bands), micro-wave coherence images, terrain analysis, differencing of digital elevation models (DEMs) and, if available, high resolution images. DEM differencing is used to provide region-wide mass balance assessments, but volume to mass conversion and data voids introduce uncertainties. For High Mountain Asia (HMA), a crucial region in terms of water resources and glacier changes, most studies concentrate on the period after the year 2000 with the SRTM-DEM as baseline data set. However, declassified satellite data from the 1960s and 1970s also exist and allowed to extend the data record back in time for several regions in HMA. Using an example from an ice-covered area of ~5000 km² in the Aksu-Tarim catchment in Central Tien Shan the importance of remote sensing for glacio-hydrological modelling is shown. This is especially true for debris-covered and surge-type glaciers whose reaction to climate is still not fully understood. Therefore

  18. Adaptive Wavefront Calibration and Control for the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Veran, J

    2007-02-02

    Quasi-static errors in the science leg and internal AO flexure will be corrected. Wavefront control will adapt to current atmospheric conditions through Fourier modal gain optimization, or the prediction of atmospheric layers with Kalman filtering.

  19. Zonal wavefront estimation using an array of hexagonal grating patterns

    SciTech Connect

    Pathak, Biswajit E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R. E-mail: brboruah@iitg.ernet.in

    2014-10-15

    Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.

  20. Wavefront and divergence of the beamlet prototype laser

    SciTech Connect

    Henesian, M A; Salmon, J T; Seppala, L G; Van Wonterghem, B M; Wegner, P J; Weiland, T L; Williams, W H

    1998-10-30

    We have measured the wavefront and the divergence of the Beamlet prototype laser under a variety of conditions. Emphasis of the tests was on quantifying best attainable divergence in the angular regime below 30 {micro}rad to benchmark propagation models that are used to set wavefront gradient specifications for NIF optical components. Performance with and without active wavefront correction was monitored with radial shearing interferometers that measured near-field wavefront at the input and output of the main amplifier with a spatial resolution of 1 cm, and cameras which measured the corresponding intensity distributions in the far field with an angular resolution of 0.3 {micro}rad. Details of the measurements are discussed and related to NIF focal spot requirements and optics specifications.

  1. Iris-based cyclotorsional image alignment method for wavefront registration.

    PubMed

    Chernyak, Dimitri A

    2005-12-01

    In refractive surgery, especially wavefront-guided refractive surgery, correct registration of the treatment to the cornea is of paramount importance. The specificity of the custom ablation formula requires that the ablation be applied to the cornea only when it has been precisely aligned with the mapped area. If, however, the eye has rotated between measurement and ablation, and this cyclotorsion is not compensated for, the rotational misalignment could impair the effectiveness of the refractive surgery. To achieve precise registration, a noninvasive method for torsional rotational alignment of the captured wavefront image to the patient's eyes at surgery has been developed. This method applies a common coordinate system to the wavefront and the eye. Video cameras on the laser and wavefront devices precisely establish the spatial relationship between the optics of the eye and the natural features of the iris, enabling the surgeon to identify and compensate for cyclotorsional eye motion, whatever its cause.

  2. Closed-loop performance of pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Esposito, Simone; Riccardi, Armando; Feeney, Orla

    2000-07-01

    We consider the performance of the wavefront reconstruction process when a Pyramid wavefront Sensor is used in a closed loop Adaptive Optics System. The Pyramid Sensor sensitivity in closed loop operations has been the subject of a first heuristic analysis showing that the sensor sensitivity is higher than that of a Shack-Hartmann sensor, at least when low order modes are considered. In this paper we evaluate the sensor accuracy by determining the closed loop reconstruction matrix. This is done using a diffractive analysis of the sensor behavior. Furthermore, knowledge of this matrix enables us to quantify the effect of error sources like sensor non linearity and photon noise on the reconstructed wavefront accuracy. Finally, a comparison of the performance of the Shack-Hartmann and Pyramid wavefront sensors is given.

  3. Wavefront shaping through emulated curved space in waveguide settings

    PubMed Central

    Sheng, Chong; Bekenstein, Rivka; Liu, Hui; Zhu, Shining; Segev, Mordechai

    2016-01-01

    The past decade has witnessed remarkable progress in wavefront shaping, including shaping of beams in free space, of plasmonic wavepackets and of electronic wavefunctions. In all of these, the wavefront shaping was achieved by external means such as masks, gratings and reflection from metasurfaces. Here, we propose wavefront shaping by exploiting general relativity (GR) effects in waveguide settings. We demonstrate beam shaping within dielectric slab samples with predesigned refractive index varying so as to create curved space environment for light. We use this technique to construct very narrow non-diffracting beams and shape-invariant beams accelerating on arbitrary trajectories. Importantly, the beam transformations occur within a mere distance of 40 wavelengths, suggesting that GR can inspire any wavefront shaping in highly tight waveguide settings. In such settings, we demonstrate Einstein's Rings: a phenomenon dating back to 1936. PMID:26899285

  4. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection.

    PubMed

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  5. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  6. Comparison of LSST and DECam wavefront recovery algorithms

    NASA Astrophysics Data System (ADS)

    Xin, Bo; Roodman, Aaron; Angeli, George; Claver, Chuck; Thomas, Sandrine

    2016-07-01

    We make a detailed quantitative comparison of the wavefront recovery algorithms between those developed for Dark Energy Camera (DECam) and the Large Synoptic Survey Telescope (LSST). Samples used in this study include images of out of focus stars collected by the DECam at the Blanco 4-meter telescope and artificial simulated donut images. The data from DECam include wavefront images collected by the wavefront sensors and out-of-focus images where the entire DECam sensor array is used. For simulated images, we have used both the forward Fraunhofer diffraction and a LSST-like ZEMAX optical model where the images are convolved with Kolmogorov atmosphere. All samples are analyzed with the forward wavefront retrieval algorithm developed for DECam and the transport of intensity algorithm for LSST. Good quantitative agreement between results by the two implemented algorithms is observed.

  7. New DEMs may stimulate significant advancements in remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Nolan, Matt; Fatland, Dennis R.

    From Napoleon's defeat at Waterloo to increasing corn yields in Kansas to greenhouse gas flux in the Arctic, the importance of soil moisture is endemic to world affairs and merits the considerable attention it receives from the scientific community. This importance can hardly be overstated, though it often goes unstated.Soil moisture is one of the key variables in a variety of broad areas critical to the conduct of societies' economic and political affairs and their well-being; these include the health of agricultural crops, global climate dynamics, military trafficability planning, and hazards such as flooding and forest fires. Unfortunately the in situ measurement of the spatial distribution of soil moisture on a watershed-scale is practically impossible. And despite decades of international effort, a satellite remote sensing technique that can reliably measure soil moisture with a spatial resolution of meters has not yet been identified or implemented. Due to the lack of suitable measurement techniques and, until recently digital elevation models (DEMs), our ability to understand and predict soil moisture dynamics through modeling has largely remained crippled from birth [Grayson and Bloschl, 200l].

  8. Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    NASA Technical Reports Server (NTRS)

    Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.

    2013-01-01

    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.

  9. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  10. Advancement in polarimetric glucose sensing: simulation and measurement of birefringence properties of cornea

    NASA Astrophysics Data System (ADS)

    Malik, Bilal H.; Coté, Gerard L.

    2011-03-01

    Clinical guidelines dictate that frequent blood glucose monitoring in diabetic patients is critical towards proper management of the disease. Although, several different types of glucose monitors are now commercially available, most of these devices are invasive, thereby adversely affecting patient compliance. To this end, optical polarimetric glucose sensing through the eye has been proposed as a potential noninvasive means to aid in the control of diabetes. Arguably, the most critical and limiting factor towards successful application of such a technique is the time varying corneal birefringence due to eye motion artifact. We present a spatially variant uniaxial eye model to serve as a tool towards better understanding of the cornea's birefringence properties. The simulations show that index-unmatched coupling of light is spatially limited to a smaller range when compared to the index-matched situation. Polarimetric measurements on rabbits' eyes indicate relative agreement between the modeled and experimental values of corneal birefringence. In addition, the observed rotation in the plane of polarized light for multiple wavelengths demonstrates the potential for using a dual-wavelength polarimetric approach to overcome the noise due to timevarying corneal birefringence. These results will ultimately aid us in the development of an appropriate eye coupling mechanism for in vivo polarimetric glucose measurements.

  11. Technology Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.

    2015-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.

  12. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    NASA Astrophysics Data System (ADS)

    Archambault, Brian C.; Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R.; Taleyakhan, Rusi P.

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources (239Pu-Be and 252Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient 3He sensor replacement was performed utilizing MCNP-PoliMi simulations, the results of which

  13. Optical differentiation wavefront sensor based on binary pixelated transmission filters

    NASA Astrophysics Data System (ADS)

    Qiao, J.; Travinsky, A.; Ding, G.; Dorrer, C.

    2015-03-01

    High-resolution wavefront sensors are used in a wide range of applications. The Shack-Hartmann sensor is the industry standard and mostly used for this kind of analysis. However, with this sensor the analysis can only be performed for narrowband radiation, the recoverable curvature of the wavefront slopes is also restricted by the size of a single lens in the microlens array. The high-resolution Shack Hartmann wavefront sensor (>128×128) is also significantly expensive. The optical differentiation wavefront sensor, on the other hand, consists of only simple and therefore inexpensive components, offers greater signal to noise ratio, allows for high-resolution analysis of wavefront curvature, and is potentially capable of performing broadband measurements. When a transmission mask with linear attenuation along a spatial direction modulates the far field of an optical wave, the spatial wavefront slope along that direction can be recovered from the fluence in the near field after modulation. With two orthogonal measurements one can recover the complete wavefront of the optical wave. In this study the characteristics of such a wavefront sensor are investigated when the linear transmission modulation is implemented with a pixelated binary filter. Such a filter can be produced as a gray-scale quasi-continuous transmission pattern constructed using arrays of small (e.g., 10-micron) transparent or opaque pixels and therefore it can simply be fabricated by conventional lithography techniques. Simulations demonstrate the potential ability of such a pixelated filter to match the performance of a filter with continuously varying transmission, while offering the advantage of better transmission control and reduction of fabrication costs.

  14. Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes.

    PubMed

    Rosensteiner, Matthias

    2011-10-01

    The Cumulative Reconstructor (CuRe) is a new direct reconstructor for an optical wavefront from Shack-Hartmann wavefront sensor measurements. In this paper, the algorithm is adapted to realistic telescope geometries and the transition from modified Hudgin to Fried geometry is discussed. After a discussion of the noise propagation, we analyze the complexity of the algorithm. Our numerical tests confirm that the algorithm is very fast and accurate and can therefore be used for adaptive optics systems of Extremely Large Telescopes.

  15. High altitude airborne remote sensing mission using the advanced microwave precipitation radiometer (AMPR)

    NASA Technical Reports Server (NTRS)

    Galliano, J.; Platt, R. H.; Spencer, Roy; Hood, Robbie

    1991-01-01

    The advanced microwave precipitation radiometer (AMPR) is an airborne multichannel imaging radiometer used to better understand how the earth's climate structure works. Airborne data results from the October 1990 Florida thunderstorm mission in Jacksonville, FL, are described. AMPR data on atmospheric precipitation in mesoscale storms were retrieved at 10.7, 19.35, 37.1, and 85.5 GHz onboard the ER-2 aircraft at an altitude of 20 km. AMPR's three higher-frequency data channels were selected to operate at the same frequencies as the spaceborne special sensor microwave/imager (SSM/I) presently in orbit. AMPR uses two antennas to receive the four frequencies: the lowest frequency channel uses a 9.7-in aperture lens antennas, while the three higher-frequency channels share a separate 5.3-in aperture lens antenna. The radiometer's temperature resolution performance is summarized.

  16. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    SciTech Connect

    Schalkoff, R.J.; Geist, R.M.; Dawson, D.M.

    1998-06-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  17. Advances in Fluorescence Sensing Systems for the Remote Assessment of Nitrogen Supply in Field Corn

    NASA Technical Reports Server (NTRS)

    Corp, L. A.; Chappelle, E. W.; McMurtrey, J. E.; Daughtry, C. S. T.; Kim, M. S.

    2000-01-01

    The studies described herein were conducted to better define changes in fluorescence properties of leaves from field grown corn (Zea mays L.) as they relate to varying levels of nitrogen (N) fertilization. This research was directed toward: 1) providing a remote non-destructive sensing technique to aid in the determination of optimal rates of N fertilization in corn crops and, 2) defining parameters for further development of fluorescence instrumentation to be operated remotely at field canopy levels. Fluorescence imaging bands centered in the blue (450 nm), green (525 nm), red (680 nm), and far-red (740 nm) and ratios of these bands were compared with the following plant parameters: rates of photosynthesis, N:C ratio, pigment concentrations, and grain yields. Both the fluorescence and physiological measures exhibited similar curvilinear responses to N fertilization level while significant linear correlations were obtained among fluorescence bands and band ratios to certain physiological measures of plant productivity. The red / blue, red / green, far-red / blue, far-red /green fluorescence ratios are well suited for remote observation and provided high correlations to grain yield, LAI, N:C, and chlorophyll contents. The results from this investigation indicate that fluorescence technology could aid in the determination of N fertilization requirements for corn. This discussion will also address design concepts and preliminary field trials of a mobile field-based Laser Induced Fluorescence Imaging System (LIFIS) capable of simultaneously acquiring images of four fluorescence emission bands from areas of plant canopies equaling 1 sq m and greater without interference of ambient solar radiation.

  18. Advances in Using Fiber-Optic Distributed Temperature Sensing to Identify the Mixing of Waters

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Day-Lewis, F. D.; Rosenberry, D. O.; Harvey, J. W.; Lane, J. W., Jr.; Hare, D. K.; Boutt, D. F.; Voytek, E. B.; Buckley, S.

