Science.gov

Sample records for advanced wide field

  1. Estimating crop production in Iowa from Advanced Wide Field Sensor (AWiFS) data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indian National Remote Sensing Agency ResourceSat-1 Advanced Wide Field Sensor (AWiFS) data for the USA is being provided online by the USDA Foreign Agricultural Service (FAS) and Arctic Slope Regional Corporation – Management Services (ASRC-MS). Because of the frequent revisit time and pixel sizes...

  2. Satellite Detection in AdvancedCamera for Surveys/Wide Field Channel Images

    NASA Astrophysics Data System (ADS)

    Borncamp, D.; Lim, Pey-Lian

    2016-01-01

    This document explains the process by which satellite trails can be found within individual chips of an Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) image. Since satellites are transient and sporadic events, we used the Hubble Frontier Fields (HFF) dataset which is manually checked for satellite trails has been used as a truth set to verify that the method in this document does a complete job without a high false positive rate. This document also details the process of producing a mask that will update data quality information to inform users where the trail traverses the image and properly account for the affected pixels. Along with this document, the Python source code used to detect and mask satellite trails will be released to users with as a stand-alone product within the STSDAS acstools package.

  3. Calibrating Wide Field Channel Imagery for the Post-SM4 Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Armstrong, Amber; Grogin, N.; Lim, P.; Golimowski, D.; Smith, L.

    2011-01-01

    The Wide Field Channel detector of the Advanced Camera for Surveys on board the Hubble Space Telescope was restored to operation during HST Servicing Mission 4 in May 2009. With new control electronics and almost nine years in low Earth orbit, the ACS WFC presents a variety of calibration challenges both old and new. These include mode-dependent bias gradients, bias striping noise, bad columns, cold columns, hot pixels, bad pixels, "scarring,” read-out amplifier crosstalk, and substantial charge-transfer inefficiency. Fortunately, most of these detector irregularities are already corrected or flagged by the existing ACS WFC calibration pipeline, designed prior to the WFC failure. However, our close inspection of post-SM4 calibration images, including bias frames, dark exposures, and astronomical reference fields has motivated us to modernize the WFC calibration pipeline so that we may continue to deliver images of the highest possible quality to the HST observer. We provide a quantitative summary of the various post-SM4 WFC image calibration issues, as well as our strategies for addressing them both within the automated calibration pipeline and outside the pipeline as optional stand-alone calibration utilities available to the HST user community.

  4. Advanced wide-field broad-passband refracting field correctors for large telescopes

    NASA Technical Reports Server (NTRS)

    Epps, H. W.; Angel, J. R. P.; Anderson, E.

    1984-01-01

    Design objectives, constraints, and optical data are presented for specific corrector designs under consideration for several large telescope projects. These include a preliminary 30-arcmin prime focus (f/2.0) refracting field corrector system for the University of California Ten-Meter Telescope (UC TMT); a compact 40-arcmin internal Cassegrain (f/1.75 hyperbola to f/5.0) broad-passband (3300 A to 1.0 micron) corrector suitable for imaging and multi-object spectroscopy at the UC TMT; three 60-arcmin Cassegrain correctors for 300-inch f/1.8 and f/2.0 parabolic primary mirrors suitable for a Fifteen-Meter NNTT/MMT; and a 300-inch 40-arcmin external Cassegrain (f/1.0 parabola to f/4.0) broad-passband (3300 A to 1.0 micron) corrector with ADC.

  5. Wide field imager instrument for the Advanced Telescope for High Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea; Tenzer, Chris; Wilms, Jörn

    2015-01-01

    The Advanced Telescope for High Energy Astrophysics (Athena) has been selected for ESA's L2 mission, scheduled for launch in 2028. It will provide the necessary capabilities to achieve the ambitious goals of the science theme "The Hot and Energetic Universe." Athena's x-ray mirrors will be based on silicon pore optics technology with a 12-m focal length. Two complementary focal plane camera systems are foreseen, which can be moved interchangeably to the focus of the mirror system: the actively shielded micro-calorimeter spectrometer X-IFU and the wide field imager (WFI). The WFI camera will provide an unprecedented survey power through its large field of view of 40 arc min with a high count-rate capability (˜1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 to 15 keV during the entire mission lifetime (e.g., full width at half maximum ≤150 eV at 6 keV). This performance is accomplished by a set of depleted P-channel field effect transistor (DEPFET) active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450-μm-thick silicon bulk. This manuscript will summarize the current instrument concept and design, the status of the technology development, and the envisaged baseline performance.

  6. THE ADVANCED CAMERA FOR SURVEYS+WIDE FIELD CAMERA 3 SURVEY FOR LYMAN LIMIT SYSTEMS. I. THE DATA

    SciTech Connect

    O'Meara, John M.; Xavier Prochaska, J.; Madau, Piero

    2011-08-01

    We present a set of 71 quasars observed in the near ultraviolet with the PR200L prism on the Advanced Camera for Surveys and the G280 grism on the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. The quasars were selected from the Sloan Digital Sky Survey data to search for intervening Lyman limit system (LLS) absorption. The sample was subjected to the constraints that the quasars have AB magnitude g' < 18.5, quasar emission redshift 2.3 < z{sub em} < 2.6, and lack strong BAL or z {approx_equal} z{sub em} absorption. The median emission redshift of the sample is z-bar = 2.403. The data were all processed using custom data reduction pipelines, and the one-dimensional spectra have sufficient signal-to-noise ratio and resolution to easily identify absorption from LLS over the redshift range 1.2 < z < 2.5. The WFC3 data presented here are the first non-calibration spectra from the G280 grism.

  7. Post-Flash Calibration Darks for the Advanced Camera for Surveys Wide Field Channel (ACS/WFC)

    NASA Astrophysics Data System (ADS)

    Ogaz, S.; Anderson, J.; Golimowski, D.

    2015-06-01

    We present a summary and analysis of the changes made to the ACS/WFC dark reference files. As of January 15, 2015 the ACS team has begun to produce post- flashed dark reference files for the Wide Field Channel (WFC). This change was made to combat the charge transfer efficiency (CTE) losses caused by radiation damage that the two WFC CCDs have suffered since being put into orbit by artificially increasing the background in the dark images. This has resulted in several changes to the reference file pipeline, and an improved calibration dark.

  8. Wide-Field Plate Database

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. K.; Stavrev, K. Y.; Tsvetkova, K. P.; Semkov, E. H.; Mutatov, A. S.

    The Wide-Field Plate Database (WFPDB) and the possibilities for its application as a research tool in observational astronomy are presented. Currently the WFPDB comprises the descriptive data for 400 000 archival wide field photographic plates obtained with 77 instruments, from a total of 1 850 000 photographs stored in 269 astronomical archives all over the world since the end of last century. The WFPDB is already accessible for the astronomical community, now only in batch mode through user requests sent by e-mail. We are working on on-line interactive access to the data via INTERNET from Sofia and parallel from the Centre de Donnees Astronomiques de Strasbourg. (Initial information can be found on World Wide Web homepage URL http://www.wfpa.acad.bg.) The WFPDB may be useful in studies of a variety of astronomical objects and phenomena, andespecially for long-term investigations of variable objects and for multi-wavelength research. We have analysed the data in the WFPDB in order to derive the overall characteristics of the totality of wide-field observations, such as the sky coverage, the distributions by observation time and date, by spectral band, and by object type. We have also examined the totality of wide-field observations from point of view of their quality, availability and digitisation. The usefulness of the WFPDB is demonstrated by the results of identification and investigation of the photometrical behaviour of optical analogues of gamma-ray bursts.

  9. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  10. Wide field of view telescope

    DOEpatents

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  11. Wide field imaging problems in radio astronomy

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Golap, K.; Bhatnagar, S.

    2005-03-01

    The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.

  12. Wide Field Imager for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Nandra, Kirpal; Rau, Arne; Plattner, Markus; WFI proto-Consortium

    2015-09-01

    The Wide Field Imager focal plane instrument on ATHENA will combine unprecedented survey power through its large field of view of 40 arcmin with a high count-rate capability (> 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.1 keV to 15 keV. At energy of 6 keV for example, the full width at half maximum of the line shall be not worse than 150 eV until the end of the mission. The performance is accomplished by a set of DEPFET active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system.Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 micron thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single gateable DEPFET sensor matrix optimized for the high count rate capability of the instrument. An overview will be given about the presently developed instrument concept and design, the status of the technology development, and the expected performance. An outline of the project organization, the model philosophy as well as the schedule will complete the presentation about the Wide Field Imager for Athena.

  13. Wide Field Instrument Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  14. ROSAT wide field camera mirrors.

    PubMed

    Willingale, R

    1988-04-15

    The ROSAT wide field camera (WFC) is an XUV telescope operating in the 12-250-eV energy band. The mirror system utilizes Wolter-Schwarzschild type I (WS I) grazing incidence optics with a focal length of 525 mm, comprised of three nested aluminum shells with an outermost diameter of 576 mm providing a geometric aperture area of 456 cm(2). The reflecting surfaces are electroless nickel plated and coated with gold to enhance their reflectivity in the XUV. The mirrors have undergone full aperture optical testing, narrow beam XUV testing, and full aperture XUV testing. Measurements of the reflectivity are compared to theoretical values derived from the optical constants of gold in the XUV range. Analysis of the focused distribution is used to estimate the surface roughness and figuring errors of the polished surfaces. The results are compared to the mechanical metrology data collected during manufacture of the shells and the power spectral density of the reflecting surfaces is found to have a power-law form. PMID:20531591

  15. The wide field/planetary camera

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.; Baum, W. A.; Code, A. D.; Currie, D. G.; Danielson, G. E.; Gunn, J. E.; Kelsall, T. F.; Kristian, J. A.; Lynds, C. R.; Seidelmann, P. K.

    1982-01-01

    A wide site of potential astronomical and solar system scientific studies using the wide field planetary camera on space telescope are described. The expected performance of the camera as it approaches final assembly and testing is also detailed.

  16. Stereoscopic wide field of view imaging system

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F. (Inventor); Sedwick, Raymond J. (Inventor); Jonas, Eric M. (Inventor)

    2011-01-01

    A stereoscopic imaging system incorporates a plurality of imaging devices or cameras to generate a high resolution, wide field of view image database from which images can be combined in real time to provide wide field of view or panoramic or omni-directional still or video images.

  17. The Wide-Field Imaging Interferometry Testbed: Recent Progress

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.

  18. IOT Overview: Wide-Field Imaging

    NASA Astrophysics Data System (ADS)

    Selman, F. J.

    The Wide Field Imager (WFI) instrument at La Silla has been the workhorse of wide-field imaging instruments at ESO for several years. In this contribution I will summarize the issues relating to its productivity for the community both in terms of the quality and quantity of data that has come out of it. Although only surveys of limited scope have been completed using WFI, it is ESO's stepping-stone to the new generation of survey telescopes.

  19. Wide field corrector for the KMTNet telescope

    NASA Astrophysics Data System (ADS)

    Lee, Yongseok; Cha, Sang-Mok; Poteet, Wade; Lam, Philip; Lee, Chung-Uk; Kim, Seung-Lee; Park, Byeong-Gon; Buchroeder, Richard A.; Jin, Ho

    2014-07-01

    We present the design, assembly, alignment, and verification process of the wide field corrector for the Korea Microlensing Telescope Network (KMTNet) 1.6 meter optical telescope. The optical configuration of the KMTNet telescope is prime focus, having a wide field corrector and the CCD camera on the topside of Optical Tube Assembly (OTA). The corrector is made of four lenses designed to have all spherical surfaces, being the largest one of 552 mm physical diameter. Combining with a purely parabolic primary mirror, this optical design makes easier to fabricate, to align, and to test the wide field optics. The centering process of the optics in the lens cell was performed on a precision rotary table using an indicator. After the centering, we mounted three large and heavy lenses on each cell by injecting the continuous Room Temperature Vulcanizing (RTV) silicon rubber bonding via a syringe.

  20. Aspects of thermal field by wide burnishing

    NASA Astrophysics Data System (ADS)

    Bobrovskij, N. M.; Melnikov, P. A.; Grigoriev, S. N.; Bobrovskij, I. N.

    2015-09-01

    This research features 3D model of development of thermal fields by wide burnishing. By development of 3D model the source of heat build-up is represented as additive aggregate of connecting by width of spot heat sources, operating on the surface of the tool.

  1. Astrometry in Wide-Field Surveys

    NASA Astrophysics Data System (ADS)

    Pál, A.; Bakos, G. Á.

    2007-07-01

    We present a general two-dimensional catalog matching algorithm that can efficiently be applied for wide-field astrometry where the acquired images are strained by distortions due to the large field-of-view. The algorithm is able to derive the transformations between a reference catalogue and the images up to arbitrary polynomial order. Our method is applied successfully in the Hungarian-made Automated Telescope Network \\citep[HATNet, see][]{bakos04} project both in real-time astrometrical guiding of the telescopes as well as during the reduction of the data. In this paper we summarize the key points of the newly developed parts of the algorithms as well as the performance on large set of wide FOV images taken by the telescopes of HATNet.

  2. Wide-field Infrared Survey Explorer

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah

    2012-01-01

    We present WISE (Wide-field Infrared Survey Explorer) mid-infrared photometry of young stellar object candidates in the Canis Majoris clouds at a distance of 1 kpc. WISE has identified 682 objects with apparent 12 and 22 micron excess emission in a 7 deg x 10 deg field around the CMa Rl cloud . While a substantial fraction of these candidates are likely galaxies, AGB stars, and artifacts from confusion along the galactic plane, others are part of a spectacular cluster of YSOs imaged by WISE along a dark filament in the R1 cloud. Palomar Double Spectrograph observations of several sources in this cluster confirm their identity as young A and B stars with strong emission lines. In this contribution, we plot the optical -mid-infrared spectral energy distribution for the WISE YSO candidates and discuss potential contaminants to the sample . The data demonstrate the utility of WISE in performing wide-area surveys for young stellar objects.

  3. WIDE-FIELD ASTRONOMICAL MULTISCALE CAMERAS

    SciTech Connect

    Marks, Daniel L.; Brady, David J.

    2013-05-15

    In order to produce sufficiently low aberrations with a large aperture, telescopes have a limited field of view. Because of this narrow field, large areas of the sky at a given time are unobserved. We propose several telescopes based on monocentric reflective, catadioptric, and refractive objectives that may be scaled to wide fields of view and achieve 1.''1 resolution, which in most locations is the practical seeing limit of the atmosphere. The reflective and Schmidt catadioptric objectives have relatively simple configurations and enable large fields to be captured at the expense of the obscuration of the mirror by secondary optics, a defect that may be managed by image plane design. The refractive telescope design does not have an obscuration but the objective has substantial bulk. The refractive design is a 38 gigapixel camera which consists of a single monocentric objective and 4272 microcameras. Monocentric multiscale telescopes, with their wide fields of view, may observe phenomena that might otherwise be unnoticed, such as supernovae, glint from orbital space debris, and near-earth objects.

  4. Lensless imaging for wide field of view

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Yagi, Yasushi

    2015-02-01

    It is desirable to engineer a small camera with a wide field of view (FOV) because of current developments in the field of wearable cameras and computing products, such as action cameras and Google Glass. However, typical approaches for achieving wide FOV, such as attaching a fisheye lens and convex mirrors, require a trade-off between optics size and the FOV. We propose camera optics that achieve a wide FOV, and are at the same time small and lightweight. The proposed optics are a completely lensless and catoptric design. They contain four mirrors, two for wide viewing, and two for focusing the image on the camera sensor. The proposed optics are simple and can be simply miniaturized, since we use only mirrors for the proposed optics and the optics are not susceptible to chromatic aberration. We have implemented the prototype optics of our lensless concept. We have attached the optics to commercial charge-coupled device/complementary metal oxide semiconductor cameras and conducted experiments to evaluate the feasibility of our proposed optics.

  5. The Wide-Field Infrared Explorer

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Hacking, Perry

    1993-01-01

    More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.

  6. Wide-field microscopy using microcamera arrays

    NASA Astrophysics Data System (ADS)

    Marks, Daniel L.; Youn, Seo Ho; Son, Hui S.; Kim, Jungsang; Brady, David J.

    2013-02-01

    A microcamera is a relay lens paired with image sensors. Microcameras are grouped into arrays to relay overlapping views of a single large surface to the sensors to form a continuous synthetic image. The imaged surface may be curved or irregular as each camera may independently be dynamically focused to a different depth. Microcamera arrays are akin to microprocessors in supercomputers in that both join individual processors by an optoelectronic routing fabric to increase capacity and performance. A microcamera may image ten or more megapixels and grouped into an array of several hundred, as has already been demonstrated by the DARPA AWARE Wide-Field program with multiscale gigapixel photography. We adapt gigapixel microcamera array architectures to wide-field microscopy of irregularly shaped surfaces to greatly increase area imaging over 1000 square millimeters at resolutions of 3 microns or better in a single snapshot. The system includes a novel relay design, a sensor electronics package, and a FPGA-based networking fabric. Biomedical applications of this include screening for skin lesions, wide-field and resolution-agile microsurgical imaging, and microscopic cytometry of millions of cells performed in situ.

  7. The DESI Wide Field Corrector Optics

    SciTech Connect

    Doel, Peter; Sholl, Michael J.; Liang, Ming; Brooks, David; Flaugher, Brenna; Gutierrez, Gaston; Kent, Stephen; Lampton, Michael; Miller, Timothy; Sprayberry, David

    2014-01-01

    The Dark Energy Spectroscopic instrument (DESI) is a 5000 fiber multi-object spectrometer system under development for installation on the National Optical Astronomy Observatory (NOAO) Kitt Peak 4m telescope (the Mayall telescope). DESI is designed to perform a 14,000˚ (square) galaxy and Quasi-Stellar Object (QSO) redshift survey to improve estimates of the dark energy equation of state. The survey design imposes numerous constraints on a prime focus corrector design, including field of view, geometrical blur, stability, fiber injection efficiency, zenith angle, mass and cost. The DESI baseline wide-field optical design described herein provides a 3.2˚ diameter field of view with six 0.8- 1.14m diameter lenses and an integral atmospheric dispersion compensator.

  8. Time Delay Integration: A Wide-Field Survey Technique

    NASA Astrophysics Data System (ADS)

    Lapointe, Robert; Hill, E.; Leimer, L.; McMillian, K.; Miller, A.; Prindle, A.

    2009-05-01

    The Advanced Placement Physics class of Orange Lutheran High School has conducted a survey-imaging pro-ject using a Time Delay Integration (TDI) technique. TDI enables very wide-field images to be collected in the form of long strips of the sky. A series of five consecutive nights were captured, calibrated and compared to re-veal possible transient phenomena such as supernovae, asteroids, and other events that have a noticeable change over 24-hour intervals.

  9. Imaging spectrometer wide field catadioptric design

    DOEpatents

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  10. Hubble Space Telescope, Wide Field Planetary Camera

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This illustration is a diagram of the Hubble Space Telescope's (HST's), Wide Field Planetary Camera (WF/PC), one of the five Scientific Instruments. The WF/PC uses a four-sided pyramid mirror to split a light image into quarters. It then focuses each quadrant onto one of two sets of four sensors. The sensors are charge-coupled detectors and function as the electronic equivalent of extremely sensitive photographic plates. The WF/PC operates in two modes. The Wide-Field mode that will view 7.2-arcmin sections of the sky, and the Planetary mode that will look at narrower fields of view, such as planets or areas within other galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  11. Wide field-of-view bifocal eyeglasses

    NASA Astrophysics Data System (ADS)

    Barbero, Sergio; Rubinstein, Jacob

    2015-09-01

    When vision is affected simultaneously by presbyopia and myopia or hyperopia, a solution based on eyeglasses implies a surface with either segmented focal regions (e.g. bifocal lenses) or a progressive addition profile (PALs). However, both options have the drawback of reducing the field-of-view for each power position, which restricts the natural eye-head movements of the wearer. To avoid this serious limitation we propose a new solution which is essentially a bifocal power-adjustable optical design ensuring a wide field-of-view for every viewing distance. The optical system is based on the Alvarez principle. Spherical refraction correction is considered for different eccentric gaze directions covering a field-of-view range up to 45degrees. Eye movements during convergence for near objects are included. We designed three bifocal systems. The first one provides 3 D for far vision (myopic eye) and -1 D for near vision (+2 D Addition). The second one provides a +3 D addition with 3 D for far vision. Finally the last system is an example of reading glasses with +1 D power Addition.

  12. Wide field camera observations of Baade's Window

    NASA Technical Reports Server (NTRS)

    Holtzman, Jon A.; Light, R. M.; Baum, William A.; Worthey, Guy; Faber, S. M.; Hunter, Deidre A.; O'Neil, Earl J., Jr.; Kreidl, Tobias J.; Groth, E. J.; Westphal, James A.

    1993-01-01

    We have observed a field in Baade's Window using the Wide Field Camera (WFC) of the Hubble Space Telescope (HST) and obtain V- and I-band photometry down to V approximately 22.5. These data go several magnitudes fainter than previously obtained from the ground. The location of the break in the luminosity function suggests that there are a significant number of intermediate age (less than 10 Gyr) stars in the Galactic bulge. This conclusion rests on the assumptions that the extinction towards our field is similar to that seen in other parts of Baade's Window, that the distance to the bulge is approximately 8 kpc, and that we can determine fairly accurate zero points for the HST photometry. Changes in any one of these assumptions could increase the inferred age, but a conspiracy of lower reddening, a shorter distance to the bulge, and/or photometric zero-point errors would be needed to imply a population entirely older than 10 Gyr. We infer an initial mass function slope for the main-sequence stars, and find that it is consistent with that measured in the solar neighborhood; unfortunately, the slope is poorly constrained because we sample only a narrow range of stellar mass and because of uncertainties in the observed luminosity function at the faint end.

  13. Okayama astrophysical observatory wide field camera

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Kenshi; Shimizu, Yasuhiro; Okita, Kiichi; Kuroda, Daisuke; Koyano, Hisashi; Tsutsui, Hironori; Toda, Hiroyuki; Izumiura, Hideyuki; Yoshida, Michitoshi; Ohta, Kouji; Kawai, Nobuyuki; Yamamuro, Tomoyasu

    2014-08-01

    Okayama Astrophysical Observatory Wide Field Camera: OAOWFC is a near-infrared (0.9-2.5 μm) survey telescope, whose aperture is 0.91m. It works at Y, J, H, and Ks bands. The optics are consisted of forward Cassegrain and quasi Schmidt which yield the image circle of Φ 52 mm or Φ 1.3 deg at the focal plane. The overall F-ratio is F/2.51 which is one of the fastest among near infrared imagers in the world. A HAWAII-1 detector array placed at the focal plane cuts the central 0.48 deg. x 0.48 deg. with a pixel scale of 1.67 arcsec/pix. It will be used to survey the Galactic plane for variability and search for transients such as Gamma-ray burst afterglows optical counterpart of gravitational wave sources.

  14. A Wide Field of View Plasma Spectrometer

    DOE PAGESBeta

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; Harper, Ron W.; Kihara, Keith H.; Bower, Jonathan S.

    2016-07-23

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  15. Adaptive wide-field optical tomography

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Intes, Xavier

    2013-03-01

    We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (˜2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (˜1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.

  16. Wide-angle flat field telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1986-01-01

    Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto.

  17. The wide field imager instrument for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea E.; Tenzer, Chris; Wilms, Jörn

    2014-07-01

    The "Hot and Energetic Universe" has been selected as the science theme for ESA's L2 mission, scheduled for launch in 2028. The proposed Athena X-ray observatory provides the necessary capabilities to achieve the ambitious goals of the science theme. The X-ray mirrors are based on silicon pore optics technology and will have a 12 m focal length. Two complementary camera systems are foreseen which can be moved in and out of the focal plane by an interchange mechanism. These instruments are the actively shielded micro-calorimeter spectrometer X-IFU and the Wide Field Imager (WFI). The WFI will combine an unprecedented survey power through its large field of view of 40 arcmin with a high countrate capability (approx. 1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 keV to 15 keV during the entire mission lifetime (e.g. FWHM <= 150 eV at 6 keV). This performance is accomplished by a set of DEPFET active pixel sensor matrices with a pixel size matching the angular resolution of 5 arcsec (on-axis) of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 micron thick silicon bulk. The signal electrons generated by an X-ray photon are collected in a so-called internal gate below the transistor channel. The resulting change of the conductivity of the transistor channel is proportional to the number of electrons and thus a measure for the photon energy. DEPFETs have already been developed for the "Mercury Imaging X-ray Spectrometer" on-board of ESA's BepiColombo mission. For Athena we develop enhanced sensors with integrated electronic shutter and an additional analog storage area in each pixel. These features improve the peak-to-background ratio of the spectra and minimize dead time. The sensor will be read out with a new, fast, low-noise multi-channel analog signal processor with integrated sequencer and serial analog output. The architecture of sensor and readout

  18. Wide-field Fizeau imaging telescope: experimental results.

    PubMed

    Kendrick, R L; Aubrun, Jean-Noel; Bell, Ray; Benson, Robert; Benson, Larry; Brace, David; Breakwell, John; Burriesci, Larry; Byler, Eric; Camp, John; Cross, Gene; Cuneo, Peter; Dean, Peter; Digumerthi, Ramji; Duncan, Alan; Farley, John; Green, Andy; Hamilton, Howard H; Herman, Bruce; Lauraitis, Kris; de Leon, Erich; Lorell, Kenneth; Martin, Rob; Matosian, Ken; Muench, Tom; Ni, Mel; Palmer, Alice; Roseman, Dennis; Russell, Sheldon; Schweiger, Paul; Sigler, Rob; Smith, John; Stone, Richard; Stubbs, David; Swietek, Gregg; Thatcher, John; Tischhauser, C; Wong, Harvey; Zarifis, Vassilis; Gleichman, Kurt; Paxman, Rick

    2006-06-20

    A nine-aperture, wide-field Fizeau imaging telescope has been built at the Lockheed-Martin Advanced Technology Center. The telescope consists of nine, 125 mm diameter collector telescopes coherently phased and combined to form a diffraction-limited image with a resolution that is consistent with the 610 mm diameter of the telescope. The phased field of view of the array is 1 murad. The measured rms wavefront error is 0.08 waves rms at 635 nm. The telescope is actively controlled to correct for tilt and phasing errors. The control sensing technique is the method known as phase diversity, which extracts wavefront information from a pair of focused and defocused images. The optical design of the telescope and typical performance results are described. PMID:16778931

  19. Wide-Angle, Flat-Field Telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1987-01-01

    All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.

  20. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  1. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  2. Wide Field X-Ray Telescope Mission Concept Study Results

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  3. Prospects for a Wide Field CCD Camera Aboard NGST

    NASA Astrophysics Data System (ADS)

    Golimowski, D. A.; Ford, H. C.; Tsvetanov, Z. I.; Burrows, C. J.; Krist, J. E.; White, R. L.; Clampin, M.; Rafal, M.; Hartig, G.

    1998-05-01

    The importance of a Next Generation Space Telescope (NGST) for studying the infrared universe has often overshadowed NGST's potential benefit to optical astronomy. As currently envisioned, NGST could also provide views of the visible universe with resolution and sensitivity that are unmatched by any existing ground- or space-based observatory. We discuss the scientific advantages and technical feasibility of placing a wide-field CCD camera aboard NGST. Using simulated data, we compare the imaging performance of such a camera with that achieved or expected with the Keck Telescope and the HST Advanced Camera for Surveys. Finally, we discuss the technical challenges of temperature regulation and radiation shielding for a CCD camera in the NGST environment.

  4. Optical design of interferometric telescopes with wide fields of view.

    PubMed

    Sabatke, Erin E; Burge, James H; Hinz, Philip

    2006-11-01

    The performance of wide-field multiple-aperture imaging systems is dominated by easily understood, low-order errors. Each aperture produces an individual image, each pair of apertures produces a set of fringes under a diffraction envelope, and the system bandwidth produces a coherence envelope. For wide-field imaging, each of these elements must be coincident in the image plane as the field angle changes. We explore the causes of image degradation, derive first-order rules for preserving image quality across field, and give an example design that enforces some of the rules to achieve a relatively wide-field interferometric imaging telescope. PMID:17068543

  5. Advances in genome-wide DNA methylation analysis

    PubMed Central

    Gupta, Romi; Nagarajan, Arvindhan; Wajapeyee, Narendra

    2013-01-01

    The covalent DNA modification of cytosine at position 5 (5-methylcytosine; 5mC) has emerged as an important epigenetic mark most commonly present in the context of CpG dinucleotides in mammalian cells. In pluripotent stem cells and plants, it is also found in non-CpG and CpNpG contexts, respectively. 5mC has important implications in a diverse set of biological processes, including transcriptional regulation. Aberrant DNA methylation has been shown to be associated with a wide variety of human ailments and thus is the focus of active investigation. Methods used for detecting DNA methylation have revolutionized our understanding of this epigenetic mark and provided new insights into its role in diverse biological functions. Here we describe recent technological advances in genome-wide DNA methylation analysis and discuss their relative utility and drawbacks, providing specific examples from studies that have used these technologies for genome-wide DNA methylation analysis to address important biological questions. Finally, we discuss a newly identified covalent DNA modification, 5-hydroxymethylcytosine (5hmC), and speculate on its possible biological function, as well as describe a new methodology that can distinguish 5hmC from 5mC. PMID:20964631

  6. Instrumental Direction-dependent Effects in Wide-field Wide-band Interferometric Imaging

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Sanjay; Rau, U.; Golap, K.

    2014-04-01

    Many next generation radio telescopes, some now in operation, offer significant improvement in the sensitivity and angular resolution compared to the telescopes operated in the past decades. This improvement in sensitivity is achieved with the use of wide-band receivers and larger collecting area. The effects of wide instantaneous fractional bandwidths that classical calibration and imaging algorithms ignore, lead to errors higher than the sensitivity that these new telescopes offer. Examples, relevant for some of the telescopes already in operation include the effects of time and frequency variant primary beams, frequency dependence of the emission from the sky and antenna pointing errors. The effects of wide fractional bandwidth and ionospheric phase screen limit the imaging performance below ~1 GHz. Additionally, significant variations in the shape of the wide-band primary beams (PB) for aperture array telescopes leads to errors of similar magnitude. Corrections for these effects increases the required computing power by many orders of magnitude. Furthermore, both wide fractional bandwidths and larger collecting area lead to many orders of magnitude increase in the data volume also, putting severe constraints on the run-time performance of the algorithms for calibration and imaging. In this talk, I will review the state-of-the-art algorithms for wide-field wide-band imaging and the run-time costs of the different approaches for correction of various direction-dependent effects and discuss the computational challenges in thermal noise-limited wide-field imaging with current and future radio telescopes.

  7. Optical Design of WFIRST-AFTA Wide-Field Instrument

    NASA Technical Reports Server (NTRS)

    Pasquale, Bert; Content, Dave; Kruk, Jeffrey; Vaughn, David; Gong, Qian; Howard, Joseph; Jurling, Alden; Mentzell, Eric; Armani, Nerses; Kuan, Gary

    2014-01-01

    The WFIRSTAFTA Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq FOV at 0.11 pixel scale, operating between 0.6 2.4m, including a spectrograph mode (1.3-1.95m.) An IFU provides a discrete 3x3.15 field at 0.15 sampling.

  8. PERSPECTIVE: Toward a wide-field retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Ameri, Hossein; Ratanapakorn, Tanapat; Ufer, Stefan; Eckhardt, Helmut; Humayun, Mark S.; Weiland, James D.

    2009-06-01

    The purpose of this paper is to present a wide field electrode array that may increase the field of vision in patients implanted with a retinal prosthesis. Mobility is often impaired in patients with low vision, particularly in those with peripheral visual loss. Studies on low vision patients as well as simulation studies on normally sighted individuals have indicated a strong correlation between the visual field and mobility. In addition, it has been shown that an increased visual field is associated with a significant improvement in visual acuity and object discrimination. Current electrode arrays implanted in animals or human vary in size; however, the retinal area covered by the electrodes has a maximum projected visual field of about 10°. We have designed wide field electrode arrays that could potentially provide a visual field of 34°, which may significantly improve the mobility. Tests performed on a mechanical eye model showed that it was possible to fix 10 mm wide flexible polyimide dummy electrode arrays onto the retina using a single retinal tack. They also showed that the arrays could conform to the inner curvature of the eye. Surgeries on an enucleated porcine eye model demonstrated feasibility of implantation of 10 mm wide arrays through a 5 mm eye wall incision.

  9. Wide-Field Infrared Survey Telescope (WFIRST) Interim Report

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Gaudi, S.; Lauer, T.; Perlmutter, S.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Sumi, T.; Gerhels, N.; Sambruna, R.; Barry, R. K.; Content, D.; Grady, K; Jackson, C.; Kruk, J.; Melton, M.; Rioux, N.

    2011-01-01

    measurements. The Infrared Astronomical Satellite (IRAS), the Cosmic Background Explorer (COBE), Herschel, Spitzer, and Wide-field Infrared Sur-vey Explorer (WISE) are all space missions that have produced stunning new scientific advances by going to space to observe in the infrared. This interim report describes progress as of June 2011 on developing a requirements flowdown and an evaluation of scientific performance. An Interim Design Reference Mission (IDRM) configuration is presented that is based on the specifications of NWNH with some refinements to optimize the design in accordance with the new scientific requirements. Analysis of this WFIRST IDRM concept is in progress to ensure the capability of the observatory is compatible with the science requirements. The SDT and Project will continue to refine the mission concept over the coming year as design, analysis and simulation work are completed, resulting in the SDT s WFIRST Design Reference Mission (DRM) by the end of 2012.

  10. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  11. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  12. Wide Field and Planetary Camera for Space Telescope

    NASA Technical Reports Server (NTRS)

    Lockhart, R. F.

    1982-01-01

    The Space Telescope's Wide Field and Planetary Camera instrument, presently under construction, will be used to map the observable universe and to study the outer planets. It will be able to see 1000 times farther than any previously employed instrument. The Wide Field system will be located in a radial bay, receiving its signals via a pick-off mirror centered on the optical axis of the telescope assembly. The external thermal radiator employed by the instrument for cooling will be part of the exterior surface of the Space Telescope. In addition to having a larger (1200-12,000 A) wavelength range than any of the other Space Telescope instruments, its data rate, at 1 Mb/sec, exceeds that of the other instruments. Attention is given to the operating modes and projected performance levels of the Wide Field Camera and Planetary Camera.

  13. Wide-Field Sky Monitoring - Optical and X-rays

    NASA Astrophysics Data System (ADS)

    Hudec, R.; BART Teams; Ondrejov Observatory Lobster Eye Team

    We report on selected projects in wide-field sky imaging. This includes the recent efforts to digitize the astronomical sky plate archives and to apply these data for various scientific projects. We also address and discuss the status of the development of related algorithms and software programs. These data may easily provide very long term monitoring over very extended time intervals (up to more than 100 years) with limiting magnitudes between 12 and 23. The further experiments include CCD sky monitors, OMC camera onboard the ESA Integral satellite, robotic telescopes, and innovative wide-field X-ray telescopes.

  14. Paramagnetic shimming for wide-range variable-field NMR.

    PubMed

    Ichijo, Naoki; Takeda, Kazuyuki; Takegoshi, K

    2014-09-01

    We propose a new passive shimming strategy for variable-field NMR experiments, in which the magnetic field produced by paramagnetic shim pieces placed inside the magnet bore compensates the inhomogeneity of a variable-field magnet for a wide range of magnet currents. Paramagnetic shimming is demonstrated in (7)Li, (87)Rb, and (45)Sc NMR of a liquid solution sample in magnetic fields of 3.4, 4.0, and 5.4T at a fixed carrier frequency of 56.0MHz. Since both the main-field inhomogeneity and the paramagnetic magnetization are proportional to the main-magnet current, the resonance lines are equally narrowed by the improved field homogeneity with an identical configuration of the paramagnetic shim pieces. Paramagnetic shimming presented in this work opens the possibility of high-resolution variable-field NMR experiments. PMID:25080372

  15. Wide-Field MAXI - Wide-Field Soft X-ray Transient Monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki

    WF-MAXI is a mission to detect and localize X-ray transients including GRBs and XRFs, X-ray binaries, and hopefully tidal disruption events and supernova shockbreakouts. We are designing WF-MAXI to be ready for the initial operational phase of the next generation GW telescopes: Adv-LIGO, VIRGO and KAGRA, which are expected to be operational in 2-4 years. It will be sensitive to soft extended emission of short GRBs. It will also succeed the current MAXI mission, which is providing alerts for outbursts of X-ray sources to the community. We chose to use flight-proven or qualified technologies developed for MAXI, ASTRO-H, and TSUBAME for a fast development of the mission. The main instrument is Soft X-ray Large-sky Cameras (SLC), pairs of criss-cross coded aperture cameras using CCD as one-dimensional fast-readout detectors covering 20% of the sky in the 0.7-12 keV band. The Hard X-ray Monitor share the same field as SLC in the hard X-ray band. We are proposing this mission for the ISS/JEM AO in this year aiming to start operations in 2018.

  16. Wide-Field Raman Imaging of Dental Lesions

    PubMed Central

    Yang, Shan; Li, Bolan; Akkus, Anna; Akkus, Ozan; Lang, Lisa

    2014-01-01

    Detection of dental caries at the onset remains as a great challenge in dentistry. Raman spectroscopy could be successfully applied towards detecting caries since it is sensitive to the amount of the Raman active mineral crystals, the most abundant component of enamel. Effective diagnosis requires full examination of a tooth surface via a Raman mapping. Point-scan Raman mapping is not clinically relevant (feasible) due to lengthy data acquisition time. In this work, a wide-field Raman imaging system was assembled based on a high-sensitivity 2D CCD camera for imaging the mineralization status of teeth with lesions. Wide-field images indicated some lesions to be hypomineralized and others to be hypermineralized. The observations of wide-field Raman imaging were in agreement with point-scan Raman mapping. Therefore, sound enamel and lesions can be discriminated by Raman imaging of the mineral content. In conclusion, wide-field Raman imaging is a potentially useful tool for visualization of dental lesions in the clinic. PMID:24781363

  17. Michelson wide-field stellar interferometry: principles and experimental verification.

    PubMed

    Montilla, I; Pereira, S F; Braat, J J M

    2005-01-20

    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in the array, allowing for simultaneous correction of the differential delay for the on-axis and off-axis image positions. Experimental results in a laboratory setup show that it is possible to recover the fringes of on-axis and off-axis stars with an angular separation of 1 arc min simultaneously and with a similar contrast. This new technique represents a considerable extension of the field of view of an interferometer without the need for extra observation time. PMID:15717821

  18. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.

    2008-01-01

    Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.

  19. Wide-field in vivo oral OCT imaging

    PubMed Central

    Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine; Lane, Pierre

    2015-01-01

    We have built a polarization-sensitive swept source Optical Coherence Tomography (OCT) instrument capable of wide-field in vivo imaging in the oral cavity. This instrument uses a hand-held side-looking fiber-optic rotary pullback catheter that can cover two dimensional tissue imaging fields approximately 2.5 mm wide by up to 90 mm length in a single image acquisition. The catheter spins at 100 Hz with pullback speeds up to 15 mm/s allowing imaging of areas up to 225 mm2 field-of-view in seconds. A catheter sheath and two optional catheter sheath holders have been designed to allow imaging at all locations within the oral cavity. Image quality of 2-dimensional image slices through the data can be greatly enhanced by averaging over the orthogonal dimension to reduce speckle. Initial in vivo imaging results reveal a wide-field view of features such as epithelial thickness and continuity of the basement membrane that may be useful in clinic for chair-side management of oral lesions. PMID:26203389

  20. Science with the Second Wide Field and Planetary Camera

    NASA Astrophysics Data System (ADS)

    Trauger, J.