    2014-12-01

    Fiber-optic distributed temperature sensing (FO-DTS) provides thermal data through space and time along linear cables. When installed along a streambed, FO-DTS can capture the influence of upwelling groundwater (GW) as thermal anomalies. The planning of labor-intensive physical measurements can make use of FO-DTS data to target areas of focused GW discharge that can disproportionately affect surface-water (SW) quality and temperature. Typical longitudinal FO-DTS spatial resolution ranges 0.25 to1.0 m, and cannot resolve small-scale water-column mixing or sub-surface diurnal fluctuations. However, configurations where the cable is wrapped around rods can improve the effective vertical resolution to sub-centimeter scales, and the pipes can be actively heated to induce a thermal tracer. Longitudinal streambed and high-resolution vertical arrays were deployed at the upper Delaware River (PA, USA) and the Quashnet River (MA, USA) for aquatic habitat studies. The resultant datasets exemplify the varied uses of FO-DTS. Cold anomalies found along the Delaware River steambed coincide with zones of known mussel populations, and high-resolution vertical array data showed relatively stable in-channel thermal refugia. Cold anomalies at the Quashnet River identified in 2013 were found to persist in 2014, and seepage measurements and water samples at these locations showed high GW flux with distinctive chemistry. Cable location is paramount to seepage identification, particularly in faster flowing deep streams such as the Quashnet and Delaware Rivers where steambed FO-DTS identified many seepage zones with no surface expression. The temporal characterization of seepage dynamics are unique to FO-DTS. However, data from Tidmarsh Farms, a cranberry bog restoration site in MA, USA indicate that in slower flowing shallow steams GW inflow affects surface temperature; therefore infrared imaging can provide seepage location information similar to FO-DTS with substantially less effort.

  19. Advances in remote sensing of the daytime ionosphere with EUV airglow

    NASA Astrophysics Data System (ADS)

    Stephan, Andrew W.

    2016-09-01

    This paper summarizes recent progress in developing a method for characterizing the daytime ionosphere from limb profile measurements of the OII 83.4 nm emission. This extreme ultraviolet emission is created by solar photoionization of atomic oxygen in the lower thermosphere and is resonantly scattered by O+ in the ionosphere. The brightness and shape of the measured altitude profile thus depend on both the photoionization source in the lower thermosphere and the ionospheric densities that determine the resonant scattering contribution. This technique has greatly matured over the past decade due to measurements by the series of Naval Research Laboratory Special Sensor Ultraviolet Limb Imager (SSULI) instruments flown on Defense Meteorological Satellite Program (DMSP) missions and the Remote Atmospheric and Ionospheric Detection System (RAIDS) on the International Space Station. The volume of data from these missions has enabled a better approach to handling specific biases and uncertainties in both the measurement and retrieval process that affect the accuracy of the result. This paper identifies the key measurement and data quality factors that will enable the continued evolution of this technique into an advanced method for characterization of the daytime ionosphere.

  20. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants

    NASA Astrophysics Data System (ADS)

    Atherton, Daniel

    Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p < 0.0001) between disease rating group means. In the majority of the experiments, comparisons of diseased plants with healthy plants using Fisher's LSD revealed more heavily diseased plants were significantly different from healthy plants. PLS analysis demonstrated the feasibility of detecting early blight infected plants, finding four optimal factors for raw spectra with the predictor variation explained ranging from 93.4% to 94.6% and the response variation explained ranging from 42.7% to 64.7%. Cluster analysis successfully distinguished healthy plants from all diseased plants except for the most mildly diseased plants, showing clustering analysis was an effective method for detection of early blight. Analysis of the reflectance spectra using the simple ratio (SR) and the normalized difference vegetative index (NDVI) was effective at differentiating all diseased plants from healthy plants, except for the

  1. AgriSense-STARS: Advancing Methods of Agricultural Monitoring for Food Security in Smallholder Regions - the Case for Tanzania

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Becker-Reshef, I.; Nakalembe, C. L.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ntikha, O.; Hansen, M.; Justice, C. J.; Adusei, B.; Kongo, V.

    2015-12-01

    In-season monitoring of crop conditions provides critical information for agricultural policy and decision making and most importantly for food security planning and management. Nationwide agricultural monitoring in countries dominated by smallholder farming systems, generally relies on extensive networks of field data collectors. In Tanzania, extension agents make up this network and report on conditions across the country, approaching a "near-census". Data is collected on paper which is resource and time intensive, as well as prone to errors. Data quality is ambiguous and there is a general lack of clear and functional feedback loops between farmers, extension agents, analysts and decision makers. Moreover, the data are not spatially explicit, limiting the usefulness for analysis and quality of policy outcomes. Despite significant advances in remote sensing and information communication technologies (ICT) for monitoring agriculture, the full potential of these new tools is yet to be realized in Tanzania. Their use is constrained by the lack of resources, skills and infrastructure to access and process these data. The use of ICT technologies for data collection, processing and analysis is equally limited. The AgriSense-STARS project is developing and testing a system for national-scale in-season monitoring of smallholder agriculture using a combination of three main tools, 1) GLAM-East Africa, an automated MODIS satellite image processing system, 2) field data collection using GeoODK and unmanned aerial vehicles (UAVs), and 3) the Tanzania Crop Monitor, a collaborative online portal for data management and reporting. These tools are developed and applied in Tanzania through the National Food Security Division of the Ministry of Agriculture, Food Security and Cooperatives (MAFC) within a statistically representative sampling framework (area frame) that ensures data quality, representability and resource efficiency.

  2. Micromachined deformable mirrors for dynamic wavefront control

    NASA Astrophysics Data System (ADS)

    Bifano, Thomas; Bierden, Paul; Perreault, Julie

    2004-10-01

    The design, manufacture, and testing of optical quality surface micromachined deformable mirrors (DMs) is described. With such mirrors, the shape of the reflective surface can be modified dynami-cally to compensate for optical aberrations and thereby improve image resolution in telescopes or microscopes. Over several years, we have developed microelectromechanical system (MEMS) processing technologies that allow production of optical quality of surface micromachined mirrors. These process steps have been integrated with a commercial foundry process to produce deformable mirrors of unprecedented quality. The devices employ 140 electrostatic actuators. Measurements of their performance detailed in this paper include 2µm of useful stroke, 3nm position repeatability, >90% reflectivity, and flatness better than 20nm RMS. A chemo-mechanical polishing process has been used to improve surface quality of the mirrors, and a gold coating process has been developed to improve the reflectivity without introducing a significant amount of stress in the mirror mem-brane. An ion bombardment technique has been developed to flatten mirrors. These silicon based deformable mirrors have the potential to modulate spatial and temporal features of an optical wave-front, and have applications in imaging, beam-forming, and optical communication systems. Design considerations and performance evaluation of recently fabricated DMs are presented.

  3. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; Shaklan, S.; Stahl, P.; Thronson, H.

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  4. WE-G-303-03: Advances in in Vivo Magnetic NanoparticleSensing

    SciTech Connect

    Weaver, J.

    2015-06-15

    Over the last decade, there has been a growing interest in applying nanotechnology to cancer detection, treatment, and treatment monitoring. Advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes and sizes. Nanoparticles can be accumulated preferentially within tumors by either “passive targeting” through a phenomenon typically known as “enhanced permeability and retention” or “active targeting” in which nanoparticles are conjugated with antibodies or peptides directed against tumor and/or stromal markers. The tumor specificity of nanoparticles in conjunction with their unique physicochemical properties offers many novel strategies for cancer treatment and detection. For example, notable approaches in the radiation oncology setting include the use of gold nanoparticles for radiation response modulation of tumor or normal tissue and thermal ablation or hyperthermia treatment of tumors. Some of these approaches are currently being tested either on humans or on animals and, very likely, will become the clinical reality in the near future. Various computational and experimental techniques have also been applied to address unique research issues associated with nanoparticles and may become the standard tools for future investigations and clinical translations. Therefore, both clinicians and researchers may need to be properly educated about the basic principles as well as the promise of nanoparticle-based applications with regard to the future of cancer diagnostics and therapeutics. This symposium will familiarize the audience with the potential applications of nanoparticles in oncologic imaging and therapy using specific illustrative examples. The audience will be properly oriented by these illustrative examples to the multiple avenues for collaborative research amongst interdisciplinary teams of physicists, clinicians, engineers, chemists, and biologists in industry and academia. Learning

  5. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a

  6. A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.

    2012-12-01

    Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites

  7. The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer; Andersen, David; Chapin, Edward; Reshetov, Vlad; Wierzbicki, Ramunas; Herriot, Glen; Chalmer, Dean; Isbrucker, Victor; Larkin, James E.; Moore, Anna M.; Suzuki, Ryuji

    2016-08-01

    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS's superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of

  8. Detecting Significant Change in Wavefront Error: How long does it take?

    PubMed Central

    Koenig, Darren E.; Applegate, Raymond A.; Marsack, Jason D.; Sarver, Edwin J.; Nguyen, Lan Chi

    2010-01-01

    Purpose Measurement noise in ocular wavefront sensing limits detection of statistically significant change in high-order wavefront error (HO WFE). Consequently, measurement noise is problematic when trying to detect progressive change in HO WFE. Our aim is to 1) determine the necessary amount of time to detect age-related change in HO WFE given measurement variability and HO WFE composition and magnitude and 2) minimize the length of time necessary to detect change. Methods Five subjects with 0.26 to 1.57 micrometers root mean square HO WFE (HO RMS) over a 6 mm pupil were measured 12 times in 10–15 minutes using a custom Shack-Hartmann wavefront sensor. Each individual’s standard deviation of measures was used to calculate the 95% confidence interval around their mean HO RMS. Data previously reported on the rate of change in the HO RMS due to normal aging and pupil diameter was used to calculate time to detect change exceeding this interval given measurement variability. Results Single measurements limit statistical detection to a range of 8 to 30 years. Increasing the number of WFE measurements per visit decreases time to detection (e.g., 7 measurements reduce the range to 3 to 14 years). The number of years to detect a change requires consideration of the subject’s measurement variability, level and distribution of aberrations and age. Uncertainty in locating pupil centre accounts for 39 ± 8% of the total variability. Conclusions The ability to detect change in HO WFE over a short period of time due to normal aging is difficult but possible with current WFE measurement technology. Single measurements of HO WFE become less predictive of true HO WFE with increasing measurement variability. Multiple measurements reduce the variability. Even with proper fixation and instrument alignment, pupil centre location uncertainty in HO WFE measurements is a nontrivial contributor to measurement variability. PMID:19469015

  9. Designing and testing the coronagraphic Modal Wavefront Sensor: a fast non-common path error sensor for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Wilby, M. J.; Keller, C. U.; Haffert, S.; Korkiakoski, V.; Snik, F.; Pietrow, A. G. M.

    2016-07-01

    Non-Common Path Errors (NCPEs) are the dominant factor limiting the performance of current astronomical high-contrast imaging instruments. If uncorrected, the resulting quasi-static speckle noise floor limits coronagraph performance to a raw contrast of typically 10-4, a value which does not improve with increasing integration time. The coronagraphic Modal Wavefront Sensor (cMWS) is a hybrid phase optic which uses holographic PSF copies to supply focal-plane wavefront sensing information directly from the science camera, whilst maintaining a bias-free coronagraphic PSF. This concept has already been successfully implemented on-sky at the William Herschel Telescope (WHT), La Palma, demonstrating both real-time wavefront sensing capability and successful extraction of slowly varying wavefront errors under a dominant and rapidly changing atmospheric speckle foreground. In this work we present an overview of the development of the cMWS and recent first light results obtained using the Leiden EXoplanet Instrument (LEXI), a high-contrast imager and high-dispersion spectrograph pathfinder instrument for the WHT.

  10. Advances in airborne remote sensing of ecosystem processes and properties: toward high-quality measurement on a global scale

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; Asner, Gregory P.; Green, Robert O.; Eastwood, Michael; Johnson, Brian R.; Kuester, Michele

    2010-08-01

    Airborne remote sensing provides the opportunity to quantitatively measure biochemical and biophysical properties of vegetation at regional scales, therefore complementing surface and satellite measurements. Next-generation programs are poised to advance ecological research and monitoring in the United States, the tropical regions of the globe, and to support future satellite missions. The Carnegie Institution will integrate a next generation imaging spectrometer with a waveform LiDAR into the Airborne Taxonomic Mapping System (AToMS) to identify the chemical, structural and taxonomic makeup of tropical forests at an unprecedented scale and detail. The NEON Airborne Observation Platform (AOP) is under development with similar technologies with a goal to provide long-term measurements of ecosystems across North America. The NASA Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) is also under development to address the science measurement requirements for both the NASA Earth Science Research and Analysis Program and the spaceborne NASA HyspIRI Mission. Carnegie AToMS, NEON AOP, and AVIRISng are being built by the Jet Propulsion Laboratory as a suite of instruments. We discuss the synergy between these programs and anticipated benefits to ecologists and decision-makers.

  11. Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.

    2014-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the

  12. Wave-front propagation of rinsing flows on rotating semiconductor wafers

    NASA Astrophysics Data System (ADS)

    Frostad, John M.; Ylitalo, Andy; Walls, Daniel J.; Mui, David S. L.; Fuller, Gerald G.

    2016-11-01

    The semiconductor manufacturing industry is migrating to a cleaning technology that involves dispersing cleaning solutions onto a rotating wafer, similar to spin-coating. Advantages include a more continuous overall fabrication process, lower particle level, no cross contamination from the back side of a wafer, and less usage of harsh chemicals for a lower environmental impact. Rapid rotation of the wafer during rinsing can be more effective, but centrifugal forces can pull spiral-like ribbons of liquid radially outward from the advancing wave-front where particles can build up, causing higher instances of device failure at these locations. A better understanding of the rinsing flow is essential for reducing yield losses while taking advantage of the benefits of rotation. In the present work, high-speed video and image processing are used to study the dynamics of the advancing wave-front from an impinging jet on a rotating substrate. The flow-rate and rotation-speed are varied for substrates coated with a thin layer of a second liquid that has a different surface tension than the jet liquid. The difference in surface tension of the two fluids gives rise to Marangoni stresses at the interface that have a significant impact on the rinsing process, despite the extremely short time-scales involved.

  13. Wavefront measurement of plastic lenses for mobile-phone applications

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  14. Wavefront reconstruction with pupil fragmentation: study of a simple case

    NASA Astrophysics Data System (ADS)

    Bonnefond, Sylvain; Tallon, Michel; Le Louarn, Miska; Madec, Pierre-Yves

    2016-07-01

    The use of smaller subapertures on some recent adaptive optics (AO) systems seems to yield difficulties in wavefront reconstruction, known as spider effect or pupil fragmentation: the size of the subapertures is small enough so that some of them are masked by the telescope spider, dividing the pupil into disconnected domains. In particular, this problem will arise on the E-ELT.We have studied pure wavefront reconstruction on a Shack-Hartmann wavefront sensor, for a simplified AO system similar to VLT/SPHERE in size, with and without pupil fragmentation, and compared the performance of various wavefront reconstructors for different signal-to-noise ratios, using priors (minimum variance) or not (least-squares), and with different assumptions for the damaged wavefront measurements. The missing measurements have been either discarded (corresponding subapertures are not active), replaced by zeros, or interpolated by preserving the loop continuity property of the gradients (curl operator). Priors have been introduced using the FrIM (Fractal Iterative Method) algorithm. In our perfect conditions, we show that no method allows the full recovery from the pupil fragmentation, that minimum variance always gives the best performance, especially the one without any interpolation. On the opposite, the performance with least-squares somewhat improves when correcting for the missing measurements. In this latter case, preserving the curl property of the gradient is preferable only for very low measurement noise.