    1992-07-01

    With the commencement of Cycle 4 observations, the General Observor community will have access to the second Wide Field and Planetary Camera (WFPC2), a replacement for the orginal WFPC instrument. WFPC2, a wide-field photometric camera which covers the spectrum from 12000 to 10000 Angstroms, will be installed in the Hubble radial bay during the currently manifested December 1993 Shuttle servicing mission. Besides optical correction for the aberrated Hubble primary mirror, the WFPC2 incorporates evolutionary improvement in photometric imaging capabilities. The CCD sensors, signal chain electronics, filter set, FUV performance, internal calibrations, and operational efficiency have all been improved through new technologies and lessons learned from WFPC operations and Hubble experience since launch. Here we provide an overview of the new instrument, beginning with the assumption that the reader is already familiar with the original WFPC now in service.

  1. A wide-field soft X-ray camera

    NASA Technical Reports Server (NTRS)

    Petre, R.

    1981-01-01

    A wide-field soft X-ray camera (WFSXC) sensitive in the 50 to 250 eV band is described. The camera features Wolter-Schwarzschild optics with an 8 degree field of view and 300 cu cu collecting area. The focal plane instrument is a microchannel plate detector. Broad-band energy discrimination is provided by thin-film filters mounted immediately in front of the focal plane. The WFSXC is capable of detecting sources with intensities greater than 5 percent of HZ 43 during typical sounding rocket exposures, and it would approach the same sensitivity range as EUVE during a typical exposure from the Shuttle.

  2. In-Flight Performance of Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  3. High-Resolution, Wide-Field-of-View Scanning Telescope

    NASA Technical Reports Server (NTRS)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  4. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  5. Wide Integral Field Infrared Spectroscopic Survey of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Moon, Dae-Sik; Zaritsky, Dennis F.; Chou, Richard; Meyer, Elliot; Ma, Ke; Jarvis, Miranda; Eisner, Joshua A.

    2015-01-01

    We are constructing a novel infrared integral field spectrograph with a large field of view (~50'x20') that will be available on the Kitt Peak 90' Bok telescope this spring. This wide integral field infrared spectrograph (WIFIS) operates over two wavelength ranges, zJ-band (0.9-1.35 microns) and H-band (1.5-1.8 microns), and has moderate spectral resolving power, 3,000 in zJ-band and 2,200 in H-band, respectively. WIFIS' field-of-view is comparable to current optical integral field spectrographs that are carrying out large galaxy surveys, e.g. SAMI, CALIFA, and MaNGA. We are designing a large nearby galaxy survey to complement the data already been taken by these optical integral field spectroscopic surveys. The near-infrared window provides a sensitive probe of the initial mass functions of stellar populations, the OB stellar fractions in massive star forming regions, and the kinematics of and obscured star formation within merging systems. This will be the first large scale infrared integral field spectroscopic survey of nearby galaxies.

  6. The development of WIFIS: a wide integral field infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Chou, Richard C. Y.; Moon, Dae-Sik; Ma, Ke; Millar-Blanchaer, Maxwell; Eikenberry, Stephen S.; Chun, Moo-Young; Kim, Sang Chul; Raines, Steven N.; Eisner, Joshua

    2012-09-01

    We present the current results from the development of a wide integral field infrared spectrograph (WIFIS). WIFIS offers an unprecedented combination of etendue and spectral resolving power for seeing-limited, integral field observations in the 0.9 - 1.8 μm range and is most sensitive in the 0.9 - 1.35 μ,m range. Its optical design consists of front-end re-imaging optics, an all-reflective image slicer-type, integral field unit (IFU) called FISICA, and a long-slit grating spectrograph back-end that is coupled with a HAWAII 2RG focal plane array. The full wavelength range is achieved by selecting between two different gratings. By virtue of its re-imaging optics, the spectrograph is quite versatile and can be used at multiple telescopes. The size of its field-of-view is unrivalled by other similar spectrographs, offering a 4.511x 1211 integral field at a 10-meter class telescope (or 2011 x 5011 at a 2.3-meter telescope). The use of WIFIS will be crucial in astronomical problems which require wide-field, two-dimensional spectroscopy such as the study of merging galaxies at moderate redshift and nearby star/planet-forming regions and supernova remnants. We discuss the final optical design of WIFIS, and its predicted on-sky performance on two reference telescope platforms: the 2.3-m Steward Bok telescope and the 10.4-m Gran Telescopio Canarias. We also present the results from our laboratory characterization of FISICA. IFU properties such as magnification, field-mapping, and slit width along the entire slit length were measured by our tests. The construction and testing of WIFIS is expected to be completed by early 2013. We plan to commission the instrument at the 2.3-m Steward Bok telescope at Kitt Peak, USA in Spring 2013.

  7. The Wide-Field Imager for Solar Probe Plus (WISPR)

    NASA Astrophysics Data System (ADS)

    Vourlidas, Angelos; Howard, Russell A.; Plunkett, Simon P.; Korendyke, Clarence M.; Thernisien, Arnaud F. R.; Wang, Dennis; Rich, Nathan; Carter, Michael T.; Chua, Damien H.; Socker, Dennis G.; Linton, Mark G.; Morrill, Jeff S.; Lynch, Sean; Thurn, Adam; Van Duyne, Peter; Hagood, Robert; Clifford, Greg; Grey, Phares J.; Velli, Marco; Liewer, Paulett C.; Hall, Jeffrey R.; DeJong, Eric M.; Mikic, Zoran; Rochus, Pierre; Mazy, Emanuel; Bothmer, Volker; Rodmann, Jens

    2015-02-01

    The Wide-field Imager for Solar PRobe Plus (WISPR) is the sole imager aboard the Solar Probe Plus (SPP) mission scheduled for launch in 2018. SPP will be a unique mission designed to orbit as close as 7 million km (9.86 solar radii) from Sun center. WISPR employs a 95∘ radial by 58∘ transverse field of view to image the fine-scale structure of the solar corona, derive the 3D structure of the large-scale corona, and determine whether a dust-free zone exists near the Sun. WISPR is the smallest heliospheric imager to date yet it comprises two nested wide-field telescopes with large-format (2 K × 2 K) APS CMOS detectors to optimize the performance for their respective fields of view and to minimize the risk of dust damage, which may be considerable close to the Sun. The WISPR electronics are very flexible allowing the collection of individual images at cadences up to 1 second at perihelion or the summing of multiple images to increase the signal-to-noise when the spacecraft is further from the Sun. The dependency of the Thomson scattering emission of the corona on the imaging geometry dictates that WISPR will be very sensitive to the emission from plasma close to the spacecraft in contrast to the situation for imaging from Earth orbit. WISPR will be the first `local' imager providing a crucial link between the large-scale corona and the in-situ measurements.

  8. Dynamic speckle illumination wide-field reflection phase microscopy

    PubMed Central

    Choi, Youngwoon; Hosseini, Poorya; Choi, Wonshik; Dasari, Ramachandra R.; So, Peter T. C.; Yaqoob, Zahid

    2014-01-01

    We demonstrate a quantitative reflection-phase microscope based on time-varying speckle-field illumination. Due to the short spatial coherence length of the speckle field, the proposed imaging system features superior lateral resolution, 520 nm, as well as high-depth selectivity, 1.03 µm. Off-axis interferometric detection enables wide-field and single-shot imaging appropriate for high-speed measurements. In addition, the measured phase sensitivity of this method, which is the smallest measurable axial motion, is more than 40 times higher than that available using a transmission system. We demonstrate the utility of our method by successfully distinguishing the motion of the top surface from that of the bottom in red blood cells. The proposed method will be useful for studying membrane dynamics in complex eukaryotic cells. PMID:25361156

  9. Wide-field surveys from the SNAP mission

    SciTech Connect

    agkim@lbl.gov

    2002-07-23

    The Supernova/Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/NIR imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. Two 7.5 square-degree fields will be observed every four days over 16 months to a magnitude depth of AB = 27.7 in each of nine filters. Co-adding images over all epochs will give an AB = 30.3 per filter. A 300 square-degree field will be surveyed with no repeat visits to AB = 28 per filter. The nine filters span 3500-17000 {angstrom}. Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data supports a broad range of auxiliary science programs.

  10. The Wide Field Spectrograph (WiFeS)

    NASA Astrophysics Data System (ADS)

    Dopita, Michael; Hart, John; McGregor, Peter; Oates, Patrick; Bloxham, Gabe; Jones, Damien

    2007-08-01

    This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3 m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent throughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320 950 nm wavelength region. It provides a 25×38 arcsec field with 0.5 arcsec sampling along each of twenty five 38×1 arcsec slitlets. The output format is optimized to match the 4096×4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of “interleaved nod-and-shuffle” will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) >30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.

  11. The Wide-Field Imaging Interferometry Testbed: Progress and Plans

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Leisawitz, D.; Leviton, D.; Martino, A.; Maynard, W.; Mundy, L. G.; Zhang, X.

    2004-01-01

    We describe the technique of wide field mosaic imaging for optical/IR interferometers and present early experimental results from a laboratory instrument designed to validate, experiment with, and refine the technique. A conventional single-detector stellar interferometer operating with narrow bandwidth at center wavelength lambda is limited in its field of view to the primary beam of the individual telescope apertures, or approx. lambda/D(sub tel) radians, where is the telescope diameter. Such a field is too small for many applications; often one wishes to image extended sources. We are developing and testing a technique analogous to the mosaic method employed in millimeter and radio astronomy, but applicable to optical/IR Michelson interferometers, in which beam combination is done in the pupil plane. An N(sub pix) x N(sub pix) detector array placed in the image plane of the interferometer is used to record simultaneously the fringe patterns from many contiguous telescope fields, effectively multiplying the field size by N(sub pix)/2, where the factor 2 allows for Nyquist sampling. This mosaic imaging technique will be especially valuable for far IR and submillimeter interferometric space observatories such as the Space Infrared Interferometric Telescope (SPIRIT) and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). SPIRIT and SPECS will be designed to provide sensitive, high angular resolution observations of fields several arcminutes in diameter, and views of the universe complementary to those provided by HST, NGST, and ALMA.

  12. Science with a wide-field UV transient explorer

    SciTech Connect

    Sagiv, I.; Gal-Yam, A.; Ofek, E. O.; Waxman, E.; Trakhtenbrot, B.; Topaz, J.; Aharonson, O.; Kulkarni, S. R.; Phinney, E. S.; Nakar, E.; Maoz, D.; Beichman, C.; Murthy, J.; Worden, S. P.

    2014-04-01

    The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our predictions using a fiducial set of observational parameters which are similar to those envisaged for the proposed ULTRASAT mission. We show that such a mission would be able to revolutionize our knowledge about massive star explosions by measuring the early UV emission from hundreds of events, revealing key physical parameters of the exploding progenitor stars. Such a mission would also detect the UV emission from many tens of tidal-disruption events of stars by supermassive black holes at galactic nuclei and enable a measurement of the rate of such events. The overlap of such a wide-field UV mission with existing and planned gravitational-wave and high-energy neutrino telescopes makes it especially timely.

  13. WIDE-FIELD WIDE-BAND INTERFEROMETRIC IMAGING: THE WB A-PROJECTION AND HYBRID ALGORITHMS

    SciTech Connect

    Bhatnagar, S.; Rau, U.; Golap, K. E-mail: rurvashi@nrao.edu

    2013-06-20

    Variations of the antenna primary beam (PB) pattern as a function of time, frequency, and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper, we present the wide-band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency, and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the multi-term multi-frequency synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image domain.

  14. Wide-field wide-band Interferometric Imaging: The WB A-Projection and Hybrid Algorithms

    NASA Astrophysics Data System (ADS)

    Bhatnagar, S.; Rau, U.; Golap, K.

    2013-06-01

    Variations of the antenna primary beam (PB) pattern as a function of time, frequency, and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper, we present the wide-band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency, and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the multi-term multi-frequency synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image domain.

  15. Wide field-of-view microscopy with Talbot pattern illumination

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Liu, Guangshuo

    2012-12-01

    Wide field-of-view (FOV) microscopy is useful for high-throughput applications because of the capability to obtain large amount of information from a single image. One way to implement a wide FOV microscope is to scan the sample with a two-dimensional focus grid. The transmission or reflection of the focal spots can then be used to reconstruct the sample image. This scheme is effectively a parallel scanning optical microscope (SOM), where the FOV depends on the area of the focus grid and the imaging resolution depends on the spot size of the foci. We use the Talbot image of a twodimensional aperture grid as the focus grid and developed a wide FOV microscope. Preliminary experimental results show the capability of our microscope to acquire wide FOV images of US air force target and MCF-7 cancer cell samples. Fluorescence images of fluorescence beads are also acquired. Because the diffraction of incident beam by the aperture grid contains complicated angular frequencies, the focal spots in Talbot pattern cannot be approximated as Gaussian beams as in conventional SOM. We characterized the focal spots in Talbot pattern and studied the evolution of the full width at half maximum (FWHM). We also simulated the SOM imaging under Talbot pattern illumination using the razor blade as the sample objects.

  16. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications

    PubMed Central

    Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K.

    2016-01-01

    Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm2), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm2. Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications. PMID:27231630

  17. OAOWFC: Okayama Astrophysical Observatory NIR Wide-Field Camera

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Yanagisawa, K.; Shimizu, Y.; Okita, K.; Nagayama, S.; Toda, H.; Ohta, K.; Kawai, N.

    2008-05-01

    In order to detect and trace the early phase of near-infrared (NIR) afterglows of Gamma Ray Bursts (GRBs) quickly, we are now developing the Okayama Astrophysical Observatory Wide-Field Camera, OAOWFC. The aperture size of OAOWFC is 91 cm. The focal plane is covered by a 2K×2K HAWAII2-RG detector with a pixel size of 18.5 μm×18.5 μm, resulting 0.95×0.95 deg2 field of view with an image scale of 1.6 arcsec/pixel. OAOWFC is designed to be a fully robotic instrument. This camera forms a part of Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME), a multi telescope system dedicated to optical-NIR follow-up observations of GRB afterglows. Very wide field of view of OAOWFC enables us to catch GRB afterglows under less accurate localization sometimes given by the first alert. OAOWFC has an ability to detect bright GRB afterglow located at z = 10 easily, and it might be detectable at z = 18 if the conditions are met.

  18. OAOWFC: Okayama Astrophysical Observatory NIR Wide-Field Camera

    SciTech Connect

    Yoshida, M.; Yanagisawa, K.; Shimizu, Y.; Okita, K.; Nagayama, S.; Toda, H.; Ohta, K.; Kawai, N.

    2008-05-22

    In order to detect and trace the early phase of near-infrared (NIR) afterglows of Gamma Ray Bursts (GRBs) quickly, we are now developing the Okayama Astrophysical Observatory Wide-Field Camera, OAOWFC. The aperture size of OAOWFC is 91 cm. The focal plane is covered by a 2Kx2K HAWAII2-RG detector with a pixel size of 18.5 {mu}mx18.5 {mu}m, resulting 0.95x0.95 deg{sup 2} field of view with an image scale of 1.6 arcsec/pixel. OAOWFC is designed to be a fully robotic instrument. This camera forms a part of Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME), a multi telescope system dedicated to optical-NIR follow-up observations of GRB afterglows. Very wide field of view of OAOWFC enables us to catch GRB afterglows under less accurate localization sometimes given by the first alert. OAOWFC has an ability to detect bright GRB afterglow located at z = 10 easily, and it might be detectable at z = 18 if the conditions are met.

  19. Metrology systems of Hobby-Eberly Telescope wide field upgrade

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Cornell, Mark E.; Vattiat, Brian L.; Perry, Dave M.; Rafferty, Tom H.; Taylor, Trey; Hart, Michael; Rafal, Marc D.; Savage, Richard D.

    2012-09-01

    The Hobby-Eberly Telescope (HET) Wide-Field Upgrade (WFU) will be equipped with new closed-loop metrology systems to actively control the optical alignment of the new four-mirror Wide-Field Corrector (WFC) as it tracks sidereal motion with respect to the fixed primary mirror. These systems include a tip/tilt camera (TTCam), distance measuring interferometers (DMI), guide probes (GP), and wavefront sensors (WFS). While the TTCam and DMIs are to monitor the mechanical alignment of the WFC, the WFSs and GPs will produce direct measurement of the optical alignment of the WFC with respect to the HET primary mirror. Together, these systems provide fully redundant alignment and pointing information for the telescope, thereby keeping the WFC in focus and suppressing alignment driven field aberrations. In addition to these closed-loop metrology systems, we will have a pupil viewing camera (PVCam) and a calibration wavefront sensor (CWFS). The PVCam will be used for occasional reflectance measurement of the HET primary mirror segments in the standard R,G,B colors. The CWFS will provide the reference wavefront signal against which the other two WFS are calibrated. We describe the current snapshot of these systems and discuss lab/on-sky performance test results of the systems.

  20. Facility calibration unit of Hobby Eberly Telescope wide field upgrade

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Vattiat, Brian L.; Smith, Michael P.; Haeuser, Marco

    2012-09-01

    The Hobby-Eberly Telescope (HET) Wide-Field Upgrade (WFU) will be equipped with new Facility Calibration Unit (FCU). The FCU is in support of VIRUS and the facility instruments and consists of the head and source box. The FCU head, connected to the source box through two liquid light guides, is attached to the bottom of the WFU Wide-Field Corrector (WFC) and can be deployed into the beam to inject calibration light through the WFC whenever calibration is needed. A set of Fresnel lenses is used in the FCU head to mimic the caustics of M1 as much as possible to re-produce the telescope’s focal plane illumination pattern. Various imaging/non-imaging optical components (e.g. Compound Parabolic Concentrators, cone reflectors, condenser lenses) are used for efficient coupling between different types of calibration lamps and light guides, covering wavelengths from 350nm to 1800nm. In addition, we developed an efficient and tunable Light-Emitting Diode (LED) based source and coupler for UV and Visible spectral flat field calibration. This paper presents the designs, prototypes, and as-built components / subsystems of the FCU.

  1. The Spitzer Deep, Wide-Field Survey (SDWFS)

    NASA Astrophysics Data System (ADS)

    Ashby, Matthew; Stern, D.; Brodwin, M.; Griffith, R.; Eisenhardt, P.; Kozlowski, S.; Kochanek, C. S.; Bock, J.; Borys, C.; Brand, K.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, A.; Eisenstein, D.; Gonzalez, A.; Gorjian, V.; Grogin, N.; Ivison, R.; Jacob, J.; Jannuzi, B.; Mainzer, A.; Moustakas, L.; Rottgering, H.; Seymour, N.; Smith, H.; Stanford, A.; Stauffer, J. R.; Sullivan, I.; van Breugel, W.; Wright, E. L.; Willner, S. P.

    2009-05-01

    The Spitzer Deep, Wide-Field Survey (SDWFS) is four-epoch infrared survey of ten square degrees in the Bootes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. The four epochs, which span the interval from 2003 to 2008, make it possible to identify nearby, high-proper-motion targets, as well as infrared-variable objects. SDWFS is a Spitzer Cycle 4 Legacy program (PID 40839). The SDWFS catalogs are publicly available, and contain roughly 7e5, 5e5, 1e5, and 1e5 distinct sources brighter than the 5-sigma survey limits of 19.8, 18.8, 16.5, and 15.8 Vega magnitudes at 3.6, 4.5, 5.8, and 8.0 microns, respectively. In this contribution we describe the SDWFS survey and some initial findings. This work was supported by NASA grant number 1314516, administered by JPL.

  2. Wide-Field Plate Database: Included Ukrainian Plate Catalogues

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Katya; Sergeeva, Tetyana

    2007-08-01

    We present the basic information for the archives of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine, included into the Wide-Field Plate Database last two years with total number of plates - 11260. The plates were obtained with the 0.40m Double Wide-angle Astrograph (DWA); 10cm, 11cm and 15cm Three Cameras Astrograph (TCA) and 12 cm Double Short focus Astrograph (DSA) in the period 1949-1998 in the frames of the following observing programmes: Photographic Survey of the Northern Sky; Investigation of the kinematics and the structure in the main meridian section of the Galaxy; selection of reference stars, minor planets observations, comet investigations.

  3. Non-mydriatic, wide field, fundus video camera

    NASA Astrophysics Data System (ADS)

    Hoeher, Bernhard; Voigtmann, Peter; Michelson, Georg; Schmauss, Bernhard

    2014-02-01

    We describe a method we call "stripe field imaging" that is capable of capturing wide field color fundus videos and images of the human eye at pupil sizes of 2mm. This means that it can be used with a non-dilated pupil even with bright ambient light. We realized a mobile demonstrator to prove the method and we could acquire color fundus videos of subjects successfully. We designed the demonstrator as a low-cost device consisting of mass market components to show that there is no major additional technical outlay to realize the improvements we propose. The technical core idea of our method is breaking the rotational symmetry in the optical design that is given in many conventional fundus cameras. By this measure we could extend the possible field of view (FOV) at a pupil size of 2mm from a circular field with 20° in diameter to a square field with 68° by 18° in size. We acquired a fundus video while the subject was slightly touching and releasing the lid. The resulting video showed changes at vessels in the region of the papilla and a change of the paleness of the papilla.

  4. The Wide-Field Imaging Interferometry Testbed: Recent Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2006-01-01

    We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.

  5. 'Virtual triple Schmidt' - Wide field two-stage optics

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K.

    1989-01-01

    The design concept of an unobscured-wide-field two-stage optical system based on a virtual triple Schmidt (VTS) configuration is presented. It is pointed out that the single large aperture and field-partitioning capability of two-stage systems can lower material and fabrication costs, making the VTS optics suitable for ground-based and space telescopes. The VTS design combines a Schmidt-camera first stage and a second stage comprising two back-to-back Schmidt systems as a 1:1 relay. Aspheric Schmidt correction is achieved at the relayed pupil location for all three systems. The effects of the separation between the error-producing surface and the aperture stop are discussed; the performance of the wavefront-correction system is analyzed; and extensive diagrams, drawings, and graphs of projected performance data are provided.

  6. Design and development of a wide field telescope

    NASA Astrophysics Data System (ADS)

    Moon, Il; Lee, Sangon; Lim, Juhee; Yang, Ho-Soon; Rhee, Hyug-Gyo; Song, Jae Bong; Lee, Yun Woo; Lee, Jong Ung; Jin, Ho

    2012-09-01

    A prototype of large wide field telescope is a Cassegrain telescope which covers 2° field of view with two hyperbolic mirrors, a 0.5 m primary mirror and a 0.2 m secondary mirror with multiple correction lenses. To fulfill the optical and mechanical performance requirements in design and development phase extensive finite element analyses using NX NASTRAN and optical analyses with CODE V and PCFRINGE have been conducted for the structure of optical system. Analyses include static deformation (gravity and thermal), frequency, dynamic response analysis, and optical performance evaluations for minimum optical deformation. Image motion is also calculated based on line of sight sensitivity equations integrated in finite element models. A parametric process was performed for the design optimization to produce highest fundamental frequency for a given weight, as well as to deal with the normal concerns about global performance.

  7. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, Klaus P.

    1989-01-01

    Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.

  8. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.

    1986-01-01

    Data obtained from UHF Radar observation of direct-lightning strikes to the NASA F-106B airplane have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero volts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The new system was implemented with four shutter-type field mills located at strategic points on the airplane. The bandwidth of the new system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 Hz to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite-difference time-domain electromagnetic computer code.

  9. HST Wide Field and Planetary Camera II Status Update

    NASA Astrophysics Data System (ADS)

    Heyer, I.; Biretta, J.; Baggett, S.; Gonzaga, S.; Koekemoer, A.; Lubin, L.; Mack, J.; McMaster, M.; Platais, V.; Schultz, A.

    2001-12-01

    We review the status of the Wide Field and Planetary Camera II (WFPC2) onboard the Hubble Space Telescope, as well as recent enhancements to calibration and user support. The photometric, flat field, and PSF stabilities continue to be excellent. Charge Transfer Efficiency (CTE) in the CCDs remains a concern; we discuss the latest results from on-going monitor programs, as well as the latest correction procedures. Work is underway to update the entire set of flat fields; we discuss the new flats, as well as the low-noise flat fields corrections released last summer. The "On-the-Fly-Reprocessing" system continues to perform well, though we mention issues affecting a few images. The WFPC2 Exposure Time Calculator has been updated, and is available on our website. A new WFPC2 Pointings Search Interface tool for the HST Archive has been released. The WFPC2 Instrument Handbook has been updated for Cycle 11, and a new edition of the HST Data Handbook is currently in progress. The next Servicing Mission (SM3b) is slated for February 2002; and we summarize the post-SM tests which are planned for WFPC2. These and other issues will be discussed.

  10. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging

    PubMed Central

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226

  11. The Wide-Field Imaging Interferometry Testbed: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Leisawitz, D.; Leviton, D.; Martino, A.; Maynard, W.; Mundy, L. G.; Rinehart, S. A.; Zhang, X.; WIIT Science and Technical Advisory Group Team

    2001-12-01

    We describe the technique of wide field mosaic imaging for optical/IR interferometers and present early experimental results from a laboratory instrument designed to validate, experiment with, and refine the technique. A conventional single-detector stellar interferometer operating with narrow bandwidth at center wavelength λ is limited in its field of view to the primary beam of the individual telescope apertures, or ~ λ / Dtel radians, where Dtel is the telescope diameter. Such a field is too small for many applications; often one wishes to image extended sources. We are developing and testing a technique analogous to the mosaicing method employed in millimeter and radio astronomy, but applicable to optical/IR Michelson interferometers, in which beam combination is done in the pupil plane. An Npix x Npix array detector placed in the image plane of the interferometer is used to record simultaneously the fringe patterns from many contiguous telescope fields, effectively multiplying the field size by Npix/2, where the factor 2 allows for Nyquist sampling. This technology will be especially valuable for far IR and submillimeter interferometric space observatories such as the Space Infrared Interferometric Telescope (SPIRIT) and the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). SPIRIT and SPECS will be designed to provide sensitive, high angular resolution observations of fields several arcminutes in diameter, and views of the universe complementary to those provided by HST, NGST, and ALMA. Funding for WIIT is provided by NASA Headquarters through the ROSS/SARA Program and by the Goddard Space Flight Center through its IR&D Program.

  12. Wide-field-of-view (WFOV) night vision goggle

    NASA Astrophysics Data System (ADS)

    Isbell, Wayne; Estrera, Joseph P.

    2003-09-01

    The United States' armed forces continue to be presented with increased challenges in adverse operational environments with increasing risk and complexity - especially at night. To ensure continued operational success and battlefield superiority during darkness, our armed forces must be equipped with night vision (NV) systems providing increased situational awareness. Doing so will significantly enhance threat detection and engagement, as well as survivability, thus ensuring greater mission success. Northrop Grumman Electro-Optical Systems (EOS) continues to develop its Wide Field of View (WFOV) image intensification (I2) night vision system for ground forces. This system will provide a significant increase in visual coverage enabling US forces to continue "to own the night". Until now, NV systems have typically been limited to a 40-degree field of view (FOV), vertically and horizontally. This limited FOV reduces off-axis detection, restricts an individual soldier's recognition and engagement capabilities and hinders added peripheral vision. To counter this operational deficiency, EOS proposes the Wide Field of View (WFOV) night vision binocular. The WFOV system will have a 70-degree horizontal FOV, with a 55-degree vertical FOV. The increased FOV will result in increased situational awareness of soldiers' surrounding environment (including terrain, hazards, threat, etc) during normal night operations. It will also allow for rapid and safer movement, especially in MOUT operations. Additionally, the increased visual coverage of large areas will enable soldiers to detect and engage targets faster and with greater reliability. The WFOV binocular will significantly enhance survivability, threat detection and engagement, and hence, greater mission success rate.

  13. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  14. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  15. A very wide field wavefront sensor for a very narrow field interferometer

    NASA Astrophysics Data System (ADS)

    Viotto, V.; Ragazzoni, R.; Arcidiacono, C.; Bergomi, M.; Brunelli, A.; Dima, M.; Farinato, J.; Gentile, G.; Magrin, D.; Cosentino, G.; Diolaiti, E.; Foppiani, I.; Lombini, M.; Schreiber, L.; Bertram, T.; Bizenberger, P.; De Bonis, F.; Gässler, W.; Herbst, T.; Kuerster, M.; Meschke, D.; Mohr, L.; Rohloff, R.-R.

    2010-07-01

    The LINC-NIRVANA wavefront sensors are in their AIT phase. The first Ground-layerWavefront Sensor (GWS) is shaping in the Adaptive Optics laboratory of the Astronomical Observatory of Padova, while both the Mid- High Wavefront Sensors (MHWSs) have been aligned and tested as stand-alone units in the Observatory of Bologna (MHWS#1 aligned to LINC-NIRVANA post focal relay optics). LINC-NIRVANA is a Fizeau infrared interferometer equipped with advanced, MultiConjugated Adaptive Optics (MCAO) for the Large Binocular Telescope. The aim of the instrument is to allow true interferometric imagery over a 10" square Field of View (FoV), getting the sensitivity of a 12m telescope and the spatial resolution of a 22.8m one. Thanks to the MCAO concept, LINC-NIRVANA will use up to 20 Natural Guide Stars (NGS) which are divided, according to Layer-Oriented Multiple Field of View technique, between the GWSs and the MHWSs. To find such a large number of references, the AO systems will use a wide FoV of 6' in diameter and the light coming from the references used by each WFS will optically sum on its CCD camera. The MHWSs will detect the deformations due to the high layers and will select up to 8 NGSs in the inner 2' FoV. The GWSs, instead, will reconstruct the deformations introduced by the lower atmosphere, which was found out to be the main source of seeing. Their peculiarity is the highest number of references (up to 12) ever used in a single instrument, selected in an annular 2'-6' FoV.

  16. Deepest Wide-Field Colour Image in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-01-01

    LA SILLA CAMERA OBSERVES CHANDRA DEEP FIELD SOUTH ESO PR Photo 02a/03 ESO PR Photo 02a/03 [Preview - JPEG: 400 x 437 pix - 95k] [Normal - JPEG: 800 x 873 pix - 904k] [HiRes - JPEG: 4000 x 4366 pix - 23.1M] Caption : PR Photo 02a/03 shows a three-colour composite image of the Chandra Deep Field South (CDF-S) , obtained with the Wide Field Imager (WFI) camera on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile). It was produced by the combination of about 450 images with a total exposure time of nearly 50 hours. The field measures 36 x 34 arcmin 2 ; North is up and East is left. Technical information is available below. The combined efforts of three European teams of astronomers, targeting the same sky field in the southern constellation Fornax (The Oven) have enabled them to construct a very deep, true-colour image - opening an exceptionally clear view towards the distant universe . The image ( PR Photo 02a/03 ) covers an area somewhat larger than the full moon. It displays more than 100,000 galaxies, several thousand stars and hundreds of quasars. It is based on images with a total exposure time of nearly 50 hours, collected under good observing conditions with the Wide Field Imager (WFI) on the MPG/ESO 2.2m telescope at the ESO La Silla Observatory (Chile) - many of them extracted from the ESO Science Data Archive . The position of this southern sky field was chosen by Riccardo Giacconi (Nobel Laureate in Physics 2002) at a time when he was Director General of ESO, together with Piero Rosati (ESO). It was selected as a sky region towards which the NASA Chandra X-ray satellite observatory , launched in July 1999, would be pointed while carrying out a very long exposure (lasting a total of 1 million seconds, or 278 hours) in order to detect the faintest possible X-ray sources. The field is now known as the Chandra Deep Field South (CDF-S) . The new WFI photo of CDF-S does not reach quite as deep as the available images of the "Hubble Deep Fields

  17. Clinical Trial Results Vary Widely, But Always Advance Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Clinical Trials Clinical Trial Results Vary Widely, But Always Advance Research Past ... very emotional." Should You Be Interested in a Clinical Trial People volunteer to take part in clinical trials ...

  18. Clinical Trial Results Vary Widely, But Always Advance Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Clinical Trials Clinical Trial Results Vary Widely, But Always Advance Research ... very emotional." Should You Be Interested in a Clinical Trial People volunteer to take part in clinical ...

  19. Calibration Status and Results for Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.

    2006-01-01

    Wide Field Camera 3 (WFC3) is a general-purpose imager in development for installation in HST Servicing Mission 4 (SM4). Covering the wavelength range of 200-1700 nm in two observing channels, WFC3 offers powerful new capabilities, particularly in the near-ultraviolet and near-infrared bands. During 2004, the instrument was integrated and underwent a substantial suite of end-to-end characterization and performance tests. In this paper, we present a brief overview of the design and scientific purpose of WFC3, summarize the results of its test program to date, and highlight some recent developments in detector technology that will further enhance the performance of WFC3 s IR channel.

  20. Wide-Field Astronomical Surveys in the Next Decade

    SciTech Connect

    Strauss, Michael A.; Tyson, J.Anthony; Anderson, Scott F.; Axelrod, T.S.; Becker, Andrew C.; Bickerton, Steven J.; Blanton, Michael R.; Burke, David L.; Condon, J.J.; Connolly, A.J.

    2009-03-01

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  1. Wide-Field Astronomical Surveys in the Next Decade

    SciTech Connect

    Strauss, Michael A.; Tyson, J.Anthony; Anderson, Scott F.; Axelrod, T.S.; Becker, Andrew C.; Bickerton, Steven J.; Blanton, Michael R.; Burke, David L.; Condon, J.J.; Connolly, A.J.; Cooray, Asantha R.; Covey, Kevin R.; Csabai, Istvan; Ferguson, Henry C.; Ivezic, Zeljko; Kantor, Jeffrey; Kent, Stephen M.; Knapp, G.R.; Myers, Steven T.; Neilsen, Eric H., Jr.; Nichol, Robert C.; /Portsmouth U., ICG /Harish-Chandra Res. Inst. /Caltech, IPAC /Potsdam, Max Planck Inst. /Harvard U. /Hawaii U. /UC, Berkeley, Astron. Dept. /Baltimore, Space Telescope Sci. /NOAO, Tucson /Carnegie Mellon U. /Chicago U., Astron. Astrophys. Ctr.

    2011-11-14

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  2. Data Reduction Algorithm for Optical Wide Field Patrol (OWL)

    NASA Astrophysics Data System (ADS)

    Park, S.; Park, Y.; Yim, H.; Jo, J.; Moon, H.; Bae, Y.; Lim, Y.; Choi, J.; Choi, Y.; Park, J.; Son, J.

    2014-09-01

    OWL (Optical Wide-field Patrol) has a detector system which has the chopper which consists of 4 blades in front of the CCD camera to acquire efficiently the position and time information of moving objects such as artificial satellites. Using this system, it is possible to get more position data by splitting the streaks of the moving object into many pieces with fast rotating blades during tracking. At the same time, the time data of the rotating chopper can be acquired by the time tagger connected to the photo diode. In order to derive the orbits of the targets, we need a sequential data reduction procedure including the calculation of WCS (World Coordinate System) solution to transform the positions into equatorial coordinate systems, and the combination of the time data from the time tagger and the position data. We present such a data reduction procedure and the preliminary results after applying this procedure to the observation images.

  3. Wide-Field InfraRed Survey Telescope WFIRST

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Fan, X.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Gehrels, N.; Sambruna, R.; Traub, W.; Barry, R. K.; Content, D.; Goullioud, R.; Grady, K.; Kruk, J.; Melton, M.; Peddie, C.; Rioux, N.; Seiffert, M.

    2012-01-01

    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASA's James Webb Space Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based Large Synoptic Survey Telescope (henceforth LSST), and again to reduce overall mission cost, while staying faithful to NWNH. This report presents both DRM1 and DRM2.

  4. PILOT: a wide-field telescope for the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Saunders, Will; Gillingham, Peter; McGrath, Andrew; Haynes, Roger; Brzeski, Jurek; Storey, John; Lawrence, Jon

    2008-07-01

    PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed Australian/European optical/infrared telescope for Dome C on the Antarctic Plateau, with target first light in 2012. The telescope is 2.4m diameter, with overall focal ratio f/10, and a 1 degree field-of-view. It is mounted on a 30m tower to get above most of the turbulent surface layer, and has a tip-tilt secondary for fast guiding. In median seeing conditions, it delivers 0.3" FWHM wide-field image quality, from 0.7-2.5 microns. In the best quartile of conditions, it delivers diffraction-limited imaging down to 1 micron, or even less with lucky imaging. The major challenges have been (a) preventing frost-laden external air reaching the optics, (b) overcoming residual surface layer turbulence, (c) keeping mirror, telescope and dome seeing to acceptable levels in the presence of large temperature variations with height and time, (d) designing optics that do justice to the site conditions. The most novel feature of the design is active thermal and humidity control of the enclosure, to closely match the temperature of external air while preventing its ingress.

  5. Wide Field-of-View Fluorescence Imaging of Coral Reefs

    PubMed Central

    Treibitz, Tali; Neal, Benjamin P.; Kline, David I.; Beijbom, Oscar; Roberts, Paul L. D.; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys. PMID:25582836

  6. Development of stable monolithic wide-field Michelson interferometers.

    PubMed

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. PMID:21772398

  7. Wide Field-of-View Fluorescence Imaging of Coral Reefs

    NASA Astrophysics Data System (ADS)

    Treibitz, Tali; Neal, Benjamin P.; Kline, David I.; Beijbom, Oscar; Roberts, Paul L. D.; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys.

  8. Wide-field, high-resolution Fourier ptychographic microscopy

    PubMed Central

    Zheng, Guoan; Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation. PMID:25243016

  9. Wide Field Survey for Sub-Second Optical Variability

    NASA Astrophysics Data System (ADS)

    O'Donnell, Liam; Pollacco, Don

    2008-02-01

    An Andor Ixon+EMCCD was used to monitor stellar variability and search, in the optical, for transient astronomical events at high time resolution (<1 sec) over a relatively large (9-degree) area of sky. A monitoring program, which targeted a 9-degree field in Lyra, was conducted during July 2006. The detector was equipped with a wide-angle lens and mounted piggyback on a commercial telescope located at the Roque de los Muchachos observing site on the island of La Palma. The field was monitored for 5 consecutive nights with a time resolution of a tenth of a second and an unfiltered limiting magnitude of 10. At present only a handful of astronomical objects have been monitored at this time resolution and there is limited survey data for large areas of sky. It is hoped the experiment will provide statistical analysis of optical variability of astronomical sources on sub-second timescales and potentially discover high-energy transient sources. The experiment will also investigate the applicability of the current generation of EMCCD detectors for such astronomical projects.