  15. Double-shearing interferometer for accurate test of laser wavefront

    NASA Astrophysics Data System (ADS)

    Luan, Zhu; Liu, Liren; Zu, Jifeng; Teng, Shuyun

    2004-01-01

    Inter-satellite laser communications require nearly diffraction-limited laser beam, correspondingly an accurate test of laser wavefront is necessary. In this paper, an aperture-divided double lateral-shearing interferometer is developed which can be used for wavefront analysis ranged nearly from 0.1λ to λ with a simple structure and no alignment needed. The interferometer includes two Jamin plane parallel plates and four slightly wedge-shaped plates of the same size. The four wedged plates are combined into two pairs of different wedges, which are separately placed in the arms of the Jamin interferometer. The thickness of a plate leads to a beam shift, and the wedge a beam inclination, so that there appears two shearing interferogram of different background fringes in a divided aperture. Plane wavefront, perfect spherical wavefront and some types of aberration including primary spherical aberration, primary coma are simulated. It is concluded that the measurable wavefront height of laser beam reaches to better than 0.1λ. Note that the interference is from the beams of equal optical distance thus suitable for semiconductor lasers for the space application, which may be with the coherent length of millimeters.

  16. Comparison of wavefront sensor models for simulation of adaptive optics.

    PubMed

    Wu, Zhiwen; Enmark, Anita; Owner-Petersen, Mette; Andersen, Torben

    2009-10-26

    The new generation of extremely large telescopes will have adaptive optics. Due to the complexity and cost of such systems, it is important to simulate their performance before construction. Most systems planned will have Shack-Hartmann wavefront sensors. Different mathematical models are available for simulation of such wavefront sensors. The choice of wavefront sensor model strongly influences computation time and simulation accuracy. We have studied the influence of three wavefront sensor models on performance calculations for a generic, adaptive optics (AO) system designed for K-band operation of a 42 m telescope. The performance of this AO system has been investigated both for reduced wavelengths and for reduced r(0) in the K band. The telescope AO system was designed for K-band operation, that is both the subaperture size and the actuator pitch were matched to a fixed value of r(0) in the K-band. We find that under certain conditions, such as investigating limiting guide star magnitude for large Strehl-ratios, a full model based on Fraunhofer propagation to the subimages is significantly more accurate. It does however require long computation times. The shortcomings of simpler models based on either direct use of average wavefront tilt over the subapertures for actuator control, or use of the average tilt to move a precalculated point spread function in the subimages are most pronounced for studies of system limitations to operating parameter variations. In the long run, efficient parallelization techniques may be developed to overcome the problem.

  17. Relating the dynamics of membrane mirrors to holographic wavefront correction

    NASA Astrophysics Data System (ADS)

    Marker, Dan K.; Wilkes, James M.; Gruneisen, Mark T.; Tran, Hy D.

    2002-09-01

    The Directed Energy Directorate is developing technologies for large space-based optical membrane telescopes. The goal is to develop technologies that will enable 20-meter or greater diameter telescopes, with areal densities of less than 1 kilogram per square meter. The challenge of building these precise structures is reduced by employing a diffractive wavefront controller, which will significantly relax the structural tolerances normally associated with conventional optical systems. A significant portion of the corrector's range and bandwidth can be consumed by structural disturbances. This survey will describe the relationship between the structural dynamics of a highly compliant, 11 inch diameter, planar optical aperture and the diffractive wavefront controller's ability to compensate for the resulting wavefront error. This overview should give the optical physicist and the opto-mechanical engineer a starting point to communicate system design and research needs.

  18. Design of wavefront coding optical system with annular aperture

    NASA Astrophysics Data System (ADS)

    Chen, Xinhua; Zhou, Jiankang; Shen, Weimin

    2016-10-01

    Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.

  19. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces

    PubMed Central

    Li, Yong; Liang, Bin; Gu, Zhong-ming; Zou, Xin-ye; Cheng, Jian-chun

    2013-01-01

    The introduction of metasurfaces has renewed the Snell's law and opened up new degrees of freedom to tailor the optical wavefront at will. Here, we theoretically demonstrate that the generalized Snell's law can be achieved for reflected acoustic waves based on ultrathin planar acoustic metasurfaces. The metasurfaces are constructed with eight units of a solid structure to provide discrete phase shifts covering the full 2π span with steps of π/4 by coiling up the space. By careful selection of the phase profiles in the transverse direction of the metasurfaces, some fascinating wavefront engineering phenomena are demonstrated, such as anomalous reflections, conversion of propagating waves into surface waves, planar aberration-free lens and nondiffracting Bessel beam generated by planar acoustic axicon. Our results could open up a new avenue for acoustic wavefront engineering and manipulations. PMID:23986034

  20. Active Control of Laser Wavefronts in Atom Interferometers

    NASA Astrophysics Data System (ADS)

    Trimeche, A.; Langlois, M.; Merlet, S.; Pereira Dos Santos, F.

    2017-03-01

    Wavefront aberrations are identified as a major limitation in quantum sensors. They are today the main contribution in the uncertainty budget of the best cold-atom interferometers based on two-photon laser beam splitters and constitute an important limit for their long-term stability, impeding these instruments from reaching their full potential. Moreover, they will also remain a major obstacle in future experiments based on large-momentum beam splitters. In this article, we tackle this issue by using a deformable mirror to control actively the laser wavefronts in atom interferometry. In particular, we demonstrate in an experimental proof of principle the efficient correction of wavefront aberrations in an atomic gravimeter.

  1. Miniaturized Shack-Hartmann wavefront sensors for starbugs

    NASA Astrophysics Data System (ADS)

    Goodwin, Michael; Richards, Samuel; Zheng, Jessica; Lawrence, Jon; Leon-Saval, Sergio; Argyros, Alexander; Alcalde, Belen

    2014-07-01

    The ability to position multiple miniaturized wavefront sensors precisely over large focal surfaces are advantageous to multi-object adaptive optics. The Australian Astronomical Observatory (AAO) has prototyped a compact and lightweight Shack-Hartmann wavefront-sensor that fits into a standard Starbug parallel fibre positioning robot. Each device makes use of a polymer coherent fibre imaging bundle to relay an image produced by a microlens array placed at the telescope focal plane to a re-imaging camera mounted elsewhere. The advantages of the polymer fibre bundle are its high-fill factor, high-throughput, low weight, and relatively low cost. Multiple devices can also be multiplexed to a single lownoise camera for cost efficiencies per wavefront sensor. The use of fibre bundles also opens the possibility of applications such as telescope field acquisition, guiding, and seeing monitors to be positioned by Starbugs. We present the design aspects, simulations and laboratory test results.

  2. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    NASA Technical Reports Server (NTRS)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  3. Asphericity analysis using corneal wavefront and topographic meridional fits

    NASA Astrophysics Data System (ADS)

    Arba-Mosquera, Samuel; Merayo-Lloves, Jesús; de Ortueta, Diego

    2010-03-01

    The calculation of corneal asphericity as a 3-D fit renders more accurate results when it is based on the corneal wavefront aberrations rather than on the corneal topography of the principal meridians. A more accurate prediction could be obtained for hyperopic treatments compared to myopic treatments. We evaluate a method to calculate corneal asphericity and asphericity changes after refractive surgery. Sixty eyes of 15 consecutive myopic patients and 15 consecutive hyperopic patients (n=30 each) are retrospectively evaluated. Preoperative and 3-month-postoperative topographic and corneal wavefront analyses are performed using corneal topography. Ablations are performed using a laser with an aberration-free profile. Topographic changes in asphericity and corneal aberrations are evaluated for a 6-mm corneal diameter. The induction of corneal spherical aberrations and asphericity changes correlates with the achieved defocus correction. Preoperatively as well as postoperatively, asphericity calculated from the topography meridians correlates with asphericity calculated from the corneal wavefront in myopic and hyperopic treatments. A stronger correlation between postoperative asphericity and the ideally expected/predicted asphericity is obtained based on aberration-free assumptions calculated from corneal wavefront values rather than from the meridians. In hyperopic treatments, a better correlation can be obtained compared to the correlation in myopic treatments. Corneal asphericity calculated from corneal wavefront aberrations represents a 3-D fit of the corneal surface; asphericity calculated from the main topographic meridians represents a 2-D fit of the principal corneal meridians. Postoperative corneal asphericity can be calculated from corneal wavefront aberrations with higher fidelity than from corneal topography of the principal meridians. Hyperopic treatments show a greater accuracy than myopic treatments.

  4. Dynamic wavefront control for lightweight mirrors in space telescopes

    NASA Astrophysics Data System (ADS)

    Cohan, Lucy E.; Miller, David W.

    2007-09-01

    Future space telescopes require larger apertures to continue to improve performance. However, balancing the large, high performance optics with the desire for lightweight systems proves quite challenging. One way to achieve both goals is to utilize active, on-orbit wavefront control. A promising method of wavefront control implementation is surface-parallel piezo-electric actuation. The primary mirror backplane is ribbed to provide increased stiffness even at very low areal densities, with piezo-electric actuators embedded at the top of each rib. When the piezo-electrics expand or contract, they bend the surface of the mirror and can be used to directly correct for dynamic distortions of the wavefront. In addition, rigid-body petal control can be used to allow for the possibility of systems with segmented primary mirrors. This paper examines the implementation of both the piezoelectric deformable mirror and petal wavefront controllers, along with their implications on both optical performance and stability robustness. The systems analyzed in this paper are integrated models of the entire space telescope system, considering the transmission of disturbances and vibrations from the reaction wheels in the bus through the structure, isolators, and bipods to the aperture. The deformable mirror control is performed using a Linear Quadratic Gaussian (LQG) controller, while the mirror segment control is performed using a positive position feedback (PPF) controller. For all cases, the wavefront error is the primary optical performance metric and is calculated using the Zernikes of the primary mirror. The major deterrents to the use of control are complexity and the loss of stability robustness. The integrated model allows for the calculation of all metrics together to enable the examination of the potential benefits of implementing dynamic wavefront control.

  5. Aspheric wave-front recording optics for holographic gratings.

    PubMed

    Namioka, T; Koike, M

    1995-05-01

    The geometric theory of aspheric wave-front recording optics is extended to include the fourth-order groove parameters that correspond to the fourth-order holographic terms in the light-path function. We derived explicit expressions of the groove parameters by analytically following an exact ray-tracing procedure for a double-element optical system that consists of a point source, an ellipsoidal mirror, and an ellipsoidal grating blank. Design examples of holographic gratings for an in-plane Eagle-type vacuum-UV monochromator are given to demonstrate the capability of the present theory in the design of aspheric wave-front recording optics.

  6. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    SciTech Connect

    Tian, Ye; Wei, Qi Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  7. Stationary phase analysis of generalized cubic phase mask wavefront coding

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Dong, Liquan; Zhao, Yuejin; Hui, Mei; Jia, Wei

    2013-07-01

    The modified generalized cubic phase mask (GCPM) has recently been applied in wavefront coding systems including infrared imaging and microscopy. In this paper, the stationary phase method is employed to analyze the GCPM characteristics. The SPA of the modulation transfer function (MTF) under misfocus aberration is derived for a wavefront coding system with a GCPM. The approximation corresponds with the Fast Fourier Transform (FFT) approach. On the basis of this approximation, we compare the characteristics of GCPM and cubic phase masks (CPM). A GCPM design approach based on stationary phase approximation is presented which helps to determine the initial parameter of phase mask, significantly decreasing the computational time required for numerical simulation.

  8. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-11-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  9. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, Daniel R.; Michie, Robert B.

    1996-01-01

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.

  10. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, D.R.; Michie, R.B.

    1996-02-20

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.

  11. Wavefront Engineering with Phase Discontinuities: Designer Interfaces for High Performance Planar Optical Components

    DTIC Science & Technology

    2015-08-27

    and polarization of wavefronts, the detection of wavefronts using metasurfaces, new metasurfaces for controlling surface plasmon wavefronts and high...the orbital angular momentum of vortex beams and integrated them into commercial silicon photodiodes. They studied surface plasmon wakes, showing...that they can be steered using a one dimensional metamaterial made of rotated apertures, and demonstrated “fishbone” plasmonic couplers that enable

  12. Dependence of the wave-front aberration on the radius of the reference sphere.

    PubMed

    Miks, Antonín

    2002-06-01

    Wave-front aberration is a basic characteristic of the imaging properties of optical systems. The value of the wave-front aberration is obtained by calculating the difference between the optical path lengths of the real wave front and the reference sphere. The general relations for calculated dependence of the wave-front aberration on the radius of the reference sphere are given.

  13. Simplex-based wavefront control for the mitigation of dynamic distortions caused by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Zhang, Dave

    2005-04-01

    Laser communication systems operating in the atmosphere require certain power and beam quality to establish and maintain a reliable communication link. Although such systems utilize the most advanced materials and technologies, their performance is adversely affected by optical turbulence, often posing a serious problem, even for short-range links. Atmospheric effects change optical properties of the propagation channel, causing signal fades, beam wander and scintillations. A common method of mitigating turbulence effects suggests dynamic wavefront control. In this paper the proposed technique is based on correction of the distorted beam using an electrically addressed programmable spatial light modulator (SLM). The phase profile that we impose on the distorted laser beam is described using Zernike formalism to calculate the wavefront OPD function. The Nelder-Mead simplex optimization algorithm is used as a correction procedure that provides fast results, required for real-time operation. In general, calculation of the required phase profile for an SLM with large number of pixels could be highly computationally intensive. Coupling modulator inputs to the first several Zernike coefficients allows significant reduction of the dimension of the optimization problem. The algorithm is tested in the simulation environment and its ability to compensate dynamic distortions is assessed. The results show that both dimension of the input space and the initial conditions affect the speed and convergence to a particular minimum. Recommendations for improving the system performance are also presented.