  10. Wide-field high-performance geosynchronous imaging

    NASA Astrophysics Data System (ADS)

    Wood, H. John; Jenstrom, Del; Wilson, Mark; Hinkal, Sanford; Kirchman, Frank

    1998-01-01

    The NASA Mission to Planet Earth (MTPE) Program and the National Oceanographic and Atmospheric Administration (NOAA) are sponsoring the Advanced Geosynchronous Studies (AGS) to develop technologies and system concepts for Earth observation from geosynchronous orbit. This series of studies is intended to benefit both MTPE science and the NOAA GOES Program. Within the AGS program, advanced imager trade studies have investigated two candidate concepts for near-term advanced geosynchronous imagers. One concept uses a scan mirror to direct the line of sight from a 3-axis stabilized platform. Another eliminates the need for a scan mirror by using an agile spacecraft bus to scan the entire instrument. The purpose of this paper is to discuss the optical design trades and system issues encountered in evaluating the two scanning approaches. The imager design started with a look at first principles: what is the most efficient way to image the Earth in those numerous spectral bands of interest to MTPE scientists and NOAA weather forecasters. Optical design trades included rotating filter wheels and dispersive grating instruments. The design converged on a bandpass filter instrument using four focal planes to cover the spectral range 0.45 to 13.0 micrometers. The first imager design uses a small agile spacecraft supporting an afocal optical telescope. Dichroic beamsplitters feed refractive objectives to four focal planes. The detectors are a series of long linear and rectangular arrays which are scanned in a raster fashion over the 17 degree Earth image. The use of the spacecraft attitude control system to raster the imager field-of-view (FOV) back and forth over the Earth eliminates the need for a scan mirror. However, the price paid is significant energy and time required to reverse the spacecraft slew motions at the end of each scan line. Hence, it is desired to minimize the number of scan lines needed to cover the full Earth disk. This desire, coupled with the ground

  11. Wide-field high-performance geosynchronous imaging

    SciTech Connect

    Wood, H. John; Jenstrom, Del; Wilson, Mark; Hinkal, Sanford; Kirchman, Frank

    1998-01-15

    The NASA Mission to Planet Earth (MTPE) Program and the National Oceanographic and Atmospheric Administration (NOAA) are sponsoring the Advanced Geosynchronous Studies (AGS) to develop technologies and system concepts for Earth observation from geosynchronous orbit. This series of studies is intended to benefit both MTPE science and the NOAA GOES Program. Within the AGS program, advanced imager trade studies have investigated two candidate concepts for near-term advanced geosynchronous imagers. One concept uses a scan mirror to direct the line of sight from a 3-axis stabilized platform. Another eliminates the need for a scan mirror by using an agile spacecraft bus to scan the entire instrument. The purpose of this paper is to discuss the optical design trades and system issues encountered in evaluating the two scanning approaches. The imager design started with a look at first principles: what is the most efficient way to image the Earth in those numerous spectral bands of interest to MTPE scientists and NOAA weather forecasters. Optical design trades included rotating filter wheels and dispersive grating instruments. The design converged on a bandpass filter instrument using four focal planes to cover the spectral range 0.45 to 13.0 micrometers. The first imager design uses a small agile spacecraft supporting an afocal optical telescope. Dichroic beamsplitters feed refractive objectives to four focal planes. The detectors are a series of long linear and rectangular arrays which are scanned in a raster fashion over the 17 degree Earth image. The use of the spacecraft attitude control system to raster the imager field-of-view (FOV) back and forth over the Earth eliminates the need for a scan mirror. However, the price paid is significant energy and time required to reverse the spacecraft slew motions at the end of each scan line. Hence, it is desired to minimize the number of scan lines needed to cover the full Earth disk. This desire, coupled with the ground

  12. SSC Geopositional Assessment of the Advanced Wide Field Sensor

    NASA Technical Reports Server (NTRS)

    Ross, Kenton

    2007-01-01

    The objective is to provide independent verification of IRS geopositional accuracy claims and of the internal geopositional characterization provided by Lutes (2005). Six sub-scenes (quads) were assessed; Three from each AWiFS camera. Check points were manually matched to digital orthophoto quarter quadrangle (DOQQ) reference (assumed accuracy approx. 5 m, RMSE) Check points were selected to meet or exceed Federal Geographic Data Committee's guidelines. Used ESRI ArcGIS for data collection and SSC-written MATLAB scripts for data analysis.

  13. WiFeS: the wide field spectrograph

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Waldron, Liam E.; McGregor, Peter; Conroy, Peter; Doolan, Matthew C.; Zhelem, Ross; Bloxham, Gabe; Saunders, Will; Jones, Damien; Pfitzner, Lee

    2004-09-01

    WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent thoughput, precision spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320-1000 nm wavelength region. It is currently under construction at the Research School of Astronomy and Astrophysics of the Australian National University (ANU), and will be mounted on the ANU 2.3m telescope at Siding Spring Observatory. It will provide a 25x31 arc sec field with 0.5 arc sec sampling along each of twenty five 31x1.0 arc sec slitlets. The output format is arranged to match the 4096x4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of "interleaved nod-and-shuffle" will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions modes of 3000 and 7000 will be provided. The full spectral range is covered in a single exposure in the R=3000 mode, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope and atmosphere) that peaks above 30%. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize the scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.

  14. System and methods for wide-field quantitative fluorescence imaging during neurosurgery.

    PubMed

    Valdes, Pablo A; Jacobs, Valerie L; Wilson, Brian C; Leblond, Frederic; Roberts, David W; Paulsen, Keith D

    2013-08-01

    We report an accurate, precise and sensitive method and system for quantitative fluorescence image-guided neurosurgery. With a low-noise, high-dynamic-range CMOS array, we perform rapid (integration times as low as 50 ms per wavelength) hyperspectral fluorescence and diffuse reflectance detection and apply a correction algorithm to compensate for the distorting effects of tissue absorption and scattering. Using this approach, we generated quantitative wide-field images of fluorescence in tissue-simulating phantoms for the fluorophore PpIX, having concentrations and optical absorption and scattering variations over clinically relevant ranges. The imaging system was tested in a rodent model of glioma, detecting quantitative levels down to 20 ng/ml. The resulting performance is a significant advance on existing wide-field quantitative imaging techniques, and provides performance comparable to a point-spectroscopy probe that has previously demonstrated significant potential for improved detection of malignant brain tumors during surgical resection. PMID:23903142

  15. An all-reflective wide-angle flat-field telescope for space

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1984-01-01

    An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.

  16. PRIMO: A Wide Field Prime Focus Infrared Mosaic Camera

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bally, J.; Green, J.; Morse, J.; Probst, R.; Green, R.; Joyce, R.; Liang, M.; Arentz, R.; Reitsema, H.; Marriott, J.

    2000-12-01

    We describe a proposal for a major new facility infrared camera for the NOAO 4-m telescopes. With a half-degree field of view at prime focus, a refractive collimator-camera design, and a 1-2.5 um range, PRIMO will enable deep, wide-field infrared surveys. The need for surveys which bridge the five-magnitude gap between 2MASS and 8-10 m spectroscopic sensitivity is well established. PRIMO will enable high-latitude broadband surveys to trace the luminosity and clustering evolution of galaxies, investigations into the composition and history of young stellar populations throughout the total volume of star-forming complexes, narrow-band imaging surveys of star forming regions, and of nebulae formed in late stellar evolutionary stages. The NOAO 4-m telescopes are well suited to this role, and PRIMO will also empower US investment in Gemini and other new generation very large telescopes. By leveraging this instrument with the previous NSF investment in these telescopes, we will provide the US community with a survey facility comparable to the UK VISTA project at a fraction of the latter's cost. This project will be carried out through teaming of an accomplished university group, CU-Boulder, a national center, NOAO, and an aerospace industry partner, Ball Aerospace & Technologies Corp. Our approach is a new model for developing major ground-based astronomical instruments. The instrument concept has been developed and costed, and we meet our performance goals with a straightforward, low-risk design. The project schedule is aggressive: two years from start of funding to first light.

  17. Astrometric Calibration of Digitized Wide-Field Photographic Plates

    NASA Astrophysics Data System (ADS)

    Boyce, Peter B.; Truong, P. N.

    2006-12-01

    8000 photographic plates originally taken at Maria Mitchell Observatory from 1913 to 1996 were scanned and digitized in 2002-2003. The resulting scans are stored in TIFF format. We have investigated the use of currently existing tools to convert plate coordinates to RA and Dec to ready the scans for inclusion in the National Virtual Observatory. This involves converting the scans to FITS format and adding WCS headers. Five of the digitized images, with slightly different centers, covering 13° x 16° in Cygnus, were calibrated using the CDS Aladin program version 3.6. An initial Tangent Plane fit was produced by entering parameters applicable for the MMO plates. The images were first calibrated by parameters. The calibration was refined by matching stars images with their positions by overlaying the positions from the Bright Star Catalog. Once a reasonably accurate calibration has been determined, additional star catalogs can be used to refine the calibration. We find that the accuracy of the calibration for a Tangent Plane is not heavily dependent upon the number of stars used. Using a simple Tangent Plane model on these wide-field plates, the coordinates of objects near the edges of the plate often differ from coordinates of objects in the catalog by up to an arcminute. As a check, we also used the WCS Tools programs written by Doug Mink at the Harvard-Smithsonian CfA, and they yield the same results. A satisfactory astrometric calibration which covers the whole field will require the use of higher order polynomials. This project was supported by the NSF/REU grant AST-0354056, the NASA/AAS Small Research Grant Program and the Nantucket Maria Mitchell Association.

  18. PSF reconstruction for MUSE in wide field mode

    NASA Astrophysics Data System (ADS)

    Villecroze, R.; Fusco, Thierry; Bacon, Roland; Madec, Pierre-Yves

    2012-07-01

    The resolution of ground-based telescopes is dramatically limited by the atmospheric turbulence.. Adaptative optics (AO) is a real-time opto-mechanical approach which allows to correct for the turbulence effect and to reach the ultimate diffraction limit astronomical telescopes and their associated instrumentation. Nevertheless, the AO correction is never perfect especially when it has to deal with large Field of View (FoV). Hence, a posteriori image processing really improves the final estimation of astrophysical data. Such techniques require an accurate knowledge of the system response at any position in the FoV The purpose of this work is then the estimation of the AO response in the particular case of the MUSE [1] /GALACSI [2] instrument (a 3D mult-object spectrograph combined with a Laser-assisted wide field AO system which will be installed at the VLT in 2013). Using telemetry data coming from both AO Laser and natural guide stars, a Point Spread Function (PSF) is derived at any location of the FoV and for every wavelength of the MUSE spectrograph. This document presents the preliminary design of the MUSE WFM PSF reconstruction process. The various hypothesis and approximations are detailed and justified. A first description of the overall process is proposed. Some alternative strategies to improve the performance (in terms of computation time and storage) are described and have been implemented. Finally, after a validation of the proposed algorithm using end-to-end models, a performance analysis is conducted (with the help of a full end-to-end model). This performance analysis will help us to populate an exhaustive error budget table.

  19. Update on the Wide-field Infrared Survey Explorer (WISE)

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Eisenhardt, Peter; Wright, Edward L.; Liu, Feng-Chuan; Irace, William; Heinrichsen, Ingolf; Cutri, Roc; Duval, Valerie

    2006-01-01

    The Wide-field Infrared Survey Explorer (WISE), a NASA MIDEX mission, will survey the entire sky in four bands from 3.3 to 23 microns with a sensitivity 1000 times greater than the IRAS survey. The WISE survey will extend the Two Micron All Sky Survey into the thermal infrared and will provide an important catalog for the James Webb Space Telescope. Using 1024(sup 2) HgCdTe and Si:As arrays at 3.3, 4.7, 12 and 23 microns, WISE will find the most luminous galaxies in the universe, the closest stars to the Sun, and it will detect most of the main belt asteroids larger than 3 km. The single WISE instrument consists of a 40 cm diamond-turned aluminum afocal telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 5 resolution (full-width-half-maximum). The use of dichroics and beamsplitters allows four color images of a 47' x47' field of view to be taken every 8.8 seconds, synchronized with the orbital motion to provide total sky coverage with overlap between revolutions. WISE will be placed into a Sun-synchronous polar orbit on a Delta 7320-10 launch vehicle. The WISE survey approach is simple and efficient. The three-axis-stabilized spacecraft rotates at a constant rate while the scan mirror freezes the telescope line of sight during each exposure. WISE has completed its mission Preliminary Design Review and its NASA Confirmation Review, and the project is awaiting confirmation from NASA to proceed to the Critical Design phase. Much of the payload hardware is now complete, and assembly of the payload will occur over the next year. WISE is scheduled to launch in late 2009; the project web site can be found at www.wise.ssl.berkeley.edu.

  20. Development of the wide field imager for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Eder, Josef; Fürmetz, Maria; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Reiffers, Jonas; Strecker, Rafael; Barbera, Marco; Brand, Thorsten; Wilms, Jörn

    2015-08-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be <= 150 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of four large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single smaller gateable DEPFET sensor matrix optimized for high count-rate observations. Here we present the conceptual design of the instrument with focus on the critical subsystems and describe the instrument performance expectations. An outline of the model philosophy and the project organization completes the presentation.

  1. Advancements of molecularly imprinted polymers in the food safety field.

    PubMed

    Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie

    2016-06-01

    Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement. PMID:26937495

  2. Wide-Field Slitless Spectroscopy with JWST/NIRISS

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Ravindranath, Swara; Willott, Chris

    2015-08-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) aboard the James Webb Space Telescope (JWST) will offer wide-field slitless spectroscopy (WFSS) with a resolving power R = 150 at wavelengths from 0.8 to 2.25 microns. In this band, NIRISS will be sensitive to Lyman-alpha emission lines and continuum breaks in the spectra of galaxies with redshifts 6 < z < 17, allowing it to probe the first stars and ionizing sources in the early universe. NIRISS observations of the high-redshift universe will provide a wealth of information on foreground objects, creating a unique library of optical emission-line spectra from the faintest galaxies at lower redshifts. To explore its ability to identify and characterize galaxies at all redshifts, we have modeled NIRISS observations of a massive strong-lensing galaxy cluster and analyzed the synthetic images using standard software tools. Our simulations demonstrate that WFSS with NIRISS will provide a powerful tool for the exploration of galaxies near and far.NIRISS is provided to the JWST project by the Canadian Space Agency under the leadership of René Doyon of the Université de Montréal. The prime contractor is COM DEV Canada.

  3. Metrology of confined flows using wide field nanoparticle velocimetry

    PubMed Central

    Ranchon, Hubert; Picot, Vincent; Bancaud, Aurélien

    2015-01-01

    The manipulation of fluids in micro/nanofabricated systems opens new avenues to engineer the transport of matter at the molecular level. Yet the number of methods for the in situ characterization of fluid flows in shallow channels is limited. Here we establish a simple method called nanoparticle velocimetry distribution analysis (NVDA) that relies on wide field microscopy to measure the flow rate and channel height based on the fitting of particle velocity distributions along and across the flow direction. NVDA is validated by simulations, showing errors in velocity and height determination of less than 1% and 8% respectively, as well as with experiments, in which we monitor the behavior of 200 nm nanoparticles conveyed in channels of ~1.8 μm in height. We then show the relevance of this assay for the characterization of flows in bulging channels, and prove its suitability to characterize the concentration of particles across the channel height in the context of visco-elastic focusing. Our method for rapid and quantitative flow characterization has therefore a broad spectrum of applications in micro/nanofluidics, and a strong potential for the optimization of Lab-on-Chips modules in which engineering of confined transport is necessary. PMID:25974654

  4. Hubble Space Telescope, Wide Field and Planetary Camera

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. Wide field of view multifocal scanning microscopy with sparse sampling

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wu, Jigang

    2016-02-01

    We propose to use sparsely sampled line scans with a sparsity-based reconstruction method to obtain images in a wide field of view (WFOV) multifocal scanning microscope. In the WFOV microscope, we used a holographically generated irregular focus grid to scan the sample in one dimension and then reconstructed the sample image from line scans by measuring the transmission of the foci through the sample during scanning. The line scans were randomly spaced with average spacing larger than the Nyquist sampling requirement, and the image was recovered with sparsity-based reconstruction techniques. With this scheme, the acquisition data can be significantly reduced and the restriction for equally spaced foci positions can be removed, indicating simpler experimental requirement. We built a prototype system and demonstrated the effectiveness of the reconstruction by recovering microscopic images of a U.S. Air Force target and an onion skin cell microscope slide with 40, 60, and 80% missing data with respect to the Nyquist sampling requirement.

  6. Wide-Field Slitless Spectroscopy with JWST/NIRISS

    NASA Astrophysics Data System (ADS)

    Dixon, William V.

    2013-01-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) is one of four scientific instruments that will fly aboard the James Webb Space Telescope (JWST) later in this decade. Among its capabilities, NIRISS offers wide-field slitless spectroscopy (WFSS) with a resolving power R = 150 over the wavelength range 1.0 to 2.25 microns using a pair of grisms that disperse light in orthogonal directions. Employing the software packages aXe and Source Extractor, we have developed the configuration files needed to model WFSS observations with NIRISS and to extract and calibrate the resulting spectra. These files, together with a cookbook detailing their use, are available on the JWST/NIRISS web site at STScI. Using these tools, we construct synthetic images of the near-IR sky, identify and extract the spectra of individual sources, and demonstrate that NIRISS can observe galaxies with redshifts up to z = 17. NIRISS is provided to the JWST project by the Canadian Space Agency under the leadership of René Doyon of the Université de Montréal. The prime contractor is COM DEV Canada.

  7. WISH: Wide-field Imaging Durvayor for High-redshift

    NASA Astrophysics Data System (ADS)

    Yamada, Toru

    2015-08-01

    We introduce the concept and current status of WISH project and discuss the science cases. WISH is a proposed space science mission for JAXA, which is dedicated for the deep and wide-field near-infrared imaging surveys. The mission contains the 1.5m cooled telescope as well as the imager with the FoV of ~850 square arcmin. The main goal of WISH is to detect and study galaxies at z=8-15 in the earliest history of structure formation in the universe. The key feature is to conduct WISH Ultra Deep Survey, which images in total of 100 square degrees in 6 broad-band filters at 0.9-4.5 micron down to 28AB magnitude. While more than 10^5 galaxies at z=8-9, 10^4 galaxies at z=11-12 will be detected, WISH-UDS is designed to constrain UV luminosity function at z=15. Depending on the models of the earliest evolution history, 1-1000 galaxies at z~15 (~100 galaxies for the moderate cases) will be detected. The UV spectral properties as well as the clustering properties of galaxies at z=8-15 can be studied as well; UV slope can be measured up to z=15, and the stellar and dark-matter-halo masses can be obtained up to z=9. WISH UDS can provide excellent opportunities for studying SNe at high redshift. Up to ~7000 type Ia SNe at z>1 can be detected and the distance modulus can be constrained with the precision of 0.9-1.5% at z>1.5. More than 100 Super Luminous SNe at z>6, and 10 SLSN at z>10 can also be detected, which allow us to study the earliest history of massive star formation in the universe. WISH imaging surveys as well as WISHSpec, which is an optional parallel-operation simple IFU spectrograph, also provide unique opportunities in various astronomical fields. WISH mission proposal was submitted to JAXA in February 2015 for the first down selection of JAXA Large Strategic Science Mission targeting the launch date in 2020-22. International collaborations including SAO (G.Fazio et al.), LAM (D. Burgarella et al.) and Canada (M.Sawicki et al.) are also actively coordinated.

  8. MIRIS: A Compact Wide-field Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Han, Wonyong; Lee, Dae-Hee; Jeong, Woong-Seob; Park, Youngsik; Moon, Bongkon; Park, Sung-Joon; Pyo, Jeonghyun; Kim, Il-Joong; Park, Won-Kee; Lee, Dukhang; Seon, Kwang-Il; Nam, Uk-Won; Cha, Sang-Mok; Park, Kwijong; Park, Jang-Hyun; Yuk, In-Soo; Ree, Chang Hee; Jin, Ho; Choel Yang, Sun; Park, Hong-Young; Shin, Goo-Hwan; Seo, Joung-Ki; Rhee, Seung-Wu; Park, Jong-Oh; Lee, Hyung Mok; Murakami, Hiroshi; Matsumoto, Toshio

    2014-09-01

    A compact infrared space telescope called MIRIS (Multi-purpose Infra-Red Imaging System) was developed by the Korea Astronomy and Space Science Institute (KASI), and launched onboard the Science and Technology Satellite-3 of Korea (STSAT-3) in 2013 November. The main mission of MIRIS is the Paschen-α emission line survey along the Galactic plane and the cosmic infrared background (CIB) observation, particularly around the north ecliptic pole region. For these missions, a wide field of view (3.67 × 3.67°) with an angular resolution of 51.6'' and wavelength coverage from 0.9 ~ 2.0 μm have been adopted for MIRIS, having optical components consisting of a 80 mm main lens and four other lenses with F/2 focal ratio optics. The opto-mechanical system was carefully designed to minimize any effects from shock during the launch process and thermal variation. Also, the telescope was designed to use a passive cooling technique to maintain the temperature around 200 K in order to reduce thermal noise. A micro Stirling cooler was used to cool down the Teledyne PICNIC infrared array to 90 K, which was equipped in a dewar with four filters for infrared passbands of I, H, and Paschen-α and a dual-band continuum line filter. MIRIS system was integrated into the STSAT-3 as its primary payload and successfully passed required tests in the laboratory, such as thermal-vacuum, vibration, and shock tests. MIRIS is now operating in sun synchronous orbits for initial tests and has observed its first images successfully.

  9. 3D defect detection using optical wide-field microscopy

    NASA Astrophysics Data System (ADS)

    Tympel, Volker; Schaaf, Marko; Srocka, Bernd

    2007-06-01

    We report a method to detect signed differences in two similar data sets representing 3-dimensional intensity profiles recorded by optical wide-field microscopes. The signed differences describe missing or unexpected intensity values, defined as defects. In technical applications like wafer and mask inspection, data sets often represent surfaces. The reported method is able to describe the size and position especially in relation to the neighboring surface and is called Three-Dimension-Aberration (TDA)-Technology. To increase the tool performance and to handle different sizes of defects a scaled bottom-up method is implemented and started with high reduced data sets for the search of large defects. Each analysis contains three steps. The first step is a correlation to calculate the displacement vector between the similar data sets. In the second step a new data set is created. The new data set consists of intensity differences. Extreme values in the data set represent the position of defects. By the use of linear and non-linear filters the stability of detection can be improved. If all differences are below a threshold the bottom-up method starts with the next larger scaled data set. In the other case it is assumed that the defect is detected and step three starts with the detection of the convex hull of the defect and the search of the neighboring surface. As a result the defect is described by a parameter set including the relative position. Because of the layered structure of the data set and the bottom-up technique the method is suitable for multi-core processor architectures.

  10. Wide-Field Optic for Autonomous Acquisition of Laser Link

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit

    2011-01-01

    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to

  11. Wide field-of-view dual-band multispectral muzzle flash detection

    NASA Astrophysics Data System (ADS)

    Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.

    2013-06-01

    Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.

  12. Recent Advances in the Trichomonas vaginalis Field

    PubMed Central

    Leitsch, David

    2016-01-01

    The microaerophilic protist parasite Trichomonas vaginalis is occurring globally and causes infections in the urogenital tract in humans, a condition termed trichomoniasis. In fact, trichomoniasis is the most prevalent non-viral sexually transmitted disease with more than 250 million people infected every year. Although trichomoniasis is not life threatening in itself, it can be debilitating and increases the risk of adverse pregnancy outcomes, HIV infection, and, possibly, neoplasias in the prostate and the cervix. Apart from its role as a pathogen, T. vaginalis is also a fascinating organism with a surprisingly large genome for a parasite, i. e. larger than 160 Mb, and a physiology adapted to its microaerophilic lifestyle. In particular, the hydrogenosome, a mitochondria-derived organelle that produces hydrogen, has attracted much interest in the last few decades and rendered T. vaginalis a model organism for eukaryotic evolution. This review will give a succinct overview of the major advances in the T. vaginalis field in the last few years. PMID:26918168

  13. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  14. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ∼4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  15. A fast, wide field of view, catadioptric telescope for Whipple

    NASA Astrophysics Data System (ADS)

    McGuire, James P.

    2014-12-01

    We describe the optical design of a spaceborne f/1.3 catadioptric telescope with a 9 degree field and 77 cm aperture that is being proposed to study objects in the Kuiper belt, Sedna Region, and Oort cloud.

  16. Simulation of thermal fields using different types of wide burnishing

    NASA Astrophysics Data System (ADS)

    Bobrovskij, N. M.; Melnikov, P. A.; Grigoriev, S. N.; Bobrovskij, I. N.

    2015-09-01

    The article features simulation of heat build-up in the tool while treatment using different types wide burnishing. The understanding of conditions of heat build-up and heat distribution and the quantitative estimation on the finishing stages of part's treatment is always challenging, because there is a possibility of negative and nonreciprocal effect onto the development of performance properties of treated parts. This issue gains particular importance during treatment, including burnishing using no means of lubrication.

  17. Development of the wide-field IFU PPak

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Verheijen, Marc; Roth, Martin M.; Laux, Uwe; Bauer, Svend-Marian

    2004-09-01

    PPak is a new fiber-bundle, developed at the Astrophysical Institute Potsdam for the existing PMAS 3D-instrument. The intention of PPak is to provide a large integral field-of-view in combination with a large collecting area per fiber for the study of extended low-surface brightness objects. The PPak system consists of a focal reducer lens and a fiber bundle, featuring an innovative design with object, sky and calibration fibers. With a field-of-view of 74 x 65 arcseconds, PPak currently is the world's widest integral field unit that provides a semi-contiguous regular sampling of extended astronomical objects. Its pre-optics and fiber-diameter, combined with the versatility and efficiency of the PMAS spectrograph, allows PPak to make a unique trade-off between total light-collecting power and spectral resolution.

  18. Wide field snapshot imaging polarimeter using modified Savart plates

    NASA Astrophysics Data System (ADS)

    Saito, Naooki; Odate, Satoru; Otaki, Katsura; Kubota, Masahiro; Kitahara, Rintaro; Oka, Kazuhiko

    2013-09-01

    Without moving parts, the snapshot imaging polarimeter utilizing Savart plates is capable of stable and fast measurements of spatiallly distributed Stokes parameters. To increase feasibility of the optical design, we propose modi cations that enable a wider eld-of view. By changing the Savar plates' con guration and improving the calibration procedure, the unwanted effects associated with the increase in the eld of view can be reduced. We carried out the veri cation experiments of the wide eld of view snapshot imaging polarimeter.

  19. Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.

  20. Design of a wide field of view infrared scene projector

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenyu; Li, Lin; Huang, YiFan

    2008-03-01

    In order to make the projected scene cover the seeker's field-of-view promptly the conventional projection optical systems used for hardware-in-the-loop simulation test usually depend on the 5 axes flight-motion-simulator. Those flight-motion-simulator tables are controlled via servomechanisms. The servomechanism needs many axis position transducers and many electromechanical devices. The structure and controlling procedure of the system are complicated. It is hard to avoid the mechanical motion and controlling errors absolutely. The target image jitter will be induced by the vibration of mechanical platform, and the frequency response is limited by the structural performance. To overcome these defects a new infrared image simulating projection system for hardware-in-the-loop simulation test is presented in this paper. The system in this paper consists of multiple lenses joined side by side on a sphere surface. Each single lens uses one IR image generator or resistor array etc. Every IR image generator displays special IR image controlled by the scene simulation computer. The scene computer distributes to every IR image generator the needed image. So the scene detected by the missile seeker is integrated and uninterrupted. The entrance pupil of the seeker lies in the centre of the sphere. Almost semi-sphere range scene can be achieved by the projection system, and the total field of view can be extended by increasing the number of the lenses. However, the luminance uniformity in the field-of-view will be influenced by the joint between the lenses. The method of controlling the luminance uniformity of field-of-view is studied in this paper. The needed luminous exitance of each resist array is analyzed. The experiment shows that the new method is applicable for the hardware-in-the-loop simulation test.

  1. A Compact, Fast, Wide-Field Imaging Spectrometer System

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; VanGorp, Byron E.; White, Victor E.; Mumolo, Jason M.; Hebert, Daniel; Feldman, Martin

    2011-01-01

    We present test results from a compact, fast (F/1.4) imaging spectrometer system with a 33 degree field of view, operating in the 450-1650 nm wavelength region with an extended response InGaAs detector array. The system incorporates a simple two-mirror telescope and a steeply concave bilinear groove diffraction grating made with gray scale x-ray lithography techniques. High degree of spectral and spatial uniformity (97%) is achieved.

  2. Engineering a highly segmented very wide-field spectrograph

    NASA Astrophysics Data System (ADS)

    Ragazzoni, R.; Fontana, A.; Maccagni, D.; Baruffolo, A.; Bianco, A. G.; diPaola, A.; Farinato, J.; Gentile, G.; Giallongo, E.; Pedichini, F.; Speziali, R.; Testa, V.

    2010-07-01

    The concept of segmenting the focal plane of an existing 8m class telescope in order to fill it with an array of several fast cameras has been developed further and in this work the status of an engineering program aimed to produce a design qualified for the construction, and to assess its cost estimates is presented. The original concept of just having simple cameras with all identical optical components other than a pupil plane corrector to remove the fixed aberrations at the off-axis field of a telescope has been extended to introduce a spectroscopic capability and to assess a trade-off between a very large number (of the order of thousand) of cameras with a small single Field of View with a smaller number of cameras able to compensate the aberration on a much larger Field of View with a combination of different optical elements and different ways to mount and align them. The scientific target of a few thousands multi-slit spectra over a Field of View of a few square degrees, combined with the ambition to mount this on an existing 8m class telescope makes the scientific rationale of such an instrument a very interesting one. In the paper we describe the different options for a possible optical design, the trade off between variations on the theme of the large segmentation and we describe briefly the way this kind of instrument can handle a multi-slit configuration. Finally, the feasibility of the components and a brief description of how the cost analysis is being performed are given. Perspectives on the construction of this spectrograph are given as well.

  3. Wide Field Imaging of the Hubble Deep Field-South Region III: Catalog

    NASA Technical Reports Server (NTRS)

    Palunas, Povilas; Collins, Nicholas R.; Gardner, Jonathan P.; Hill, Robert S.; Malumuth, Eliot M.; Rhodes, Jason; Teplitz, Harry I.; Woodgate, Bruce E.

    2002-01-01

    We present 1/2 square degree uBVRI imaging around the Hubble Deep Field - South. These data have been used in earlier papers to examine the QSO population and the evolution of the correlation function in the region around the HDF-S. The images were obtained with the Big Throughput Camera at CTIO in September 1998. The images reach 5 sigma limits of u approx. 24.4, B approx. 25.6, V approx. 25.3, R approx. 24.9 and I approx. 23.9. We present a catalog of approx. 22,000 galaxies. We also present number-magnitude counts and a comparison with other observations of the same field. The data presented here are available over the world wide web.

  4. Science yield estimate with the Wide-Field Infrared Survey Telescope coronagraph

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.; Breckinridge, James; Greene, Thomas P.; Guyon, Olivier; Jeremy Kasdin, N.; Macintosh, Bruce

    2016-01-01

    The coronagraph instrument (CGI) on the Wide-Field Infrared Survey Telescope will directly image and spectrally characterize planets and circumstellar disks around nearby stars. Here we estimate the expected science yield of the CGI for known radial-velocity (RV) planets and potential circumstellar disks. The science return is estimated for three types of coronagraphs: the hybrid Lyot and shaped pupil are the currently planned designs, and the phase-induced amplitude apodizing complex mask coronagraph is the backup design. We compare the potential performance of each type for imaging as well as spectroscopy. We find that the RV targets can be imaged in sufficient numbers to produce substantial advances in the science of nearby exoplanets. To illustrate the potential for circumstellar disk detections, we estimate the brightness of zodiacal-type disks, which could be detected simultaneously during RV planet observations.

  5. A Powerful New Imager for HST: Performance and Early Science Results from Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2009-01-01

    Wide Field Camera 3 (WFC3) was installed into the Hubble Space Telescope during the highly successful Servicing Mission 4 in May, 2009. WFC3 offers sensitive, high resolution imaging over a broad wavelength range from the near UV through the visible to the near IR (200nm - 1700nm). Its capabilities in the near UV and near IR ends of that range represent particularly large advances vs. those of previous HST instruments. In this talk, I will review the purpose and design of the instrument, describe its performance in flight, and highlight some of the initial scientific results from the instrument, including its use in deep infrared surveys in search of galaxies at very high redshift, in investigations of the global processes of star formation in nearby galaxies, and in the study of the recent impact on Jupiter.

  6. Wide-field Raman imaging for bone detection in tissue.

    PubMed

    Papour, Asael; Kwak, Jin Hee; Taylor, Zach; Wu, Benjamin; Stafsudd, Oscar; Grundfest, Warren

    2015-10-01

    Inappropriate bone growth in soft tissue can occur after trauma to a limb and can cause a disruption to the healing process. This is known as Heterotopic Ossification (HO) in which regions in the tissue start to mineralize and form microscopic bone-like structures. These structures continue to calcify and develop into large, non-functional bony masses that cause pain, limit limb movement, and expose the tissue to reoccurring infections; in the case of open wounds this can lead to amputation as a result of a failed wound. Both Magnetic Resonance Imaging (MRI) and X-ray imaging have poor sensitivity and specificity for the detection of HO, thus delaying therapy and leading to poor patient outcomes. We present a low-power, fast (1 frame per second) optical Raman imaging system with a large field of view (1 cm(2)) that can differentiate bone tissue from soft tissue without spectroscopy, this in contrast to conventional Raman microscopy systems. This capability may allow for the development of instrumentation which permits bedside diagnosis of HO. PMID:26504639

  7. Advanced field automation in the Tuscaloosa trend

    SciTech Connect

    MacDonald, T.E.

    1986-01-01

    The Tuscaloosa Automated Production System (TAPS) was developed in response to the difficult producing environment of the Tuscaloosa deep gas trend. It has subsequently been expanded to include a waterflood project in a shallow oil field. This paper illustrates how TAPS transforms field automation into a simple tool that the entire staff can use to optimize and analyze field conditions. Examples of features such as the annunciator, schematic diagrams, and process control demonstrate the system's ability to aid in field operations. Other options including online history, real time data graphs, and automatic reporting show how automation is used to analyze field conditions. Four years of experience have proven these features enable both field and office staffs, that have no ''computer''training, to use the system as an integral part of the daily producing routine.

  8. Geometry of the Hubble Space Telescope Wide Field/Planetary Camera field

    NASA Technical Reports Server (NTRS)

    Gould, Andrew; Yanny, Brian

    1994-01-01

    We present a solution for the relative positions and orientations of the four charge coupled device (CCD) chips on the Hubble Space Telescope (HST) Planetary Camera (PC). An accurate solution is required when matching HST images with ground-based images or with one another. The solution is accurate to about 2/3 PC pixel or about .03 sec, a tenfold improvement over the best previous solution. The CCDs are rotated relative to one another by up to 1 deg. The solution is based on images taken between December 1990 and June 1992 and is stable over that entire period. We also present a solution for the relative positions and orientations of the four CCD chips on the HST Wide Field Camera (WFC). This solution is accurate to about 1/2 WFC pixel or about .05 sec.

  9. Assessment Practices of Advanced Field Ecology Courses

    ERIC Educational Resources Information Center

    Lei, Simon A.

    2010-01-01

    Learning is an active process, best facilitated by involving the learning in cognitive engagement with the information to be learned. Most college ecology instructors consist of lecture and exams, but also include active components of laboratories and field trips (campus and off-campus). Field trips can be subdivided into three major phases:…

  10. Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Hofmann, A.; Staude, J.

    The third Advances in Solar Physics Euroconference (ASPE) "Magnetic Fields and Oscillations"concluded a series of three Euroconferences sponsored by the European Union. The meeting took place in Caputh near Potsdam, Germany, on September 22-25, 1998, followed by the JOSO (Joint Organization for Solar Observations) 30th Annual Board Meeting on September 26, 1998. The ASPE formula is attractive and compares well with other meetings with "show-and-tell" character. This meeting had 122 participants coming from 26 countries; 36 participants came from countries formerly behind the Iron Curtain; a "politically incorrect" estimate says that 48 participants were below 35 years of age, with an unusually large female-to-male ratio. This characteristic of youngness is the more striking since solar physics is a perhaps overly established field exhibiting an overly senior age profile. It was a good opportunity to train this young generation in Solar Physics. The conference topic "Magnetic Fields and Oscillations" obviously was wide enough to cater to many an interest. These proceedings are organized according to the structure of the meeting. They include the topics 'High resolution spectropolarimetry and magnetometry', 'Flux-tube dynamics', 'Modelling of the 3-D magnetic field structure', 'Mass motions and magnetic fields in sunspot penumbral structures', 'Sunspot oscillations', 'Oscillations in active regions - diagnostics and seismology', 'Network and intranetwork structure and dynamics', and 'Waves in magnetic structures'. These topics covered the first 2.5 days of the conference. The reviews, oral contributions, and poster presentations were by no means all of the meeting. The ASPE formula also adds extensive plenary sessions of JOSO Working groups on topics that involve planning of Europe-wide collaboration. At this meeting these concerned solar observing techniques, solar data bases, coordination between SOHO and ground-based observing, and preparations for August 11, 1999

  11. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  12. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  13. Wide-field Ca2+ imaging reveals visually evoked activity in the retrosplenial area

    PubMed Central

    Murakami, Tomonari; Yoshida, Takashi; Matsui, Teppei; Ohki, Kenichi

    2015-01-01

    Due to recent advances of genetic manipulation, mouse brain has become a useful model for studying brain function, which demands whole brain functional mapping techniques in the mouse brain. In the present study, to finely map visual responsive areas in the mouse brain, we combined high-resolution wide-field optical imaging with transgenic mice containing the genetically encoded Ca2+ indicator, GCaMP3. With the high signal amplitude of GCaMP3 expressing in excitatory neurons, this system allowed neural activity to be observed with relatively fine spatial resolution and cell-type specificity. To evaluate this system, we examined whether non-visual areas exhibited a visual response over the entire surface of the mouse hemisphere. We found that two association areas, the retrosplenial area (RS) and secondary motor/anterior cingulate area (M2/AC), were significantly responsive to drifting gratings. Examination using gratings with distinct spatiotemporal frequency parameters revealed that the RS strongly responded to high-spatial and low-temporal frequency gratings. The M2/AC exhibited a response property similar to that of the RS, though it was not statistically significant. Finally, we performed cellular imaging using two-photon microscopy to examine orientation and direction selectivity of individual neurons, and found that a minority of neurons in the RS clearly showed visual responses sharply selective for orientation and direction. These results suggest that neurons in RS encode visual information of fine spatial details in images. Thus, the present study shows the usefulness of the functional mapping method using a combination of wide-field and two-photon Ca2+ imaging, which allows for whole brain mapping with high spatiotemporal resolution and cell-type specificity. PMID:26106292

  14. World-wide association of timberline forest advance with microsite type along a precipitation gradient

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Yeakley, A.

    2009-12-01

    Timberline forest advance associated with global climate change is occurring worldwide and is often associated with microsites. Microsites, controlled by topography, substrates, and plant cover, are localized regions dictating temperature, moisture, and solar radiation. These abiotic factors are integral to seedling survival. From a compilation of world-wide information on seedling regeneration on microsites at timberline, including our on-going research in the Pacific Northwest, we classified available literature into four microsite categories, related microsite category to annual precipitation, and used analysis of variance to detect statistical differences in microsite type and associated precipitation. We found statistical differences (p = 0.022) indicating the usefulness of understanding microsite/precipitation associations in detecting world-wide trends in timberline expansion. For example, wetter timberlines with downed wood, had regeneration associated with nurse logs, whereas on windy, drier landscapes, regeneration was typically associated with either leeward sides of tree clumps or on microsites protected from frost by overstory canopy. In our study of timberline expansion in the Pacific Northwest, we expect that such knowledge of microsite types associated with forest expansion will reveal a better understanding of mechanisms and rates of timberline forest advance during global warming.

  15. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Chieh

    The study of the imaging principles of natural compound eyes has become an active area of research and has fueled the advancement of modern optics with many attractive design features beyond those available with conventional technologies. Most prominent among all compound eyes is the reflecting superposition compound eyes (RSCEs) found in some decapods. They are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Inspired by their remarkable visual system, we were able to implement the unique lens-free, reflection-based imaging mechanisms into a miniaturized, large-FOV optical imaging device operating at the wide visible spectrum to minimize chromatic aberration without any additional post-image processing. First, two micro-transfer printing methods, a multiple and a shear-assisted transfer printing technique, were studied and discussed to realize life-sized artificial RSCEs. The processes exploited the differential adhesive tendencies of the microstructures formed between a donor and a transfer substrate to accomplish an efficient release and transfer process. These techniques enabled conformal wrapping of three-dimensional (3-D) microstructures, initially fabricated in two-dimensional (2-D) layouts with standard fabrication technology onto a wide range of surfaces with complex and curvilinear shapes. Final part of this dissertation was focused on implementing the key operational features of the natural RSCEs into large-FOV, wide-spectrum artificial RSCEs as an optical imaging device suitable for the wide visible spectrum. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to the performance of conventional refractive lenses of comparable size, our devices demonstrated minimum chromatic aberration, exceptional

  16. Field development projects advance in Norwegian Sea

    SciTech Connect

    Vielvoye, R.

    1992-03-30

    This paper reports on the Norwegian Sea, lying between the Norwegian North Sea and the western flank of the Barents Sea, which is set to become Norway's second oil and gas producing province. Oil is scheduled to start to flow near the end of next year when AS Norske Shell places on production 428 million bbl Draugen field in Block 6407/9, about 60 miles off the coast of mid-Norway in the frontier sea area known as Haltenbanken. Two years later, in 1995, Norske Conoco AS will add to the 95,000 b/d from Draugen when it commissions the world's first concrete hull tension leg platform (TLP) in Heidrun field. The TLP is expected to produce 200,000 b/d of oil and move associated gas by pipeline to the Norwegian mainland to feed a worldscale methanol plant planned for construction at Tjeldbergodden. The Norwegian government also has been asked to approve a gas pipeline link between Haltenbanken and the gas export infrastructure in the North Sea.

  17. Automatic Processing of Chinese GF-1 Wide Field of View Images

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wan, Y.; Wang, B.; Kang, Y.; Xiong, J.

    2015-04-01

    The wide field of view (WFV) imaging instrument carried on the Chinese GF-1 satellite includes four cameras. Each camera has 200km swath-width that can acquire earth image at the same time and the observation can be repeated within only 4 days. This enables the applications of remote sensing imagery to advance from non-scheduled land-observation to periodically land-monitoring in the areas that use the images in such resolutions. This paper introduces an automatic data analysing and processing technique for the wide-swath images acquired by GF-1 satellite. Firstly, the images are validated by a self-adaptive Gaussian mixture model based cloud detection method to confirm whether they are qualified and suitable to be involved into the automatic processing workflow. Then the ground control points (GCPs) are quickly and automatically matched from the public geo-information products such as the rectified panchromatic images of Landsat-8. Before the geometric correction, the cloud detection results are also used to eliminate the invalid GCPs distributed in the cloud covered areas, which obviously reduces the ratio of blunders of GCPs. The geometric correction module not only rectifies the rational function models (RFMs), but also provides the self-calibration model and parameters for the non-linear distortion, and it is iteratively processed to detect blunders. The maximum geometric distortion in WFV image decreases from about 10-15 pixels to 1-2 pixels when compensated by self-calibration model. The processing experiments involve hundreds of WFV images of GF-1 satellite acquired from June to September 2013, which covers the whole mainland of China. All the processing work can be finished by one operator within 2 days on a desktop computer made up by a second-generation Intel Core-i7 CPU and a 4-solid-State-Disk array. The digital ortho maps (DOM) are automatically generated with 3 arc second Shuttle Radar Topography Mission (SRTM). The geometric accuracies of the

  18. A testbed for wide-field, high-resolution, gigapixel-class cameras

    NASA Astrophysics Data System (ADS)

    Kittle, David S.; Marks, Daniel L.; Son, Hui S.; Kim, Jungsang; Brady, David J.

    2013-05-01

    The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.

  19. A testbed for wide-field, high-resolution, gigapixel-class cameras.

    PubMed

    Kittle, David S; Marks, Daniel L; Son, Hui S; Kim, Jungsang; Brady, David J

    2013-05-01

    The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed. PMID:23742532

  20. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks

    PubMed Central

    Pulizzi, Rocco; Musumeci, Gabriele; Van den Haute, Chris; Van De Vijver, Sebastiaan; Baekelandt, Veerle; Giugliano, Michele

    2016-01-01

    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics. PMID:27099182

  1. Single Plane Illumination Module and Micro-capillary Approach for a Wide-field Microscope

    PubMed Central

    Bruns, Thomas; Schickinger, Sarah; Schneckenburger, Herbert

    2014-01-01

    A module for light sheet or single plane illumination microscopy (SPIM) is described which is easily adapted to an inverted wide-field microscope and optimized for 3-dimensional cell cultures, e.g., multi-cellular tumor spheroids (MCTS). The SPIM excitation module shapes and deflects the light such that the sample is illuminated by a light sheet perpendicular to the detection path of the microscope. The system is characterized by use of a rectangular capillary for holding (and in an advanced version also by a micro-capillary approach for rotating) the samples, by synchronous adjustment of the illuminating light sheet and the objective lens used for fluorescence detection as well as by adaptation of a microfluidic system for application of fluorescent dyes, pharmaceutical agents or drugs in small quantities. A protocol for working with this system is given, and some technical details are reported. Representative results include (1) measurements of the uptake of a cytostatic drug (doxorubicin) and its partial conversion to a degradation product, (2) redox measurements by use of a genetically encoded glutathione sensor upon addition of an oxidizing agent, and (3) initiation and labeling of cell necrosis upon inhibition of the mitochondrial respiratory chain. Differences and advantages of the present SPIM module in comparison with existing systems are discussed. PMID:25146321

  2. Toward Epoch of Reionization Measurements with Wide-Field Radio Observations

    NASA Astrophysics Data System (ADS)

    Morales, Miguel F.; Hewitt, Jacqueline

    2004-11-01

    This paper explores the potential for statistical epoch of reionization (EOR) measurements using wide-field radio observations. New developments in low-frequency radio instrumentation and signal processing allow very sensitive EOR measurements, and the analysis techniques enabled by these advances offer natural ways of separating the EOR signal from the residual foreground emission. This paper introduces the enabling technologies and proposes an analysis technique designed to make optimal use of the capabilities of next-generation low-frequency radio arrays. The observations we propose can directly observe the power spectrum of the EOR using relatively short observations and are significantly more sensitive than other techniques that have been discussed in the literature. For example, in the absence of foreground contamination the measurements we propose would produce five 3 σ power spectrum points in 100 hr of observation with only 4 MHz bandwidth with LOFAR for simple models of the high-redshift 21 cm emission. The challenge of residual foreground removal may be addressed by the symmetries in the three-dimensional (two spatial frequencies and radio frequency) radio interferometric data. These symmetries naturally separate the EOR signal from most classes of residual unsubtracted foreground contamination, including all foreground continuum sources and radio line emission from the Milky Way.

  3. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks.

    PubMed

    Pulizzi, Rocco; Musumeci, Gabriele; Van den Haute, Chris; Van De Vijver, Sebastiaan; Baekelandt, Veerle; Giugliano, Michele

    2016-01-01

    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics. PMID:27099182

  4. Single plane illumination module and micro-capillary approach for a wide-field microscope.

    PubMed

    Bruns, Thomas; Schickinger, Sarah; Schneckenburger, Herbert

    2014-01-01

    A module for light sheet or single plane illumination microscopy (SPIM) is described which is easily adapted to an inverted wide-field microscope and optimized for 3-dimensional cell cultures, e.g., multi-cellular tumor spheroids (MCTS). The SPIM excitation module shapes and deflects the light such that the sample is illuminated by a light sheet perpendicular to the detection path of the microscope. The system is characterized by use of a rectangular capillary for holding (and in an advanced version also by a micro-capillary approach for rotating) the samples, by synchronous adjustment of the illuminating light sheet and the objective lens used for fluorescence detection as well as by adaptation of a microfluidic system for application of fluorescent dyes, pharmaceutical agents or drugs in small quantities. A protocol for working with this system is given, and some technical details are reported. Representative results include (1) measurements of the uptake of a cytostatic drug (doxorubicin) and its partial conversion to a degradation product, (2) redox measurements by use of a genetically encoded glutathione sensor upon addition of an oxidizing agent, and (3) initiation and labeling of cell necrosis upon inhibition of the mitochondrial respiratory chain. Differences and advantages of the present SPIM module in comparison with existing systems are discussed. PMID:25146321

  5. Problems with twilight/supersky flat-field for wide-field robotic telescopes and the solution

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Shang, Zhaohui; Ma, Bin; Zhao, Cheng; Hu, Yi; Liu, Qiang

    2014-08-01

    Twilight/night sky images are often used for flat-fielding CCD images, but the brightness gradient in twilight/ night sky causes problems of accurate flat-field correction in astronomical images for wide-field telescopes. Using data from the Antarctic Survey Telescope (AST3), we found that when the sky brightness gradient is minimum and stable, there is still a gradient of 1% across AST3's field-of-view of 4.3 square degrees. We tested various approaches to remove the varying gradients in individual flat-field images. Our final optimal method can reduce the spatially dependent errors caused by the gradient to the negligible level. We also suggest a guideline of flat-fielding using twilight/night sky images for wide-field robotic autonomous telescopes.

  6. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  7. Wide field/planetary camera optics study. [for the large space telescope

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.

  8. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  9. Deep, wide-field, global VLBI observations of the Hubble deep field north (HDF-N) and flanking fields (HFF)

    NASA Astrophysics Data System (ADS)

    Chi, S.; Barthel, P. D.; Garrett, M. A.

    2013-02-01

    Context. Dust is commonly present in weakly radio emitting star-forming galaxies and this dust may obscure the signatures of accreting black holes in these objects. Aims: We aim to uncover weak active galactic nuclei, AGN, in the faint radio source population by means of deep high-resolution radio observations. Methods: VLBI observations with a world-wide array at unparallelled sensitivity are carried out to assess the nature of the faint radio source population in the Hubble deep field north and its flanking fields. Results: Images of twelve compact, AGN-driven radio sources are presented. These represent roughly one quarter of the detectable faint radio source sample. Most, but not all of these low power AGN have X-ray detections. Conclusions: The majority of the faint radio source population must be star-forming galaxies. Faint AGN occur in a variety of (distant) host galaxies, and these are often accompanied by a dust-obscured starburst. Deep, high-resolution VLBI is a unique, powerful technique to assess the occurrence of faint AGN.

  10. Matching a curved focal plane with CCD's - Wide field imaging of glancing incidence X-ray telescopes

    NASA Technical Reports Server (NTRS)

    Nousek, J. A.; Garmire, G. P.; Ricker, G. R.; Bautz, M. W.; Levine, A. M.; Collins, S. A.

    1987-01-01

    The design of a wide field imaging camera suitable for use with a glancing incidence X-ray telescope is complicated by the sharply concave nature of the optimum focal surface of such a telescope. Such a camera made up of a mosaic of CCDs is being designed which is intended for flight aboard the Advanced X-ray Astrophysics Facility (AXAF). The design rationale and tradeoffs are discussed, and the layout for the imaging CCD array is presented. The related issue of optimizing performance of transmission objective gratings is also discussed, and the array of CCD orientations suitable for this problem is presented.

  11. A Wide-Field NV Diamond Magnetic Imager for Highly Parallel Detection of Rare Biological Targets

    NASA Astrophysics Data System (ADS)

    Glenn, David; Lee, Kyungheon; Lee, Hakho; Walsworth, Ronald

    2014-05-01

    We have developed a wide-field magnetic imaging device based on Nitrogen Vacancy centers in diamond, optimized for the detection of rare, immunomagnetically labeled biological targets such as circulating tumor cells. The new imager allows simultaneous magnetic imaging over a ~ 1 mm2 field of view, approximately two orders of magnitude larger than previous implementations. We describe experiments to detect cancer cells tagged with superparamagnetic nanoparticles, including validation studies for a cell detection assay and technical considerations associated magnetic imaging over very wide fields of view.

  12. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics.

    PubMed

    Yang, J H; Yang, X F; Hu, L Q; Zang, Q; Han, X F; Shao, C Q; Sun, T F; Chen, H; Wang, T F; Li, F J; Hu, A L

    2013-08-01

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST. PMID:24007102

  13. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics

    SciTech Connect

    Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L.; Yang, X. F.

    2013-08-15

    A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

  14. Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses

    PubMed Central

    Illingworth, Christopher J. R.; Parts, Leopold; Bergström, Anders; Liti, Gianni; Mustonen, Ville

    2013-01-01

    Accurate estimates of recombination rates are of great importance for understanding evolution. In an experimental genetic cross, recombination breaks apart and rejoins genetic material, such that the genomes of the resulting isolates are comprised of distinct blocks of differing parental origin. We here describe a method exploiting this fact to infer genome-wide recombination profiles from sequenced isolates from an advanced intercross line (AIL). We verified the accuracy of the method against simulated data. Next, we sequenced 192 isolates from a twelve-generation cross between West African and North American yeast Saccharomyces cerevisiae strains and inferred the underlying recombination landscape at a fine genomic resolution (mean segregating site distance 0.22 kb). Comparison was made with landscapes inferred for a similar cross between four yeast strains, and with a previous single-generation, intra-strain cross (Mancera et al., Nature 2008). Moderate congruence was identified between landscapes (correlation 0.58–0.77 at 5 kb resolution), albeit with variance between mean genome-wide recombination rates. The multiple generations of mating undergone in the AILs gave more precise inference of recombination rates than could be achieved from a single-generation cross, in particular in identifying recombination cold-spots. The recombination landscapes we describe have particular utility; both AILs are part of a resource to study complex yeast traits (see e.g. Parts et al., Genome Res 2011). Our results will enable future applications of this resource to take better account of local linkage structure heterogeneities. Our method has general applicability to other crossing experiments, including a variety of experimental designs. PMID:23658715

  15. Advances in reversed field pinch theory and computation

    SciTech Connect

    Schnack, D.D.; Ho, Y.L.; Carreras, B.A.; Sidikman, K.; Craddock, G.G.; Mattor, N.; Nebel, R.A.; Prager, S.C.; Terry, P.W.; Zita, E.J.

    1992-12-31

    Advances in theory and computations related to the reversed field pinch (RFP) are presented. These are: (1) the effect of the dynamo on thermal transport; (2) a theory of ion heating due to dynamo fluctuations; (3) studies of active and passive feedback schemes for controlling dynamo fluctuations; and (4) an analytic model for coupled g-mode and rippling turbulence in the RFP edge.

  16. SuperBIT: Wide-field, Sub-arcsecond Imaging from the Super Pressure Balloon Platform

    NASA Astrophysics Data System (ADS)

    Rhodes, Jason; Fraisse, Aurélien A.; Jones, William C.; Netterfield, Calvin Barth; Massey, Richard

    2014-06-01

    The scientific potential of near-diffraction-limited imaging from mid-latitude ultra-long duration balloon payloads is well known. The combination of diffraction-limited angular resolution, extreme stability, space-like backgrounds, and long integrations enables transformative opportunities in studies ranging from the weak lensing of galaxy clusters and cosmic shear to the search for exoplanets. Collaborators at the University of Toronto have recently integrated a half-meter class telescope with a prototype subarcsecond pointing system. SuperBIT will adapt the existing system to the requirements of the mid-latitude super-pressure balloon (SPB) payload, and demonstrate its imaging capability during an ultra-long duration balloon flight that will take off from Wanaka, New Zealand, in the 2016-17 Austral summer. The demonstration instrument will provide imaging with a half-degree field of view and 0.3-arcsecond resolution in five bands between 300 and1000 nm, with sensitivities in the shape-band exceeding 24th magnitude(>5 sigma) in 300 seconds of integration. Our observing schedule will be split between a performance verification sample, a photometric and spectroscopic calibration set, a deep field, and a science catalog. The performance verification set prioritizes a sample of thirty clusters that have been previously well studied with the HST Advanced Camera for Surveys, the Chandra X-ray observatory, and for which there are Compton-Y parameter data from millimeter-wavelengths. The photometric calibration set will be selected from the COSMOS field. The science catalog will draw from a set of more than 150 Sunyaev-Zel’dovich, X-ray, and optically selected clusters spanning a wide range of cluster masses and morphologies. Aside from demonstrating the technical approach, these data will enable a systematic program to constrain the mass-observable relations over an unprecedented scale. A successful demonstration of the technical approach and the scientific potential

  17. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    NASA Astrophysics Data System (ADS)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  18. Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.

    2012-01-01

    Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).

  19. DICOM index tracker enterprise: advanced system for enterprise-wide quality assurance and patient safety monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Pavlicek, William; Panda, Anshuman; Langer, Steve G.; Morin, Richard; Fetterly, Kenneth A.; Paden, Robert; Hanson, James; Wu, Lin-Wei; Wu, Teresa

    2015-03-01

    DICOM Index Tracker (DIT) is an integrated platform to harvest rich information available from Digital Imaging and Communications in Medicine (DICOM) to improve quality assurance in radiology practices. It is designed to capture and maintain longitudinal patient-specific exam indices of interests for all diagnostic and procedural uses of imaging modalities. Thus, it effectively serves as a quality assurance and patient safety monitoring tool. The foundation of DIT is an intelligent database system which stores the information accepted and parsed via a DICOM receiver and parser. The database system enables the basic dosimetry analysis. The success of DIT implementation at Mayo Clinic Arizona calls for the DIT deployment at the enterprise level which requires significant improvements. First, for geographically distributed multi-site implementation, the first bottleneck is the communication (network) delay; the second is the scalability of the DICOM parser to handle the large volume of exams from different sites. To address this issue, DICOM receiver and parser are separated and decentralized by site. To facilitate the enterprise wide Quality Assurance (QA), a notable challenge is the great diversities of manufacturers, modalities and software versions, as the solution DIT Enterprise provides the standardization tool for device naming, protocol naming, physician naming across sites. Thirdly, advanced analytic engines are implemented online which support the proactive QA in DIT Enterprise.

  20. Field study of disposed wastes from advanced coal processes

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. DOE has contracted Radian Corporation and the North Dakota Energy Environmental Research Center (EERC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. This report discusses waste composition from fluidized bed coal combustion. Also presented is analytical data from the leaching of waste sampled from storage soils and of soil samples collected. 6 figs., 13 tabs.

  1. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.

    PubMed

    Park, Yong Il; Lee, Kang Taek; Suh, Yung Doug; Hyeon, Taeghwan

    2015-03-21

    Lanthanide-doped upconverting nanoparticles (UCNPs) have recently attracted enormous attention in the field of biological imaging owing to their unique optical properties: (1) efficient upconversion photoluminescence, which is intense enough to be detected at the single-particle level with a (nonscanning) wide-field microscope setup equipped with a continuous wave (CW) near-infrared (NIR) laser (980 nm), and (2) resistance to photoblinking and photobleaching. Moreover, the use of NIR excitation minimizes adverse photoinduced effects such as cellular photodamage and the autofluorescence background. Finally, the cytotoxicity of UCNPs is much lower than that of other nanoparticle systems. All these advantages can be exploited simultaneously without any conflicts, which enables the establishment of a novel UCNP-based platform for wide-field two-photon microscopy. UCNPs are also useful for multimodal in vivo imaging because simple variations in the composition of the lattice atoms and dopant ions integrated into the particles can be easily implemented, yielding various distinct biomedical activities relevant to magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). These multiple functions embedded in a single type of UCNPs play a crucial role in precise disease diagnosis. The application of UCNPs is extended to therapeutic fields such as photodynamic and photothermal cancer therapies through advanced surface conjugation schemes. PMID:25042637

  2. An EUV Wide-Field Imager and Spectrometer for the ISS

    NASA Technical Reports Server (NTRS)

    Golub, Leon; Savage, Sabrina

    2016-01-01

    The Coronal Spectrographic Imager in the EUV, COSIE, combines a wide-field solar coronal EUV imager (EUVC) and an on-disk EUV imaging spectrometer (EUVS). Located on the International Space Station (ISS), the goal of the mission is to enhance our understanding of the dynamics of the Transition Corona (the region in which the coronal magnetic field transitions from closed to open), and to provide improved detection and tracking of solar eruptive events for space weather research.

  3. Optical system of large relative aperture and wide field using aspheric corrector for detecting

    NASA Astrophysics Data System (ADS)

    Ming, Ming; Wang, Jianli; Zhang, Jingxu

    2009-05-01

    The magnitude requirement of space target detecting determines that the image of detecting telescope should have several performances: small spots, small 80% encircled energy diameter and good MTF(Modulation transfer function). So the aperture and field of view of optical system have some demands accordingly. The larger aperture, the more energy that telescope collects and higher magnitude the telescope detects; the wider field of view, the more extensive range which the telescope searches. Now most of ground telescopes whose apertures are from 500mm to 1000mm is on-axis optical system, so wide field of view becomes the most importance problem. To obtain large relative aperture and wide field of view, the paper introduces a catadioptric telescope with small aperture aspheric refractive corrector, whose conic surface will be used to remove the aberrations due to large relative aperture and wide field of view. As to the optical system, there is only one aspheric refractive corrector, and it is relatively easy for manufacturing because of its concave figure and normal material. The paper gives the example, and optimizes this optical system with ZEMAX program. And then the paper provides a specific analysis program for testing the aspheric refractive corrector. The aperture of this optical system is 750mm, and its relative aperture is 0.82, and the field of view is 3.6° diameter(diagonal). Its structure is simple and the image quality is also very good.

  4. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

    PubMed Central

    Ferguson, R. Daniel; Zhong, Zhangyi; Hammer, Daniel X.; Mujat, Mircea; Patel, Ankit H.; Deng, Cong; Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of >25 deg. AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10 μm rms, or 0.03 deg, tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching. PMID:21045887

  5. Application of Advanced Wide Area Early Warning Systems with Adaptive Protection

    SciTech Connect

    Blumstein, Carl; Cibulka, Lloyd; Thorp, James; Centeno, Virgilio; King, Roger; Reeves, Kari; Ashrafi, Frank; Madani, Vahid

    2014-09-30

    Recent blackouts of power systems in North America and throughout the world have shown how critical a reliable power system is to modern societies, and the enormous economic and societal damage a blackout can cause. It has been noted that unanticipated operation of protection systems can contribute to cascading phenomena and, ultimately, blackouts. This project developed and field-tested two methods of Adaptive Protection systems utilizing synchrophasor data. One method detects conditions of system stress that can lead to unintended relay operation, and initiates a supervisory signal to modify relay response in real time to avoid false trips. The second method detects the possibility of false trips of impedance relays as stable system swings “encroach” on the relays’ impedance zones, and produces an early warning so that relay engineers can re-evaluate relay settings. In addition, real-time synchrophasor data produced by this project was used to develop advanced visualization techniques for display of synchrophasor data to utility operators and engineers.

  6. World Wide Web interface for advanced SPECT reconstruction algorithms implemented on a remote massively parallel computer.

    PubMed

    Formiconi, A R; Passeri, A; Guelfi, M R; Masoni, M; Pupi, A; Meldolesi, U; Malfetti, P; Calori, L; Guidazzoli, A

    1997-11-01

    Data from Single Photon Emission Computed Tomography (SPECT) studies are blurred by inevitable physical phenomena occurring during data acquisition. These errors may be compensated by means of reconstruction algorithms which take into account accurate physical models of the data acquisition procedure. Unfortunately, this approach involves high memory requirements as well as a high computational burden which cannot be afforded by the computer systems of SPECT acquisition devices. In this work the possibility of accessing High Performance Computing and Networking (HPCN) resources through a World Wide Web interface for the advanced reconstruction of SPECT data in a clinical environment was investigated. An iterative algorithm with an accurate model of the variable system response was ported on the Multiple Instruction Multiple Data (MIMD) parallel architecture of a Cray T3D massively parallel computer. The system was accessible even from low cost PC-based workstations through standard TCP/IP networking. A speedup factor of 148 was predicted by the benchmarks run on the Cray T3D. A complete brain study of 30 (64 x 64) slices was reconstructed from a set of 90 (64 x 64) projections with ten iterations of the conjugate gradients algorithm in 9 s which corresponds to an actual speed-up factor of 135. The technique was extended to a more accurate 3D modeling of the system response for a true 3D reconstruction of SPECT data; the reconstruction time of the same data set with this more accurate model was 5 min. This work demonstrates the possibility of exploiting remote HPCN resources from hospital sites by means of low cost workstations using standard communication protocols and an user-friendly WWW interface without particular problems for routine use. PMID:9506406

  7. The status of NASA's wide-field meteor camera network and preliminary results

    NASA Astrophysics Data System (ADS)

    Blaauw, R.; Cooke, W.; Kingery, A.; Suggs, R.

    2014-04-01

    NASA's Meteoroid Environment Office (MEO) recently established two wide-field cameras to detect meteors in the millimeter-size-range. This paper outlines the concepts of the system, the hardware and software, and results of 3,440 orbits seen from December 13, 2012 until May 14, 2014.

  8. Interferometric Imaging with the 32 Element Murchison Wide-Field Array

    NASA Astrophysics Data System (ADS)

    Ord, S. M.; Mitchell, D. A.; Wayth, R. B.; Greenhill, L. J.; Bernardi, G.; Gleadow, S.; Edgar, R. G.; Clark, M. A.; Allen, G.; Arcus, W.; Benkevitch, L.; Bowman, J. D.; Briggs, F. H.; Bunton, J. D.; Burns, S.; Cappallo, R. J.; Coles, W. A.; Corey, B. E.; deSouza, L.; Doeleman, S. S.; Derome, M.; Deshpande, A.; Emrich, D.; Goeke, R.; Gopalakrishna, M. R.; Herne, D.; Hewitt, J. N.; Kamini, P. A.; Kaplan, D. L.; Kasper, J. C.; Kincaid, B. B.; Kocz, J.; Kowald, E.; Kratzenberg, E.; Kumar, D.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Madhavi, S.; Matejek, M.; Morales, M. F.; Morgan, E.; Oberoi, D.; Pathikulangara, J.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Schinkel, A.; Udaya Shankar, N.; Srivani, K. S.; Stevens, J.; Tingay, S. J.; Vaccarella, A.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C.

    2010-11-01

    The Murchison Wide-Field Array (MWA) is a low-frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of reionization (EOR) and to probe the structure of the solar corona. Sited in western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles and will be capable of imaging the sky south of 40° declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32 station prototype of the MWA has been recently commissioned and a set of observations has been taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hr integrations of a field 20° wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide-field imaging distortions.

  9. The Status of NASA's Wide-Field Meteor Camera Network and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Blaauw, R.; Cooke, W.; Kingery, A.; Suggs, R.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established two wide-field cameras to detect meteors in the millimeter-size-range. This paper outlines the concepts of the system, the hardware and software, and results of 3,440 orbits seen from December 13, 2012 until May 14, 2014.

  10. Application of the wide-field shadowgraph technique to rotor wake visualization

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.; Light, Jeffrey S.

    1989-01-01

    The wide field shadowgraph technique is reviewed along with its application to the visualization of rotor wakes. In particular, current experimental methods and data reduction requirements are discussed. Sample shadowgraphs are presented. These include shadowgraphs of model-scale helicopter main rotors and tilt rotors, and full scale tail rotors, both in hover and in forward flight.

  11. Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles.

    PubMed

    Spesyvtsev, Roman; Rendall, Helen A; Dholakia, Kishan

    2015-11-01

    A contemporary challenge across the natural sciences is the simultaneous optical imaging or stimulation of small numbers of cells or colloidal particles organized into arbitrary geometries. We demonstrate the use of temporal focusing with holographic optical tweezers in order to achieve depth-resolved two-photon imaging of trapped objects arranged in arbitrary three-dimensional (3D) geometries using a single objective. Trapping allows for the independent position control of multiple objects by holographic beam shaping. Temporal focusing of ultrashort pulses provides the wide-field two-photon depth-selective activation of fluorescent samples. We demonstrate the wide-field depth-resolved illumination of both trapped fluorescent beads and trapped HL60 cells in suspension with full 3D positioning control. These approaches are compatible with implementation through scattering media and can be beneficial for emergent studies in colloidal science and particularly optogenetics, offering targeted photoactivation over a wide area with micrometer-precision depth control. PMID:26512465

  12. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; Pauls, T.

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  13. Recent advances in globin research using genome-wide association studies and gene editing.

    PubMed

    Orkin, Stuart H

    2016-03-01

    A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies (GWAS) led to identification of three loci (BCL11A, HBS1L-MYB, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing. PMID:26866328

  14. Image quality criteria for wide-field x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Thompson, Patrick L.; Harvey, James E.

    1999-10-01

    For staring, wide-field applications, such as a solar x-ray imager, the severe off-axis aberrations of the classical Wolter Type-I grazing incidence x-ray telescope design drastically limits the 'resolution' near the solar limb. A specification upon on-axis fractional encircled energy is thus not an appropriate image quality criterion for such wide-angle applications. A more meaningful image quality criterion would be a field-weighted-average measure of 'resolution.' Since surface scattering effects from residual optical fabrication errors are always substantial at these very short wavelengths, the field-weighted-average half- power radius is a far more appropriate measure of aerial resolution. If an ideal mosaic detector array is being used in the focal plane, the finite pixel size provides a practical limit to this system performance. Thus, the total number of aerial resolution elements enclosed by the operational field-of-view, expressed as a percentage of the n umber of ideal detector pixels, is a further improved image quality criterion. In this paper we describe the development of an image quality criterion for wide-field applications of grazing incidence x-ray telescopes which leads to a new class of grazing incidence designs described in a following companion paper.

  15. Design of four-mirror afocal principal system for wide field multichannel infrared imaging

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Huang, Ying; Li, Yan

    2015-08-01

    The image space scanning system is widely used for multichannel infrared imaging to overcome the absence of large infrared focal plane array. The field of view of afocal system directly influences the time resolution of the image space scanning system. The field of view of afocal system is generally less than 7°. Therefore, it is significant to design larger field of view of afocal system for increasing time resolution. The method of four-mirror afocal system design based on primary aberration is explored. The structural parameters are calculated according to magnification and obscuration ratio of each mirror. The conic parameters are calculated according to primary aberration coefficients. The procedure for calculating initial structural parameters is programmed. Then a four-mirror afocal system is designed with an entrance pupil diameter of 200mm, a field of view of 20°×1°, the operating wave band of 3~12μm, compression ratio of 2.5 times and the distance of exit pupil of 620mm. The results indicate that the maximum root mean square (RMS) wavefront error is less than 0.042λ(λ=7.5μm), the maximum optical path difference(OPD) is less than λ/4(λ=3~12μm). It has high imaging quality and the modulation transfer function (MTF) is approached to the diffraction limit. The method of afocal system design can be widely used for wide field multichannel infrared imaging.

  16. Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram

    PubMed Central

    Zang, Pengxiao; Liu, Gangjun; Zhang, Miao; Dongye, Changlei; Wang, Jie; Pechauer, Alex D.; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang

    2016-01-01

    We propose an innovative registration method to correct motion artifacts for wide-field optical coherence tomography angiography (OCTA) acquired by ultrahigh-speed swept-source OCT (>200 kHz A-scan rate). Considering that the number of A-scans along the fast axis is much higher than the number of positions along slow axis in the wide-field OCTA scan, a non-orthogonal scheme is introduced. Two en face angiograms in the vertical priority (2 y-fast) are divided into microsaccade-free parallel strips. A gross registration based on large vessels and a fine registration based on small vessels are sequentially applied to register parallel strips into a composite image. This technique is extended to automatically montage individual registered, motion-free angiograms into an ultrawide-field view. PMID:27446709

  17. Prime focus wide-field corrector designs with lossless atmospheric dispersion correction

    SciTech Connect

    Saunders, Will; Gillingham, Peter; Smith, Greg; Kent, Steve; Doel, Peter

    2014-07-18

    Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telecentric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a 'Compensating Lateral Atmospheric Dispersion Corrector', with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.

  18. Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram.

    PubMed

    Zang, Pengxiao; Liu, Gangjun; Zhang, Miao; Dongye, Changlei; Wang, Jie; Pechauer, Alex D; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali

    2016-07-01

    We propose an innovative registration method to correct motion artifacts for wide-field optical coherence tomography angiography (OCTA) acquired by ultrahigh-speed swept-source OCT (>200 kHz A-scan rate). Considering that the number of A-scans along the fast axis is much higher than the number of positions along slow axis in the wide-field OCTA scan, a non-orthogonal scheme is introduced. Two en face angiograms in the vertical priority (2 y-fast) are divided into microsaccade-free parallel strips. A gross registration based on large vessels and a fine registration based on small vessels are sequentially applied to register parallel strips into a composite image. This technique is extended to automatically montage individual registered, motion-free angiograms into an ultrawide-field view. PMID:27446709

  19. Metrology systems for active alignment control of the Hobby-Eberly Telescope wide field corrector

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Hart, Michael; Cornell, Mark E.; Savage, Richard; Vattiat, Brian; Perry, Dave; Moller, William M.; Rafferty, Tom; Taylor, Trey; Rafal, Marc D.

    2010-07-01

    The Hobby-Eberly Telescope (HET) Wide-Field Upgrade (WFU) will be equipped with new metrology systems to actively control the optical alignment of the new four-mirror Wide-Field Corrector (WFC) as it tracks sidereal motion with respect to the fixed primary mirror. These systems include a tip/tilt sensor (TTS), distance measuring interferometers (DMI), guide probes (GP), and wavefront sensors (WFS). While the TTS and DMIs are to monitor the mechanical alignment of the WFC, the WFSs and GPs will produce direct measurement of the optical alignment of the WFC with respect to the HET primary mirror. Together, these systems provide fully redundant alignment and pointing information for the telescope, thereby keeping the WFC in focus and suppressing alignment-driven field aberrations. We describe the current snapshot of these systems and discuss their roles, expected performance, and operation plans.

  20. Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.

    2010-01-01

    We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.

  1. Design of a wide-field imaging optical system with super-resolution reconstruction

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Xu, Jie; Wang, Jiaoyang; Chen, Xiaodong; Gong, Rui; Bi, Xiangli

    2015-05-01

    The need for a portable image acquiring system has become as strong as the extension of digital imaging technology, for this, a new mono-centric wide-field optical system is proposed. Recently, some high-resolution and wide-field imaging systems have been raised already, with which fairly clear and wide field of view (FOV) images could be easily obtained, however, their sizes are comparatively too large to be conveniently carried . With ZEMAX, a new optical design is emulated by scaling the structure of current wide-field optical systems and introducing the proposed lens-let arrays, the size of the whole system is comparatively smaller with the structure consisting of a two-glass mono-centric lens, lens-let array (the lenses in the array can be different), and a specific detector. Lens-let array is used to make the image plane from curve to almost flat. This hardware is small enough to apply to helmets and computers and the FOV of which is wide. Verified by a series of merit function, this optical design is found to have an acceptable imaging resolution and the computational imaging method is applied to this system to acquire a higher imaging resolution. From each lens-let a series of low resolution images are obtained and in this system a high-resolution image can be retrieved from multiple low-resolution images with super-resolution reconstruction method. Compared from the size and the imaging resolution, this new optical design is much smaller and has a higher imaging resolution.

  2. Single layer retarder with negative dispersion of birefringence and wide field-of-view.

    PubMed

    Hwang, Jiyong; Yang, Seungbin; Choi, Yu-Jin; Lee, Yumin; Jeong, Kwang-Un; Lee, Ji-Hoon

    2016-08-22

    A single layer retarder possessing negative dispersion (ND) of birefringence as well as wide field-of-view (FOV) was long-term objective in optical science. We synthesized new guest reactive monomers with x-shape and mixed them with the host smectic reactive mesogen. The host-guest molecules formed two dimensionally self-organized nanostructure and showed both the ND of birefringence and wide FOV properties. We simulated the antireflection property of a circular polarizer using the optical properties of the retarder. The average reflectance of the retarder was 0.52% which was much smaller than that of the commercial single layer ND retarder 1.83%. PMID:27557268

  3. Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence

    PubMed Central

    Sarkar, Susanta K.; Bumb, Ambika; Wu, Xufeng; Sochacki, Kem A.; Kellman, Peter; Brechbiel, Martin W.; Neuman, Keir C.

    2014-01-01

    The sensitivity and resolution of fluorescence-based imaging in vivo is often limited by autofluorescence and other background noise. To overcome these limitations, we have developed a wide-field background-free imaging technique based on magnetic modulation of fluorescent nanodiamond emission. Fluorescent nanodiamonds are bright, photo-stable, biocompatible nanoparticles that are promising probes for a wide range of in vitro and in vivo imaging applications. Our readily applied background-free imaging technique improves the signal-to-background ratio for in vivo imaging up to 100-fold. This technique has the potential to significantly improve and extend fluorescent nanodiamond imaging capabilities on diverse fluorescence imaging platforms. PMID:24761300

  4. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574312

  5. Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy.

    PubMed

    Oishi, Akio; Oishi, Maho; Ogino, Ken; Morooka, Satoshi; Yoshimura, Nagahisa

    2016-01-01

    Retinitis pigmentosa and cone/cone-rod dystrophy are inherited retinal diseases characterized by the progressive loss of rod and/or cone photoreceptors. To evaluate the status of rod/cone photoreceptors and visual function, visual acuity and visual field tests, electroretinogram, and optical coherence tomography are typically used. In addition to these examinations, fundus autofluorescence (FAF) has recently garnered attention. FAF visualizes the intrinsic fluorescent material in the retina, which is mainly lipofuscin contained within the retinal pigment epithelium. While conventional devices offer limited viewing angles in FAF, the recently developed Optos machine enables recording of wide-field FAF. With wide-field analysis, an association between abnormal FAF areas and visual function was demonstrated in retinitis pigmentosa and cone-rod dystrophy. In addition, the presence of "patchy" hypoautofluorescent areas was found to be correlated with symptom duration. Although physicians should be cautious when interpreting wide-field FAF results because the peripheral parts of the image are magnified significantly, this examination method provides previously unavailable information. PMID:26427426

  6. Miniature wide field-of-view star trackers for spacecraft attitude sensing and navigation

    NASA Technical Reports Server (NTRS)

    Mccarty, William; Curtis, Eric; Hull, Anthony; Morgan, William

    1993-01-01

    Introducing a family of miniature, wide field-of-view star trackers for low cost, high performance spacecraft attitude determination and navigation applications. These devices, derivative of the WFOV Star Tracker Camera developed cooperatively by OCA Applied Optics and the Lawrence Livermore National Laboratory for the Brilliant Pebbles program, offer a suite of options addressing a wide range of spacecraft attitude measurement and control requirements. These sensors employ much wider fields than are customary (ranging between 20 and 60 degrees) to assure enough bright stars for quick and accurate attitude determinations without long integration intervals. The key benefit of this approach are light weight, low power, reduced data processing loads and high information carrier rates for wide ACS bandwidths. Devices described range from the proven OCA/LLNL WFOV Star Tracker Camera (a low-cost, space-qualified star-field imager utilizing the spacecraft's own computer and centroiding and position-finding), to a new autonomous subsystem design featuring dual-redundant cameras and completely self-contained star-field data processing with output quaternion solutions accurate to 100 micro-rad, 3 sigma, for stand-alone applications.

  7. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging

    PubMed Central

    Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.

    2015-01-01

    Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ±70∘ external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT. PMID:26740737

  8. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging

    NASA Astrophysics Data System (ADS)

    Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.

    2015-12-01

    Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.

  9. Wide-field spatio-spectral interferometry for far-infrared space applications: A progress report

    NASA Astrophysics Data System (ADS)

    Leisawitz, David; Armstrong, J. T.; Bolcar, M. R.; Lyon, R.; Maher, S. F.; Memarsadeghi, N.; Rinehart, S.; Sinukoff, E.