  14. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-06-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices.

  15. A linear phase retrieval wave-front sensor

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Xin-Yang; Jiang, Wen-Han

    2008-12-01

    A method to retrieve small phase aberration from a single far-field image is proposed. It only needs to calibrate the inherent aberration of the imaging system once, and then the difference between a single measured image with aberration and the calibrated image with inherent aberration is got to retrieve the disturbed phase aberration by an approximate linear relationship. Computer simulations are employed to analyze the performance of this linear phase retrieval (LPR) wave-front sensor. The dynamic range of this method is discussed without noise to judge how small it is needed to satisfy the method. The results show that the proposed small phase retrieval method works well when the RMS phase error is less than 1.6 rad. The Linear Phase Retrieval wave-front sensor and the Hartmann-Shack wave-front sensor are compared on the same stochastic wave-front aberration. The influence of different calculation condition on the retrieval results is compared and analyzed. After analyzing the target resolution, it is thought that a reasonable target size is advantageous to the retrieval precision. At the same time, the LPR sensor can realize the alike precision measurement by using less detect cell, such as 8 pixelx8 pixel in our experiment. From the retrieval results of different orders, the error rate are less than 0.25 and it is comparatively accurate to retrieve pre-35 order aberrations.

  16. Wavefronts and caustic associated with Durnin’s beams

    NASA Astrophysics Data System (ADS)

    de Jesús Cabrera-Rosas, Omar; Espíndola-Ramos, Ernesto; Alejandro Juárez-Reyes, Salvador; Julián-Macías, Israel; Ortega-Vidals, Paula; Silva-Ortigoza, Gilberto; Silva-Ortigoza, Ramón; Sosa-Sánchez, Citlalli Teresa

    2017-01-01

    The aim of the present work is to give a geometrical characterization of Durnin’s beams. That is, we compute the wavefronts and caustic associated with the nondiffracting solutions to the scalar wave equation introduced by Durnin. To this end, first we show that in an isotropic optical medium \\psi ({r},t)={{{e}}}{{i}[{k}0S({r})-ω t]} is an exact solution of the wave equation, if and only if, S is a solution of both the eikonal and Laplace equations, then from one and two-parameter families of this type of solution and the superposition principle we define new solutions of the wave equation, in particular we show that the ideal nondiffracting beams are one example of this type of construction in free space. Using this fact, the wavefronts and caustic associated with those beams are computed. We find that their caustic has only one branch, which is invariant under translations along the direction of evolution of the beam. Finally, the Bessel beam of order m is worked out explicitly and we find that it is characterized by wavefronts that are deformations of conical ones and the caustic is an infinite cylinder of radius proportional to m. In the case m = 0, the wavefronts are cones and the caustic degenerates into an infinite line.

  17. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  18. Wavefront Control Toolbox for James Webb Space Telescope Testbed

    NASA Technical Reports Server (NTRS)

    Shiri, Ron; Aronstein, David L.; Smith, Jeffery Scott; Dean, Bruce H.; Sabatke, Erin

    2007-01-01

    We have developed a Matlab toolbox for wavefront control of optical systems. We have applied this toolbox to the optical models of James Webb Space Telescope (JWST) in general and to the JWST Testbed Telescope (TBT) in particular, implementing both unconstrained and constrained wavefront optimization to correct for possible misalignments present on the segmented primary mirror or the monolithic secondary mirror. The optical models implemented in Zemax optical design program and information is exchanged between Matlab and Zemax via the Dynamic Data Exchange (DDE) interface. The model configuration is managed using the XML protocol. The optimization algorithm uses influence functions for each adjustable degree of freedom of the optical mode. The iterative and non-iterative algorithms have been developed to converge to a local minimum of the root-mean-square (rms) of wavefront error using singular value decomposition technique of the control matrix of influence functions. The toolkit is highly modular and allows the user to choose control strategies for the degrees of freedom to be adjusted on a given iteration and wavefront convergence criterion. As the influence functions are nonlinear over the control parameter space, the toolkit also allows for trade-offs between frequency of updating the local influence functions and execution speed. The functionality of the toolbox and the validity of the underlying algorithms have been verified through extensive simulations.

  19. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    NASA Astrophysics Data System (ADS)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  20. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface.

    PubMed

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-06-16

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices.

  1. Fast minimum variance wavefront reconstruction for extremely large telescopes.

    PubMed

    Thiébaut, Eric; Tallon, Michel

    2010-05-01

    We present what we believe to be a new algorithm, FRactal Iterative Method (FRiM), aiming at the reconstruction of the optical wavefront from measurements provided by a wavefront sensor. As our application is adaptive optics on extremely large telescopes, our algorithm was designed with speed and best quality in mind. The latter is achieved thanks to a regularization that enforces prior statistics. To solve the regularized problem, we use the conjugate gradient method, which takes advantage of the sparsity of the wavefront sensor model matrix and avoids the storage and inversion of a huge matrix. The prior covariance matrix is, however, non-sparse, and we derive a fractal approximation to the Karhunen-Loève basis thanks to which the regularization by Kolmogorov statistics can be computed in O(N) operations, with N being the number of phase samples to estimate. Finally, we propose an effective preconditioning that also scales as O(N) and yields the solution in five to ten conjugate gradient iterations for any N. The resulting algorithm is therefore O(N). As an example, for a 128 x 128 Shack-Hartmann wavefront sensor, the FRiM appears to be more than 100 times faster than the classical vector-matrix multiplication method.

  2. Parallel Implementation of a Frozen Flow Based Wavefront Reconstructor

    NASA Astrophysics Data System (ADS)

    Nagy, J.; Kelly, K.

    2013-09-01

    Obtaining high resolution images of space objects from ground based telescopes is challenging, often requiring the use of a multi-frame blind deconvolution (MFBD) algorithm to remove blur caused by atmospheric turbulence. In order for an MFBD algorithm to be effective, it is necessary to obtain a good initial estimate of the wavefront phase. Although wavefront sensors work well in low turbulence situations, they are less effective in high turbulence, such as when imaging in daylight, or when imaging objects that are close to the Earth's horizon. One promising approach, which has been shown to work very well in high turbulence settings, uses a frozen flow assumption on the atmosphere to capture the inherent temporal correlations present in consecutive frames of wavefront data. Exploiting these correlations can lead to more accurate estimation of the wavefront phase, and the associated PSF, which leads to more effective MFBD algorithms. However, with the current serial implementation, the approach can be prohibitively expensive in situations when it is necessary to use a large number of frames. In this poster we describe a parallel implementation that overcomes this constraint. The parallel implementation exploits sparse matrix computations, and uses the Trilinos package developed at Sandia National Laboratories. Trilinos provides a variety of core mathematical software for parallel architectures that have been designed using high quality software engineering practices, The package is open source, and portable to a variety of high-performance computing architectures.

  3. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  4. Wavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes

    PubMed Central

    Mao, Xinjie; Banta, James T.; Ke, Bilian; Jiang, Hong; He, Jichang; Liu, Che; Wang, Jianhua

    2016-01-01

    Purpose To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. Methods Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optical coherence tomography systems with a Shack-Hartmann wavefront sensor was constructed to image and monitor changes in whole eye biometry, the ciliary muscle and ocular aberration in the pseudophakic eye. A Badal optical channel and a visual target aligning with the wavefront sensor were incorporated into the system for measuring the wavefront-derived refraction. The imaging acquisition was performed twice. The coefficients of repeatability (CoR) and intraclass correlation coefficient (ICC) were calculated. Results Images were acquired and processed successfully in all patients. No significant difference was detected between repeated measurements of ciliary muscle dimension, full-eye biometry or defocus aberration. The CoR of full-eye biometry ranged from 0.36% to 3.04% and the ICC ranged from 0.981 to 0.999. The CoR for ciliary muscle dimensions ranged from 12.2% to 41.6% and the ICC ranged from 0.767 to 0.919. The defocus aberrations of the two measurements were 0.443 ± 0.534 D and 0.447 ± 0.586 D and the ICC was 0.951. Conclusions The combined system is capable of measuring full eye biometry and refraction with good repeatability. The system is suitable for future investigation of pseudoaccommodation in the pseudophakic eye. PMID:27010674

  5. Derivation of preliminary specifications for transmitted wavefront and surface roughness for large optics used in inertial confinement fusion

    SciTech Connect

    Aikens, D.; Roussel, A.; Bray, M.

    1995-06-27

    In preparation for beginning the design of the Nation Ignition Facility (NIF) in the United States and the Laser Mega-Joule (LMJ) in France, the authors are in the process of deriving new specifications for the large optics required for these facilities. Traditionally, specifications for transmitted wavefront and surface roughness of large ICF optics have been based on parameters which were easily measured during the early 1980`s, such as peak-to-valley wavefront error (PV) and root-mean-square (RMS) surface roughness, as well as wavefront gradients in terms of waves per cm. While this was convenient from a fabrication perspective, since the specifications could be easily interpreted by fabricators in terms which were understood and conventionally measurable, it did not accurately reflect the requirements of the laser system. For the NIF and LMJ laser systems, the authors use advances in metrology and interferometry and an enhanced understanding of laser system performance to derive specifications which are based on power spectral densities (PSD`s.) Such requirements can more accurately reflect the requirements of the laser system for minimizing the amplitude of mid- and high-spatial frequency surface and transmitted wavefront errors, while not over constraining the fabrication in terms of low spatial frequencies, such as residual coma or astigmatism, which are typically of a very large amplitude compared to periodic errors. In order to study the effect of changes in individual component tolerances, it is most useful to have a model capable of simulating real behavior. The basis of this model is discussed in this paper, outlining the general approach to the {open_quotes}theoretical{close_quotes} study of ICF optics specifications, and an indication of the type of specification to be expected will be shown, based upon existing ICF laser optics.

  6. Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain

    PubMed Central

    Walters, Brandon J.; Azam, Amber B.; Gillon, Colleen J.; Josselyn, Sheena A.; Zovkic, Iva B.

    2016-01-01

    Gene editing tools are essential for uncovering how genes mediate normal brain–behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories. PMID:26793235

  7. Comparative analysis of the efficacy of astigmatic correction after wavefront-guided and wavefront-optimized LASIK in low and moderate myopic eyes

    PubMed Central

    Khalifa, Mounir A.; Alsahn, Mahmoud F.; Shaheen, Mohamed Shafik; Pinero, David P.

    2017-01-01

    AIM To evaluate and compare the efficacy of the astigmatic correction achieved with laser in situ keratomileusis (LASIK) in eyes with myopic astigmatism using wavefront-guided (WFG) and wavefront-optimized (WFO) ablation profiles. METHODS Prospective study included 221 eyes undergoing LASIK: 99 and 122 eyes with low and moderate myopic astigmatism (low and moderate myopia groups). Two subgroups were differentiated in each group according to the ablation profile: WFG subgroup, 109 eyes (45/64, low/moderate myopia groups) treated using the Advanced CustomVue platform (Abbott Medical Optics Inc.), and WFO subgroup, 112 eyes (54/58, low/moderate myopia groups) treated using the EX-500 platform (Alcon). Clinical outcomes were evaluated during a 6-month follow-up, including a vector analysis of astigmatic changes. RESULTS Significantly better postoperative uncorrected visual acuity and efficacy index was found in the WFG subgroups of each group (P≤0.041). Postoperative spherical equivalent and cylinder were significantly higher in WFO subgroups (P≤0.003). In moderate myopia group, a higher percentage of eyes with a postoperative cylinder ≤0.25 D was found in the WFG subgroup (90.6% vs 65.5%, P=0.002). In low and moderate myopia groups, the difference vector was significantly higher in the WFO subgroup compared to WFG (P<0.001). In moderate myopia group, the magnitude (P=0.008) and angle of error (P<0.001) were also significantly higher in the WFO subgroup. Significantly less induction of high order aberrations were found with WFG treatments in both low and moderate myopia groups (P≤0.006). CONCLUSION A more efficacious correction of myopic astigmatism providing a better visual outcome is achieved with WFG LASIK compared to WFO LASIK. PMID:28251090

  8. Global Monitoring for Food Security and Sustainable Land Management - Recent Advances of Remote Sensing Applications to African and Siberian Show Cases

    NASA Astrophysics Data System (ADS)

    Komp, K. U.; Haub, C.

    2012-07-01

    After four decades of space borne remote sensing, the unmapped white patches have mostly disappeared. Those basic information give the foundations to the observation of changes and even the introduction of monitoring programmes for a various number of features in the natural and human landscape of our planet. Recent indicators for climatic change together with worrisome alterations in regional food production versus the constantly increase of human population demand the design and implementation of reliable land management tools which will serve the food security as well as the sustainable use of resources of the ecosystem in its respective regional context. The positive responses and convincing results of ESA service elements in the efforts towards food security in several African countries have been the basis for the transfer of the methods into another region, the Western Siberian corn-belt. The large extends of cropping schemes in West Siberia demand advanced remote sensing methods to be applied in order to compare the impacts of climatic change not only on the agricultural production but also on risks for the ecosystem. A multi scale approach of remote sensing methods is introduced in analogy to the African activities. An adopted monitoring concept is developed using a nearly daily product of medium resolution for wide areas, high resolution sensors for stratified sample areas and in-situ observations. Beyond methodological research, the ability of remote sensing is contributing to operational solutions that can ensure the nutritional and ecological future of our planet.

  9. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  10. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  11. Integrated Wavefront Correction and Bias Estimation for the High-Contrast Imaging of Exoplanets

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado

    Just over two decades ago the first planet outside our solar system was found, and thousands more have been discovered since. Nearly all these exoplanets were indirectly detected by sensing changes in their host stars' light. However, exoplanets must be directly imaged to determine their atmospheric compositions and the orbital parameters unavailable from only indirect detections. The main challenge of direct imaging is to observe stellar companions much fainter than the star and at small angular separations. Coronagraphy is one method of suppressing stellar diffraction to provide high star-to-planet contrast, but coronagraphs are extremely sensitive to quasi-static aberrations in the optical system. Active correction of the stellar wavefront is performed with deformable mirrors to recover high-contrast regions in the image. Estimation and control of the stellar electric field is performed iteratively in the camera's focal plane to avoid non-common path aberrations arising from a separate pupil sensor. Estimation can thus be quite time consuming because it requires several high-contrast intensity images per correction iteration. This thesis focuses on efficient focal plane wavefront correction (FPWC) for coronagraphy. Time is a precious commodity for a space telescope, so there is a strong incentive to reduce the total exposure time required for focal plane wavefront estimation. Much of our work emphasizes faster, more robust estimation via Kalman filtering, which optimally combines prior data with new measurements. The other main contribution of this thesis is a paradigm shift in the use of estimation images. Time for FPWC has generally been considered to be lost overhead, but we demonstrate that estimation images can be used for the detection and characterization of exoplanets and disks. These science targets are incoherent with their host stars, so we developed and implemented an iterated extended Kalman filter (IEKF) for simultaneous estimation of the stellar

  12. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

  13. Terahertz wavefront control by tunable metasurface made of graphene ribbons

    SciTech Connect

    Yatooshi, Takumi; Ishikawa, Atsushi Tsuruta, Kenji

    2015-08-03

    We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THz within a switching time shorter than 0.6 ps.