    2014-01-01

    The NASA Astrophysics Roadmap Committee adopted the far-IR community’s vision and recommended far-IR interferometry as a needed capability in the 15 - 30 year time frame. The three major enabling technologies for such a mission are low-noise, high-speed detectors in small arrays; a demonstrated capability to cool optical system components to 4 K and focal planes to tens of mK with cryo-coolers; and the spatio-spectral interferometry (“double Fourier”) technique through which wide-field integral field spectroscopic data are derived from interferometric measurements. This paper reports on the current status of wide-field spatio-spectral interferometry and plans for maturation of the technique to space-flight readiness. Relatively simple spatial-spectral test patterns have been observed with the Wide-Field Imaging Interferometry Testbed at NASA’s Goddard Space Flight Center, and data cubes representing the observed scenes have been constructed based on the measured interferograms. A critical future milestone is the construction of an astronomically relevant, spatially and spectrally complex scene.

  10. VizieR Online Data Catalog: MYStIX Wide-Field NIR data: crowded fields (King+, 2013)

    NASA Astrophysics Data System (ADS)

    King, R. R.; Naylor, T.; Broos, P. S.; Getman, K. V.; Feigelson, E. D.

    2014-01-01

    The data were obtained using WFCAM, the IR wide-field camera on UKIRT in Hawaii for 11 regions (DR 21, Eagle Nebula, Lagoon Nebula, M 17, NGC 1893, NGC 2264, NGC 2362, NGC 6334, NGC 6357, Rosette Nebula and the Trifid Nebula). Roughly half the fields were observed as part of the Galactic Plane Survey (GPS; Lucas et al. 2008, Cat. II/316) component of UKIDSS with the remainder being obtained in Director's Discretionary Time (DDT) using identical observing procedures. (1 data file).

  11. Distinctive receptive field and physiological properties of a wide-field amacrine cell in the macaque monkey retina

    PubMed Central

    Puller, Christian; Rieke, Fred; Neitz, Jay; Neitz, Maureen

    2015-01-01

    At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these long-range effects would certainly require signal propagation via active membrane properties. Here the physiology of a wide-field amacrine cell—the wiry cell—in macaque monkey retina is explored, revealing receptive fields that represent a striking departure from the classic structure. A single wiry cell integrates signals over wide regions of retina, 5–10 times larger than the classic receptive fields of most retinal ganglion cells. Wiry cells integrate signals over space much more effectively than predicted from passive signal propagation, and spatial integration is strongly attenuated during blockade of NMDA spikes but integration is insensitive to blockade of NaV channels with TTX. Thus these cells appear well suited for contributing to the long-range interactions of visual signals that characterize many aspects of visual perception. PMID:26133804

  12. SpIOMM and SITELLE: Wide-field Imaging FTS for the Study of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Bernier, Anne-Pier; Robert, Carmelle; Robert

    2011-12-01

    SpIOMM, a wide-field Imaging Fourier Transform Spectrometer attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in 1.7 million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We present a short description of these instruments and illustrate their capabilities to study nearby galaxies with the results of a data cube of M51.

  13. A Precision Metrology System for the Hubble Space Telescope Wide Field Camera 3 Instrument

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2003-01-01

    The Wide Field Camera 3 (WFC3) instrument for the Hubble Space Telescope (HST) will replace the current Wide Field and Planetary Camera 2 (WFPC2). By providing higher throughput and sensitivity than WFPC2, and operating from the near-IR to the near-UV, WFC3 will once again bring the performance of HST above that from ground-based observatories. Crucial to the integration of the WFC3 optical bench is a pair of 2-axis cathetometers used to view targets which cannot be seen by other means when the bench is loaded into its enclosure. The setup and calibration of these cathetometers is described, along with results from a comparison of the cathetometer system with other metrology techniques.

  14. A Precision Metrology System for the Hubble Space Telescope Wide Field Camera 3 Instrument

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2003-01-01

    The Wide Field Camera 3 (WFC3) instrument for the Hubble Space Telescope (HST) will replace the current Wide Field and Planetary Camera 2 (WFPC2). By providing higher throughput and sensitivity than WFPC2, and operating from the near-IR to the near-UV, WFC3 will once again bring the pefiormance of HST above that from ground-based observatories. Crucial to the integration of the WFC3 optical bench is a pair of 2-axis cathetometers used to view targets which cannot be seen by other means when the bench is loaded into its enclosure. The setup and calibration of these cathetometers is described, along with results from a comparison of the cathetometer system with other metrology techniques. Finally, the use of the cathetometers on the flight optical bench and measurement results are given.

  15. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection

    PubMed Central

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-01-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  16. Wide field-of-view soft X-ray imaging for solar wind-magnetosphere interactions

    NASA Astrophysics Data System (ADS)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; Read, A. M.; Sembay, S.; Thomas, N. E.

    2016-04-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  17. Development of a wide-field spherical aberration corrector for the Hobby Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Benjamin, S.; Dubin, M.; Manuel, A.; Novak, M.; Oh, C. J.; Valente, M.; Zhao, C.; Booth, J. A.; Good, J. M.; Hill, Gary J.; Lee, H.; MacQueen, P. J.; Rafal, M.; Savage, R.; Smith, M. P.; Vattiat, B.

    2010-07-01

    A 4-mirror prime focus corrector is under development to provide seeing-limited images for the 10-m aperture Hobby- Eberly Telescope (HET) over a 22 arcminute wide field of view. The HET uses an 11-m fixed elevation segmented spherical primary mirror, with pointing and tracking performed by moving the prime focus instrument package (PFIP) such that it rotates about the virtual center of curvature of the spherical primary mirror. The images created by the spherical primary mirror are aberrated with 13 arcmin diameter point spread function. The University of Arizona is developing the 4-mirror wide field corrector to compensate the aberrations from the primary mirror and present seeing limited imaged to the pickoffs for the fiber-fed spectrographs. The requirements for this system pose several challenges, including optical fabrication of the aspheric mirrors, system alignment, and operational mechanical stability.

  18. Wide-field optical coherence tomography based microangiography for retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  19. Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy

    PubMed Central

    Shaked, Natan T.; Satterwhite, Lisa L.; Bursac, Nenad; Wax, Adam

    2010-01-01

    We apply wide-field interferometric microscopy techniques to acquire quantitative phase profiles of ventricular cardiomyocytes in vitro during their rapid contraction with high temporal and spatial resolution. The whole-cell phase profiles are analyzed to yield valuable quantitative parameters characterizing the cell dynamics, without the need to decouple thickness from refractive index differences. Our experimental results verify that these new parameters can be used with wide field interferometric microscopy to discriminate the modulation of cardiomyocyte contraction dynamics due to temperature variation. To demonstrate the necessity of the proposed numerical analysis for cardiomyocytes, we present confocal dual-fluorescence-channel microscopy results which show that the rapid motion of the cell organelles during contraction preclude assuming a homogenous refractive index over the entire cell contents, or using multiple-exposure or scanning microscopy. PMID:21258502

  20. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    NASA Technical Reports Server (NTRS)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; Kruk, J.; Kuan, G.; Melton, M.; Ruffa, J.; Underhill, M.; Buren, D. Van

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  1. Wide-field optical coherence tomography based microangiography for retinal imaging

    PubMed Central

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N.; Wang, Ruikang K.

    2016-01-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261

  2. Wide-field optical coherence tomography based microangiography for retinal imaging.

    PubMed

    Zhang, Qinqin; Lee, Cecilia S; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N; Wang, Ruikang K

    2016-01-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261

  3. Wide-field fluorescence molecular tomography with compressive sensing based preconditioning

    PubMed Central

    Yao, Ruoyang; Pian, Qi; Intes, Xavier

    2015-01-01

    Wide-field optical tomography based on structured light illumination and detection strategies enables efficient tomographic imaging of large tissues at very fast acquisition speeds. However, the optical inverse problem based on such instrumental approach is still ill-conditioned. Herein, we investigate the benefit of employing compressive sensing-based preconditioning to wide-field structured illumination and detection approaches. We assess the performances of Fluorescence Molecular Tomography (FMT) when using such preconditioning methods both in silico and with experimental data. Additionally, we demonstrate that such methodology could be used to select the subset of patterns that provides optimal reconstruction performances. Lastly, we compare preconditioning data collected using a normal base that offers good experimental SNR against that directly acquired with optimal designed base. An experimental phantom study is provided to validate the proposed technique. PMID:26713202

  4. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection.

    PubMed

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-06-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  5. Wide-field Monitoring of the Galactic Plane in the K- and the H-band

    NASA Astrophysics Data System (ADS)

    Yanagisawa, K.; Nakada, Y.; Izumiura, H.; Watanabe, E.; Shimizu, Y.; Okada, N.; Okita, K.; Norimoto, K.; Okata, T.; Koyano, H.; Yoshida, M.

    The Okayama Astrophysical Observatory of NAOJ started the monitoring program of mass-losing AGB stars using an imaging camera named Okayama Astrophysical Observatory Wide Field Camera. The fast optics yields a field of view of 1¡ß1 deg2 and the pixel resolution of 2 arcsec at the focus of the 91-cm telescope. A HAWAII2 array will be installed inside the camera reaching the limiting magnitude of K=13 with a 45-s exposure. In 2003 the monitoring will start covering the Galactic plane from l=0 to 270 deg every three weeks.

  6. Wide-field prime focus corrector for the Anglo-Australian telescope.

    PubMed

    Jones, D J

    1994-11-01

    A wide-field (2°) prime focus corrector has been designed and built for the Anglo-Australian Telescope. The corrector incorporates an atmospheric dispersion compensator for the spectral range 365-1014 nm. A four-element lens system is the basis of the corrector, and it provides a satisfactory state of correction over a full field of 2°. The design of the lens system is described. The choice of layout is related directly to the intrinsic properties of each component. PMID:20941295

  7. Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber

    NASA Astrophysics Data System (ADS)

    Choi, Youngwoon; Yoon, Changhyeong; Kim, Moonseok; Yang, Taeseok Daniel; Fang-Yen, Christopher; Dasari, Ramachandra R.; Lee, Kyoung Jin; Choi, Wonshik

    2012-11-01

    A single multimode fiber is considered an ideal optical element for endoscopic imaging due to the possibility of direct image transmission via multiple spatial modes. However, the wave distortion induced by the mode dispersion has been a fundamental limitation. In this Letter, we propose a method for eliminating the effect of mode dispersion and therefore realize wide-field endoscopic imaging by using only a single multimode fiber with no scanner attached to the fiber. Our method will potentially revolutionize endoscopy in various fields encompassing medicine and industry.

  8. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy

    PubMed Central

    Greenbaum, Alon; Luo, Wei; Su, Ting-Wei; Göröcs, Zoltán; Xue, Liang; Isikman, Serhan O; Coskun, Ahmet F; Mudanyali, Onur; Ozcan, Aydogan

    2012-01-01

    We discuss unique features of lens-free computational imaging tools and report some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture (NA) of ~0.8–0.9 across a field of view (FOV) of more than 20 mm2 or an NA of ~0.1 across a FOV of ~18 cm2, which corresponds to an image with more than 1.5 gigapixels. We also discuss the current challenges that these computational on-chip microscopes face, shedding light on their future directions and applications. PMID:22936170

  9. Wide field-of-view lens-free fluorescent imaging on a chip

    PubMed Central

    Coskun, Ahmet F.; Su, Ting-Wei

    2010-01-01

    We demonstrate an on-chip fluorescent detection platform that can simultaneously image fluorescent micro-objects or labeled cells over an ultra-large field-of-view of 2.5 cm × 3.5 cm without the use of any lenses, thin-film filters and mechanical scanners. Such a wide field-of-view lensless fluorescent imaging modality, despite its limited resolution, might be very important for high-throughput screening applications as well as for detection and counting of rare cells within large-area microfluidic devices. PMID:20379564

  10. An optical design for a wide-field optical spectrograph for TMT

    NASA Astrophysics Data System (ADS)

    Bernstein, Rebecca A.; Bigelow, Bruce C.

    2008-07-01

    We describe a preliminary optical design for a multi-object, wide-field, optical echellette spectrograph that is intended to serve a broad range of science. It will produce low-resolution, single-order spectra for survey-mode programs targeting as many objects as possible and also moderate-resolution, multiple-order spectra for a reduced number of targets. The design uses all refracting optics. The first optical element of the spectrograph is a wide-field corrector for the telescope that causes the chief rays to be perpendicular to the focal plane. The collimator, which has been designed on-axis, can then be duplicated to target multiple, off-axis fields in a multiple-barrel configuration. The collimator optics include an achromatic field lens group that forms a sharp pupil over the full optical band-pass (320-1000 nm), followed by a dichroic which splits the beam into a red and a blue channel. All remaining optical elements of the collimator, the gratings, the cameras, and the detectors are then optimized for red or blue wavelengths. Both red and blue channels of each beam of the spectrograph use reflection gratings to produce either a single-order spectrum at resolutions around R=λ/Δλ=1000 or a five-order, R>5000 echellette spectrum with prism cross-dispersion. Both modes can target objects anywhere in the collimated field of view. A direct imaging mode will also be provided.

  11. Electrowetting liquid lens array on curved substrates for wide field of view image sensor

    NASA Astrophysics Data System (ADS)

    Bang, Yousung; Lee, Muyoung; Won, Yong Hyub

    2016-03-01

    In this research, electrowetting liquid lens array on curved substrates is developed for wide field of view image sensor. In the conventional image sensing system, this lens array is usually in the form of solid state. However, in this state, the lens array which is similar to insect-like compound eyes in nature has several limitations such as degradation of image quality and narrow field of view because it cannot adjust focal length of lens. For implementation of the more enhanced system, the curved array of lenses based on electrowetting effect is developed in this paper, which can adjust focal length of lens. The fabrication of curved lens array is conducted upon the several steps, including chamber fabrication, electrode & dielectric layer deposition, liquid injection, and encapsulation. As constituent materials, IZO coated convex glass, UV epoxy (NOA 68), DI water, and dodecane are used. The number of lenses on the fabricated panel is 23 by 23 and each lens has 1mm aperture with 1.6mm pitch between adjacent lenses. When the voltage is applied on the device, it is observed that each lens is changed from concave state to convex state. From the unique optical characteristics of curved array of liquid lenses such as controllable focal length and wide field of view, we can expect that it has potential applications in various fields such as medical diagnostics, surveillance systems, and light field photography.

  12. Hubble Space Telescope: Wide field and planetary camera instrument handbook. Version 2.1

    NASA Technical Reports Server (NTRS)

    Griffiths, Richard (Editor)

    1990-01-01

    An overview is presented of the development and construction of the Wide Field and Planetary Camera (WF/PC). The WF/PC is a duel two dimensional spectrophotometer with rudimentary polarimetric and transmission grating capabilities. The instrument operates from 1150 to 11000 A with a resolution of 0.1 arcsec per pixel or 0.043 arcsec per pixel. Data products and standard calibration methods are briefly summarized.

  13. High-resolution wide-field Raman imaging through a fiber bundle

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, Lyubov V.; Fedotov, Il'ya V.; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2013-04-01

    Wide-field Raman imaging with a spatial resolution of a few micrometers is demonstrated using bundles of thousands of hexagonally packed optical fibers. Raman images are synthesized pixel by pixel, by sequentially coupling the laser pump into individual fibers of the bundle with a galvanometric scanner and collecting the Raman response from the laser-excited region of the sample within the entire aperture of the distal end of the same fiber bundle.

  14. A description of a wide beam saddle field ion source used for nuclear target applications

    SciTech Connect

    Greene, J.P.; Schiel, S.L.; Thomas, G.E.

    1997-07-01

    A description is given of a new, wide beam saddle field sputter source used for the preparation of targets applied in nuclear physics experiments. The ion source characteristics are presented and compared with published results obtained with other sources. Deposition rates acquired utilizing this source are given for a variety of target materials encountered in nuclear target production. New applications involving target thinning and ion milling are discussed.

  15. Sensors for the Hubble Space Telescope wide field and planetary cameras (1 and 2)

    NASA Technical Reports Server (NTRS)

    Trauger, John T.

    1990-01-01

    The technology of the wide field planetary camera (WFPC-2) CCD technology is examined with reference to the WFPC-1 experience. Strategies are presented for elimination of quantum efficiency (QE) hysteresis and implementation of maintenance-free QE stability, improved far-UV performance, on-orbit photometric calibrations, refinements in CCD electronics, and anticipated CCD particle radiation effects. Absorption depth vs. wavelength in silicon and a cross section of the CCD membrane are shown.

  16. Wide Field Infrared Survey Telescope [WFIRST]: Telescope Design and Simulated Performance

    NASA Technical Reports Server (NTRS)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-01-01

    The ASTRO2010 Decadal Survey proposed multiple missions with NIR focal planes and 3 mirror wide field telescopes in the 1.5m aperture range. None of them would have won as standalone missions WFIRST is a combination of these missions, created by Astro 2010 committee. WFIRST Science Definition Team (SDT) tasked to examine the design. Project team is a GSFC-JPL-Caltech collaboration. This interim mission design is a result of combined work by the project team with the SDT.

  17. The second generation Wide-Field/Planetary Camera on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Leschly, Kim; Allestad, David; Herrell, Linda

    1991-01-01

    The general design and principal features of the second generation Wide-Field/Planetary Camera (WFPC-2) for the Hubble Space Telescope are reviewed. The discussion covers the background of WFPC-2 development, science capabilities, key performance parameters, optical and electronic equipment, mechanisms, thermal control, and contamination control. Attention is also given to on-orbit operations, including commanding and telemetry and on-orbit servicing.

  18. Using APART for wall visibility calculations in the calibration channel of wide field planetary camera II

    NASA Technical Reports Server (NTRS)

    Scholl, James W.; Scholl, Marija S.

    1993-01-01

    The cone visibility from the CCD detector array plane in the calibration channel of wide field planetary camera II (WFPC II) is analyzed, using APART, for three representative wavelengths as characterized by indices of refraction. The light pipe walls are visible from the corners of the equivalent CCD detector array when imaging with the smallest index of refraction, n = 1.375. Painting the inside of the light pipe walls will result in a decrease in their visibility.

  19. Wide field fluorescence imaging in narrow passageways using scanning fiber endoscope technology

    NASA Astrophysics Data System (ADS)

    Lee, Cameron M.; Chandler, John E.; Seibel, Eric J.

    2010-02-01

    An ultrathin scanning fiber endoscope (SFE) has been developed for high resolution imaging of regions in the body that are commonly inaccessible. The SFE produces 500 line color images at 30 Hz frame rate while maintaining a 1.2-1.7 mm outer diameter. The distal tip of the SFE houses a 9 mm rigid scan engine attached to a highly flexible tether (minimum bend radius < 8 mm) comprised of optical fibers and electrical wires within a protective sheath. Unlike other ultrathin technologies, the unique characteristics of this system have allowed the SFE to navigate narrow passages without sacrificing image quality. To date, the SFE has been used for in vivo imaging of the bile duct, esophagus and peripheral airways. In this study, the standard SFE operation was tailored to capture wide field fluorescence images and spectra. Green (523 nm) and blue (440 nm) lasers were used as illumination sources, while the white balance gain values were adjusted to accentuate red fluorescence signal. To demonstrate wide field fluorescence imaging of small lumens, the SFE was inserted into a phantom model of a human pancreatobiliary tract and navigated to a custom fluorescent target. Both wide field fluorescence and standard color images of the target were captured to demonstrate multimodal imaging.

  20. The Method of Measurements of Celestial Coordinates in Wide-Field TV-Frames

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna P.

    2012-06-01

    We present a method for calculations of equatorial coordinates of any point in the single frame of the wide-field TV systems. This method can be applying for the different television systems [wide-field cameras, all-sky cameras, the cameras with the hybrid TV-system (the system with coupled of the Image Intensifier) et al.]. In that system the calculations of distortions are difficult. Therefore, we devised this method which helps decrease errors (due to distortion and the electro-optical system).The method can be used for measuring of equatorial coordinates of meteor tracks under difficult conditions during the observations such as partial cloudiness, small number of stars and large distortions of the coordinate grid in the frame. These restrictions cannot be overcome by other methods. In the case of the small number of stars the present method using of the reference stars received on a series of frames during the observation period. The accuracy of the method has been estimated to be 4'-8' (for cameras with fov 50° × 40° at the CCD 720 × 576 pixels) for maximum number of reference points in the frame. The method used 3 reference points for calculation of the equatorial coordinates of the object. One can use this method if the camera was re-oriented as well. We use this method for our wide field of view cameras.

  1. Design and implementation of coating hardware for the Hobby-Eberly Telescope wide-field corrector

    NASA Astrophysics Data System (ADS)

    Good, John; Lee, Hanshin; Hill, Gary J.; Vattiat, Brian; Perry, David; Kriel, Herman; Savage, Richard

    2014-07-01

    A major upgrade of the HET is in progress that will substantially increase the pupil size to 10 meters and the field of view to 22 arc-minutes by replacing the spherical aberration corrector. The new Wide Field Corrector is a 4-element assembly weighing 750kg and measuring 1.34 meters diameter by 2.1 meter in length. Special fixtures were required in order to support the mirrors of the Wide-Field Corrector and adapt them to the coaters chamber, during the vacuum coating process. For the 1 meter-class mirrors, the only suitable support interface was located on a 80mm wide cylindrical surface on the periphery of each mirror. The vacuum compatible system had to support the mirrors with the surface facing downward, and accommodate thermal ranges from ambient to 100C without inducing stresses in the substrate. The fixture also had to accommodate washing, as well as support of witness samples during testing and production runs, and provide masking for alignment fixtures in the center apertures of each mirror. Design principles, materials, implementation details, as well as lessons learned are covered*.

  2. Intra-familial Similarity of Wide-Field Fundus Autofluorescence in Inherited Retinal Dystrophy.

    PubMed

    Furutani, Yuka; Ogino, Ken; Oishi, Akio; Gotoh, Norimoto; Makiyama, Yukiko; Oishi, Maho; Kurimoto, Masafumi; Yoshimura, Nagahisa

    2016-01-01

    To examine the similarity of wide-field fundus autofluorescence (FAF) imaging in inherited retinal dystrophy between siblings and between parents and their children. The subjects included 17 siblings (12 with retinitis pigmentosa and 5 with cone rod dystrophy) and 10 parent-child pairs (8 with retinitis pigmentosa and 2 with cone rod dystrophy). We quantified the similarity of wide-field FAF using image processing techniques of cropping, binarization, superimposition, and subtraction. The estimated similarity of the siblings was compared with that of the parent-child pairs and that of the age-matched unrelated patients. The similarity between siblings was significantly higher that of parent-child pairs or that of age-matched unrelated patients (P = 0.004 and P = 0.049, respectively). Wide-field FAF images were similar between siblings with inherited retinal dystrophy but different between parent-child pairs. This suggests that aging is a confounding factor in genotype-phenotype correlation studies. PMID:26427425

  3. Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Maruyama, Yuta; Suzuki, Takamasa; Nin, Fumiaki; Hibino, Hiroshi; Sasaki, Osami

    2015-12-01

    Conventional laser Doppler vibrometry and heterodyne interferometry suffer during the simultaneous measurement of the spatial distribution of vibration parameters such as the amplitude, frequency and phase in a wide field of view. Although demand is increasing for methods that can measure vibrations over a wide field of view for a wide range of applications from industrial product inspections to biological measurements, full-field (FF) techniques for high-speed vibration measurements without a spatial scan are untapped. We propose a new method for high-speed FF vibration measurement that can easily be combined with profilometry and tomographic interferometry using a conventional CCD or CMOS camera. In principle, the measurable vibration frequency is unrestricted because the heterodyne signal produced by the modulated interferogram can be controlled to accommodate the CCD frame rate. The validity of the proposed method and the measurement accuracy of the spatial vibration amplitude were evaluated through simulations and experiments. In experiments, the spatial vibration parameters of a mirror vibrated at a frequency of 1 kHz and amplitude of approximately 5-65 nm were successfully measured with a spatial fluctuation of 3%-6.5%.

  4. Wide-field four-channel fluorescence imager for biological applications

    NASA Astrophysics Data System (ADS)

    Thakur, Madhuri; Melnik, Dmitry; Barnett, Heather; Daly, Kevin; Moran, Christine H.; Chang, Wei-Shun; Link, Stephan; Bucher, Christopher Theodore; Kittrell, Carter; Curl, Robert

    2010-03-01

    A wide-field four-channel fluorescence imager has been developed. The instrument uses four expanded laser beams to image a large section (6 mm×9 mm). An object can be sequentially illuminated with any combination of 408-, 532-, 658-, and 784-nm lasers for arbitrary (down to 1 ms) exposure times for each laser. Just two notch filters block scattered light from all four lasers. The design approach described here offers great flexibility in treatment of objects, very good sensitivity, and a wide field of view at low cost. There appears to be no commercial instrument capable of simultaneous fluorescence imaging of a wide field of view with four-laser excitation. Some possible applications are following events such as flow and mixing in microchannel systems, the transmission of biological signals across a culture, and following simulations of biological membrane diffusion. It can also be used in DNA sequencing by synthesis to follow the progress of the photolytic removal of dye and terminator. Without utilizing its time resolution, it can be used to obtain four independent images of a single tissue section stained with four targeting agents, with each coupled to a different dye matching one of the lasers.

  5. Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei

    2014-06-01

    Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs.

  6. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance

  7. A Wide-Field Survey in the Chandra Deep Field-South Region: A Combined GTO + GO Approach

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2013-09-01

    We propose to perform a wide-field (2.2 square degree) survey around the Chandra Deep Field-South (CDF-S) and Extended Chandra Deep Field-South (E-CDF-S). This survey will complement the large observational investments made in multi-square-degree surveys in the CDF-S region by Spitzer, Herschel, the Australia Telescope Compact Array, PRIMUS, Pan-STARRS, DES, LSST, and other facilities. It will allow us to identify the most-luminous active galaxies to z = 1.5-2 and to investigate large-scale structures in the CDF-S region. This is the GTO component of a GTO + GO project; the associated GO observations will be proposed as a Cycle 15 Large Project.

  8. KOALA: a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Ireland, M.; Lawrence, J. S.; Tims, J.; Staszak, N.; Brzeski, J.; Parker, Q. A.; Sharp, R.; Bland-Hawthorn, J.; Case, S.; Colless, M.; Croom, S.; Couch, W.; De Marco, O.; Glazebrook, K.; Saunders, W.; Webster, R.; Zucker, D. B.

    2012-09-01

    KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000 fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial sampling of 1.25" or 0.7" respectively. To achieve this KOALA will use a telecentric double lenslet array with interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is expected to be ≍ 52% at 3700A and ≍ 66% at 6563°Å with a throughput of > 52% over the entire wavelength range.

  9. Heritability and Genome-wide Association Study To Assess Genetic Differences Between Advanced Age-Related Macular Degeneration Subtypes

    PubMed Central

    Sobrin, Lucia; Ripke, Stephan; Yu, Yi; Fagerness, Jesen; Bhangale, Tushar R.; Tan, Perciliz L.; Souied, Eric H.; Buitendijk, Gabriëlle H.S.; Merriam, Joanna E.; Richardson, Andrea J.; Raychaudhuri, Soumya; Reynolds, Robyn; Chin, Kimberly A.; Lee, Aaron Y.; Leveziel, Nicolas; Zack, Donald J.; Campochiaro, Peter; Smith, R. Theodore; Barile, Gaetano R.; Hogg, Ruth E.; Chakravarthy, Usha; Behrens, Timothy W.; Uitterlinden, André G.; van Duijn, Cornelia M.; Vingerling, Johannes R.; Brantley, Milam A.; Baird, Paul N.; Klaver, Caroline C.W.; Allikmets, Rando; Katsanis, Nicholas; Graham, Robert R.; Ioannidis, John P.A.; Daly, Mark J.; Seddon, Johanna M.

    2013-01-01

    Purpose To investigate whether the two subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV) and geographic atrophy (GA), segregate separately in families and to identify which genetic variants are associated with these two subtypes. Design Sibling correlation study and genome-wide association study (GWAS) Participants For the sibling correlation study, we included 209 sibling pairs with advanced AMD. For the GWAS, we included 2594 participants with advanced AMD subtypes and 4134 controls. Replication cohorts included 5383 advanced AMD participants and 15,240 controls. Methods Participants had AMD grade assigned based on fundus photography and/or examination. To determine heritability of advanced AMD subtypes, we performed a sibling correlation study. For the GWAS, we conducted genome-wide genotyping and imputed 6,036,699 single nucleotide polymorphism (SNPs). We then analyzed SNPs with a generalized linear model controlling for genotyping platform and genetic ancestry. The most significant associations were evaluated in independent cohorts. Main Outcome Measures Concordance of advanced AMD subtypes in sibling pairs and associations between SNPs with GA and CNV advanced AMD subtypes. Results The difference between the observed and expected proportion of siblings concordant for the same subtype of advanced AMD was different to a statistically significant degree (P=4.2 x 10−5) meaning that siblings of probands with CNV or GA are more likely to develop CNV or GA, respectively. In the analysis comparing participants with CNV to those with GA, we observed a statistically significant association at the ARMS2/HTRA1 locus [rs10490924, odds ratio (OR)=1.47, P=4.3 ×10−9] which was confirmed in the replication samples (OR=1.38, P=7.4 x 10−14 for combined discovery and replication analysis). Conclusions Whether a patient with AMD develops CNV vs. GA is determined in part by genetic variation. In this large GWAS meta-analysis and

  10. Advanced mean-field theory of the restricted Boltzmann machine

    NASA Astrophysics Data System (ADS)

    Huang, Haiping; Toyoizumi, Taro

    2015-05-01

    Learning in restricted Boltzmann machine is typically hard due to the computation of gradients of log-likelihood function. To describe the network state statistics of the restricted Boltzmann machine, we develop an advanced mean-field theory based on the Bethe approximation. Our theory provides an efficient message-passing-based method that evaluates not only the partition function (free energy) but also its gradients without requiring statistical sampling. The results are compared with those obtained by the computationally expensive sampling-based method.

  11. Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo.

    PubMed

    Bazzigaluppi, Paolo; Dufour, Suzie; Carlen, Peter L

    2015-01-01

    Potassium homeostasis is fundamental for the physiological functioning of the brain. Increased [K(+)] in the extracellular fluid has a major impact on neuronal physiology and can lead to ictal events. Compromised regulation of extracellular [K(+)] is involved in generation of seizures in animal models and potentially also in humans. For this reason, the investigation of K(+) spatio-temporal dynamics is of fundamental importance for neuroscientists in the field of epilepsy and other related pathologies. To date, the majority of studies investigating changes in extracellular K(+) have been conducted using a micropipette filled with a K(+) sensitive solution. However, this approach presents a major limitation: the area of the measurement is circumscribed to the tip of the pipette and it is not possible to know the spatiotemporal distribution or origin of the focally measured K(+) signal. Here we propose a novel approach, based on wide field fluorescence, to measure extracellular K(+) dynamics in neural tissue. Recording the local field potential from the somatosensory cortex of the mouse, we compared responses obtained from a K(+)-sensitive microelectrode to the spatiotemporal increases in fluorescence of the fluorophore, Asante Potassium Green-2, in physiological conditions and during 4-AP induced ictal activity. We conclude that wide field imaging is a valuable and versatile tool to measure K(+) dynamics over a large area of the cerebral cortex and is capable of capturing fast dynamics such as during ictal events. Moreover, the present technique is potentially adaptable to address questions regarding spatiotemporal dynamics of other ionic species. PMID:25312775

  12. A comparison of super wide field microscopy systems in mohs surgery.

    PubMed

    Goldsberry, Anne; Hanke, C William; Countryman, Nicholas B

    2014-12-01

    Microscopic frozen section interpretation is one of the cornerstones of Mohs surgery. The recent development of super wide field (SWF) microscopy can improve accuracy and efficiency while reading microscope sections, and also decrease the physician's musculoskeletal and ocular strain. Super wide field microscopy systems increase viewable field area (VA) by combining low magnification objectives, eg, 1x or 2x (Figure 1), with eyepieces that have a higher field number. This article reviews 3 SWF microscopy systems: Leica DM2000 (Leica Microsystems, Wetzlar, Germany), Nikon Eclipse Ni (Nikon Instruments Inc., Melville, NY), and Olympus BX43 (Olympus, Center Valley, PA). The Leica DM2000's 1.25x objective results in a VA of 314.16 mm2. The Nikon Eclipse Ni's 1x objective results in a VA of 490.87 mm2. The Olympus BX43's 1.25x objective results in a VA of 352.99 mm2. The maximum VA at the lowest objective for Nikon is nearly 40% greater than for the Olympus and over 50% greater than for the Leica. The Nikon Eclipse Ni has a significantly higher maximum VA than the other 2 systems. PMID:25607789

  13. The 64 Mpixel wide field imager for the Wendelstein 2m telescope: design and calibration

    NASA Astrophysics Data System (ADS)

    Kosyra, Ralf; Gössl, Claus; Hopp, Ulrich; Lang-Bardl, Florian; Riffeser, Arno; Bender, Ralf; Seitz, Stella

    2014-11-01

    The Wendelstein Observatory of Ludwig Maximilians University of Munich has recently been upgraded with a modern 2m robotic telescope. One Nasmyth port of the telescope has been equipped with a wide-field corrector which preserves the excellent image quality (<0.8 " median seeing) of the site (Hopp et al. 2008) over a field of view of 0.7 degrees diameter. The available field is imaged by an optical imager (WWFI, the Wendelstein Wide Field Imager) built around a customized 2×2 mosaic of 4 k×4 k 15 μm e2v CCDs from Spectral Instruments. This paper provides an overview of the design and the WWFI's performance. We summarize the system mechanics (including a structural analysis), the electronics (and its electromagnetic interference (EMI) protection) and the control software. We discuss in detail detector system parameters, i.e. gain and readout noise, quantum efficiency as well as charge transfer efficiency (CTE) and persistent charges. First on sky tests yield overall good predictability of system throughput based on lab measurements.

  14. Prototyping results for a wide-field fiber positioner for the Giant Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; McGrath, Andrew J.

    2004-07-01

    Given the physical size of the GSMT prime focus field is approximately equivalent to that of the Subaru telescope it is possible to directly apply current technology developed for the Fiber Multi-Object Spectrograph instrument (FMOS, to be commissioned in 2005) and substantially reduce the risk associated with developing a new solution for wide-field multi-object spectroscopy on an ELT. The Anglo-Australian Observatory has recently completed a design study for an ~1000 fiber, Echidna-style positioner for the prime focus of the Giant Segmented Mirror Telescope (GSMT). The positioner forms part of the wide-field Multi-Object Multi-Fiber Optical Spectrograph (MOMFOS), an ELT prime focus instrument offering a minimum of 800 fibers patrolling the corrected 20 arcmin field. The design study identified 2 components of an equivalent MOMFOS positioner design that required prototyping. Firstly, a higher spine packing density is required to satisfy the proposed scientific program. Secondly, the fiber position measurement system adopted for FMOS cannot be simply scaled and applied to MOMFOS given space constraints in the top end unit. As such a new and, if possible, simpler system was required. Prototyping results for both components are presented.

  15. Grazing-incidence hyperboloid-hyperboloid designs for wide-field x-ray imaging applications.

    PubMed

    Harvey, J E; Krywonos, A; Thompson, P L; Saha, T T

    2001-01-01

    The classical Wolter type I grazing-incidence x-ray telescope consists of a paraboloidal primary mirror and a confocal hyperboloidal secondary mirror. This design exhibits stigmatic imaging on-axis but suffers from coma, astigmatism, field curvature, and higher-order aberrations such as oblique spherical aberration. Wolter-Schwarzschild designs have been developed that strictly satisfy the Abbe sine condition and thus exhibit no spherical aberration or coma. However, for wide-field applications such as the solar x-ray imager (SXI), there is little merit in a design with stigmatic imaging on-axis. Instead, one needs to optimize some area-weighted-average measure of resolution over the desired operational field of view. This has traditionally been accomplished by mere despacing of the focal plane of the classical Wolter type I telescope. Here we present and evaluate in detail a family of hyperboloid-hyperboloid grazing-incidence x-ray telescope designs whose wide-field performance is much improved over that of an optimally despaced Wolter type I and even somewhat improved over that of an optimally despaced Wolter-Schwarzschild design. PMID:18356984

  16. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects

    PubMed Central

    Coskun, Ahmet F.; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2010-01-01

    We demonstrate the use of a compressive sampling algorithm for on-chip fluorescent imaging of sparse objects over an ultra-large field-of-view (>8 cm2) without the need for any lenses or mechanical scanning. In this lensfree imaging technique, fluorescent samples placed on a chip are excited through a prism interface, where the pump light is filtered out by total internal reflection after exciting the entire sample volume. The emitted fluorescent light from the specimen is collected through an on-chip fiber-optic faceplate and is delivered to a wide field-of-view opto-electronic sensor array for lensless recording of fluorescent spots corresponding to the samples. A compressive sampling based optimization algorithm is then used to rapidly reconstruct the sparse distribution of fluorescent sources to achieve ~10 µm spatial resolution over the entire active region of the sensor-array, i.e., over an imaging field-of-view of >8 cm2. Such a wide-field lensless fluorescent imaging platform could especially be significant for high-throughput imaging cytometry, rare cell analysis, as well as for micro-array research. PMID:20588904

  17. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  18. Deconvolution of wide field-of-view radiometer measurements of earth-emitted radiation. I - Theory

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Green, R. N.

    1981-01-01

    The theory of deconvolution of wide field-of-view (WFOV) radiometer measurements of earth-emitted radiation provides a technique by which the resolution of such measurements can be enhanced to provide radiant exitance at the top of the atmosphere with a finer resolution than the field of view. An analytical solution for the earth-emitted radiant exitance in terms of WFOV radiometer measurements is derived for the nonaxisymmetric (or regional) case, in which the measurements and radiant exitance are considered to be functions of both latitude and longitude. This solution makes it possible to deconvolve a set of WFOV radiometer measurements of earth-emitted radiation and obtain information with a finer resolution than the instantaneous field of view of the instrument. It is shown that there are tradeoffs involved in the selection between WFOV and scanning radiometers.

  19. WISPIR: A Wide-Field Imaging SPectrograph for the InfraRed for the SPICA Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Mundy, Lee G.

    2010-01-01

    We have undertaken a study of a far infrared imaging spectrometer based on a Fourier transform spectrometer that uses well-understood, high maturity optics, cryogenics, and detectors to further our knowledge of the chemical and astrophysical evolution of the Universe as it formed planets, stars, and the variety of galaxy morphologies that we observe today. The instrument, Wide-field Imaging Spectrometer for the InfraRed (WISPIR), would operate on the SPICA observatory, and will feature a spectral range from 35 - 210 microns and a spectral resolving power of R=1,000 to 6,000, depending on wavelength. WISPIR provides a choice of full-field spectral imaging over a 2'x2' field or long-slit spectral imaging along a 2' slit for studies of astrophysical structures in the local and high-redshift Universe. WISPIR in long-slit mode will attain a sensitivity two orders of magnitude better than what is currently available.

  20. Current status of the Hobby-Eberly Telescope wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Savage, Richard; Booth, John; Cornell, Mark; Good, John; Hill, Gary J.; Lee, Hanshin; MacQueen, Phillip; Rafal, Marc; Vattiat, Brian; Gebhardt, Karl; Beno, Joseph; Zierer, Joseph; Perry, Dave; Rafferty, Tom; Ramiller, Chuck; Taylor, Charles, III; Beets, Timothy; Hayes, Richard; Heisler, James; Hinze, Sarah; Soukup, Ian; Jackson, John; Mock, Jason; Worthington, Michael; Mollison, Nicholas; Molina, Omar; South, Brian; Wardell, Douglas; Wedeking, Gregory

    2010-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope of 9.2 meter aperture, located in West Texas at the McDonald Observatory (MDO). The HET operates with a fixed segmented primary and has a tracker which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will increase the pupil size to 10 meters and the field of view to 22' by replacing the corrector, tracker and prime focus instrument package. In addition to supporting the existing suite of instruments, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX‡). This paper discusses the current status of this upgrade.