  14. Applications of ultrafast wavefront rotation in highly nonlinear optics

    NASA Astrophysics Data System (ADS)

    Quéré, F.; Vincenti, H.; Borot, A.; Monchocé, S.; Hammond, T. J.; Taec Kim, Kyung; Wheeler, J. A.; Zhang, Chunmei; Ruchon, T.; Auguste, T.; Hergott, J. F.; Villeneuve, D. M.; Corkum, P. B.; Lopez-Martens, R.

    2014-06-01

    This paper provides an overview of ultrafast wavefront rotation of femtosecond laser pulses and its various applications in highly nonlinear optics, focusing on processes that lead to the generation of high-order harmonics and attosecond pulses. In this context, wavefront rotation can be exploited in different ways, to obtain new light sources for time-resolved studies, called ‘attosecond lighthouses’, to perform time-resolved measurements of nonlinear optical processes, using ‘photonic streaking’, or to track changes in the carrier-envelope relative phase of femtosecond laser pulses. The basic principles are explained qualitatively from different points of view, the experimental evidence obtained so far is summarized, and the perspectives opened by these effects are discussed.

  15. Ultrasonically encoded wavefront shaping for focusing into random media

    PubMed Central

    Tay, Jian Wei; Lai, Puxiang; Suzuki, Yuta; Wang, Lihong V.

    2014-01-01

    Phase distortions due to scattering in random media restrict optical focusing beyond one transport mean free path. However, scattering can be compensated for by applying a correction to the illumination wavefront using spatial light modulators. One method of obtaining the wavefront correction is by iterative determination using an optimization algorithm. In the past, obtaining a feedback signal required either direct optical access to the target region, or invasive embedding of molecular probes within the random media. Here, we propose using ultrasonically encoded light as feedback to guide the optimization dynamically and non-invasively. In our proof-of-principle demonstration, diffuse light was refocused to the ultrasound focal zone, with a focus-to-background ratio of more than one order of magnitude after 600 iterations. With further improvements, especially in optimization speed, the proposed method should find broad applications in deep tissue optical imaging and therapy. PMID:24472822

  16. Wavefront retrieval from lateral shearing interferograms with Fourier techniques

    NASA Astrophysics Data System (ADS)

    Malacara-Hernandez, Daniel; Paez, Gonzalo; Malacara-Doblado, Daniel; Garcia-Marquez, Jorge

    1999-08-01

    The wavefront shape can be obtained from lateral shear interferograms even if the lateral shear is large. Many procedures have been devised in the past to achieve this purpose. However, all of them have serious practical restrictions. A method is reported here using a digital analysis of the interferogram in the Fourier space. An alternative iterative method also using Fourier transform techniques is also presented with detail. A comparison of this method with alternative existing procedures is described.

  17. The radiation-wavefront instability in pulsed CO2 amplifiers

    NASA Astrophysics Data System (ADS)

    Fedorov, S. V.; Iur'ev, M. S.

    1987-07-01

    The space-time evolution of a small-scale perturbation against a background of a smooth input beam which is incident on a pulsed CO2 amplifier is studied theoretically. Ranges of transverse frequency, longitudinal coordinate, and time values are found in which the perturbation growth is exponential in nature. It is shown that the wavefront instability is stabilized by the amplification of the main beam and sound damping.

  18. Dynamics and Stability of Acoustic Wavefronts in the Ocean

    DTIC Science & Technology

    2012-09-30

    approaches to solve the eikonal equation without ray tracing have been developed in mathematical and seismological communities (Vidale, 1990; Sava and...techniques (Vinje et al., 1993, 1999; Lambaré et al., 1996; Sava and Fomel, 2001; Chambers and Kendall, 2008; Hauser et al., 2008), which have been developed...codes originally developed by Sava and Fomel (2001) for seismic modeling and imaging. The codes implement an approach known as Huygens wavefront

  19. Robust wavefront reconstruction using multiple directional derivatives and computer monitor

    NASA Astrophysics Data System (ADS)

    Legarda-Saenz, Ricardo

    2007-03-01

    A simple and automatic wavefront reconstruction is presented. This technique is based on the use of a plane computer display (a thin film transistor monitor) to generate the fringe patterns and compute the gradients field produced by the phase object. The accurate reconstruction is proved by the estimation of the surface map of a progressive ophthalmic lens, which is obtained using computational efficient techniques for the fringe pattern demodulation and gradient field integration.

  20. Dynamics and Stability of Acoustic Wavefronts in the Ocean

    DTIC Science & Technology

    2011-09-01

    studied by deriving elementary asymptotic solutions in the frequency and time domains for the acoustic Green’s functions in a homogeneous fluid...in a homogeneous fluid uniformly moving with a speed, which is less than the sound speed, are non-concentric spheres. Comparison of the exact...of wavefronts and timefronts. Acoustic travel-time bias, multi-pathing, rapid proliferation of eigenrays , penetration into shadow zones, and other

  1. Novel technology for reducing wavefront image processing latency

    NASA Astrophysics Data System (ADS)

    Barr, David; Schwartz, Noah; Vick, Andy; Coughlan, John; Halsall, Rob; Basden, Alastair; Dipper, Nigel

    2016-07-01

    Adaptive optics is essential for the successful operation of the future Extremely Large Telescopes (ELTs). At the heart of these AO system lies the real-time control which has become computationally challenging. A majority of the previous efforts has been aimed at reducing the wavefront reconstruction latency by using many-core hardware accelerators such as Xeon Phis and GPUs. These modern hardware solutions offer a large numbers of cores combined with high memory bandwidths but have restrictive input/output (I/O). The lack of efficient I/O capability makes the data handling very inefficient and adds both to the overall latency and jitter. For example a single wavefront sensor for an ELT scale adaptive optics system can produce hundreds of millions of pixels per second that need to be processed. Passing all this data through a CPU and into GPUs or Xeon Phis, even by reducing memory copies by using systems such as GPUDirect, is highly inefficient. The Mellanox TILE series is a novel technology offering a high number of cores and multiple 10 Gbps Ethernet ports. We present results of the TILE-Gx36 as a front-end wavefront sensor processing unit. In doing so we are able to greatly reduce the amount of data needed to be transferred to the wavefront reconstruction hardware. We show that the performance of the Mellanox TILE-GX36 is in-line with typical requirements, in terms of mean calculation time and acceptable jitter, for E-ELT first-light instruments and that the Mellanox TILE series is a serious contender for all E-ELT instruments.

  2. Herschel Space Observatory Telescope characterization with Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Dovillaire, Guillaume; Wang, Yong; Toth, Rémy; Porcar-Guézénec, Raphael

    2012-09-01

    The Herschel Space Observatory Telescope is the first of its kind to cover the 60-670 μm far infrared spectral band. Its optical characterization, performed in the visible range, was a true technological challenge requiring very large dynamic range coupled to very high accuracy. A specific Hartmann Wavefront Sensor (HWFS) was designed to meet the demanding specifications of the measurement. The metrological system used by the EADS Astrium team to characterize the silicon car-bide based telescope will be presented as well as the main features of the specifically developed HWFS. The large expected wavefront error was measured in a double path set-up using the HWFS positioned in an extra-focal plane and a point source in the focal plane. The auto-collimation was carried out thanks to several liquid mirrors covering the M1 pupil plane and located in the conjugation plane of the HWFS sub-apertures. The results on the wavefront error obtained at the Centre Spatial de Liege (CSL) in Belgium will be shown as well as the simulated Point Spread Function to be compared to the real PSF obtained during on flight measurements. The thermally induced focal length variations are also presented as the telescope is meant to operate at 70°K in space.

  3. Research on technique of wavefront retrieval based on Foucault test

    NASA Astrophysics Data System (ADS)

    Yuan, Lvjun; Wu, Zhonghua

    2010-05-01

    During finely grinding the best fit sphere and initial stage of polishing, surface error of large aperture aspheric mirrors is too big to test using common interferometer. Foucault test is widely used in fabricating large aperture mirrors. However, the optical path is disturbed seriously by air turbulence, and changes of light and dark zones can not be identified, which often lowers people's judging ability and results in making mistake to diagnose surface error of the whole mirror. To solve the problem, the research presents wavefront retrieval based on Foucault test through digital image processing and quantitative calculation. Firstly, real Foucault image can be gained through collecting a variety of images by CCD, and then average these image to eliminate air turbulence. Secondly, gray values are converted into surface error values through principle derivation, mathematical modeling, and software programming. Thirdly, linear deviation brought by defocus should be removed by least-square method to get real surface error. At last, according to real surface error, plot wavefront map, gray contour map and corresponding pseudo color contour map. The experimental results indicates that the three-dimensional wavefront map and two-dimensional contour map are able to accurately and intuitively show surface error on the whole mirrors under test, and they are beneficial to grasp surface error as a whole. The technique can be used to guide the fabrication of large aperture and long focal mirrors during grinding and initial stage of polishing the aspheric surface, which improves fabricating efficiency and precision greatly.

  4. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  5. Integration and laboratory characterization of the ARGOS laser guide star wavefront sensors

    NASA Astrophysics Data System (ADS)

    Busoni, Lorenzo; Bonaglia, Marco; Carbonaro, Luca; Mazzoni, Tommaso; Antichi, Jacopo; Esposito, Simone; Orban De Xivry, Gilles; Rabien, Sebastian

    2013-12-01

    The integration status of the ARGOS wavefront sensors is presented. ARGOS is the laser guide star AO program for the LBT. It will implement a Ground Layer AO correction for the instruments LUCI, an infrared imaging and spectrograph camera, using 3 pulsed low-altitudes Rayleigh beacons for each LBT's eye. It profits of the LBT's adaptive secondary mirrors and of FLAO's pyramid unit for NGS sensing. Each LGS is independently stabilized for on-sky jitter and range-gated using custom Pockels cells and then sensed by a 15x15 SH sensor. The 3 pupil images are reimaged on a single lenslet array and a single detector. In the WFS are also installed 3 patrol cameras for the acquisition of the laser beacons, a system for the stabilization of the pupil images on the lenslet array and an internal source for calibration purposes. The two units are now completing the integration phase in Arcetri premises. We describe the characterization of the units and the closed-loop test realized using a deformable MEMS mirror.

  6. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  7. Wavefront Imaging in Fractured Transversely-Isotropic Media

    NASA Astrophysics Data System (ADS)

    Shao, S.; Pyrak-Nolte, L. J.

    2013-12-01

    Fractures in the Earth's crust are a source of stress-dependent mechanical anisotropy that affect seismic wave attenuation and velocity. While many theoretical and experimental studies have investigated seismic wave propagation in single or multi- fractured isotropic rocks, few studies have examined the seismic response of a fractured anisotropic medium. Fractures and layering each contribute to the mechanical anisotropy of the crust. The coexistence of these two sources of anisotropy complicates the interpretation of the seismic properties of crustal rock. In this study, laboratory wavefront imaging was performed to capture the seismic response of layered media containing multiple parallel fractures. We determined that whether the observed anisotropy is dominated by the matrix anisotropy or by the fracture orientation depends on the applied stress and that late-arriving guided-modes provide information on the orientation of the fractures. Four cubic garolite samples (~102 mm on edge) each containing 5 parallel fractures were used in this study. The fractures were oriented normal, parallel or at acute angles (30 degrees, 60 degrees) to the layering. The fracture and layer spacing were approximately 10mm and 0.5mm, respectively. An intact sample containing no fractures was used as a standard orthorhombic medium for reference. Stress was applied to the samples with a servo-controlled loading machine. Two spherically-focused water-coupled transducers (central frequency 1MHz) were used; one as a fixed-source and the other as a translating receiver. Each sample was scanned over a 60mm×60mm region in 1 mm increments to map out the arriving wavefront (i.e. 3600 signals were recorded) as a function of time. The measured wavefront in the intact reference sample (which contained no fractures) was elliptical with the major axis parallel to the layers as expected and was stress-independent. When the fracture samples were subjected to low stress (<4 MPa), the observed seismic

  8. Airborne Particles: What We Have Learned About Their Role in Climate from Remote Sensing, and Prospects for Future Advances

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds.

  9. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    NASA Astrophysics Data System (ADS)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  10. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  11. High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We present an iterative technique for improving adaptive optics (AO) wavefront correction for retinal imaging, called the Adaptive-Influence-Matrix (AIM) method. This method is based on the fact that the deflection-to-voltage relation of common deformable mirrors used in AO are nonlinear, and the fact that in general the wavefront errors of the eye can be considered to be composed of a static, non-zero wavefront error (such as the defocus and astigmatism), and a time-varying wavefront error. The aberrated wavefront is first corrected with a generic influence matrix, providing a mirror compensation figure for the static wavefront error. Then a new influence matrix that is more accurate for the specific static wavefront error is calibrated based on the mirror compensation figure. Experimental results show that with the AIM method the AO wavefront correction accuracy can be improved significantly in comparison to the generic AO correction. The AIM method is most useful in AO modalities where there are large static contributions to the wavefront aberrations. PMID:19997241

  12. Advances in the Two Source Energy Balance (TSEB) model using very high resolution remote sensing data in vineyards

    NASA Astrophysics Data System (ADS)

    Nieto Solana, H.; Kustas, W. P.; Torres-Rua, A. F.; ELarab, M.; Song, L.; Alfieri, J. G.; Prueger, J. H.; McKee, L.; Anderson, M. C.; Alsina, M. M.; Jensen, A.; McKee, M.