  1. Current status of the Hobby-Eberly Telescope wide field upgrade

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Booth, John A.; Cornell, Mark E.; Good, John M.; Gebhardt, Karl; Kriel, Herman J.; Lee, Hanshin; Leck, Ron; Moreira, Walter; MacQueen, Phillip J.; Perry, Dave M.; Rafal, Marc D.; Rafferty, Tom H.; Ramiller, Chuck; Savage, Richard D.; Taylor, Charles A.; Vattiat, Brian L.; Ramsey, Lawrence W.; Beno, Joseph H.; Beets, Timothy A.; Esguerra, Jorge D.; Häuser, Marco; Hayes, Richard J.; Heisler, James T.; Soukup, Ian M.; Zierer, Joseph J.; Worthington, Michael S.; Mollison, Nicholas T.; Wardell, Douglas R.; Wedeking, Gregory A.

    2012-09-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope of 9.2 meter aperture, located in West Texas at the McDonald Observatory (MDO). The HET operates with a fixed segmented primary and has a tracker which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will increase the pupil size to 10 meters and the field of view to 22' by replacing the corrector, tracker and prime focus instrument package. In addition to supporting the existing suite of instruments, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEXχ). This paper discusses the current status of this upgrade.

  2. Current status of the Hobby-Eberly Telescope wide field upgrade and VIRUS

    NASA Astrophysics Data System (ADS)

    Savage, Richard D.; Booth, John A.; Gebhardt, Karl; Good, John M.; Hill, Gary J.; MacQueen, Phillip J.; Rafal, Marc D.; Smith, Michael P.; Vattiat, Brian L.

    2008-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope of 9.2 meter aperture, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker which moves the fourmirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will substantially increase the field of view by replacing the corrector, tracker and prime focus instrument package. In addition to supporting the existing suite of instruments, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). This paper discusses the current status of this upgrade.

  3. Wide field x-ray telescopes: Detecting x-ray transients/afterglows related to GRBs

    SciTech Connect

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul

    1998-05-16

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited fields of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70's but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster-eye type are presented and discussed. The optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed.

  4. The Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and Its Extension OMEGAWINGS

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W.; D'Onofrio, M.; Dressler, A.; Fritz, J.; Kjaergaard, P.; Gullieuszik, M.; Moles, M.; Moretti, A.; Omizzolo, A.; Paccagnella, A.; Varela, J.; Vulcani, B.

    WINGS is a wide-field multi-wavelength survey of 76 X-ray selected clusters at low redshift. The WINGS database has been used for a variety of cluster and cluster galaxy studies, investigating galaxy star formation, morphologies, structure, stellar mass functions and other properties. We present the recent wider-field extension of WINGS, OMEGAWINGS, conducted with OmegaCAM@VST and AAOmega@AAT. We show two of our latest results regarding jellyfish galaxies and galaxy sizes. OMEGAWINGS has allowed the first systematic search of galaxies with signs of ongoing ram pressure stripping (jellyfishes), yielding a catalog of ˜ 240 galaxies in 41 clusters. We discuss the first results obtained from this sample and the prospects for integral field data. Finally, we summarize our results regarding the discovery of compact massive galaxies at low redshift, their properties, dependence on environment and the implications for the evolution of galaxy sizes from high- to low-z.

  5. Characterization of spatially varying aberrations for wide field-of-view microscopy

    PubMed Central

    Zheng, Guoan; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2013-01-01

    We describe a simple and robust approach for characterizing the spatially varying pupil aberrations of microscopy systems. In our demonstration with a standard microscope, we derive the location-dependent pupil transfer functions by first capturing multiple intensity images at different defocus settings. Next, a generalized pattern search algorithm is applied to recover the complex pupil functions at ~350 different spatial locations over the entire field-of-view. Parameter fitting transforms these pupil functions into accurate 2D aberration maps. We further demonstrate how these aberration maps can be applied in a phase-retrieval based microscopy setup to compensate for spatially varying aberrations and to achieve diffraction-limited performance over the entire field-of-view. We believe that this easy-to-use spatially-varying pupil characterization method may facilitate new optical imaging strategies for a variety of wide field-of-view imaging platforms. PMID:23842300

  6. All-spherical catadioptric telescope design for wide-field imaging.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2010-10-20

    The current trend in building medium-size telescopes for wide-field imaging is to use a Ritchey-Chrétien (RC) design with a multilens corrector near the focus. Our goal is to find a cost-effective alternative design to the RC system for seeing-limited observations. We present an f/4.5 all-spherical catadioptric system with a 1.5° field of view. The system consists of a 0.8 m spherical primary and 0.4 m flat secondary mirror combined with a meniscus lens and followed by a three-lens field corrector. The optical performance is comparable to an equivalent f/4.5 RC system. We conclude that, for telescopes with apertures up to 2 m, the catadioptric design is a good alternative to the RC system. PMID:20962933

  7. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  8. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  9. A wide field-of-view microscope based on holographic focus grid

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei

    2010-02-01

    We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.

  10. Utilization of a Curved Focal Surface Array in a 3.5m Wide Field of View Telescope

    NASA Astrophysics Data System (ADS)

    Blake, T.; Faccenda, W.; Lambour, R.; Shah, R.; Smith, A.; Gregory, J. G.; Pearce, E. C.; Woods, D.; Sundbeck, S.; Bolden, M.

    2013-09-01

    Wide field of view optical telescopes have a range for uses in both the astronomical and space surveillance purposes. In designing these systems, a number of factors must be taken into account and design trades accomplished to best balance the performance and cost of the system to meet various program constraints. One design trade that has been discussed of the past decade is the curving of the digital focal surface array to meet the field curvature versus the utilization of optical elements to flatten the field curvature for a more traditional focal plane array. For the Defense Advanced Research Projects Agency (DARPA) 3.5m Space Surveillance Telescope (SST) the choice was made to curve the array to best satisfy the stressing telescope performance parameters, along with programmatic challenges. The results of this design choice led to a system that meets all of the initial program goals and stands ready to dramatically improve the nation's space surveillance capabilities. This paper will discuss the implementation of the curved focal surface array, the performance achieved by the array and the delta cost difference in the curved array versus a typical flat array.

  11. Hyperboloid-hyperboloid grazing incidence x-ray telescope designs for wide-field imaging applications

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Thompson, Patrick L.; Krywonos, Andrey

    2000-07-01

    The classical Wolter Type 1 X-ray telescope consists of two grazing incidence mirrors, a confocal paraboloid and hyperboloid. This design exhibits perfect geometric imaging on-axis (i.e., no spherical aberration) but suffers from severe field curvature, coma, astigmatism, and higher-order aberrations such as oblique spherical aberration. The Wolter-Schwarzschild design, consisting of two general aspheric grazing incidence surfaces, is corrected for both spherical aberration and coma, thus yielding very good geometrical performance at small field angles that becomes severely degraded at large field angles. The image quality criterion for stellar (small-field) X-ray telescopes is frequently expressed in terms of an on-axis fractional encircled energy, with the off-axis performance being dictated by the field-dependent aberrations characteristic of the design. A more appropriate image quality criterion for wide-angle applications is some area-weighted-average measure of resolution that maximizes the number of spatial resolution elements over a given operational field-of-view (OFOV). In practice, scattering effects from residual optical fabrication errors and detector effects (finite pixel size and charge spreading) dominate geometrical aberrations for small field angles whereas the geometrical aberrations dominate the image degradation at large field angles. Under these conditions, there is little merit in a telescope design corrected for coma (or even spherical aberration). Our new image quality criterion has led us to a whole new class of generalized Wolter Type I (hyperboloid- hyperboloid) designs that can be optimized for a given OFOV. A specific design and its predicted systems performance for the Solar X-ray Imager mission are described in detail.

  12. NOTE: Multileaf collimator end leaf leakage: implications for wide-field IMRT

    NASA Astrophysics Data System (ADS)

    Hardcastle, N.; Metcalfe, P.; Ceylan, A.; Williams, M. J.

    2007-11-01

    The multi-leaf collimator (MLC) of a particular linear accelerator vendor (Millennium MLC, Varian Medical Systems, Palo Alto, CA, USA) has a maximum leaf extension of 14.5 cm. To achieve intensity modulated radiotherapy (IMRT) for fields wider than 14.5 cm all closed leaf pairs are restricted to placement inside the field. Due to the rounded leaf end design of the MLC end leaf leakage will occur in the treatment field. The implementation of direct aperture optimization in the IMRT module of a radiotherapy treatment planning system (Pinnacle, Philips Radiation Oncology Systems, Milpitas, CA) has facilitated the delivery of IMRT fields wider than 14.5 cm. The end leaf leakage of the Millennium MLC has been characterized for 6 MV photons using gafchromic and radiographic film, and the accuracy of the planning system verified. The maximum leakage measured for a single field was 0.39 cGy MU-1 for a 0 mm leaf gap and 0.51 cGy MU-1 for a 0.6 mm leaf gap. For a clinical IMRT field leaf end leakage contributed an additional 2-3 Gy over the course of treatment. The planning system underestimated the magnitude of end leaf leakage by 20-40%. The ability to deliver IMRT fields wider than 14.5 cm with the Millennium MLC has improved the efficiency and flexibility of IMRT treatments; however, significant extra dose can be introduced due to end leaf leakage. Caution should be exercised when delivering wide field IMRT as it is not a complete panacea. Any significant occurrences of end leaf leakage predicted by the planning system should be independently verified prior to delivery.

  13. Microlensing Surveys of M31 in the Wide Field Imaging ERA

    SciTech Connect

    Baltz, E.

    2004-10-27

    The Andromeda Galaxy (M31) is the closest large galaxy to the Milky Way, thus it is an important laboratory for studying massive dark objects in galactic halos (MACHOs) by gravitational microlensing. Such studies strongly complement the studies of the Milky Way halo using the Large and Small Magellanic Clouds. We consider the possibilities for microlensing surveys of M31 using the next generation of wide field imaging telescopes with fields of view in the square degree range. We consider proposals for such imagers both on the ground and in space. For concreteness, we specialize to the SNAP proposal for a space telescope and the LSST proposal for a ground based telescope. We find that a modest space-based survey of 50 visits of one hour each is considerably better than current ground based surveys covering 5 years. Crucially, systematic effects can be considerably better controlled with a space telescope because of both the infrared sensitivity and the angular resolution. To be competitive, 8 meter class wide-field ground based imagers must take exposures of several hundred seconds with several day cadence.

  14. Wide-field optical coherence microscopy of the mouse brain slice.

    PubMed

    Min, Eunjung; Lee, Junwon; Vavilin, Andrey; Jung, Sunwoo; Shin, Sungwon; Kim, Jeehyun; Jung, Woonggyu

    2015-10-01

    The imaging capability of optical coherence microscopy (OCM) has great potential to be used in neuroscience research because it is able to visualize anatomic features of brain tissue without labeling or external contrast agents. However, the field of view of OCM is still narrow, which dilutes the strength of OCM and limits its application. In this study, we present fully automated wide-field OCM for mosaic imaging of sliced mouse brains. A total of 308 segmented OCM images were acquired, stitched, and reconstructed as an en-face brain image after intensive imaging processing. The overall imaging area was 11.2×7.0  mm (horizontal×vertical), and the corresponding pixel resolution was 1.2×1.2  μm. OCM images were compared to traditional histology stained with Nissl and Luxol fast blue (LFB). In particular, the orientation of the fibers was analyzed and quantified in wide-field OCM. PMID:26421546

  15. New wide field camera for Subaru Telescope: Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Miyazaki, Satoshi

    2015-08-01

    Hyper Suprime-Cam (HSC) is a new wide field optical imaging camera built for 8.2 m Subaru telescope. The field of view is 1.5 degree in diameter and the nearly 50 cm image circle was paved by 116 fully depleted CCDs (2k x 4k 15 micron square pixels). To realize a seeing limit imaging at Mauna Kea, the specification on the overall instrument PSF is set as 0.32 arc-second (FWHM). This is crucial for our primary scientific objectives: weak gravitational lensing survey to probe dark matter distribution. We started building the camera in 2006 and had a first light in 2012. The delivered image quality turned out to be mostly seeing limited as designed. We once observed the seeing size of 0.43 arc-second (median value over the field of view) in Y-band with 300 seconds exposure. Our 300 nights observing proposal has been accepted. The program started in March 2014 and continues over 5 years. The wide survey plans to cover 1,400 square degree with the limiting magnitude of i_AB = 26 (5 sigma, 2 arcsec aperture). General observer programs are carried out in parallel. In this talk, we will present the design and the actual performance of the camera as well as how we implement the massive (1.6 GByte/exposure) data management system.

  16. Palm-size wide-field Fourier spectroscopic imager with uncooled infrared microbolometer arrays for smartphone

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Suzuki, Yo; Qi, Wei; Hosono, Satsuki; Saito, Tsubasa; Ogawa, Satoshi; Sato, Shun; Fujiwara, Masaru; Nishiyama, Akira; Wada, Kenji; Tanaka, Naotaka; Ishimaru, Ichiro

    2015-03-01

    We proposed the imaging-type 2-dimensional Fourier spectroscopy that is a near-common-path interferometer with strong robustness against mechanical vibrations. We introduced the miniature uncooled infrared microbolometer arrays for smartphone (e.g. product name: FILR ONE price: around 400USD). And we constructed the phase-shifter with the piezo impact drive mechanism (maker: Technohands.co.Ltd., stroke: 4.5mm, resolution: 0.01μm, size: 20mm, price: around 800USD). Thus, we realized the palm-size mid-infrared spectroscopic imager [size: L56mm×W69mm×H43mm weight: 500g]. And by using wide-angle lens as objective lens, the proposed method can obtain the wide-field 2- dimensional middle-infrared (wavelength: 7.5-13.5[μm]) spectroscopic imaging of radiation lights emitted from human bodies itself

  17. Readout electronics for the Wide Field of view Cherenkov/Fluorescence Telescope Array

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, S.; Zhang, Y.; Zhou, R.; Bai, L.; Zhang, J.; Huang, J.; Yang, C.; Cao, Z.

    2015-08-01

    The aim of the Large High Altitude Air Shower Observatory (LHAASO), supported by IHEP of the Chinese Academy of Sciences, is a multipurpose project with a complex detectors array for high energy gamma ray and cosmic ray detection. The Wide Field of view Cherenkov Telescope Array (WFCTA), as one of the components of the LHAASO project, aim to tag each primary particle that causes an air shower. The WFCTA is a portable telescope array used to detect cosmic ray spectra. The design of the readout electronics of the WFCTA is described in this paper Sixteen photomultiplier tubes (PMTs), together with their readout electronics are integrated into a single sub-cluster. To maintain good resolution and linearity over a wide dynamic range, a dual-gain amplification configuration on an analog board is used The digital board contains two 16channel 14-bit, 50 Msps analog-to-digital converters (ADC) and its power consumption, noise level, and relative deviation are all tested.

  18. Wide field of view laser beacon system for three-dimensional aircraft position measurement

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Miles, R. B.; Webb, S. G.; Wong, E. Y.

    1981-01-01

    This paper presents a new wide field of view laser beacon system for measurement, in three dimensions, of aircraft or other remote objects. The system is developed for aircraft collision hazard warning independent of ground-based hardware, as well as for flight research, helicopter-assisted construction and rescue, and robotic manipulation applications. Accurate information describing the relative range, elevation, and azimuth of the aircraft are generated by the sweep of a low-power fan-shaped rotating laser beacon past an array of optical detectors. The system achieves a wide angle of acceptance of laser beacon light through use of compound parabolic concentrators, which collimate the light for spectral filtering to minimize solar interference. An on-board microprocessor system converts the pulse sequence to aircraft position in real time. System reliability and performance are enhanced through narrow pass filtering of the pulse signals, digital logic design to mask spurious signals, and adaptive modulation of trigger threshold levels.

  19. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography

    PubMed Central

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    This paper presents a method to simultaneously acquire an aberration-corrected, wide field-of-view fluorescence image and a high-resolution coherent bright-field image using a computational microscopy method. First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff spatial frequency of the microscope objective lens. At the same time, redundancy within the set of acquired FPM bright-field images offers a means to estimate microscope aberrations. Second, the procedure acquires an aberrated fluorescence image, and computationally improves its resolution through deconvolution with the estimated aberration map. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by up to 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of at least ~18. PMID:26977345

  20. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography.

    PubMed

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-02-01

    This paper presents a method to simultaneously acquire an aberration-corrected, wide field-of-view fluorescence image and a high-resolution coherent bright-field image using a computational microscopy method. First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff spatial frequency of the microscope objective lens. At the same time, redundancy within the set of acquired FPM bright-field images offers a means to estimate microscope aberrations. Second, the procedure acquires an aberrated fluorescence image, and computationally improves its resolution through deconvolution with the estimated aberration map. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by up to 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of at least ~18. PMID:26977345

  1. Wide-field Infrared Polarimetry of the ρ Ophiuchi Cloud Core

    NASA Astrophysics Data System (ADS)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.; Nakajima, Yasushi; Nishiyama, Shogo; Kusakabe, Nobuhiko; Nagata, Tetsuya; Kandori, Ryo

    2015-09-01

    We conducted wide and deep simultaneous JHKs-band imaging polarimetry of the ρ Ophiuchi cloud complex. Aperture polarimetry in the JHKs band was conducted for 2136 sources in all three bands, of which 322 sources have significant polarizations in all the JHKs bands and have been used for a discussion of the core magnetic fields. There is a positive correlation between degrees of polarization and H - Ks color up to H - Ks ≈ 3.5. The magnetic field structures in the core region are revealed up to at least AV ≈ 47 mag and are unambiguously defined in each sub-region (core) of Oph-A, Oph-B, Oph-C, Oph-E, Oph-F, and Oph-AC. Their directions, degrees of polarization, and polarization efficiencies differ but their changes are gradual; thus, the magnetic fields appear to be connected from core to core, rather than as a simple overlap of the different cloud core components. Comparing our results with the large-scale field structures obtained from previous optical polarimetric studies, we suggest that the magnetic field structures in the core were distorted by the cluster formation in this region, which may have been induced by shock compression due to wind/radiation from the Scorpius-Centaurus association.

  2. Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging

    PubMed Central

    Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.

    2014-01-01

    Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321

  3. The development of a wide-field, high-resolution UV Raman hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Nelson, Matthew P.; Angel, S. M.

    2015-05-01

    Raman spectroscopy is a valuable tool for the investigation and analysis of explosive and biological analytes because it provides a unique molecular fingerprint that allows for unambiguous target identification. Raman can be advantageous when utilized with deep UV excitation, but typical deep UV Raman systems have numerous limitations that hinder their performance and make their potential integration onto a field portable platform difficult. These systems typically offer very low throughput, are physically large and heavy, and can only probe an area the size of a tightly focused laser, severely diminishing the ability of the system to investigate large areas efficiently. The majority of these limitations are directly related to a system's spectrometer, which is typically dispersive grating based and requires a very narrow slit width and long focal length optics to achieve high spectral resolution. To address these shortcomings, ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, are developing a revolutionary wide-field Raman hyperspectral imaging system capable of providing wide-area, high resolution measurements with greatly increased throughput in a small form factor, which would revolutionize the way Raman is conducted and applied. The innovation couples a spatial heterodyne spectrometer (SHS), a novel slit-less spectrometer that operates similar to Michelson interferometer, with a fiber array spectral translator (FAST) fiber array, a two-dimensional imaging fiber for hyperspectral imagery. This combination of technologies creates a novel wide-field, high throughput Raman hyperspectral imager capable of yielding very high spectral resolution measurements using defocused excitation, giving the system a greater area coverage and faster search rate than traditional Raman systems. This paper will focus on the need for an innovative UV Raman system, provide an overview of spatial heterodyne Raman spectroscopy, and discuss the development

  4. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    NASA Astrophysics Data System (ADS)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  5. An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging

    PubMed Central

    Mohammed, Ali I.; Gritton, Howard J.; Tseng, Hua-an; Bucklin, Mark E.; Yao, Zhaojie; Han, Xue

    2016-01-01

    Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks. PMID:26854041

  6. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates.

    PubMed

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-12-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10(-11) to 10(-6) Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source. PMID:26738501

  7. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Griffin, G. T.; Gerlach, L.; Wozniakiewicz, P. J.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  8. Range performance of the DARPA AWARE wide field-of-view visible imager.

    PubMed

    Nichols, J M; Judd, K P; Olson, C C; Novak, K; Waterman, J R; Feller, S; McCain, S; Anderson, J; Brady, D

    2016-06-01

    In a prior paper, we described a new imaging architecture that addresses the need for wide field-of-view imaging combined with the resolution required to identify targets at long range. Over the last two years substantive improvements have been made to the system, both in terms of the size, weight, and power of the camera as well as to the optics and data management software. The result is an overall improvement in system performance, which we demonstrate via a maritime target identification experiment. PMID:27411206

  9. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-01-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10-11 to 10-6 Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source.

  10. DWARF IRREGULAR GALAXY LEO A: SUPRIME-CAM WIDE-FIELD STELLAR PHOTOMETRY

    SciTech Connect

    Stonkutė, Rima; Narbutis, Donatas; Vansevičius, Vladas; Arimoto, Nobuo; Hasegawa, Takashi; Tamura, Naoyuki

    2014-10-01

    We have surveyed a complete extent of Leo A—an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The B, V, and I passband CCD images (typical seeing ∼0.''8) were obtained with the Subaru Telescope equipped with the Suprime-Cam mosaic camera. The wide-field (20' × 24') photometry catalog of 38,856 objects (V ∼ 16-26 mag) is presented. This survey is also intended to serve as ''a finding chart'' for future imaging and spectroscopic observation programs of Leo A.

  11. Far ultraviolet wide field imaging with a SPARTAN /Experiment of Opportunity/ Payload

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.

    1982-01-01

    A wide-field electrographic Schmidt camera, sensitive in the far UV (1230-2000 A), has been developed and utilized in three sounding rocket flights. It is now being prepared for Shuttle flight as an Experiment of Opportunity Payload (EOP) (recently renamed as the SPARTAN program). In this paper, we discuss (1) design of the instrument and payload, particularly as influenced by our experience in rocket flights; (2) special problems of EOP in comparison to sounding rocket missions; (3) relationship of this experiment to, and special capabilities in comparison to, other space astronomy instruments such as Space Telescope; and (4) a tentative observing plan for an EOP mission.

  12. Far ultraviolet wide field imaging and photometry - Spartan-202 Mark II Far Ultraviolet Camera

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Opal, Chet B.; Witt, Adolf N.; Henize, Karl G.

    1988-01-01

    The U.S. Naval Research Laboratory' Mark II Far Ultraviolet Camera, which is expected to be a primary scientific instrument aboard the Spartan-202 Space Shuttle mission, is described. This camera is intended to obtain FUV wide-field imagery of stars and extended celestial objects, including diffuse nebulae and nearby galaxies. The observations will support the HST by providing FUV photometry of calibration objects. The Mark II camera is an electrographic Schmidt camera with an aperture of 15 cm, a focal length of 30.5 cm, and sensitivity in the 1230-1600 A wavelength range.

  13. Estimating the Supernova Cosmological Constraints Possible With the Wide-Field Infrared Survey Telescope

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Rubin, David; Aldering, Greg Scott; Baltay, Charles; Fagrelius, Parker; Law, David R.; Perlmutter, Saul; Pontoppidan, Klaus

    2016-01-01

    The proposed Wide-Field Infrared Survey Telescope (WFIRST) supernova survey will measure precision distances continuously in redshift to 1.7 with excellent systematics control. However, the Science Definition Team report presented a idealized version of the survey, and we now work to add realism. Using SNe from HST programs, we investigate the expected contamination from the host-galaxy light to estimate required exposure times. We also present estimates of purity and completeness, generated by degrading well-measured nearby SN spectra to WFIRST resolution and signal-to-noise. We conclude with a more accurate prediction of the cosmological constraints possible with WFIRST SNe.

  14. Real-time monitoring of graphene patterning with wide-field four-wave mixing microscopy

    NASA Astrophysics Data System (ADS)

    Koivistoinen, Juha; Aumanen, Jukka; Hiltunen, Vesa-Matti; Myllyperkiö, Pasi; Johansson, Andreas; Pettersson, Mika

    2016-04-01

    The single atom thick two-dimensional graphene is a promising material for various applications due to its extraordinary electronic, optical, optoelectronic, and mechanical properties. The demand for developing graphene based applications has entailed a requirement for development of methods for fast imaging techniques for graphene. Here, we demonstrate imaging of graphene with femtosecond wide-field four-wave mixing microscopy. The method provides a sensitive, non-destructive approach for rapid large area characterization of graphene. We show that the method is suitable for online following of a laser patterning process of microscale structures on single-layer graphene.

  15. Developments of wide field submillimeter optics and lens antenna-coupled MKID cameras

    NASA Astrophysics Data System (ADS)

    Sekimoto, Y.; Nitta, T.; Karatsu, K.; Sekine, M.; Sekiguchi, S.; Okada, T.; Shu, S.; Noguchi, T.; Naruse, M.; Mitsui, K.; Okada, N.; Tsuzuki, T.; Dominjon, A.; Matsuo, H.

    2014-07-01

    Wide field cryogenic optics and millimeter-wave Microwave Kinetic Inductance Detector (MKID) cameras with Si lens array have been developed. MKID is a Cooper-pair breaking photon detector and consists of supercon- ducting resonators which enable microwave (~GHz) frequency multiplexing. Antenna-coupled Aluminum CPW resonators are put in a line on a Si substrate to be read by a pair of coaxial cables. A 220 GHz - 600 pixels MKID camera with anti-reflection (AR) coated Si lens has been demonstrated in an 0.1 K cryostat. A compact cryogenic system with high refractive index materials has been developed for the MKID camera.

  16. The First Hundred Brown Dwarfs Discovered by the Wide-Field Infrared Survey Explorer (WISE)

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Mainzer, Amanda K.; Eisenhardt, Peter R.; McLean, Ian S.; Bauer, James M.; Benford, Dominic J.; Lake, Sean E.; Petty, Sara M.; Tsai, Chao-Wei; Beichman, Charles; Stapelfeldt, Karl R.; Stern, Daniel; Vacca, William D.

    2011-01-01

    We present ground-based spectroscopic verification of six Y dwarfs also Cushing et al.), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types > or =T6, six of which have been announced earlier in Mainzer et al. and I3urgasser et al. We present color-color and colortype diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. "

  17. On the Design of Wide-Field X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weiskopf, Martin C.

    2009-01-01

    X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the X-ray sky and potentially for study of the Sun s X-ray emission. We discuss the various considerations affecting the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of on-axis spatial resolution, and the positioning of focal plane detectors.

  18. Wide-field compact catadioptric telescope spanning 0.7-14 μm wavelengths.

    PubMed

    Marks, Daniel L; Hagen, Nathan; Durham, Mark; Brady, David J

    2013-06-20

    We present a wide-field compact f-1.2, f-1.6 effective illumination catadioptric telescope that spans the wavelengths 0.7-14.0 μm. Such a telescope replaces several telescopes designed for different infrared bands, while having a track length shorter than most single-band telescopes. Incorporated with a suitable multiband focal plane array, many wavelength bands may be imaged simultaneously in the same instrument. We have constructed and tested prototypes of the telescopes and found the performance is near the predicted values. PMID:23842177

  19. Wide Field Camera 3: A Powerful New Imager for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2008-01-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera in development for installation into the Hubble Space Telescope during upcoming Servicing Mission 4. WFC3 provides two imaging channels. The UVIS channel incorporates a 4096 x 4096 pixel CCD focal plane with sensitivity from 200 to 1000 nm. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 850 to 1700 nm. We report here on the design of the instrument, the performance of its flight detectors, results of the ground test and calibration program, and the plans for the Servicing Mission installation and checkout.

  20. The NOAO Deep Wide-Field Survey Image Cutout Web Service

    NASA Astrophysics Data System (ADS)

    Davis, Lindsey E.; Fitzpatrick, Mike; Tody, Doug

    A Web service for extracting multi-band science grade image cutouts from the NOAO Deep Wide-Field Survey (NDWFS) is described. The NDWFS data is stored as a multi-band database of large images on the NDWFS archive server. Given a cutout center and size the NDWFS image cutout service creates cutout images on-the-fly. The service provides high performance access to the survey data and isolates the client from the details of how the survey data is stored in the archive.

  1. A wide field-of-view scanning endoscope for whole anal canal imaging.

    PubMed

    Han, Chao; Huangfu, Jiangtao; Lai, Lily L; Yang, Changhuei

    2015-02-01

    We report a novel wide field-of-view (FOV) scanning endoscope, the AnCam, which is based on contact image sensor (CIS) technology used in commercialized business card scanners. The AnCam can capture the whole image of the anal canal within 10 seconds with a resolution of 89 μm, a maximum FOV of 100 mm × 120 mm, and a depth-of-field (DOF) of 0.65 mm at 5.9 line pairs per mm (lp/mm). We demonstrate the performance of the AnCam by imaging the entire anal canal of pigs and tracking the dynamics of acetowhite testing. We believe the AnCam can potentially be a simple and convenient solution for screening of the anal canal for dysplasia and for surveillance in patients following treatment for anal cancer. PMID:25780750

  2. Stellar photometry with the Hubble Space Telescope Wide-field/Planetary camera - A progress report

    NASA Technical Reports Server (NTRS)

    Holtzman, Jon A.; Hunter, Deidre; Groth, Edward J.; Light, Robert M.; Faber, S. M.

    1991-01-01

    The prospects for the use of the Wide-Field/Planetary Camera (WFPC) for stellar photometry are described. The large halos of the point-spread function (PSF) resulting from spherical aberration and from spatial, temporal, and color variations of the PSF are the main limitations to accurate photometry. Degradations caused by crowding are exacerbated by the halos of the PSF. An attempt is made to quantify these effects and determine the current accuracy of stellar photometry with the WFPC. In realistic cases, the brighter stars in crowded fields have 0.09 mag errors; fainter stars have larger errors depending on the degree of crowding. It is shown that measuring Cepheids in Virgo Cluster galaxies is not currently possible without inordinate increases in exposure times.

  3. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  4. Wide-field endoscopic fluorescence imaging for gastrointestinal tumor detection with glucose analogue

    NASA Astrophysics Data System (ADS)

    He, Yun; Qu, Yawei; Bai, Jing; Liu, Haifeng

    2014-05-01

    The lack of functional information and targeted imaging in conventional white-light endoscopy leads to a high miss-rate of gastrointestinal tumor. The combination of near-infrared fluorescence imaging and endoscopy presents a promising approach. Here we introduce a new endoscopy method employing a home-made flexible wide-field epi-fluorescence endoscope, that can be inserted through the biopsy channel of a gastrointestinal endoscope, with the glucose analogue 2- DeoxyGlucosone as the near-infrared fluorescent probe. System characterization indicates a good sensitivity and linearity over a large field of view. Its capability of tumor identification and location is demonstrated with in-vivo imaging of xenografted tumor model.

  5. Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry.

    PubMed

    Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T

    2013-08-15

    We achieved continuous, noncontact wide-field imaging and characterization of drug release from a polymeric device in vitro by uniquely using off-axis interferometric imaging. Unlike the current gold-standard methods in this field, which are usually based on chromatography and spectroscopy, our method requires no user intervention during the experiment and involves less lab consumable instruments. Using a simplified interferometric imaging system, we experimentally demonstrate the characterization of anesthetic drug release (Bupivacaine) from a soy-based protein matrix, which is used as a skin substitute for wound dressing. Our results demonstrate the potential of interferometric imaging as an inexpensive and easy-to-use alternative for characterization of drug release in vitro. PMID:24104636

  6. A wide field-of-view scanning endoscope for whole anal canal imaging

    PubMed Central

    Han, Chao; Huangfu, Jiangtao; Lai, Lily L.; Yang, Changhuei

    2015-01-01

    We report a novel wide field-of-view (FOV) scanning endoscope, the AnCam, which is based on contact image sensor (CIS) technology used in commercialized business card scanners. The AnCam can capture the whole image of the anal canal within 10 seconds with a resolution of 89 μm, a maximum FOV of 100 mm × 120 mm, and a depth-of-field (DOF) of 0.65 mm at 5.9 line pairs per mm (lp/mm). We demonstrate the performance of the AnCam by imaging the entire anal canal of pigs and tracking the dynamics of acetowhite testing. We believe the AnCam can potentially be a simple and convenient solution for screening of the anal canal for dysplasia and for surveillance in patients following treatment for anal cancer. PMID:25780750

  7. Advanced electric field computation for RF sheaths prediction with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo

    2012-10-01

    The design of an Ion Cyclotron (IC) launcher is not only driven by its coupling properties, but also by its capability of maintaining low parallel electric fields in front of it, in order to provide good power transfer to plasma and to reduce the impurities production. However, due to the impossibility to verify the antenna performances before the starting of the operations, advanced numerical simulation tools are the only alternative to carry out a proper antenna design. With this in mind, it should be clear that the adoption of a code, such as TOPICA [1], able to precisely take into account a realistic antenna geometry and an accurate plasma description, is extremely important to achieve these goals. Because of the recently introduced features that allow to compute the electric field distribution everywhere inside the antenna enclosure and in the plasma column, the TOPICA code appears to be the only alternative to understand which elements may have a not negligible impact on the antenna design and then to suggest further optimizations in order to mitigate RF potentials. The present work documents the evaluation of the electric field map from actual antennas, like the Tore Supra Q5 and the JET A2 launchers, and the foreseen ITER IC antenna. [4pt] [1] D. Milanesio et al., Nucl. Fusion 49, 115019 (2009).

  8. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    NASA Technical Reports Server (NTRS)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  9. Integration of wide field-of-view imagery functions in a detector dewar cooler assembly

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; de la Barriere, Florence; Guerineau, Nicolas; Lasfargues, Gilles; Fendler, Manuel; Lhermet, Nicolas; Taboury, Jean; Reibel, Yann; Moullec, Jean-Baptiste

    2012-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). A dewar is a sealed environment where the detector is cooled on a cold plate. We show in this paper that wide field of view imagery functions can be simply added to the dewar. We investigate two ways of integration and make two demonstrators. The first one called FISBI consists in replacing the window by a fish-eye lens and in integrating a lens in the cold shield. This optical system has a field of view of 180°. The second one, called IR-Cam-on-Chip, consists in integrating the optics directly on the focal plane array. This optical system has a field of view of 120°. The additional mass of the optics is sufficiently small to be compatible with the cryogenic environment of the DDCA. The performance of these cameras will be discussed and several evolutions of these cameras will be introduced too.

  10. Wide Field Collimator 2 (WFC2) for GOES Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Etemad, Shahriar; Bremer, James C.; Zukowski, Barbara J.; Pasquale, Bert A.; zukowski, Tmitri J.; Prince, Robert E.; O'Neill, Patrick A.; Ross, Robert W.

    2004-01-01

    Two of the GOES instruments, the Imager and the Sounder, perform scans of the Earth to provide a full disc picture of the Earth. To verify the entire scan process, an image of a target that covers an 18 deg. circular field-of-view is collimated and projected into the field of regard of each instrument. The Wide Field Collimator 2 (WFC2) has many advantages over its predecessor, WFC1, including lower thermal dissipation higher fir field MTF, smaller package, and a more intuitive (faster) focusing process. The illumination source is an LED array that emits in a narrow spectral band centered at 689 nm, within the visible spectral bands of the Imager and Sounder. The illumination level can be continuously adjusted electronically. Lower thermal dissipation eliminates the need for forced convection cooling and minimizes time to reach thermal stability. The lens system has been optimized for the illumination source spectral output and athernalized to remain in focus during bulk temperature changes within the laboratory environment. The MTF of the lens is higher than that of the WFC1 at the edge of FOV. The target is focused in three orthogonal motions, controlled by an ergonomic system that saves substantial time and produces a sharper focus. Key words: Collimator, GOES, Imager, Sounder, Projector

  11. Enhanced signal coupling in wide-field fiber-coupled imagers.

    PubMed

    Arianpour, Ashkan; Motamedi, Nojan; Agurok, Ilya P; Ford, Joseph E

    2015-02-23

    Some high-performance imaging systems, including wide angle "monocentric" lenses made of concentric spherical shells, form a deeply curved image surface coupled to focal plane sensors by optical fiber bundles with a curved input and flat output face. However, refraction at the angled input facet limits the range of input angles, even for fiber bundles with numerical aperture 1. Here we investigate using a curved beam deflector near the focal surface to increase the field of view and improve spatial resolution at the edges of the field of view. We show the field of view of such an imager can be increased from approximately 60° (full width at half maximum intensity) to over 90° using an embossed refractive microprism array, where the prism angle varies across the aperture to maintain coupling. We describe a proof-of-principle experiment using a f = 17.8mm fiber-coupled monocentric singlet lens, and show that a local region of microprisms embossed into a thin layer of SU-8 photopolymer can increase the field of view by 50%. PMID:25836560

  12. Electrolocation-based underwater obstacle avoidance using wide-field integration methods.

    PubMed

    Dimble, Kedar D; Faddy, James M; Humbert, J Sean

    2014-03-01

    Weakly electric fish are capable of efficiently performing obstacle avoidance in dark and navigationally challenging aquatic environments using electrosensory information. This sensory modality enables extraction of relevant proximity information about surrounding obstacles by interpretation of perturbations induced to the fish's self-generated electric field. In this paper, reflexive obstacle avoidance is demonstrated by extracting relative proximity information using spatial decompositions of the perturbation signal, also called an electric image. Electrostatics equations were formulated for mathematically expressing electric images due to a straight tunnel to the electric field generated with a planar electro-sensor model. These equations were further used to design a wide-field integration based static output feedback controller. The controller was implemented in quasi-static simulations for environments with complicated geometries modelled using finite element methods to demonstrate sense and avoid behaviours. The simulation results were confirmed by performing experiments using a computer operated gantry system in environments lined with either conductive or non-conductive objects acting as global stimuli to the field of the electro-sensor. The proposed approach is computationally inexpensive and readily implementable, making underwater autonomous navigation in real-time feasible. PMID:24451219

  13. Field and long-term demonstration of a wide area quantum key distribution network.

    PubMed

    Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu

    2014-09-01

    A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective integration between point-to-point QKD techniques and networking schemes. PMID:25321550

  14. A novel genome-wide polyadenylation sites recognition system based on condition random field.

    PubMed

    Han, Jiuqiang; Zhang, Shanxin; Liu, Jun; Liu, Ruiling

    2014-01-01

    Polyadenylation including the cleavage of pre-mRNA and addition of a stretch of adenosines to the 3'-end is an essential step of pre-mRNA processing in eukayotes. The known regulatory role of polyadenylation in mRNA localization, stability, and translation and the emerging link between poly(A) and disease states underline the necessary to fully characterize polyadenylation sites. Several artificial intelligence methods have been proposed for poly(A) sites recognition. However, these methods are suitable to small subsets of genome sequences. It is necessary to propose a method for genome-wide recognition of poly(A) sites. Recent efforts have found a lot of poly(A) related factors on DNA level. Here, we proposed a novel genome-wide poly(A) recognition method based on the Condition Random Field (CRF) by integrating multiple features. Compared with the polya_svm (the most accurate program for prediction of poly(A) sites till date), our method had a higher performance with the area under ROC curve(0.8621 versus 0.6796). The result suggests that our method is an effective method in genome wide poly(A) sites recognition. PMID:25571055

  15. Fast multicamera video stitching for underwater wide field-of-view observation

    NASA Astrophysics Data System (ADS)

    Li, Qing-Zhong; Zhang, Yang; Zang, Feng-Ni

    2014-03-01

    Underwater robots equipped with a single forward-looking camera usually have a very limited visual range or field-of-view (FOV) due to the light absorption and scattering effects in the underwater environment, which greatly limit their applications for underwater video-based inspection, navigation, and so on. Although underwater robots using multicamera imaging systems can achieve wide FOV of surroundings, parallax distortion and time-consuming stitching computation are encountered, especially for short-distance observation. To overcome these problems, we present a fast multicamera video-stitching algorithm based on adaptive adjustment of image transformation matrix between adjacent images. The proposed method uses a fast and adaptive optimization algorithm to search the optimal parameters of transformation matrix that can minimize the parallax distortion due to short-distance imaging and maximize the matching degree between adjacent overlapping image areas. The advantage of the proposed stitching method lies in that it avoids the complex and time-consuming computations for feature-point extraction and matching. The experimental results show that the proposed method can construct multicamera-based wide FOV video effectively and meets the real-time requirement of wide FOV video observation for both indoor and underwater scenes.

  16. Wide-field computational color imaging using pixel super-resolved on-chip microscopy

    PubMed Central

    Greenbaum, Alon; Feizi, Alborz; Akbari, Najva; Ozcan, Aydogan

    2013-01-01

    Lens-free holographic on-chip imaging is an emerging approach that offers both wide field-of-view (FOV) and high spatial resolution in a cost-effective and compact design using source shifting based pixel super-resolution. However, color imaging has remained relatively immature for lens-free on-chip imaging, since a ‘rainbow’ like color artifact appears in reconstructed holographic images. To provide a solution for pixel super-resolved color imaging on a chip, here we introduce and compare the performances of two computational methods based on (1) YUV color space averaging, and (2) Dijkstra’s shortest path, both of which eliminate color artifacts in reconstructed images, without compromising the spatial resolution or the wide FOV of lens-free on-chip microscopes. To demonstrate the potential of this lens-free color microscope we imaged stained Papanicolaou (Pap) smears over a wide FOV of ~14 mm2 with sub-micron spatial resolution. PMID:23736466

  17. Advancing the field of 3D biomaterial printing.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-02-01

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications. PMID:26752507

  18. Advancing the field of health systems research synthesis.

    PubMed

    Langlois, Etienne V; Ranson, Michael K; Bärnighausen, Till; Bosch-Capblanch, Xavier; Daniels, Karen; El-Jardali, Fadi; Ghaffar, Abdul; Grimshaw, Jeremy; Haines, Andy; Lavis, John N; Lewin, Simon; Meng, Qingyue; Oliver, Sandy; Pantoja, Tomás; Straus, Sharon; Shemilt, Ian; Tovey, David; Tugwell, Peter; Waddington, Hugh; Wilson, Mark; Yuan, Beibei; Røttingen, John-Arne

    2015-01-01

    Those planning, managing and working in health systems worldwide routinely need to make decisions regarding strategies to improve health care and promote equity. Systematic reviews of different kinds can be of great help to these decision-makers, providing actionable evidence at every step in the decision-making process. Although there is growing recognition of the importance of systematic reviews to inform both policy decisions and produce guidance for health systems, a number of important methodological and evidence uptake challenges remain and better coordination of existing initiatives is needed. The Alliance for Health Policy and Systems Research, housed within the World Health Organization, convened an Advisory Group on Health Systems Research (HSR) Synthesis to bring together different stakeholders interested in HSR synthesis and its use in decision-making processes. We describe the rationale of the Advisory Group and the six areas of its work and reflects on its role in advancing the field of HSR synthesis. We argue in favour of greater cross-institutional collaborations, as well as capacity strengthening in low- and middle-income countries, to advance the science and practice of health systems research synthesis. We advocate for the integration of quasi-experimental study designs in reviews of effectiveness of health systems intervention and reforms. The Advisory Group also recommends adopting priority-setting approaches for HSR synthesis and increasing the use of findings from systematic reviews in health policy and decision-making. PMID:26159806

  19. Consistent low-field mobility modeling for advanced MOS devices

    NASA Astrophysics Data System (ADS)

    Stanojević, Zlatan; Baumgartner, Oskar; Filipović, Lidija; Kosina, Hans; Karner, Markus; Kernstock, Christian; Prause, Philipp

    2015-10-01

    In this paper we develop several extensions to semi-classical modeling of low-field mobility, which are necessary to treat planar and non-planar channel geometries on equal footing. We advance the state-of-the-art by generalizing the Prange-Nee model for surface roughness scattering to non-planar geometries, providing a fully numerical treatment of Coulomb scattering, and formulating the Kubo-Greenwood mobility model in a consistent, dimension-independent manner. These extensions allow meaningful comparison of planar and non-planar structures alike, and open the door to evaluating emerging device concepts, such as the FinFET or the junction-less transistor, on physical grounds.

  20. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; Whipple, Arthur

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  1. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; McKinley, B.; Hurley-Walker, N.; Briggs, F. H.; Wayth, R. B.; Kaplan, D. L.; Bell, M. E.; Feng, L.; Neben, A. R.; Hughes, J. D.; Rhee, J.; Murphy, T.; Bhat, N. D. R.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Ewall-Wice, A.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Jacobs, D. C.; Kasper, J. C.; Kratzenberg, E.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Kudryavtseva, N.; Oberoi, D.; Ord, S. M.; Pindor, B.; Procopio, P.; Prabu, T.; Riding, J.; Roshi, D. A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2014-10-01

    Astronomical wide-field imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new wide-field interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependences of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarization correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.

  2. Experimental comparison of Wide Field AO control schemes using the Homer AO bench.

    NASA Astrophysics Data System (ADS)

    Parisot, Amélie; Petit, Cyril; Fusco, Thierry

    2011-09-01

    Wide Field Adaptive Optics (WFAO) concepts, such as Laser Tomography AO (LTAO) or Multi-Conjugate AO (MCAO) have been developed in order to overcome the anisoplanatism limit of classical AO. Most of the future AO-assisted instruments of ELTs rely on such concepts which have raised critical challenges such as tomographic estimation and from laser and natural guide star combined with efficient DM(s) control. In that context, the experimental validation of the various clever control solutions proposed by several teams in the past years is now essential to reach a level of maturity compatible with their implementation in future WFAO developments for ELT. The ONERA wide field AO facility (HOMER bench) has been developed for these very issues. Gathering a 3D turbulence generator, laser and natural guide stars, two deformable mirrors with variable altitude positions and a PC-based flexible and user-friendly RTC , HOMER allows the implementation and comparison of control schemes from the simplest least-square to the optimal Linear Quadratic Gaussian solutions including Virtual DM and Pseudo-closed loop approaches. After a description of the bench internal calibrations and ultimate performance, all the control schemes are compared experimentally. Their evolutions as a function of wavefront sensors SNR as well as their robustness to calibration / model errors are particularly emphasised. Finally, we derive from the previous works some specific calibrations and identifications procedures ensuring both robustness and efficiency of WFAO systems and we extrapolate their applications to the future ELT AO systems.

  3. Wide-field medium-repetition-rate multiphoton microscopy reduces photodamage of living cells.

    PubMed

    Macias-Romero, C; Zubkovs, V; Wang, S; Roke, S

    2016-04-01

    Demands of higher spatial and temporal resolutions in linear and nonlinear imaging keep pushing the limits of optical microscopy. We showed recently that a multiphoton microscope with 200 kHz repetition rate and wide-field illumination has a 2-3 orders of magnitude improved throughput compared to a high repetition rate confocal scanning microscope. Here, we examine the photodamage mechanisms and thresholds in live cell imaging for both systems. We first analyze theoretically the temperature increase in an aqueous solution resulting from illuminating with different repetition rates (keeping the deposited energy and irradiated volume constant). The analysis is complemented with photobleaching experiments of a phenolsulfonphthalein (phenol red) solution. Combining medium repetition rates and wide-field illumination promotes thermal diffusivity, which leads to lower photodamage and allows for higher peak intensities. A three day proliferation assay is also performed on living cells to confirm these results: dwell times can be increased by a factor of 3×10(6) while still preserving cell proliferation. By comparing the proliferation data with the endogenous two-photon fluorescence decay, we propose to use the percentage of the remaining endogenous two-photon fluorescence after exposure as a simple in-situ viability test. These findings enable the possibility of long-term imaging and reduced photodamage. PMID:27446668

  4. Wide-field medium-repetition-rate multiphoton microscopy reduces photodamage of living cells

    PubMed Central

    Macias-Romero, C.; Zubkovs, V.; Wang, S.; Roke, S.

    2016-01-01

    Demands of higher spatial and temporal resolutions in linear and nonlinear imaging keep pushing the limits of optical microscopy. We showed recently that a multiphoton microscope with 200 kHz repetition rate and wide-field illumination has a 2–3 orders of magnitude improved throughput compared to a high repetition rate confocal scanning microscope. Here, we examine the photodamage mechanisms and thresholds in live cell imaging for both systems. We first analyze theoretically the temperature increase in an aqueous solution resulting from illuminating with different repetition rates (keeping the deposited energy and irradiated volume constant). The analysis is complemented with photobleaching experiments of a phenolsulfonphthalein (phenol red) solution. Combining medium repetition rates and wide-field illumination promotes thermal diffusivity, which leads to lower photodamage and allows for higher peak intensities. A three day proliferation assay is also performed on living cells to confirm these results: dwell times can be increased by a factor of 3×106 while still preserving cell proliferation. By comparing the proliferation data with the endogenous two-photon fluorescence decay, we propose to use the percentage of the remaining endogenous two-photon fluorescence after exposure as a simple in-situ viability test. These findings enable the possibility of long-term imaging and reduced photodamage.

  5. Wide-field profiling of smooth steep surfaces by structured illumination

    NASA Astrophysics Data System (ADS)

    Wang, Hongting; Tan, Jiubin; Liu, Chenguang; Liu, Jian; Li, Yong

    2016-05-01

    We propose sectioning structured illumination wide-field microscopy (SSIWM) combined with the coating of a readily removable thin fluorescent film (RTFF) for smooth steep surfaces. The profiling of smooth steep surfaces is difficult to achieve using conventional optical systems because these surfaces reflect lights away from the collective lens. In particular, when the angle between optical axis and the normal line of the surface is larger than sin-1(NA), no light reflected from the area can be collected by the collective lens. The proposed method employing an RTFF to the SSIWM can overcome the poor collection barrier and be used to measure the shape of the surface owing to the isotropic incoherent scattering property. Additionally, conventional SSIWM is a promising wide-field imaging technique with high axial sectioning ability and low cost; however, it cannot be introduced to measure a reflective surface because of the non-sectioning characteristic in using a laser (coherent). However, the proposed method can extend the application scope of SSIWM owing to the incoherent property of the coating surface. Simulations and experimental results are presented to show the validity of the proposed method.

  6. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1988-01-01

    The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.

  7. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation

    PubMed Central

    Yao, Ruoyang; Intes, Xavier; Fang, Qianqian

    2015-01-01

    Monte Carlo methods are commonly used as the gold standard in modeling photon transport through turbid media. With the rapid development of structured light applications, an accurate and efficient method capable of simulating arbitrary illumination patterns and complex detection schemes over large surface area is in great need. Here we report a generalized mesh-based Monte Carlo algorithm to support a variety of wide-field illumination methods, including spatial-frequency-domain imaging (SFDI) patterns and arbitrary 2-D patterns. The extended algorithm can also model wide-field detectors such as a free-space CCD camera. The significantly enhanced flexibility of source and detector modeling is achieved via a fast mesh retessellation process that combines the target domain and the source/detector space in a single tetrahedral mesh. Both simulations of complex domains and comparisons with phantom measurements are included to demonstrate the flexibility, efficiency and accuracy of the extended algorithm. Our updated open-source software is provided at http://mcx.space/mmc. PMID:26819826

  8. Using Wide-Field Meteor Cameras to Actively Engage Students in Science

    NASA Astrophysics Data System (ADS)

    Kuehn, D. M.; Scales, J. N.

    2012-08-01

    Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.

  9. Bilocal visual noise as a probe of wide field motion computation.

    PubMed

    Roy, Suva; de Ruyter van Steveninck, Rob

    2016-05-01

    Using an apparent visual motion stimulus with motion energies limited to specific separations in space and time, we study the computational structure of wide-field motion sensitive neurons in the fly visual brain. There is ample experimental evidence for correlation-based motion computation in many biological systems, but one of its central properties, namely that the response is proportional to the product of two bilocal signal amplitudes, remains to be tested. The design of the apparent motion stimuli used here allows us to manipulate the amplitudes of the bilocal input signals that serve as inputs to the computation. We demonstrate that the wide-field motion response of H1 and V1 neurons indeed shows bilinear behavior, even under contrast sign reversal, as predicted. But the response also varies inversely with contrast variance, an effect not described by the correlator operation. We also quantify the correlator contributions for different spatial and temporal separations. With suitable modification, the apparent motion stimuli used here can be applied to a broad range of neurophysiological as well as human psychophysical studies on motion perception. PMID:27177388

  10. Wide field OCT based microangiography in living human eye (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Chen, Chieh-Li; Chu, Zhongdi; Zhang, Anqi; An, Lin; Durbin, Mary; Sharma, Utkarsh; Rosenfeld, Philip J.; Wang, Ruikang K.

    2016-03-01

    To investigate the application of optical microangiography (OMAG) in living human eye. Patients with different macular diseases were recruited, including diabetic retinopathy (DR), geographic atrophy (GA), retinitis pigmentosa (RP), and venous occlusion, et al. Wide field OCT angiography images can be generated by montage scanning protocol based on the tracking system. OMAG algorithm based on complex differentiation was used to extract the blood flow and removed the bulk motion by 2D cross-correlation method. The 3D angiography was segmented into 3 layers in the retina and 2 layers in the choroid. The en-face maximum projection was used to obtain 2-dimensional angiograms of different layers coded with different colors. Flow and structure images were combined for cross-sectional view. En face OMAG images of different macular diseases showed a great agreement with FA. Meanwhile, OMAG gave more distinct vascular network visions that were less affected by hemorrhage and leakage. The MAs were observed in both superficial and middle retinal layers based on OMAG angiograms in different layers of DR patients. The contour line of FAZ was extracted as well, which can be quantitative the retinal diseases. For GA patient, the damage of RPE layer enhanced the penetration of light and enabled the acquisition of choriocapillaries and choroidal vessels. The wide field OMAG angiogram enabled the capability of capturing the entire geographic atrophy. OMAG provides depth-resolved information and detailed vascular images of DR and GA patients, providing a better visualization of vascular network compared to FA.

  11. Astro-WISE Processing of Wide-field Images and Other Data

    NASA Astrophysics Data System (ADS)

    Buddelmeijer, H.; Williams, O. R.; McFarland, J. P.; Belikov, A.

    2012-09-01

    Astro-WISE (Vriend et al. 2012) is the Astronomical Wide-field Imaging System for Europe (Valentijn et al. 2007). It is a scientific information system which consists of hardware and software federated over about a dozen institutes throughout Europe. It has been developed to exploit the ever increasing avalanche of data produced by astronomical surveys and data intensive scientific experiments in general. The demo explains the architecture of the Astro-WISE information system and shows the use of Astro-WISE interfaces. Wide-field astronomical images are derived from the raw image to the final catalog according to the user's request. The demo is based on the standard Astro-WISE guided tour, which can be accessed from the Astro-WISE website. The typical Astro-WISE data processing chain is shown, which can be used for data handling for a variety of different instruments, currently 14, including OmegaCAM, MegaCam, WFI, WFC, ACS/HST, etc.

  12. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    SciTech Connect

    Law, Nicholas M.; Sivanandam, Suresh; Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang; Ahmadi, Aida; Steinbring, Eric; Murowinski, Richard

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  13. Honoring Choices Minnesota: Preliminary Data from a Community-Wide Advance Care Planning Model

    PubMed Central

    Wilson, Kent S; Kottke, Thomas E; Schettle, Sue

    2014-01-01

    Advance care planning (ACP) increases the likelihood that individuals who are dying receive the care that they prefer. It also reduces depression and anxiety in family members and increases family satisfaction with the process of care. Honoring Choices Minnesota is an ACP program based on the Respecting Choices model of La Crosse, Wisconsin. The objective of this report is to describe the process, which began in 2008, of implementing Honoring Choices Minnesota in a large, diverse metropolitan area. All eight large healthcare systems in the metropolitan area agreed to participate in the project, and as of April 30, 2013, the proportion of hospitalized individuals 65 and older with advance care directives in the electronic medical record was 12.1% to 65.6%. The proportion of outpatients aged 65 and older was 11.6% to 31.7%. Organizations that had sponsored recruitment initiatives had the highest proportions of records containing healthcare directives. It was concluded that it is possible to reduce redundancy by recruiting all healthcare systems in a metropolitan area to endorse the same ACP model, although significantly increasing the proportion of individuals with a healthcare directive in their medical record requires a campaign with recruitment of organizations and individuals. PMID:25516036

  14. Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.

    2014-05-01

    We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.

  15. A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.

    PubMed

    Fisher, Yvette E; Leong, Jonathan C S; Sporar, Katja; Ketkar, Madhura D; Gohl, Daryl M; Clandinin, Thomas R; Silies, Marion

    2015-12-21

    Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing. PMID:26670999

  16. Mimir: A Near-Infrared Wide-Field Imager, Spectrometer and Polarimeter

    NASA Astrophysics Data System (ADS)

    Clemens, D. P.; Sarcia, D.; Grabau, A.; Tollestrup, E. V.; Buie, M. W.; Dunham, E.; Taylor, B.

    2007-12-01

    Mimir, a new facility-class near-infrared instrument for the 1.8 m Perkins telescope on Anderson Mesa outside Flagstaff, Arizona, was commissioned and has been operating for three years. Mimir is multifunction, performing wide-field (F/5) and narrow-field (F/17) imaging, long-slit spectroscopy, and imaging polarimetry. The F/5 mode images at 0.59" per pixel onto the 1024 × 1024 pixel ALADDIN III InSb array detector, giving a 10' × 10' field of view. In the F/17 mode, the plate scale is 0.18" per pixel. Optically, Mimir is a refractive reimager for the F/17.5 Perkins beam. A six-lens collimator produces an achromatic 25 mm pupil, which is imaged by a five-lens camera (F/5), a four-lens camera (F/17), or a two-lens pupil viewer onto the detector. Three filter wheels precede the pupil, one follows the pupil. The wheels contain a rotating half-wave plate, broadband filters, narrowband filters, grisms, long-pass filters, a wire grid, and thermal IR blockers. The first telescope focus is within Mimir, where a slit and decker unit, consisting of two linear motion cars, selects one of 13 slit scenes. The slit and decker cars, the four filter wheels, the half-wave plate rotation, and the camera selector are all driven by stepper motors within the cold vacuum space. Cooling is provided by a CTI 1050 two-stage, closed-cycle helium refrigerator, keeping the optics, filters, and internal surfaces between 65 and 75 K and the detector at 33.5 K. Switching between Mimir's different modes takes only a few seconds, making it a versatile tool for conducting a wide range of investigations and for quickly reacting to changing observing conditions. Mimir on the Perkins telescope achieves imaging sensitivities 2-4 mag deeper than 2MASS, moderate resolution (R ˜ 700) JHK spectra of virtually any 2MASS source, high-precision wide-field imaging polarimetry, and L' and M' band imaging and spectroscopy.

  17. A Very Wide-Field Hybrid (Focusing/Coded Mask) X-Ray Telescope Concept

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2011-09-01

    The success of Swift at detecting and positioning variable hard X-ray sources, most notably gamma-ray bursts (GRBs), demonstrates that investigations with a very wide field telescope should continue permanently, like the continuing search for supernovas, and its scope expanded. The softer X-ray band is likely to be an even richer arena in which to search for ever more distant GRBs. The X-ray component of their spectra will be enriched by the redshift especially at large distances where the redshift increases very rapidly with distance. Furthermore most GRBs are likely to have an X-ray afterglow, which a very wide field telescope would detect from its birth. Multiple X-ray afterglows can be studied simultaneously. Some GRB models predict that X-ray afterglows will be more numerous than GRBs because they are less narrowly beamed. In addition many other types of variable X-ray sources can be monitored even more effectively than by scanning instruments. There are three possible approaches to a very wide field X-ray telescope, a 2D coded mask like Swift, a 2D lobster-eye telescope, and a hybrid that is a lobster-eye telescope in one dimension and a coded mask in the other. For the same field of view and the same focal length all three could use the same detector system including an omni-directional gamma-ray detector. We offer reasons why the hybrid, which is composed of identical flat mirrors, is the best of the three. It has much less background from diffuse X-rays and known X-ray sources than the 2D coded mask, and has substantially more area and bandwidth than the 2D lobster-eye. While positions are expected to be an arc minute or better, a small number of the mirrors used to fabricate the hybrid can be configured as a KB telescope that when pointed refines positions to arc second precision.

  18. Cost-effective and compact wide-field fluorescent imaging on a cell-phone†

    PubMed Central

    Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek

    2011-01-01

    We demonstrate wide-field fluorescent and darkfield imaging on a cell-phone with compact, light-weight and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. For this purpose, we used battery powered light-emitting diodes (LEDs) to pump the sample of interest from the side using butt-coupling, where the pump light was guided within the sample cuvette to uniformly excite the specimen. The fluorescent emission from the sample was then imaged using an additional lens that was positioned right in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to our detection path, an inexpensive plastic colour filter was sufficient to create the dark-field background required for fluorescent imaging, without the need for a thin-film interference filter. We validate the performance of this platform by imaging various fluorescent micro-objects in 2 colours (i.e., red and green) over a large field-of-view (FOV) of ~81 mm2 with a raw spatial resolution of ~20 μm. With additional digital processing of the captured cell-phone images, through the use of compressive sampling theory, we demonstrate ~2 fold improvement in our resolving power, achieving ~10 μm resolution without a trade-off in our FOV. Further, we also demonstrate darkfield imaging of non-fluorescent specimen using the same interface, where this time the scattered light from the objects is detected without the use of any filters. The capability of imaging a wide FOV would be exceedingly important to probe large sample volumes (e.g., >0.1 mL) of e.g., blood, urine, sputum or water, and for this end we also demonstrate fluorescent imaging of labeled white-blood cells from whole blood samples, as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts. Weighing only ~28 g (~1 ounce), this compact and cost-effective fluorescent imaging platform attached to a

  19. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Fu, R.; Brey, W. W.; Shetty, K.; Gor'kov, P.; Saha, S.; Long, J. R.; Grant, S. C.; Chekmenev, E. Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T. M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I. R.; Markiewicz, W. D.; Cross, T. A.

    2005-11-01

    Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console have been installed and tested with many science applications to develop this spectrometer as a user facility. Solution NMR of membrane proteins with enhanced resolution, new pulse sequences for solid state NMR taking advantage of narrowed proton linewidths, and enhanced spatial resolution and contrast leading to improved animal imaging have been documented. In addition, it is demonstrated that spectroscopy of single site 17O labeled macromolecules in a hydrated lipid bilayer environment can be recorded in a remarkably short period of time. 17O spectra of aligned samples show the potential for using this data for orientational restraints and for characterizing unique details of cation binding properties to ion channels. The success of this NHMFL magnet illustrates the potential for using a similar magnet design as an outsert for high temperature superconducting insert coils to achieve an NMR magnet with a field >25 T.

  20. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.

    PubMed

    Greenbaum, Alon; Zhang, Yibo; Feizi, Alborz; Chung, Ping-Luen; Luo, Wei; Kandukuri, Shivani R; Ozcan, Aydogan

    2014-12-17

    Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings. PMID:25520396

  1. Temporally focused wide-field two-photon microscopy: paraxial to vectorial.

    PubMed

    Yew, Elijah Y S; Sheppard, Colin J R; So, Peter T C

    2013-05-20

    Temporal focusing allows for optically sectioned wide-field microscopy. The optical sectioning arises because this method takes a pulsed input beam, stretches the pulses by diffracting off a grating, and focuses the stretched pulses such that only at the focal plane are the pulses re-compressed. This approach generates nonlinear optical processes at the focal plane and results in depth discrimination. Prior theoretical models of temporal focusing processes approximate the contributions of the different spectral components by their mean. This is valid for longer pulses that have narrower spectral bandwidth but results in a systematic deviation when broad spectrum, femtosecond pulses are used. Further, prior model takes the paraxial approximation but since these pulses are focused with high numerical aperture (NA) objectives, the effects of the vectorial nature of light should be considered. In this paper we present a paraxial and a vector theory of temporal focusing that takes into account the finite spread of the spectrum. Using paraxial theory we arrive at an analytical solution to the electric field at the focus for temporally focused wide-field two-photon (TF2p) microscopy as well as in the case of a spectrally chirped input beam. We find that using paraxial theory while accounting for the broad spectral spread gives results almost twice vector theory. Experiment results agree with predictions of the vector theory giving an axial full-width half maximum (FWHM) of 2.1 μmand1.8 μmrespectively as long as spectral spread is taken into account. Using our system parameters, the optical sectioning of the TF2p microscope is found to be 8 μm. The optical transfer function (OTF) of a TF2p microscope is also derived and is found to pass a significantly more limited band of axial frequencies than a point scanning two-photon (2p) microscope or a single photon (1p) confocal microscope. PMID:23736515

  2. Proto-Type Development of Optical Wide-field Patrol Network and Test Observation

    NASA Astrophysics Data System (ADS)

    Park, J.; Choi, Y.; Jo, J.; Moon, H.; Yim, H.; Park, Y.; Hae, Y.; Park, S.; Choi, J.; Son, J.

    2014-09-01

    We present a prototype system developed for optical satellite tracking and its early test observation results. The main objective of the OWL (Optical Wide-field patroL) network is to get orbital information for Korean domestic satellites using optical means only and to maintain their orbital elements. The network is composed of 5 small wide-field telescopes deployed over the world. Each observing station is operated in fully robotic manner from receiving observation schedule to reporting the result, and controlled by the headquarter located in Daejeon, Korea, where orbit calculation and observation strategy will be determined. We developed a compact telescope system for robotic observation and easy maintenance. The telescope is 0.5m of aperture diameter with Rechey-Cretian configuration and its field of view is 1.1 deg. It is equipped with 4K CCD with 9um pixel size, and its pixel scale is 1.2 arcsec/pixel. A chopper wheel with variable speed is adopted to get more points in a single shot. The CCD camera and all the rotating parts (chopper wheel, de-rotator, and filter wheel) are integrated into one compact component called a wheel station. Each observing station is equipped with a fully automatic dome and heavy duty environment monitoring system. We could get an image every 20 seconds and up to ~100 trail points in a single exposure. Each point is time-tagged by ~1/1000 second precision. For one of best cases, we could estimate satellite position with RMS ~ 0.5km accuracy in the along-track with only 4 exposures (~100 points). The first system was installed at the Mongolian site after completing verification test at the testbed site in Daejeon, Korea. The second and third system will be installed in the end of this year.

  3. Technical advances: genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome.

    PubMed

    Volkmuth, Wayne; Turk, Stefan; Shapiro, Amy; Fang, Yiwen; Kiegle, Ed; van Haaren, Mark; Donson, Jonathan

    2003-01-01

    cDNA-AFLP, a technology historically used to identify small numbers of differentially expressed genes, was adapted as a genome-wide transcript profiling method. mRNA levels were assayed in a diverse range of tissues from Arabidopsis thaliana plants grown under a variety of environmental conditions. The resulting cDNA-AFLP fragments were sequenced. By linking cDNA-AFLP fragments to their corresponding mRNAs via these sequences, a database was generated that contained quantitative expression information for up to two-thirds of gene loci in A. thaliana, ecotype Ws. Using this resource, the expression levels of genes, including those with high nucleotide sequence similarity, could be determined in a high-throughput manner merely by comparing cDNA-AFLP profiles with the database. The lengths of cDNA-AFLP fragments inferred from their electrophoretic mobilities correlated well with actual fragment lengths determined by sequencing. In addition, the concentrations of AFLP fragments from single cDNAs were highly correlated, illustrating the validity of cDNA-AFLP as a quantitative, genome-wide, transcript profiling method. cDNA-AFLP profiles were also qualitatively consistent with mRNA profiles obtained from parallel microarray analysis, and with data from previous studies. PMID:14506844

  4. Advancements in the field of intravaginal siRNA delivery.

    PubMed

    Yang, Sidi; Chen, Yufei; Ahmadie, Roien; Ho, Emmanuel A

    2013-04-10

    The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field. PMID:23298612

  5. Recent advances in the field of tubulin polymerization inhibitors.

    PubMed

    Prinz, Helge

    2002-12-01

    In recent years, enormous progress has been made in the field of tubulin targeting agents. Several companies and academic laboratories have entered this field and competition has become very strong. Nevertheless, clinically promising compounds often face substantial limitations, such as high systemic toxicity, poor water solubility and bioavailability, as well as complex synthesis and isolation procedures. As a drawback of established drugs, like paclitaxel or the vinca alkaloids, the outcome of cancer chemotherapy is often affected by the emergence of the multidrug resistance phenotype. Among the recently disclosed tubulin polymerization inhibitors, there are several interesting low molecular weight compounds with improved oral bioavailability and demonstrated activity against multi-drug resistance positive phenotypes. As documented by the imidazole-based combretastatin analogs, to name just one example, chemical optimization of a lead structure resulted in compounds with potent in vitro and in vivo activity along with appropriate pharmacodynamic and pharmacokinetic requirements for a potential therapeutic candidate. Currently, several compounds are undergoing Phase I or Phase II clinical trials, among them orally bioavailable sulfonamides or dolastatin 10. Several other compounds are close to entering Phase I trials. The purpose of this review is to focus on the most recent advances in tubulin polymerization inhibitors from a survey of the published patent literature and related publications between late 1999 and April 2002. However, biological data, especially for the inhibition of tubulin polymerization, obtained from different laboratories cannot easily be compared. PMID:12503216

  6. The DECam NEO Survey: A sensitive, wide-field search for near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Allen, Lori; Trilling, David; Valdes, Frank; Fuentes, Cesar; James, David; Herrera, David; Rajagopal, Jayadev; Burt, Brian; Axelrod, Tim

    2014-11-01

    We report preliminary results from a survey for near-Earth asteroids with the Dark Energy Camera. DECam is a facility-class 520 Megapixel wide-field imager on the 4m Blanco telescope at Cerro Tololo Inter-american Observatory. It has a 3.2 square degree field of view, and a focal plane consisting of 62 2Kx4K red-optimized CCDs. In spite of its large number of pixels, DECam reads out in less than 30 seconds, making it possible to cover a large area of sky efficiently. Compared to the largest aperture of the currently most productive NEO searches, the Blanco has an aperture that is several times larger and a comparable field of view. Our goal is to measure the size distribution of NEOs well below 140m, and we have been allocated 30 nights through the NOAO Survey program to achieve it. Here we report on results from the first 10 nights of our survey.

  7. Advancement of the Wide-angle JEM-EUSO Optical System with Holographic and Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Takizawa, Y.; Adams, J.H.

    2007-01-01

    JEM-EUSO is a space mission to observe extremely high-energy cosmic rays, evolved from the previous design studies of EUSO. It is adjusted for the Japan Experiment Module (JEM) of the International Space Station (ISS). JEM-EUSO uses a wide-angle refractive telescope in near-ultraviolet wavelength region to observe from ISS the time-and-space-resolved atmospheric fluorescence images of the extensive air showers. The JEM-EUSO optics is re-designed after the ESA-Phase A studies to upgrade the light-collecting-power by using a new material CYTOP, and its overall light-collecting power is about 1.5 times higher than the ESA-Phase A baseline optics. We describe in this paper an optimized optics design that maximizes the sensitivity of JEM-EUSO, and the results of the optics manufacturing tests.

  8. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology.

    PubMed

    Mandai, Shingo; Fishburn, Matthew W; Maruyama, Yuki; Charbon, Edoardo

    2012-03-12

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4 V, with 30 % PDP at wavelengths from 520 nm to 720 nm. Dark count rates (DCR) are at most 5 kHz, which is 30 Hz/μm2, at an excess bias of 4V when we measure 10 μm diameter active area structure. Afterpulsing probability, timing jitter, and temperature effects on DCR are also presented. PMID:22418462

  9. A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

    PubMed Central

    Zhao, Junming; Zhang, Lianhong; Li, Jensen; Feng, Yijun; Dyke, Amy; Haq, Sajad; Hao, Yang

    2015-01-01

    Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called “Field transformation (FT)” which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies. PMID:26638829

  10. A long-range, wide field-of-view infrared eyeblink detector.

    PubMed

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise. PMID:16257057

  11. Wide-field X-ray afterglow searches for gravitational wave events

    NASA Astrophysics Data System (ADS)

    Shawhan, Peter; Tervala, Justin

    2015-04-01

    The Advanced LIGO and Virgo gravitational wave (GW) detectors are on track to begin collecting science data soon and to reach full sensitivity by 2019. Low-latency analysis of the GW data will provide triggers for astronomers to seek electromagnetic transient counterparts. Many instruments will contribute to that effort, but instruments with very large fields of view will have a natural advantage for following up the typically large GW error regions. In particular, we consider ISS-Lobster, a proposed NASA mission to be deployed on the International Space Station, which features a focusing imager for soft X-rays with a field of view of over 800 square degrees. Our study using binary neutron star coalescence simulations from Singer et al. shows that a single ISS-Lobster pointing will, on average, cover over 95% of a LIGO-Virgo 3-detector sky map, while even a 2-detector sky map can be over 85% covered (on average) by a sequence of four pointings. We gratefully acknowledge the support of NSF Grants PHY-1068549 and PHY-1404121.

  12. A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

    NASA Astrophysics Data System (ADS)

    Zhao, Junming; Zhang, Lianhong; Li, Jensen; Feng, Yijun; Dyke, Amy; Haq, Sajad; Hao, Yang

    2015-12-01

    Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called “Field transformation (FT)” which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies.

  13. A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach.

    PubMed

    Zhao, Junming; Zhang, Lianhong; Li, Jensen; Feng, Yijun; Dyke, Amy; Haq, Sajad; Hao, Yang

    2015-01-01

    Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called "Field transformation (FT)" which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies. PMID:26638829

  14. The Wide Field/Planetary Camera 2 (WFPC-2) molecular adsorber

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Moore, Sonya; Soules, David; Voecks, Gerald

    1995-01-01

    A device has been developed at the Jet Propulsion Laboratory, California Institute of Technology, for the adsorption of contaminants inside a space instrument during flight. The molecular adsorber was developed for use on the Wide Field Planetary Camera 2, and it has been shown to perform at its design specifications in the WFPC-2. The basic principle of the molecular adsorber is a zeolite-coated ceramic honeycomb. The arrangement is efficient for adsorption and also provides the needed rigidity to retain the special zeolite coating during the launch vibrational environment. The adsorber, on other forms, is expected to be useful for all flight instruments sensitive to internal sources of contamination. Typically, some internal contamination is unavoidable. A common design solution is to increase the venting to the exterior. However, for truly sensitive instruments, the external contamination environment is more severe. The molecular adsorber acts as a one-way vent to solve this problem. Continued development is planned for this device.

  15. FINDING PERSISTENT SOURCES WITH THE BeppoSAX/WIDE FIELD CAMERA: AN IN-DEPTH ANALYSIS

    SciTech Connect

    Capitanio, F.; Fiocchi, M.; Ubertini, P.; Bird, A. J.; Scaringi, S.

    2011-07-01

    During the operational life of the Italian/Dutch X-ray satellite (1996-2002), BeppoSAX, its two Wide Field Cameras (WFCs) performed observations that covered the full sky at different epochs. Although the majority of analysis performed on BeppoSAX WFC data concentrated on the detection of transient sources, we have now applied the same techniques developed for the INTEGRAL/IBIS survey to produce the same work with the BeppoSAX WFC data. This work represents the first unbiased source list compilation produced from the overall WFC data set optimized for faint persistent source detection. This approach recovered 182 more sources compared to the previous WFC catalog reported in Verrecchia et al. The catalog contains 404 sources detected between 3 and 17 keV, 10 of which are yet to be seen by the new generation of telescopes.

  16. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Smaller Particle Impacts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.; Griffin, T.; Gerlach, L.; Wozniakiewicz, P. J.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-01-01

    The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.

  17. Morphological analysis of Bacillux polymyxa colonies: digital image analysis in wide-field microscopy

    NASA Astrophysics Data System (ADS)

    Guerrero, Lina M.; Plata G., Arturo; Rincón C., Giovanna; Gutiérrez A., Henry; Plata, Alexandra

    2013-11-01

    In the last twenty years the growth of bacterial colonies has been studied experimentally using images with different growth patterns, but the resolution of those images is in areas of tenths of microns without range information. On the other hand, theoretical studies considering the bacteria as systems with collective behavior controlled by a reduced number of parameters have been developed. The present work aims to study morphological and dynamic growth of Bacillus polymyxa colonies by the technique of digital image analysis in wide-field microscopy, which provides high resolution, both in texture and topography. Getting a three-dimensional behavior of dynamic biological systems is useful to create structures and materials with different physical and biological properties for industrial applications.

  18. Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination.

    PubMed

    Delica, Serafin; Blanca, Carlo Mar

    2007-10-10

    We present a simple and cost-effective wide-field, depth-sectioning, fluorescence microscope utilizing a commercial multimedia projector to generate excitation patterns on the sample. Highly resolved optical sections of fluorescent pollen grains at 1.9 microm axial resolution are constructed using the structured illumination technique. This requires grid excitation patterns to be scanned across the sample, which is straightforwardly implemented by creating slideshows of gratings at different phases, projecting them onto the sample, and synchronizing camera acquisition with slide transition. In addition to rapid dynamic pattern generation, the projector provides high illumination power and spectral excitation selectivity. We exploit these properties by imaging mouse neural cells in cultures multistained with Alexa 488 and Cy3. The spectral and structural neural information is effectively resolved in three dimensions. The flexibility and commercial availability of this light source is envisioned to open multidimensional imaging to a broader user base. PMID:17932535

  19. Wide-window angular spectrum method for optical field propagation through ABCD systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanyang; Guo, Jin; Liu, Lisheng; Wang, Tingfeng; Shao, Junfeng

    2014-10-01

    The wide-window angular spectrum (WWAS) method is proposed to simulate field propagation through paraxial optical systems, mainly based on the Collins formula and the scaled Fourier transform (SFT). The application of the SFT algorithm makes the sampling processes in the input space, output space and spatial-frequency domains completely independent, and as a result, we can choose a larger calculation window size for simulating long-distance propagation without increasing the calculation burden. The sampling criteria are derived analytically and used in the numerical simulations to present the correctness and effectiveness of the WWAS algorithm. The advantages of the algorithm are shown by making a comparison with other angular spectrum methods for the free-space propagation case.

  20. Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2010-01-01

    We are working on the development of a method for optimizing wide-field x-ray telescope mirror prescriptions, including polynomial coefficients, mirror shell relative displacements, and (assuming 4 focal plane detectors) detector placement and tilt that does not require a search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough that second order expansions are valid, we show that the performance at the detector surface can be expressed as a quadratic function of the parameters with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The best values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero. We describe the present status of this development effort.

  1. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2011-03-01

    We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.

  2. Strategy for contamination control to improve Wide-Field/Planetary Camera far-ultraviolet performance

    NASA Technical Reports Server (NTRS)

    Leschly, Kim; Taylor, Daniel M.; Jenkins, Teresa; Barengoltz, Jack B.