    2015-12-01

    The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures as well as the net radiation partitioning (ΔRn), as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in agricultural areas, with vegetation clumped along rows and hence only partially covering the soil surface for much of the growing season. The effects on radiation and temperature partitioning is extreme for vineyards and orchards, where there is often significant separation between plants, resulting in strongly clumped vegetation with significant fraction of bare soil/substrate. To better understand the effects of strongly clumped vegetation on radiation and Land Surface Temperature (LST) partitioning very high spatial resolution remote sensing data acquired from an Unmanned Aerial System (UAS) were collected over vineyards in Califronia, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX).The multi-temporal observations from the UAS and very high pixel resolution permitted the estimation of reliable soil and leaf temperatures using a contextual algorithm based on the inverse relationship between LST and a vegetation index. An improvement in the algorithm estimating the effective leaf area index explicitly developed for vine rows and ΔRn using the 4SAIL Radiative Transfer Model is as well developed. The revisions to the TSEB model are evaluated with in situ measurements of energy fluxes and transmitted solar radiation. Results show that the modifications to the TSEB resulted in closer agreement with the flux tower measurements compared to the original TSEB model formulations. The

  13. FPGA-accelerated adaptive optics wavefront control part II

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Barth, A.; Reger, J.; Reinlein, C.; Appelfelder, M.; Beckert, E.

    2015-03-01

    We present progressive work that is based on our recently developed rapid control prototyping system (RCP), designed for the implementation of high-performance adaptive optical control algorithms using a continuous de-formable mirror (DM). The RCP system, presented in 2014, is resorting to a Xilinx Kintex-7 Field Programmable Gate Array (FPGA), placed on a self-developed PCIe card, and installed on a high-performance computer that runs a hard real-time Linux operating system. For this purpose, algorithms for the efficient evaluation of data from a Shack-Hartmann wavefront sensor (SHWFS) on an FPGA have been developed. The corresponding analog input and output cards are designed for exploiting the maximum possible performance while not being constrained to a specific DM and control algorithm due to the RCP approach. In this second part of our contribution, we focus on recent results that we achieved with this novel experimental setup. By presenting results which are far superior to the former ones, we further justify the deployment of the RCP system and its required time and resources. We conducted various experiments for revealing the effective performance, i.e. the maximum manageable complexity in the controller design that may be achieved in real-time without performance losses. A detailed analysis of the hidden latencies is carried out, showing that these latencies have been drastically reduced. In addition, a series of concepts relating the evaluation of the wavefront as well as designing and synthesizing a wavefront are thoroughly investigated with the goal to overcome some of the prevalent limitations. Furthermore, principal results regarding the closed-loop performance of the low-speed dynamics of the integrated heater in a DM concept are illustrated in detail; to be combined with the piezo-electric high-speed actuators in the next step

  14. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.

    PubMed

    Plantet, C; Meimon, S; Conan, J-M; Fusco, T

    2015-11-02

    Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.

  15. Holographic imaging with a Shack-Hartmann wavefront sensor.

    PubMed

    Gong, Hai; Soloviev, Oleg; Wilding, Dean; Pozzi, Paolo; Verhaegen, Michel; Vdovin, Gleb

    2016-06-27

    A high-resolution Shack-Hartmann wavefront sensor has been used for coherent holographic imaging, by computer reconstruction and propagation of the complex field in a lensless imaging setup. The resolution of the images obtained with the experimental data is in a good agreement with the diffraction theory. Although a proper calibration with a reference beam improves the image quality, the method has a potential for reference-less holographic imaging with spatially coherent monochromatic and narrowband polychromatic sources in microscopy and imaging through turbulence.

  16. Towards feasible and effective predictive wavefront control for adaptive optics

    SciTech Connect

    Poyneer, L A; Veran, J

    2008-06-04

    We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.

  17. UTILIZATION OF THE WAVEFRONT SENSOR AND SHORT-EXPOSURE IMAGES FOR SIMULTANEOUS ESTIMATION OF QUASI-STATIC ABERRATION AND EXOPLANET INTENSITY

    SciTech Connect

    Frazin, Richard A.

    2013-04-10

    Heretofore, the literature on exoplanet detection with coronagraphic telescope systems has paid little attention to the information content of short exposures and methods of utilizing the measurements of adaptive optics wavefront sensors. This paper provides a framework for the incorporation of the wavefront sensor measurements in the context of observing modes in which the science camera takes millisecond exposures. In this formulation, the wavefront sensor measurements provide a means to jointly estimate the static speckle and the planetary signal. The ability to estimate planetary intensities in as little as a few seconds has the potential to greatly improve the efficiency of exoplanet search surveys. For simplicity, the mathematical development assumes a simple optical system with an idealized Lyot coronagraph. Unlike currently used methods, in which increasing the observation time beyond a certain threshold is useless, this method produces estimates whose error covariances decrease more quickly than inversely proportional to the observation time. This is due to the fact that the estimates of the quasi-static aberrations are informed by a new random (but approximately known) wavefront every millisecond. The method can be extended to include angular (due to diurnal field rotation) and spectral diversity. Numerical experiments are performed with wavefront data from the AEOS Adaptive Optics System sensing at 850 nm. These experiments assume a science camera wavelength {lambda} of 1.1 {mu}, that the measured wavefronts are exact, and a Gaussian approximation of shot-noise. The effects of detector read-out noise and other issues are left to future investigations. A number of static aberrations are introduced, including one with a spatial frequency exactly corresponding the planet location, which was at a distance of Almost-Equal-To 3{lambda}/D from the star. Using only 4 s of simulated observation time, a planetary intensity, of Almost-Equal-To 1 photon ms{sup -1

  18. Wind-Snow Interactions and Treeline Advance in the Medicine Bow Mountains, Wyoming: A Coupled Examination Using Dendroecology and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Elliott, G.; Crawford, C. J.

    2014-12-01

    Research suggests that broad-scale increases in temperature facilitated an abrupt initiation of upper treeline advance beginning in the 1950s at climatic treelines throughout a large portion of the southern and central Rocky Mountains. Despite this regional trend, patterns of finer scale variability often imply the likely influence of both wind-snow interactions and temperature on driving regeneration dynamics in these climatically-sensitive ecotones. This is particularly true for mountain ranges subject to consistently strong winds, such as the Medicine Bow Mountains of southeast Wyoming. A rich history of treeline work exists for this area, yet questions remain regarding how influential wind and snowpack variability are in governing climate-vegetation interactions within upper treeline ecotones and whether this varies according to the level of wind exposure. Here we present a coupled examination using dendroecology and remote sensing to test the hypothesis that sufficient snow cover is required in order for the ecological manifestation of increasing temperatures to appear at upper treeline; namely treeline advance. We used dendroecological methods to reconstruct the history of colonization on the two highest peaks in the range (Medicine Bow Peak Massif and Kannaday Peak). We sampled a total of six sites by placing nested-belt transects on two south-facing and one north-facing site for each peak. To gauge the influence of wind-snow interactions at each site, we analyzed remotely-sensed images. We selected three sets of LANDSAT images for each mountain peak based on years with maximum, minimum, and mean snowfall conditions to capture the entire range of variability. Results demonstrate that snow cover can be a critical modifier of treeline advance, especially on wind-exposed slopes and on mountain peaks with a relatively dry hydroclimatology, where a protective snow layer is only evident during high snow years. Overall, this research suggests that the role of wind

  19. The 2014 Tanana Inventory Pilot: A USFS­NASA partnership to leverage advanced remote sensing technologies for forest inventory

    NASA Astrophysics Data System (ADS)

    Andersen, H. E.; Babcock, C. R.; Cook, B.; Morton, D. C.; Pattison, R.; Finley, A. O.

    2015-12-01

    Interior Alaska (approx. 50 million forested hectacres in size) is the last remaining forested area in the United States (US) where the Forest Inventory and Analysis (FIA) program is not currently implemented. A joint NASA-FIA inventory pilot project was carried out in 2014 to evaluate the utility of state-of-the-art high-resolution remote sensing information (lidar, hyperspectral and thermal airborne imaging) to support a future FIA inventory program in interior Alaska. FIA plots were established at a 1:4 intensity (or 1 plot per 9,715 hectares) on a regular (i.e. systematic) hexagonal grid across the Tanana Valley State Forest and Tetlin National Wildlife Refuge; both of which fall within the Tanana valley of interior Alaska. The relatively sparse FIA field plot sample collection was augmented with samples of airborne remotely sensed data acquired with Goddard's Lidar Hyperspectral and Thermal (GLiHT) imager to increase the precision of inventory parameter estimates. G-LiHT is a portable, airborne imaging system, developed at NASA Goddard Space Flight Center, that simultaneously maps the composition, structure, and function of terrestrial ecosystems. G-LiHT data supports local-scale mapping and regional-scale sampling of plant biomass, photosynthesis, and disturbance. The data is accurately georeferenced and can be matched precisely with field plot data that are georeferenced using survey-grade GPS. G-LiHT data was acquired in July-August, 2014 along single swaths (250 meters wide) spaced 9.3 km apart over the entire Tanana inventory unit (135,000 km2). We examine three methodological approaches to estimate forest inventory variables of interest; focusing initially on aboveground biomass (AGB) estimation. The three estimation procedures include 1) the standard, fully design-based approach currently used by the FIA; 2) A model-assisted technique; and 3) a Bayesian multi-level modeling approach where the sampling design can be explicitly accommodated within the

  20. Advances in the Hyperspectral Thermal Emission Spectrometer (HyTES) and Application to the Remote Sensing of Fires and Trace Gases

    NASA Astrophysics Data System (ADS)

    Mihaly, J. M.; Johnson, W. R.; Hulley, G. C.; Hook, S. J.; Eng, B. T.

    2014-12-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is an airborne imaging spectrometer developed by JPL and currently configured on the Twin Otter aircraft. The instrument utilizes 256 spectral channels between 7.5 and 12 micrometers in the Earth observing thermal infrared range of the electromagnetic spectrum and 512 spatial pixels cross-track. Given a 50 degree full angle field of view and the relatively low flight altitude of the Twin Otter aircraft, the instrument provides a wide swath with high spatial resolution (approximately 1.5 m at 1 km AGL). The available spatial and spectral resolution of HyTES represents a significant advance in airborne TIR remote sensing capability and considerable improvements to instrument performance have been made between the 2013 and 2014 science flights. The TIR wavelength range enables a wide range of remote sensing applications, including the detection of atmospheric trace gases (such as SO2, NH3, H2S, and N2O). The current performance, overall science objectives, and recent trace gas observations of the HyTES instrument will be presented. Results from a 2014 flight over a southern Utah wildfire will be discussed. Current work involving the miniaturization of the HyTES instrument for future deployment in the ER-2 high-altitude aircraft will also be presented.

  1. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation.

    PubMed

    Dai, Guang-Ming

    2006-02-15

    The set of Fourier series is discussed following some discussion of Zernike polynomials. Fourier transforms of Zernike polynomials are derived that allow for relating Fourier series expansion coefficients to Zernike polynomial expansion coefficients. With iterative Fourier reconstruction, Zernike representations of wavefront aberrations can easily be obtained from wavefront derivative measurements.

  2. Wavefront analysis of the laser beam propagating through a turbid medium

    SciTech Connect

    Galaktionov, I V; Sheldakova, J V; Kudryashov, A V

    2015-02-28

    Laser beam propagation through a scattering suspension of polystyrene microspheres in distilled water is studied theoretically and experimentally. The dependence of wavefront aberrations on the particle concentration is investigated. The existence of symmetric wavefront aberrations of the laser beam passed through a turbid medium is shown. (light scattering)

  3. Expected gain in the pyramid wavefront sensor with limited Strehl ratio

    NASA Astrophysics Data System (ADS)

    Viotto, V.; Ragazzoni, R.; Bergomi, M.; Magrin, D.; Farinato, J.

    2016-09-01

    Context. One of the main properties of the pyramid wavefront sensor is that, once the loop is closed, and as the reference star image shrinks on the pyramid pin, the wavefront estimation signal-to-noise ratio can considerably improve. This has been shown to translate into a gain in limiting magnitude when compared with the Shack-Hartmann wavefront sensor, in which the sampling on the wavefront is performed before the light is split into four quadrants, which does not allow the quality of the focused spot to increase. Since this property is strictly related to the size of the re-imaged spot on the pyramid pin, the better the wavefront correction, the higher the gain. Aims: The goal of this paper is to extend the descriptive and analytical computation of this gain that was given in a previous paper, to partial wavefront correction conditions, which are representative for most of the wide field correction adaptive optics systems. Methods: After focusing on the low Strehl ratio regime, we analyze the minimum spatial sampling required for the wavefront sensor correction to still experience a considerable gain in sensitivity between the pyramid and the Shack-Hartmann wavefront sensors. Results: We find that the gain can be described as a function of the sampling in terms of the Fried parameter.

  4. Military target task performance after wavefront-guided (WFG) and wavefront-optimized (WFO) photorefractive keratectomy (PRK)

    NASA Astrophysics Data System (ADS)

    Maurer, Tana; Deaver, Dawne; Howell, Christopher; Moyer, Steve; Nguyen, Oanh; Mueller, Greg; Ryan, Denise; Sia, Rose K.; Stutzman, Richard; Pasternak, Joseph; Bower, Kraig

    2014-06-01

    Major decisions regarding life and death are routinely made on the modern battlefield, where visual function of the individual soldier can be of critical importance in the decision-making process. Glasses in the combat environment have considerable disadvantages: degradation of short term visual performance can occur as dust and sweat accumulate on lenses during a mission or patrol; long term visual performance can diminish as lenses become increasingly scratched and pitted; during periods of intense physical trauma, glasses can be knocked off the soldier's face and lost or broken. Although refractive surgery offers certain benefits on the battlefield when compared to wearing glasses, it is not without potential disadvantages. As a byproduct of refractive surgery, elevated optical aberrations can be induced, causing decreases in contrast sensitivity and increases in the symptoms of glare, halos, and starbursts. Typically, these symptoms occur under low light level conditions, the same conditions under which most military operations are initiated. With the advent of wavefront aberrometry, we are now seeing correction not only of myopia and astigmatism but of other, smaller optical aberrations that can cause the above symptoms. In collaboration with the Warfighter Refractive Eye Surgery Program and Research Center (WRESP-RC) at Fort Belvoir and Walter Reed National Military Medical Center (WRNMMC), the overall objective of this study is to determine the impact of wavefront guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK) on military task visual performance. Psychophysical perception testing was conducted before and after surgery to measure each participant's performance regarding target detection and identification using thermal imagery. The results are presented here.

  5. Interferometric Shack-Hartmann wavefront sensor with an array of four-hole apertures.

    PubMed

    López, David; Ríos, Susana

    2010-04-20

    A modified Hartmann test based on the interference produced by a four-hole mask can be used to measure an unknown wavefront. To scan the wavefront, the interference pattern is measured for different positions of the mask. The position of the central fringe of the diamond-shaped interference pattern gives a measure of the local wavefront slopes. Using a set of four-hole apertures located behind an array of lenslets in such a way that each four-hole window is inside one lenslet area, a set of four-hole interference patterns can be obtained in the back focal plane of the lenslets without having to scan the wavefront. The central fringe area of each interference pattern is narrower than the area of the central maximum of the diffraction pattern of the lenslet, increasing the accuracy in the estimate of the lobe position as compared with the Shack-Hartmann wavefront sensor.

  6. Wavefront-error evaluation by mathematical analysis of experimental Foucault-test data

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.

    1975-01-01

    The diffraction theory of the Foucault test provides an integral formula expressing the complex amplitude and irradiance distribution in the Foucault pattern of a test mirror (lens) as a function of wavefront error. Recent literature presents methods of inverting this formula to express wavefront error in terms of irradiance in the Foucault pattern. The present paper describes a study in which the inversion formulation was applied to photometric Foucault-test measurements on a nearly diffraction-limited mirror to determine wavefront errors for direct comparison with ones determined from scatter-plate interferometer measurements. The results affirm the practicability of the Foucault test for quantitative wavefront analysis of very small errors, and they reveal the fallacy of the prevalent belief that the test is limited to qualitative use only. Implications of the results with regard to optical testing and the potential use of the Foucault test for wavefront analysis in orbital space telescopes are discussed.

  7. Influence of wave-front sampling in adaptive optics retinal imaging

    PubMed Central

    Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael

    2017-01-01

    A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004

  8. Optical compensation for hologram distortion using wavefront interpolation in angle-multiplexed holograms

    NASA Astrophysics Data System (ADS)

    Muroi, Tetsuhiko; Kinoshita, Nobuhiro; Ishii, Norihiko; Kamijo, Koji; Kawata, Yoshimasa; Kikuchi, Hiroshi

    2014-05-01

    Distortion of the hologram may occur when the photopolymer material used in the medium shrinks or expands. We analyzed interference fringe distortion for plane waves and a reference beam with an angular gap between recording and reproducing for the purpose of compensating for the distortion. We found that the wavefronts that could compensate for the distortion could approximately be obtained by linear interpolation of such angle-multiplexed holograms. We recorded 80 data pages with the angle-multiplexing method and obtained an optimized wavefront to compensate for hologram distortion on the first, fortieth, and eightieth data pages using adaptive optics with genetic algorithms and linear interpolated wavefronts at the other data pages. The calculation time for 80 wavefronts to compensate for distortion fell to 3/80th of that of having to calculate optimizations for all pages. The bit error rates were lower than 1.0 × 10-2 on all data pages reproduced using these wavefronts.

  9. Environmental remote sensing using the advanced very high resolution radiometer (AVHRR). (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the acquisition, processing, and applications of the Advanced Very High Resolution Radiometer (AVHRR) used on polar satellites operated by the National Oceanic and Atmospheric Administration (NOAA) for the Department of Commerce. AVHRR provides global visible and infrared imagery. The cited reports contain information on calibration, registration, and image processing of AVHRR data. Included are reports on AHVRR use in the study of aerosols, atmospheric circulation, agriculture, forest fires, deforestation, sun glint, sedimentation, cloud classification, sea ice, snowmelts, ocean productivity, sea surface temperatures, and vegetation. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  10. Wave-front aberration measurements on GRIN-rod lenses.

    PubMed

    Cline, T W; Jander, R B

    1982-03-15

    A survey of the optical quality of commercial and experimental Selfoc GRIN-rod lenses was made using a digital Twyman-Green wave-front interferometer. The technique provides an accurate and reproducible method for predicting lens performance in microoptic devices. Wave-front aberrations are reported for (1/4) pitch lenses measured in a double-pass configuration. It was found that spherical aberration is dominant in commercial lenses. SLW (1/4) pitch lenses have lower aberrations than SLS lenses and are quite suitable for microoptic devices based on fiber-to-fiber coupling. Measured multimode coupling efficiency under steady-state modal propagation is compared to measured spherical aberration for a number of lenses. The slope of the coupling dependence on spherical aberration was found to be -0.1 dB/wave. Effects due to mechanical alignment and the modal distribution in the fibers had a greater influence on the measured coupling efficiency than the contribution due the intrinsic lens aberrations, especially for the SLW lenses. Comparison of this empirical dependence with theoretical predictions for a uniform distribution, which suggests a stronger dependence, is discussed. This work suggests that commercially available GRIN-rod lenses are suitable for use in microoptic components.

  11. X-ray wavefront modeling of Bragg diffraction from crystals

    NASA Astrophysics Data System (ADS)

    Sutter, John P.

    2011-09-01

    The diffraction of an X-ray wavefront from a slightly distorted crystal can be modeled by the Takagi-Taupin theory, an extension of the well-known dynamical diffraction theory for perfect crystals. Maxwell's equations applied to a perturbed periodic medium yield two coupled differential equations in the incident and diffracted amplitude. These equations are discretized for numerical calculation into the determination of the two amplitudes on the points of an integration mesh, beginning with the incident amplitudes at the crystal's top surface. The result is a set of diffracted amplitudes on the top surface (in the Bragg geometry) or the bottom surface (in the Laue geometry), forming a wavefront that in turn can be propagated through free space using the Fresnel- Huygens equations. The performance of the Diamond Light Source I20 dispersive spectrometer has here been simulated using this method. Methods are shown for transforming displacements calculated by finite element analysis into local lattice distortions, and for efficiently performing 3-D linear interpolations from these onto the Takagi-Taupin integration mesh, allowing this method to be extended to crystals under thermal load or novel mechanical bender designs.

  12. Color wavefront printer with mosaic delivery of primary colors

    NASA Astrophysics Data System (ADS)

    Kang, Hoonjong; Stoykova, Elena; Kim, Youngmin; Hong, Sunghee; Park, Joosup; Hong, Jisoo

    2015-09-01

    The paper presents design and implementation of a color wavefront holographic printer which prints white light viewable holograms of three-dimensional (3D) objects from digital contents. Similarly to other holographic printers, the printed hologram is composed as a two-dimensional array of elemental volume holograms. In the proposed wavefront printer, the 3D information was encoded in computer generated holograms displayed in succession on an amplitude spatial light modulator. The light beam diffracted from the modulator was filtered to extract the beam coming from the object and demagnified to be recorded onto the holographic emulsion as a small size elemental hologram that made possible application of mosaic delivery of exposures at primary colors. As a result, each elemental hologram corresponded to a single color channel. A modified phase-added stereogram approach based on a hologram partitioning method was proposed to accelerate computer generation of digital contents. We achieved bright 3D reconstruction with a motion parallax at saturated colors from holograms of test objects that were printed on a silver-halide emulsion. Thus we proved experimentally feasibility of recording analog color volume holograms from digital contents by applying spatially separated exposures at primary colors to the elemental holograms.

  13. Wavefront modulation of water surface wave by a metasurface

    NASA Astrophysics Data System (ADS)

    Sun, Hai-Tao; Cheng, Ying; Wang, Jing-Shi; Liu, Xiao-Jun

    2015-10-01

    We design a planar metasurface to modulate the wavefront of a water surface wave (WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell’s law, negative refraction and ‘driven’ surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in ‘driven’ surface mode. This work may have potential applications in water wave energy extraction and coastal protection. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11474162, 11274171, 11274099, and 11204145), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).

  14. X-ray ptychography with highly-curved wavefront

    NASA Astrophysics Data System (ADS)

    Wang, S.; Shapiro, D.; Kaznatcheev, K.

    2013-10-01

    The recent development of scanning coherent x-ay diffraction microscopy (also known as ptychography) eliminates several constraints exerted by coherent imaging. In particular, an illuminating wave (the probe) can have an arbitrary shape, as a diffraction data redundancy due to multiple measurements at overlapping neighboring probe positions permits its independent reconstruction along with the scattering potential (the object wave). A priori knowledge, such as a finite sample support, is reduced to a recording of sequential probe positions and a plausible guess to be used as a starting estimate for iterative phase retrieval. Using a focusing probe, such as one produced by a zone plate, we investigate the effectiveness of the reconstruction algorithm and find that it is significantly less successful at reconstructing wavefronts with large curvature (extended phase variation) than the wavefronts with almost flat phase structure. Our simulations show that when the actual probe has large phase variation, the amount of overlap required for a successful reconstruction of both object and probe depends upon the phase difference between the actual probe and the probe used as a starting estimate for the reconstruction. We quantitatively define the circumstances for successful reconstruction of an object placed away from focus. We use an experimental dataset measured with a moderate amount of overlap to show that a successful reconstruction of the test sample can be done using a curved probe as an initial guess.

  15. A laser guide star wavefront sensor bench demonstrator for TMT.

    PubMed

    Lardiere, Olivier; Conan, Rodolphe; Bradley, Colin; Jackson, Kate; Herriot, Glen

    2008-04-14

    Sodium laser guide stars (LGSs) allow, in theory, Adaptive Optics (AO) systems to reach a full sky coverage, but they have their own limitations. The artificial star is elongated due to the sodium layer thickness, and the temporal and spatial variability of the sodium atom density induces changing errors on wavefront measurements, especially with Extremely Large Telescopes (ELTs) for which the LGS elongation is larger. In the framework of the Thirty-Meter-Telescope project (TMT), the AO-Lab of the University of Victoria (UVic) has built an LGS-simulator test bed in order to assess the performance of new centroiding algorithms for LGS Shack-Hartmann wavefront sensors (SH-WFS). The design of the LGS-bench is presented, as well as laboratory SH-WFS images featuring 29x29 radially elongated spots, simulated for a 30-m pupil. The errors induced by the LGS variations, such as focus and spherical aberrations, are characterized and discussed. This bench is not limited to SH-WFS and can serve as an LGS-simulator test bed to any other LGS-AO projects for which sodium layer fluctuations are an issue.

  16. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    PubMed

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  17. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance

    NASA Astrophysics Data System (ADS)

    Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.

  18. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  19. The ARGOS wavefront sensor pnCCD camera for an ELT: characteristics, limitations and applications

    NASA Astrophysics Data System (ADS)

    de Xivry, G. Orban; Ihle, S.; Ziegleder, J.; Barl, L.; Hartmann, R.; Rabien, S.; Soltau, H.; Strueder, L.

    2011-09-01

    From low-order to high-order AO, future wave front sensors on ELTs require large, fast, and low-noise detectors with high quantum efficiency and low dark current. While a detector for a high-order Shack-Hartmann WFS does not exist yet, the current CCD technology pushed to its limits already provides several solutions for the ELT AO detector requirements. One of these devices is the new WFS pnCCD camera of ARGOS, the Ground-Layer Adaptive Optics system (GLAO) for LUCIFER at LBT. Indeed, with its 264x264 pixels, 48 mu m pixel size and 1kHz frame rate, this camera provides a technological solution to different needs of the AO systems for ELTs, such as low-order but as well possibly higher order correction using pyramid wavefront sensing. In this contribution, we present the newly developped WFS pnCCD camera of ARGOS and how it fulfills future detector needs of AO on ELTs.

  20. Feasibility study of a layer-oriented wavefront sensor for solar telescopes: comment.

    PubMed

    Kellerer, Aglaé

    2014-11-10

    The future generation of telescopes will be equipped with multi-conjugate adaptive-optics (MCAO) systems in order to obtain high angular resolution over large fields of view. MCAO comes in two flavors: star- and layer-oriented. Existing solar MCAO systems rely exclusively on the star-oriented approach. Earlier we suggested a method to implement the layer-oriented approach, and in view of recent concerns by Marino and Wöger [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685APOPAI1559-128X], we now explain the proposed scheme in further detail. We note that in any layer-oriented system one sensor is conjugated to the pupil and the others are conjugated to higher altitudes. For the latter, not all the sensing surface is illuminated by the entire field of view. The successful implementation of nighttime layer-oriented systems shows that the field reduction is no crucial limitation. In the solar approach the field reduction is directly noticeable because it causes vignetting of the Shack-Hartmann subaperture images. It can be accounted for by a suitable adjustment of the algorithms to calculate the local wavefront slopes. We discuss a further concern related to the optical layout of a layer-oriented solar system.

  1. Remote Sensing Observatory Validation of Surface Soil Moisture Using Advanced Microwave Scanning Radiometer E, Common Land Model, and Ground Based Data: Case Study in SMEX03 Little River Region, Georgia, U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal soil moisture estimation may be characterized by inter-comparisons among remotely sensed measurements, ground-based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR-E), ground-based measurements, and Soil-Vege...

  2. New advances in remote sensing of Arctic sea ice thickness from Operation IceBridge and beyond

    NASA Astrophysics Data System (ADS)

    Kurtz, N. T.; Studinger, M.; Sonntag, J. G.; Yungel, J.; Yi, D.; Harbeck, J.; Onana, V.; Petty, A.

    2015-12-01

    Since 2009, NASA's Operation IceBridge mission has undertaken an annual campaign of measuring sea ice thickness in the western Arctic. The combined suite of laser, radar, visible, and infrared instruments provides an incredibly rich set of data for accurately measuring sea ice thickness at a variety of scales, and has broad implications for extension beyond the IceBridge mission. The traditional approach to measuring sea ice thickness is taken from hydrostatic balance assumptions and measurements of the sea ice freeboard and snow thickness. In going beyond the traditional methods previously employed, this work will present new techniques for the remote sensing of sea ice thickness, which will allow for a more accurate record focusing on retrieval of the full thickness distribution of sea ice. The retrieval of thin sea ice thickness is shown through the use of a simple thermodynamic calculation and surface temperature retrievals from a new high resolution thermal infrared camera installed on the IceBridge mission in 2015. The retrieval of sea ice thickness from ridged and deformed sea ice is shown through use of the high resolution of the IceBridge ATM laser altimeter. Together with surface topography measurements, the high spatial resolution ultra-wideband radar suite on the IceBridge mission is currently being used to provide information on the thickness of snow on sea ice. We will discuss how the extension of the IceBridge radar and topography results has wide applicability to improving the retrieval of sea ice freeboard and thickness from CryoSat-2 since the physical mechanisms governing the scattering of radar returns are very similar. Lastly, we will demonstrate a new approach which synthesizes the combined knowledge generated by the IceBridge airborne data set along with satellite and model data sources to produce a record of sea ice thickness change in the Arctic.

  3. Fast iterative optimal estimation of turbulence wavefronts with recursive block Toeplitz covariance matrix

    NASA Astrophysics Data System (ADS)

    Conan, Rodolphe

    2014-07-01

    The estimation of a corrugated wavefront after propagation through the atmosphere is usually solved optimally with a Minimum-Mean-Square-Error algorithm. The derivation of the optimal wavefront can be a very computing intensive task especially for large Adaptive Optics (AO) systems that operates in real-time. For the largest AO systems, efficient optimal wavefront reconstructor have been proposed either using sparse matrix techniques or relying on the fractal properties of the atmospheric wavefront. We propose a new method that exploits the Toeplitz structure in the covariance matrix of the wavefront gradient. The algorithm is particularly well-suited to Shack-Hartmann wavefront sensor based AO systems. Thanks to the Toeplitz structure of the covariance, the matrices are compressed up to a thousand-fold and the matrix-to-vector product is reduced to a simple one-dimension convolution product. The optimal wavefront is estimated iteratively with the MINRES algorithm which exhibits better convergence properties for ill-conditioned matrices than the commonly used Conjugate Gradient algorithm. The paper describes, in a first part, the Toeplitz structure of the covariance matrices and shows how to compute the matrix-to-vector product using only the compressed version of the matrices. In a second part, we introduced the MINRES iterative solver and shows how it performs compared to the Conjugate Gradient algorithm for different AO systems.

  4. The construction of individual eye model based on eye's wavefront aberration measurement

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Qi; Guo, Huan-Qing

    2005-08-01

    Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There were four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software -ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.

  5. Relative optical wavefront measurement in displacement measuring interferometer systems with sub-nm precision.

    PubMed

    Meskers, Arjan J H; Voigt, Dirk; Spronck, Jo W

    2013-07-29

    Many error sources can affect the accuracy of displacement measuring interferometer systems. In heterodyne interferometry two laser source frequencies constitute the finally detected wavefront. When the wavefronts of these source frequencies are non-ideal and one of them walks off the detector, the shape of the detected wavefront will vary. This leads to a change in measured phase at the detector resulting in increased measurement uncertainty. A new wavefront measurement tool described in this publication measures the relative phase difference between the two wavefronts of the two source frequencies of a coaxial heterodyne laser source as used in commercial heterodyne interferometer systems. The proposed measurement method uses standard commercial optics and operates with the same phase measurement equipment that is normally used for heterodyne displacement interferometry. In the presented method a bare tip of a multimode fiber represents the receiving detection aperture and is used for locally sampling the wavefront during a line scan. The difference in phase between the beating frequency of the scanning fiber and a reference beating frequency that results from integration over the entire beam, is used for the reconstruction of the wavefront. The method shows to have a phase resolution in the order of ~25 pm or ~λ/25000 for λ 632.8 nm, and a spatial resolution of ~60 µm at a repeatability better than 1 nm over one week.

  6. MERTIS-thermal infrared imaging of Mercury: advances in mid-IR remote sensing technology for planetary exploration

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.; Hiesinger, Harald; Helbert, Jörn; Peter, Gisbert; Walter, Ingo

    2010-09-01

    MERTIS (MErcury Radiometer and Thermal infrared Imaging Spectrometer) is part of ESA's BepiColombo Mercury Planetary Orbiter mission to the innermost planet of the Solar system. MERTIS is designed to identify rock-forming minerals, to map the surface composition, and to study the surface temperature variations with an uncooled microbolometer detector in the hot environment of Mercury. MERTIS is an advanced IR instrument combining a pushbroom IR grating spectrometer (TIS) with a radiometer (TIR) sharing the same optics, instrument electronics and in-fight calibration components for a wavelength range of 7-14 and 7-40 μm, respectively. First results of the ongoing MESSENGER project at Mercury have shown a more complex geology and higher variability of features than previously thought. The MESSENGER studies have demonstrated the need to gain global high-resolution mid-IR spectral and temperature data to achieve a better understanding of the planetary genesis. The MERTIS measurements will acquire this currently missing data set. This article gives a summary of the instrument requirements and its design. We are reporting on the actual instrument development progress, and the status of system and subsystem qualification efforts.

  7. Remote sensing of nutrient deficiency in Lactuca sativa using neural networks for terrestrial and advanced life support applications

    NASA Astrophysics Data System (ADS)

    Sears, Edie Seldon

    2000-12-01

    A remote sensing study using reflectance and fluorescence spectra of hydroponically grown Lactuca sativa (lettuce) canopies was conducted. An optical receiver was designed and constructed to interface with a commercial fiber optic spectrometer for data acquisition. Optical parameters were varied to determine effects of field of view and distance to target on vegetation stress assessment over the test plant growth cycle. Feedforward backpropagation neural networks (NN) were implemented to predict the presence of canopy stress. Effects of spatial and spectral resolutions on stress predictions of the neural network were also examined. Visual inspection and fresh mass values failed to differentiate among controls, plants cultivated with 25% of the recommended concentration of phosphorous (P), and those cultivated with 25% nitrogen (N) based on fresh mass and visual inspection. The NN's were trained on input vectors created using reflectance and test day, fluorescence and test day, and reflectance, fluorescence, and test day. Four networks were created representing four levels of spectral resolution: 100-nm NN, 10-nm NN, 1-nm NN, and 0.1-nm NN. The 10-nm resolution was found to be sufficient for classifying extreme nitrogen deficiency in freestanding hydroponic lettuce. As a result of leaf angle and canopy structure broadband scattering intensity in the 700-nm to 1000-nm range was found to be the most useful portion of the spectrum in this study. More subtle effects of "greenness" and fluorescence emission were believed to be obscured by canopy structure and leaf orientation. As field of view was not as found to be as significant as originally believed, systems implementing higher repetitions over more uniformly oriented, i.e. smaller, flatter, target areas would provide for more discernible neural network input vectors. It is believed that this technique holds considerable promise for early detection of extreme nitrogen deficiency. Further research is recommended using

  8. Compressive Sensing for Quantum Imaging

    NASA Astrophysics Data System (ADS)

    Howland, Gregory A.

    . Entanglement imaging is demonstrated at 1024 dimensions-per-photon with channel capacities exceeding 8.4 bits-per-photon. In practice, the measurement time is reduced from 310 days for the standard technique to 8 hours for the compressive technique. An entropic steering inequality is violated to witness entanglement. The final application is a compressive wavefront sensor that unites compressive sensing with weak measurement. We show how a twisted-nematic spatial light modulator can be be used to weakly couple an optical field's position and polarization degrees of freedom. The complex nature of the weak value is used to directly measure random projections of the real and imaginary parts of the optical field, where polarization serves as an ancillary meter. We obtain 256 x 256 pixel wavefronts from only 10,000 random projections. Photon-counting detectors provide sub-picowatt sensitivity.

  9. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  10. Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion

    NASA Astrophysics Data System (ADS)

    Taylor, Travis S.; Gregory, Don A.

    2002-11-01

    Real-time liquid crystal television-based technique for simulating optical wavefront distortion due to atmospheric turbulence is presented and demonstrated. A liquid crystal television (LCTV) operating in the "phase mostly" mode was used as an array of spatially correlated phase delays. A movie of the arrays in motion was then generated and displayed on the LCTV. The turbulence simulation system was verified by passing a collimated and doubled diode pumped Nd:YVO 4 laser beam (532 nm) through the transparent LCTV screen. The beam was then passed through a lens and the power spectra of the turbulence information carrying beam was detected as a measure of the far-field distribution. The same collimated laser beam, without the LCTV, was also transmitted down an open-air range and the power spectra detected as a measure of a real far-field distribution. Accepted turbulence parameters were measured for both arrangements and then compared.

  11. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  12. Laboratory simulation of atmospheric turbulence induced optical wavefront distortion

    NASA Astrophysics Data System (ADS)

    Taylor, Travis Shane

    1999-11-01

    Many creative approaches have been taken in the past for simulating the effect that atmospheric turbulence has on optical beams. Most of the experimental architectures have been complicated and consisted of many optical elements as well as moving components. These techniques have shown a modicum of success; however, they are not completely controllable or predictable. A benchtop technique for experimentally producing one important effect that atmospheric turbulence has on optical beams (phase distortion) is presented here. The system is completely controllable and predictable while accurately representing the statistical nature of the problem. Previous experimentation in optical processing through turbulent media has demonstrated that optical wavefront distortions can be produced via spatial light modulating (SLM) devices, and most turbulence models and experimental results indicate that turbulence can be represented as a phase fluctuation. The amplitude distributions in the resulting far field are primarily due to propagation of the phase. Operating a liquid crystal television (LCTV) in the ``phase- mostly'' mode, a phase fluctuation type model for turbulence is utilized in the present investigation, and a real-time experiment for demonstrating the effects was constructed. For an optical system to simulate optical wavefront distortions due to atmospheric turbulence, the following are required: (1)An optical element that modulates the phasefront of an optical beam (2)A model and a technique for generating spatially correlated turbulence simulating distributions (3)Hardware and software for displaying and manipulating the information addressing the optical phase modulation device The LCTV is ideal for this application. When operated in the ``phase-mostly'' mode some LCTVs can modulate the phasefront of an optical beam by as much as 2π and an algorithm for generating spatially correlated phase screens can be constructed via mathematical modeling software such as

  13. Amplitude-masked photoacoustic wavefront shaping and application in flowmetry

    PubMed Central

    Tay, Jian Wei; Liang, Jinyang; Wang, Lihong V.

    2014-01-01

    Optical-resolution photoacoustic flowmetry allows non-invasive single-cell flow measurements. However, its operational depth is limited by optical diffusion, which prevents focusing beyond shallow depths in scattering media, as well as reducing the measurement signal-to-noise ratio (SNR). To overcome this limitation, we used binary-amplitude wavefront shaping to enhance light focusing in the presence of scattering. Here, the transmission modes that contributed constructively to the intensity at the optical focus were identified and selectively illuminated, resulting in a 14-fold intensity increase and a corresponding increase in SNR. This technique can potentially extend the operational depth of optical-resolution photoacoustic flowmetry beyond 1 mm in tissue. PMID:25360912

  14. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-06-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved.

  15. Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Du, Xiao-Wen

    2016-06-01

    Acoustic metasurface (AMS) is a good candidate to manipulate acoustic waves due to special acoustic performs that cannot be realized by traditional materials. In this paper, we design the AMS by using circular-holed cubic arrays. The advantages of our AMS are easy assemble, subwavelength thickness, and low energy loss for manipulating acoustic waves. According to the generalized Snell's law, acoustic waves can be manipulated arbitrarily by using AMS with different phase gradients. By selecting suitable hole diameter of circular-holed cube (CHC), some interesting phenomena are demonstrated by our simulations based on finite element method, such as the conversion of incoming waves into surface waves, anomalous reflections (including negative reflection), acoustic focusing lens, and acoustic carpet cloak. Our results can provide a simple approach to design AMSes and use them in wavefront manipulation and manufacturing of acoustic devices.

  16. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE PAGES

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; ...

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  17. Polarization-independent silicon metadevices for efficient optical wavefront control

    SciTech Connect

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

  18. Fast and robust estimation of ophthalmic wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Dillon, Keith

    2016-12-01

    Rapidly rising levels of myopia, particularly in the developing world, have led to an increased need for inexpensive and automated approaches to optometry. A simple and robust technique is provided for estimating major ophthalmic aberrations using a gradient-based wavefront sensor. The approach is based on the use of numerical calculations to produce diverse combinations of phase components, followed by Fourier transforms to calculate the coefficients. The approach does not utilize phase unwrapping nor iterative solution of inverse problems. This makes the method very fast and tolerant to image artifacts, which do not need to be detected and masked or interpolated as is needed in other techniques. These features make it a promising algorithm on which to base low-cost devices for applications that may have limited access to expert maintenance and operation.

  19. Integrating Remote Sensing Data, Hybrid-Cloud Computing, and Event Notifications for Advanced Rapid Imaging & Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Fielding, E. J.; Agram, P.; Manipon, G.; Stough, T. M.; Simons, M.; Rosen, P. A.; Wilson, B. D.; Poland, M. P.; Cervelli, P. F.; Cruz, J.

    2013-12-01

    Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR) and Continuous Global Positioning System (CGPS) are now important elements in our toolset for monitoring earthquake-generating faults, volcanic eruptions, hurricane damage, landslides, reservoir subsidence, and other natural and man-made hazards. Geodetic imaging's unique ability to capture surface deformation with high spatial and temporal resolution has revolutionized both earthquake science and volcanology. Continuous monitoring of surface deformation and surface change before, during, and after natural hazards improves decision-making from better forecasts, increased situational awareness, and more informed recovery. However, analyses of InSAR and GPS data sets are currently handcrafted following events and are not generated rapidly and reliably enough for use in operational response to natural disasters. Additionally, the sheer data volumes needed to handle a continuous stream of InSAR data sets also presents a bottleneck. It has been estimated that continuous processing of InSAR coverage of California alone over 3-years would reach PB-scale data volumes. Our Advanced Rapid Imaging and Analysis for Monitoring Hazards (ARIA-MH) science data system enables both science and decision-making communities to monitor areas of interest with derived geodetic data products via seamless data preparation, processing, discovery, and access. We will present our findings on the use of hybrid-cloud computing to improve the timely processing and delivery of geodetic data products, integrating event notifications from USGS to improve the timely processing for response, as well as providing browse results for quick looks with other tools for integrative analysis.

  20. Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2012-01-01

    The Iterative Transform Phase Diversity algorithm is designed to solve the problem of recovering the wavefront in the exit pupil of an optical system and the object being imaged. This algorithm builds upon the robust convergence capability of Variable Sampling Mapping (VSM), in combination with the known success of various deconvolution algorithms. VSM is an alternative method for enforcing the amplitude constraints of a Misell-Gerchberg-Saxton (MGS) algorithm. When provided the object and additional optical parameters, VSM can accurately recover the exit pupil wavefront. By combining VSM and deconvolution, one is able to simultaneously recover the wavefront and the object.