    1990-01-01

    A multifaceted contamination control strategy has been developed for the second generated Wide-Field and Planetary Camera (WFPC-2) to improve the FUV stability by several orders of magnitude, compared to the first camera (WFPC-1). The strategy involves: improved on-orbit boil-off capability of the detector optics, added internal shielding and instrument venting, in-process subassembly vacuum bakeout at elevated temperatures, material substitution, sample testing in ultraclean vacuum facility, and internal instrument contamination-transport modeling. A science performance goal of 1 percent photometric accuracy at 1470 A over an extended time (of at least 30 days) has been established as a contamination control target for WFPC-2. The WFPC-2 is currently planned to be launched by the Shuttle in mid-1993 and replace the WFPC-1 which was recently launched with the HST.

  3. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Astrophysics Data System (ADS)

    Anz-Meador, P. D.; Liou, J.-C.; Ross, D.; Robinson, G. A.; Opiela, J. N.; Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R. P.; Griffin, T. J.; Reed, B. B.; Gerlach, L.

    2013-08-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 μ m and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  4. Curvature wavefront sensing performance simulations for active correction of the Javalambre wide-field telescopes

    NASA Astrophysics Data System (ADS)

    Chueca, Sergio; Marín-Franch, Antonio; Cenarro, Andrés. Javier; Varela, Jesús; Ederoclite, Alessandro; Cristóbal-Hornillos, David; Hernández-Monteagudo, Carlos; Gruel, Nicolás.; Moles, Mariano; Yanes, Axel; Rueda, Fernando; Rueda, Sergio; Luis-Simoes, Roberto; Hernández-Fuertes, Javier; López-Sainz, Angel; Maícas-Sacristán, Natalio; Lamadrid, José Luis; Díaz-Martín, Miguel Chioare; Taylor, Keith

    2012-09-01

    In order to maintain image quality during Javalambre wide field telescope operations, deformations and rigid body motions must be actively controlled to minimize optical disturbances. For JST/T250 the aberrations of the telescope will be measured with four curvature sensors at the focal plane. To correct the measured distortions, the secondary mirror position (with a hexapod support) and the camera position can be modified in a control closed loop. Multiple software tools have been developed to accomplish this goal, constituting the "Observatorio Astrofísico de Javalambre" (OAJ) Active Optics Pipeline. We present a comprehensive analysis of the wave-front sensing system, including the availability of reference stars, pupil registration, wavefront estimators and the iteration matrix evaluation techniques. Some preliminary simulations have been made using a telescope model with a Optical Ray Tracing Software.

  5. Lessons Learned from the Wide Field Camera 3 TV1 Test Campaign and Correlation Effort

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Stavley, Richard; Bast, William

    2007-01-01

    In January 2004, shortly after the Columbia accident, future servicing missions to the Hubble Space Telescope (HST) were cancelled. In response to this, further work on the Wide Field Camera 3 instrument was ceased. Given the maturity level of the design, a characterization thermal test (TV1) was completed in case the mission was re-instated or an alternate mission found on which to fly the instrument. This thermal test yielded some valuable lessons learned with respect to testing configurations and modeling/correlation practices, including: 1. Ensure that the thermal design can be tested 2. Ensure that the model has sufficient detail for accurate predictions 3. Ensure that the power associated with all active control devices is predicted 4. Avoid unit changes for existing models. This paper documents the difficulties presented when these recommendations were not followed.

  6. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    NASA Technical Reports Server (NTRS)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  7. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R, P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.; Robinson, G. A.; Opiela, J. N.; Gerlach, L.

    2013-01-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  8. An optimal numerical filter for wide-field-of-view measurements of earth-emitted radiation

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; House, F. B.

    1981-01-01

    A technique is described in which all data points along an arc of the orbit may be used in an optimal numerical filter for wide-field-of-view measurements of earth emitted radiation. The statistical filter design is derived whereby the filter is required to give a minimum variance estimate of the radiative exitance at discrete points along the ground track of the satellite. An equation for the optimal numerical filter is given by minimizing the estimate error variance equation with respect to the filter weights, resulting in a discrete form of the Wiener-Hopf equation. Finally, variances of the errors in the radiant exitance can be computed along the ground track and in the cross track directions.

  9. Optical Design Trade Study for the Wide Field Infrared Survey Telescope [WFIRST

    NASA Technical Reports Server (NTRS)

    Content, David A.; Goullioud, R.; Lehan, John P.; Mentzell, John E.

    2011-01-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design.

  10. Tomographic reconstruction for wide-field adaptive optics systems: Fourier domain analysis and fundamental limitations.

    PubMed

    Neichel, Benoit; Fusco, Thierry; Conan, Jean-Marc

    2009-01-01

    Several wide-field-of-view adaptive optics (WFAO) concepts such as multi-conjugate AO (MCAO), multi-object AO (MOAO), and ground-layer AO (GLAO) are currently being studied for the next generation of Extremely Large Telescopes (ELTs). All these concepts will use atmospheric tomography to reconstruct the turbulent-phase volume. In this paper, we explore different reconstruction algorithms and their fundamental limitations, conducting this analysis in the Fourier domain. This approach allows us to derive simple analytical formulations for the different configurations and brings a comprehensive view of WFAO limitations. We then investigate model and statistical errors and their effect on the phase reconstruction. Finally, we show some examples of different WFAO systems and their expected performance on a 42 m telescope case. PMID:19109619

  11. Signal-to-noise ratio for the wide field-planetary camera of the Space Telescope

    NASA Technical Reports Server (NTRS)

    Zissa, D. E.

    1984-01-01

    Signal-to-noise ratios for the Wide Field Camera and Planetary Camera of the Space Telescope were calculated as a function of integration time. Models of the optical systems and CCD detector arrays were used with a 27th visual magnitude point source and a 25th visual magnitude per arc-sq. second extended source. A 23rd visual magnitude per arc-sq. second background was assumed. The models predicted signal-to-noise ratios of 10 within 4 hours for the point source centered on a signal pixel. Signal-to-noise ratios approaching 10 are estimated for approximately 0.25 x 0.25 arc-second areas within the extended source after 10 hours integration.

  12. Wide field adaptive optics laboratory demonstration with closed-loop tomographic control.

    PubMed

    Costille, Anne; Petit, Cyril; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry

    2010-03-01

    HOMER, the new bench developed at ONERA devoted to wide field adaptive optics (WFAO) laboratory research, has allowed the first experimental validations of multi-conjugate adaptive optics (MCAO) and laser tomography adaptive optics (LTAO) concepts with a linear quadratic Gaussian (LQG) control approach. Results obtained in LTAO in closed loop show the significant gain in performance brought by LQG control, which allows tomographic reconstruction. We present a calibration and model identification strategy. Experimental results are shown to be consistent with end-to-end simulations. These results are very encouraging and demonstrate robustness of performance with respect to inevitable experimental uncertainties. They represent a first step for the study of very large telescope (VLT) and extremely large telescopes (ELT) instruments. PMID:20208937

  13. Wide-field FTIR microscopy using mid-IR pulse shaping.

    PubMed

    Serrano, Arnaldo L; Ghosh, Ayanjeet; Ostrander, Joshua S; Zanni, Martin T

    2015-07-13

    We have developed a new table-top technique for collecting wide-field Fourier transform infrared (FTIR) microscopic images by combining a femtosecond pulse shaper with a mid-IR focal plane array. The pulse shaper scans the delay between a pulse pair extremely rapidly for high signal-to-noise, while also enabling phase control of the individual pulses to under-sample the interferograms and subtract background. Infrared absorption images were collected for a mixture of W(CO)₆ or Mn₂(CO)₁₀ absorbed polystyrene beads, demonstrating that this technique can spatially resolve chemically distinct species. The images are sub-diffraction limited, as measured with a USAF test target patterned on CaF₂ and verified with scalar wave simulations. We also find that refractive, rather than reflective, objectives are preferable for imaging with coherent radiation. We discuss this method with respect to conventional FTIR microscopes. PMID:26191843

  14. WFC3RED: A HST Wide Field Camera 3 Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Magee, D. K.; Bouwens, R. J.; Illingworth, G. D.

    2011-07-01

    WFC3RED is a pipeline for automatically processing imaging data taken with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). The pipeline currently supports processing of imaging data from both the IR and UVIS channels and is written in Python and C. The automated processing steps include cosmic-ray removal (UVIS), super-sky subtraction, user defined artifact masking, robust alignment and registration for large mosaics, weight map generation, and drizzling onto a final image mosaic. WFC3RED can combined data across different HST observations, visits and proposals without the need for any pre-defined associations. WFC3RED can create imaging products with a signal-to-noise ratio that matches the most careful step-by-step manual WFC3 reductions.

  15. Wide-field FTIR microscopy using mid-IR pulse shaping

    PubMed Central

    Serrano, Arnaldo L.; Ghosh, Ayanjeet; Ostrander, Joshua S.; Zanni, Martin T.

    2015-01-01

    We have developed a new table-top technique for collecting wide-field Fourier transform infrared (FTIR) microscopic images by combining a femtosecond pulse shaper with a mid-IR focal plane array. The pulse shaper scans the delay between a pulse pair extremely rapidly for high signal-to-noise, while also enabling phase control of the individual pulses to under-sample the interferograms and subtract background. Infrared absorption images were collected for a mixture of W(CO)6 or Mn2(CO)10 absorbed polystyrene beads, demonstrating that this technique can spatially resolve chemically distinct species. The images are sub-diffraction limited, as measured with a USAF test target patterned on CaF2 and verified with scalar wave simulations. We also find that refractive, rather than reflective, objectives are preferable for imaging with coherent radiation. We discuss this method with respect to conventional FTIR microscopes. PMID:26191843

  16. Progress Report on Optimizing X-ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We report on the present status of our continuing efforts to develop a method for optimizing wide-field nested x-ray telescope mirror prescriptions. Utilizing extensive Monte-Carlo ray trace simulations, we find an analytic form for the root-mean-square dispersion of rays from a Wolter I optic on the surface of a flat focal plane detector as a function of detector tilt away from the nominal focal plane and detector displacement along the optical axis. The configuration minimizing the ray dispersion from a nested array of Wolter I telescopes is found by solving a linear system of equations for tilt and individual mirror pair displacement. Finally we outline our initial efforts at expanding this method to include higher order polynomial terms in the mirror prescriptions.

  17. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  18. Wide field of view two-photon excited fluorescence imaging, theory and applications

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb Ray

    Two-photon excited fluorescence (2PEF) is a unique photophysical process that has benefited many diverse areas of science. Imaging the 2PEF signal offers numerous intrinsic benefits, including low background scattering, high sample photo-stability, and high excitation selectivity. The 2PEF signal has a nonlinear dependence on excitation intensity, which has proven to be extremely useful for high resolution, three dimensional microscopy. This same nonlinear dependence, in conjunction with the typically low probability of two-photons being simultaneously absorbed, also makes 2PEF imaging difficult to scale, leaving most two-photon microscopes with a field of view (FOV) limited to less than a few mm2. This effectively limits the benefits of the unique properties of 2PEF imaging to microscopic applications. This dissertation explores the development and application of a wide FOV 2PEF imaging technique, where a FOV as large as 10 cm2 is achieved by increasing the peak photon flux of the excitation source, and expanding the illumination region. The use of this imaging technique for the in depth characterization and optimization of fluorescent proteins (FPs), as well as taking high contrast images of fingermarks is described. This new wide FOV 2PEF imaging technique greatly expands the usefulness of the unique photophysical properties of 2PEF and allows for sensitive, high contrast 2PEF imaging on a much larger scale than was previously possible.

  19. Preliminary Results from the Wide-field Infrared Survey Explorer's NEOWISE Search for Minor Planets

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Bauer, J. M.; Grav, T.; Masiero, J.; McMillan, R. S.; Walker, R.; Tholen, D. J.; Wright, E.; Eisenhardt, P.; Cutri, R.; Neowise Team

    2011-12-01

    The Wide-Field Infrared Survey Explorer (WISE) imaged the entire sky twice between January, 2010 and January, 2011 at four wavelengths spanning the near through mid-IR at sensitivities hundreds of times greater than previous surveys [1]. The WISE band-passes (3.4, 4.6, 12 and 22mm) sample the flux from most inner-solar-system bodies near the peak of their thermal emission. Overlapping sky regions were sampled repeatedly at 3 hour intervals. The same region of sky was observed a minimum of 8 times. While the primary WISE science objectives focus on ultra-luminous infrared galaxies and brown dwarfs, additions to the baseline WISE pipeline (collectively known as "NEOWISE") have enabled the detection of undiscovered moving objects, as well as previously known bodies [2]. NEOWISE has detected more than 155,000 minor planets, including more than 500 near-Earth objects (NEOs), ~2000 Jupiter Trojans, ~120 comets, and ~20 outer Solar System objects such as Centaurs. The survey has discovered ~34,000 new minor planets, including 130 new NEOs and 20 new comets. The NEOWISE data will drive a wide range of new Solar System investigations. NEOWISE allows precise determination of IR-derived diameters and albedos for minor planets throughout the Solar System [3],[4]. We will summarize the latest results from the project, including studies of the statistical properties of asteroid populations such as the NEOs, and comparisons between albedo and asteroid taxonomic classification.

  20. Wide Field CO Mapping in the Region of IRAS 19312+1950

    NASA Astrophysics Data System (ADS)

    Nakashima, Jun-ichi; Ladeyschikov, Dmitry A.; Sobolev, Andrej M.; Zhang, Yong; Hsia, Chih-Hao; Yung, Bosco H. K.

    2016-07-01

    We report the results of wide field CO mapping in the region of IRAS 19312+1950. This Infrared Astronomical Satellite (IRAS) object exhibits SiO/H2O/OH maser emission, and is embedded in a chemically rich molecular component, the origin of which is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the 12CO J = 1–0, 13CO J = 1–0 and C18O J = 1–0 lines using the Nobeyama 45 m telescope. In conjunction with archival CO maps, we investigated a region up to 20‧ × 20‧ in size around this IRAS object. We calculated the CO gas mass assuming local thermal equilibrium, the stellar velocity through the interstellar medium assuming an analytic model of bow shock, and the absolute luminosity, using the latest archival data and trigonometric parallax distance. The derived gas mass (225 M ⊙–478 M ⊙) of the molecular component and the relatively large luminosity (2.63 × 104 L ⊙) suggest that the central SiO/H2O/OH maser source is a red supergiant rather than an asymptotic giant branch (AGB) star or post-AGB star.

  1. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2013-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893

  2. Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Villalobos, Joel; Fallon, James B.; Nayagam, David A. X.; Shivdasani, Mohit N.; Luu, Chi D.; Allen, Penelope J.; Shepherd, Robert K.; Williams, Chris E.

    2014-08-01

    Objective. The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. Approach. A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 μm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 μs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. Main results. The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 μC cm-2). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. Significance. Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.

  3. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  4. Wide-field Fluorescent Microscopy and Fluorescent Imaging Flow Cytometry on a Cell-phone

    PubMed Central

    Zhu, Hongying; Ozcan, Aydogan

    2013-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. ~ 10 μm over a very large field-of-view of ~ 81 mm2. This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893

  5. Improved iris localization by using wide and narrow field of view cameras for iris recognition

    NASA Astrophysics Data System (ADS)

    Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung

    2013-10-01

    Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.

  6. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    SciTech Connect

    Hanna, Chad; Mandel, Ilya; Vousden, Will E-mail: imandel@star.sr.bham.ac.uk

    2014-03-20

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ∼10-100 deg{sup 2}; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging is important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ∼1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ∼10% to ∼300% relative to follow-up strategies that

  7. SuperBIT: Wide-field, Sub-arcsecond Imaging from the Super-Pressure Balloon Platform

    NASA Astrophysics Data System (ADS)

    Jones, William

    The scientific potential of diffraction-limited imaging from mid-latitude ultra-long duration balloon payloads is immense. The combination of diffraction-limited angular resolution, extreme stability, space-like backgrounds, and long integrations enables transformative opportunities in studies ranging from the weak lensing of galaxy clusters and cosmic shear, to the search for exoplanets. Pioneering research, spear-headed by the co-investigators of this proposal, has led to the development of the precision tip/tilt and de-rotation systems that are required to realize the potential of the super-pressure balloon (SPB) platform for deep, wide-field imaging. Under a separately funded Canadian Space Agency program, a half-meter class telescope has been integrated with a prototype sub-arcsecond pointing system. We propose a highly focused five-year program to develop and fly a comparable instrument on the mid-latitude SPB platform, demonstrating the imaging capability during an ultra-long duration balloon flight while providing space-quality weak lensing measurements for a large catalog of galaxy clusters. This instrument will provide imaging with a half-degree field of view and 0.3-arcsecond resolution in five bands between 300 and 1000 nm, with sensitivities in the shape-band exceeding 24th magnitude (> 5 sigma) in 300 seconds of integration. We propose an observing schedule that is split between a performance verification sample, a photometric and spectroscopic calibration set, a deep field, and a science catalog. The performance verification set prioritizes a sample of thirty clusters that have been previously well studied with the HST Advanced Camera for Surveys, the Chandra X-ray observatory, and for which there are Compton-Y parameter data from millimeter wavelengths. The photometric calibration set will be selected from the COSMOS field. The science catalog will draw from a set of more than 150 Sunyaev-Zel'dovich, X-ray, and optically-selected clusters spanning a

  8. High-resolution LCD projector for extra-wide-field-of-view head-up display

    NASA Astrophysics Data System (ADS)

    Brown, Robert D.; Modro, David H.; Quast, Gerhardt A.; Wood, Robert B.

    2003-09-01

    LCD projection-based cockpit displays are beginning to make entry into military and commercial aircraft. Customers for commercial Head-Up Displays (HUDs)(including airframe manufacturers) are now interested in the adaptation of the technology into existing and future HUD optical systems. LCD projection can improve mean-time-between-failure rates because the LCDs are very robust and the light sources can be replaced with scheduled maintenance by the customer without the need for re-calibration. LCD projectors promise to lower the cost of the HUD because the cost of these displays continues to drop while the cost of CRTs remain stable. LCD projectors provide the potential for multi-colors, higher brightness raster, and all-digital communication between the flight computer and display unit. Another potential benefit of LCD projection is the ability to increase field of view and viewing eyebox without exceeding existing power budgets or reducing display lifetime and reliability compared to the capabilities provided by CRTs today. This paper describes the performance requirements and improved performance of a third-generation LCD projection image source for use in a wide field of view head-up display (HUD) optical system. This paper will focus on new HUD requirements and the application of various technologies such as LCOS microdisplays, arc lamps, and rear-projection screens. Measured performance results are compared to the design requirements.

  9. Characterization of flight detector arrays for the wide-field infrared survey explorer

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy; Larsen, Mark; Stapelbroek, Maryn G.; Hogue, Henry; Garnett, James; Zandian, Majid; Mattson, Reed; Masterjohn, Stacy; Livingston, John; Lingner, Nicole; Alster, Natali; Ressler, Michael; Masci, Frank

    2008-07-01

    The Wide-field Infrared Survey Explorer is a NASA Midex mission launching in late 2009 that will survey the entire sky at 3.3, 4.7, 12, and 23 microns (PI: Ned Wright, UCLA). Its primary scientific goals are to find the nearest stars (actually most likely to be brown dwarfs) and the most luminous galaxies in the universe. WISE uses three dichroic beamsplitters to take simultaneous images in all four bands using four 1024×1024 detector arrays. The 3.3 and 4.7 micron channels use HgCdTe arrays, and the 12 and 23 micron bands employ Si:As arrays. In order to make a 1024×1024 Si:As array, a new multiplexer had to be designed and produced. The HgCdTe arrays were developed by Teledyne Imaging Systems, and the Si:As array were made by DRS. All four flight arrays have been delivered to the WISE payload contractor, Space Dynamics Laboratory. We present initial ground-based characterization results for the WISE arrays, including measurements of read noise, dark current, flat field and latent image performance, etc. These characterization data will be useful in producing the final WISE data product, an all-sky image atlas and source catalog.

  10. Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems.

    PubMed

    Correia, C; Jackson, K; Véran, J-P; Andersen, D; Lardière, O; Bradley, C

    2014-01-01

    Multi-object adaptive optics (MOAO) systems are still in their infancy: their complex optical designs for tomographic, wide-field wavefront sensing, coupled with open-loop (OL) correction, make their calibration a challenge. The correction of a discrete number of specific directions in the field allows for streamlined application of a general class of spatio-angular algorithms, initially proposed in Whiteley et al. [J. Opt. Soc. Am. A15, 2097 (1998)], which is compatible with partial on-line calibration. The recent Learn & Apply algorithm from Vidal et al. [J. Opt. Soc. Am. A27, A253 (2010)] can then be reinterpreted in a broader framework of tomographic algorithms and is shown to be a special case that exploits the particulars of OL and aperture-plane phase conjugation. An extension to embed a temporal prediction step to tackle sky-coverage limitations is discussed. The trade-off between lengthening the camera integration period, therefore increasing system lag error, and the resulting improvement in SNR can be shifted to higher guide-star magnitudes by introducing temporal prediction. The derivation of the optimal predictor and a comparison to suboptimal autoregressive models is provided using temporal structure functions. It is shown using end-to-end simulations of Raven, the MOAO science, and technology demonstrator for the 8 m Subaru telescope that prediction allows by itself the use of 1-magnitude-fainter guide stars. PMID:24561945

  11. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  12. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  13. Revisiting Earth Radiation Budget from ERBE Wide-Field-of-View Nonscanner

    NASA Astrophysics Data System (ADS)

    Shrestha, A. K.; Kato, S.; Wong, T.; Stackhouse, P. W.; Smith, G. L.; Rose, F. G.; Miller, W. F.; Bush, K.; Rutan, D. A.; Minnis, P.; Doelling, D.

    2014-12-01

    Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanner on Earth Radiation Budget Satellite (ERBS) and NOAA-9/NOAA-10 provided broadband shortwave and longwave irradiances from 1985 to 1998. The observations from nonscanner at satellite altitude are converted to TOA flux by inversion processes, which involve applying so-called shape factors. However, the nonscanner processing used only one partly cloudy scene type to determine the shape factor. In addition, it does not consider spectral dependent shortwave filter degradation. Based on knowledge from recent developments in the CERES process, we propose to revise inversion processes for ERBS, NOAA9, and NoAA10 WFOV nonscanners. We will consider spectral dependent degradation of the shortwave filter transmissivity and apply scene type dependent shape factors. In the proposed inversion process, we will use imager derived cloud fraction to identify the scene type over the field of view of nonscanner instruments. In this presentation, we will present proposed inversion processes and some preliminary results.

  14. LAIWO: a new wide-field CCD camera for Wise Observatory

    NASA Astrophysics Data System (ADS)

    Baumeister, Harald; Afonso, Cristina; Marien, Karl-Heinz; Klein, Ralf

    2006-06-01

    LAIWO is a new CCD wide-field camera for the 40-inch Ritchey-Chretien telescope at Wise Observatory in Mitzpe Ramon/Israel. The telescope is identical to the 40-in. telescope at Las Campanas Observatory, Chile, which is described in [2]. LAIWO was designed and built at Max-Planck-Institute for Astronomy in Heidelberg, Germany. The scientific aim of the instrument is to detect Jupiter-sized extra-solar planets around I=14-15 magnitude stars with the transit method, which relies on the temporary drop in brightness of the parent star harboring the planet. LAIWO can observe a 1.4 x 1.4 degree field-of-view and has four CCDs with 4096*4096 pixels each The Fairchild Imaging CCDs have a pixel size of 15 microns. Since they are not 2-side buttable, they are arranged with spacings between the chips that is equal to the size of a single CCD minus a small overlap. The CCDs are cooled by liquid nitrogen to a temperature of about -100 °C. The four science CCDs and the guider CCD are mounted on a common cryogenic plate which can be adjusted in three degrees of freedom. Each of these detectors can also be adjusted independently by a similar mechanism. The instrument contains large shutter and filter mechanisms, both designed in a modular way for fast exchange and easy maintenance.

  15. The silicon micro-strip detector plane for the LOFT/wide-field monitor

    NASA Astrophysics Data System (ADS)

    Goldwurm, A.; Ferrando, P.; Götz, D.; Laurent, P.; Lebrun, F.; Limousin, O.; Basa, S.; Bertoli, W.; Delagnes, Eric; Dolgorouky, Y.; Gevin, O.; Gros, A.; Gouiffes, C.; Jeanneau, F.; Lachaud, C.; Llored, M.; Olivetto, C.; Prevot, G.; Renaud, D.; Rodriguez, J.; Rossin, C.; Schanne, S.; Soldi, S.; Varniere, P.

    2012-09-01

    The main objective of the Wide Field Monitor (WFM) on the LOFT mission is to provide unambiguous detection of the high-energy sources in a large field of view, in order to support science operations of the LOFT primary instrument, the LAD. The monitor will also provide by itself a large number of results on the timing and spectral behavior of hundreds of galactic compact objects, Active Galactic Nuclei and Gamma-Ray Bursts. The WFM is based on the coded aperture concept where a position sensitive detector records the shadow of a mask projected by the celestial sources. The proposed WFM detector plane, based on Double Sided micro-Strip Silicon Detectors (DSSD), will allow proper 2-dimensional recording of the projected shadows. Indeed the positioning of the photon interaction in the detector with equivalent fine resolution in both directions insures the best imaging capability compatible with the allocated budgets for this telescope on LOFT. We will describe here the overall configuration of this 2D-WFM and the design and characteristics of the DSSD detector plane including its imaging and spectral performances. We will also present a number of simulated results discussing the advantages that this configuration offers to LOFT. A DSSD-based WFM will in particular reduce significantly the source confusion experienced by the WFM in crowded regions of the sky like the Galactic Center and will in general increase the observatory science capability of the mission.

  16. Performance verification testing for HET wide-field upgrade tracker in the laboratory

    NASA Astrophysics Data System (ADS)

    Good, John; Hayes, Richard; Beno, Joseph; Booth, John; Cornell, Mark E.; Hill, Gary J.; Lee, Hanshin; Mock, Jason; Rafal, Marc; Savage, Richard; Soukup, Ian

    2010-07-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the McDonald Observatory (MDO) and the Center for Electro-mechanics (CEM) at the University of Texas at Austin are developing a new HET tracker in support of the Wide-Field Upgrade (WFU) and the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). The precision tracker is required to maintain the position of a 3,100 kg payload within ten microns of its desired position relative to the telescope's primary mirror. The hardware system to accomplish this has ten precision controlled actuators. Prior to installation on the telescope, full performance verification is required of the completed tracker in CEM's lab, without a primary mirror or the telescope's final instrument package. This requires the development of a laboratory test stand capable of supporting the completed tracker over its full range of motion, as well as means of measurement and methodology that can verify the accuracy of the tracker motion over full travel (4m diameter circle, 400 mm deep, with 9 degrees of tip and tilt) at a cost and schedule in keeping with the HET WFU requirements. Several techniques have been evaluated to complete this series of tests including: photogrammetry, laser tracker, autocollimator, and a distance measuring interferometer, with the laser tracker ultimately being identified as the most viable method. The design of the proposed system and its implementation in the lab is presented along with the test processes, predicted accuracy, and the basis for using the chosen method*.

  17. Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H.; Liu, Zhiwen; Mayer, Theresa S.

    2014-12-01

    Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to +/-40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities.

  18. Wide-field observations in the SDSS Stripe 82 with the European VLBI Network

    NASA Astrophysics Data System (ADS)

    Cao, H.-M.; Gurvits, L. I.; Yang, J.; Hong, X.-Y.; Frey, S.; Paragi, Z.; Deller, A. T.; Ivezić, Ž.

    2014-07-01

    We observed an area of sky located within the SDSS Stripe 82 field at 1.6 GHz with the European VLBI Network (EVN). There are fifteen mJy/sub-mJy radio sources within the primary beam of a typical 30-m class EVN radio telescope. Our aim was to obtain information on compact radio structures of all VLBI-detectable sources within this primary beam area. The source of particular interest is the recently identified radio quasar J222843.54+011032.2 (J2228+0110) at z = 5.95. The data correlation was performed at the EVN software correlator at JIVE (SFXC). Three targets (J2228+0110, J222851.45+011203.4, J222941.76+011428.5) were detected, all three with position offsets not exceeding the 3σ accuracy of the original low-resolution radio surveys. The detection rate of 20% is consistent with other wide-field VLBI experiments carried out recently (e.g. Middelberg et al. 2013). The project presented here demonstrates the ability of EVN in multiple-phase-centre experiments and paves the way for future large-scale EVN surveys of compact structures in extragalactic radio sources using the multiple-phase-centre VLBI technique.

  19. Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates

    PubMed Central

    Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H.; Liu, Zhiwen; Mayer, Theresa S.

    2014-01-01

    Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ±40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities. PMID:25524830

  20. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates.

    PubMed

    Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H; Liu, Zhiwen; Mayer, Theresa S

    2014-01-01

    Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ± 40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities. PMID:25524830

  1. An Automatic Technique for Finding Faint Moving Objects in Wide Field CCD Images

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Meech, K. J.

    1996-09-01

    The traditional method used to find moving objects in astronomical images is to blink pairs or series of frames after registering them to align the background objects. While this technique is extremely efficient in terms of the low signal-to-noise ratio that the human sight can detect, it proved to be extremely time-, brain- and eyesight-consuming. The wide-field images provided by the large CCD mosaic recently built at IfA cover a field of view of 20 to 30' over 8192(2) pixels. Blinking such images is an enormous task, comparable to that of blinking large photographic plates. However, as the data are available digitally (each image occupying 260Mb of disk space), we are developing a set of computer codes to perform the moving object identification in sets of frames. This poster will describe the techniques we use in order to reach a detection efficiency as good as that of a human blinker; the main steps are to find all the objects in each frame (for which we rely on ``S-Extractor'' (Bertin & Arnouts (1996), A&ASS 117, 393), then identify all the background objects, and finally to search the non-background objects for sources moving in a coherent fashion. We will also describe the results of this method applied to actual data from the 8k CCD mosaic. {This work is being supported, in part, by NSF grant AST 92-21318.}

  2. Recent progress in the simulation and synthesis of Wide Field Imaging Interferometry Testbed (WIIT) data

    NASA Astrophysics Data System (ADS)

    Juanola-Parramon, Roser; Leisawitz, David; Bolcar, Matthew R.; Iacchetta, Alexander; Maher, Stephen F.; Rinehart, Stephen

    2016-06-01

    The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier interferometer (DF) operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like the Space Infrared Interferometric Telescope (SPIRIT). Developed at NASA’s Goddard Space Flight Center, this testbed produces high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes, from geometrically simple to astronomically representative test scenes.Here we present the simulation of recent WIIT measurements using the Far-infrared Interferometer Instrument Simulator (FIInS). This simulation enables us to compare a synthesized spatial-spectral data cube based on FIInS-generated DF data with the input hyperspectral test scene. FIInS has been modified to perform the calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array. The results from FIInS are compared with the results obtained from recent measurements with WIIT. For this current study, the test scene under consideration spatially consists of four reference point sources intended for spectral and spatial calibration, and six science sources, comprised of binary systems. Each binary pair member has a unique spectrum. Our results demonstrate that FIInS accurately describes the performance of a real double Fourier interferometer, and that the expected hyperspectral data cube can be reconstructed from synthetic or real interferometric data.

  3. The Wide-Area X-ray Survey in the Legacy Stripe 82 Field

    NASA Astrophysics Data System (ADS)

    LaMassa, S.; Urry, M.; Cappelluti, N.; Comastri, A.; Glikman, E.; Richards, G.; B"ohringer, H.

    2016-06-01

    We are carrying out a wide-area X-ray survey in the Sloan Digital Sky Survey Stripe 82 field to uncover how luminous, obscured AGN evolve over cosmic time and the role they play in galaxy evolution. Stripe 82 is a legacy field with a high level of spectroscopic completeness and rich multi-wavelength coverage from the ultraviolet to far-infrared, including Spitzer and Herschel imaging. Our Stripe 82X survey currently reaches 31 deg^{2}, with ˜6200 X-ray point sources detected at ≥5σ level. I will review the characteristics of this survey, on-going programs to target obscured AGN candidates, and how we can use the lessons learned from the synergistic multi-wavelength coverage to develop strategic plans for future surveys and missions. Finally, I will comment on how extending the Stripe 82X survey area to 100 deg^{2} will provide unprecedented insight into the high-L (Lx > 10^{45} erg/s), high-z (z > 2) AGN population.

  4. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  5. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip†

    PubMed Central

    Coskun, Ahmet F.; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2011-01-01

    We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm2 with a spatial resolution of <4 μm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 μm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications. PMID:21283900

  6. Refined Adaptive Optics simulation with wide field of view for the ELT.

    NASA Astrophysics Data System (ADS)

    Chebbo, M.; Fusco, T.; Sauvage, J.-F.; Conan, J.-M.; Meimon, S.; Le Roux, B.

    2011-09-01

    Refined simulation tools for wide field AO systems (such as MOAO, MCAO or LTAO) on ELTs present new challenges. Increasing the number of degrees of freedom (scales as the square of the telescope diameter) makes the standard codes useless due to the huge number of operations to be performed at each step of the AO loop process. This computational burden requires new approaches in the computation of the DM voltages from WFS data. The classical matrix inversion and the matrix vector multiplication have to be replaced by a cleverer iterative resolution of the Least Square or Minimum Mean Square Error criterion (based on sparse matrices approaches). Moreover, for this new generation of AO systems, concepts themselves will become more complex: data fusion coming from multiple Laser and natural guide stars will have to be optimized, mirrors covering all the field of view associated to dedicated mirrors inside the scientific instrument itself will have to be coupled with split or integrated tomography schemes, differential pupil or/and field rotations will have to be considered, etc ... All these new entries should be carefully simulated, analysed and quantified in terms of performance before any implementation in AO systems. In this paper we present a new E2E simulator, developed to deal with all these specific ELT challenges. It is based on an iterative resolution of the linear model with high number of degrees of freedom (using the sparse matrix) and includes new concepts of filtering and coupling between LGS and NGS to effectively manage modes such as tip / tilt and defocus in the entire process of tomographic reconstruction. The first application of this tool in the frame of the EAGLE project, a flagship instrument of the future E-ELT combining all these issues, is presented.

  7. Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo.

    PubMed

    Mallia, Rupananda J; McVeigh, Patrick Z; Veilleux, Israel; Wilson, Brian C

    2012-07-01

    As molecular imaging moves towards lower detection limits, the elimination of endogenous background signals becomes imperative. We present a facile background-suppression technique that specifically segregates the signal from surface-enhanced Raman scattering (SERS)-active nanoparticles (NPs) from the tissue autofluorescence background in vivo. SERS NPs have extremely narrow spectral peaks that do not overlap significantly with endogenous Raman signals. This can be exploited, using specific narrow-band filters, to image picomolar (pM) concentrations of NPs against a broad tissue autofluorescence background in wide-field mode, with short integration times that compare favorably with point-by-point mapping typically used in SERS imaging. This advance will facilitate the potential applications of SERS NPs as contrast agents in wide-field multiplexed biomarker-targeted imaging in vivo. PMID:22894500

  8. Design of wide-field submillimeter-wave camera using SIS photon detectors

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ariyoshi, Seiichiro; Otani, Chiko; Ezawa, Hajime; Kobayashi, Jun; Mori, Yuko; Nagata, Hirohisa; Shimizu, Hirohiko M.; Fujiwara, Mikio; Akiba, Makoto; Hosako, Iwao

    2004-10-01

    SIS photon detectors are niobium-based superconducting direct detectors for submillimeter-wave that show superior performance when compared with bolometric detectors for ground-based observations. We present the design and development of the SIS photon detectors together with optical and cryogenic components for wide field continuum observation system on Atacama Submillimeter Telescope Experiment (ASTE). Using antenna coupled distributed junctions, SIS photon detectors give wide band response in a 650-GHz atmospheric window as well as high current sensitivity, shot noise limited operation, fast response and high dynamic range. Optical noise equivalent power (NEP) was measured to be 1.6x10-16 W/Hz0.5 that is less than the background photon fluctuation limit for ground based submillimeter-wave observations. Fabrication of focal plane array with 9 detector pixels is underway to install in ASTE. Readout electronics with Si-JFETs operating at about 100 K will be used for this array. Development of readout electronics for larger array is based on GaAs-JFETs operating at 0.3 K. For the purpose of installing 100 element array of SIS photon detectors, we have developed remotely operable low-vibration cryostat, which now cools bolometers for 350, 450, 850-µm observations down to 0.34 K. GM-type 4-K cooler and He3/He4 sorption cooler is used, which can be remotely recycled to keep detectors at 0.34 K. Since we have large optical window for this cryostat, sapphire cryogenic window is used to block infrared radiation. The sapphire window is ante-reflection coated with SiO2 by chemical vapor deposition (CVD). The transmittance of the cryogenic window at 650 GHz is more than 95%.

  9. A small animal time-resolved optical tomography platform using wide-field excitation

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging

  10. Afar-wide Crustal Strain Field from Multiple InSAR Tracks

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.

    2010-12-01

    Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a

  11. Computational Optical Imaging Systems for Spectroscopy and Wide Field-of-View Gigapixel Photography

    NASA Astrophysics Data System (ADS)

    Kittle, David Scott

    This dissertation explores computational optical imaging methods to circumvent the physical limitations of classical sensing. An ideal imaging system would maximize resolution in time, spectral bandwidth, three-dimensional object space, and polarization. Practically, increasing any one parameter will correspondingly decrease the others. Spectrometers strive to measure the power spectral density of the object scene. Traditional pushbroom spectral imagers acquire high resolution spectral and spatial resolution at the expense of acquisition time. Multiplexed spectral imagers acquire spectral and spatial information at each instant of time. Using a coded aperture and dispersive element, the coded aperture snapshot spectral imagers (CASSI) here described leverage correlations between voxels in the spatial-spectral data cube to compressively sample the power spectral density with minimal loss in spatial-spectral resolution while maintaining high temporal resolution. Photography is limited by similar physical constraints. Low f/# systems are required for high spatial resolution to circumvent diffraction limits and allow for more photon transfer to the film plain, but require larger optical volumes and more optical elements. Wide field systems similarly suffer from increasing complexity and optical volume. Incorporating a multi-scale optical system, the f/#, resolving power, optical volume and wide field of view become much less coupled. This system uses a single objective lens that images onto a curved spherical focal plane which is relayed by small micro-optics to discrete focal planes. Using this design methodology allows for gigapixel designs at low f/# that are only a few pounds and smaller than a one-foot hemisphere. Computational imaging systems add the necessary step of forward modeling and calibration. Since the mapping from object space to image space is no longer directly readable, post-processing is required to display the required data. The CASSI system uses

  12. A Panchromatic Catalog of Early-type Galaxies at Intermediate Redshift in the Hubble Space Telescope Wide Field Camera 3 Early Release Science Field

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. J.; Cohen, S. H.; Kaviraj, S.; O'Connell, R. W.; Hathi, N. P.; Windhorst, R. A.; Ryan, R. E., Jr.; Crockett, R. M.; Yan, H.; Kimble, R. A.; Silk, J.; McCarthy, P. J.; Koekemoer, A.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Paresce, F.; Saha, A.; Trauger, J. T.; Walker, A. R.; Whitmore, B. C.; Young, E. T.

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 lsim z lsim 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 1011 < M *[M ⊙]<1012. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1σ standard deviations sime1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent (lsim50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  13. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  14. KMTNet: a network of 1.6-m wide field optical telescopes installed at three southern observatories

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Uk; Kim, Seung-Lee; Cha, Sang-Mok; Lee, Yongseok; Kim, Dong-Jin; Park, Byeong-Gon; Lee, Dong-Joo; Koo, Jae-Rim; Hong, Kyeongsoo; Lee, Jae Woo; Ryu, Yoon-Hyun; Lim, Beomdu; Lim, Jin-Sun; Gho, Seung-Won; Kim, Min-Jun

    2015-08-01

    Korea Astronomy and Space Science Institute (KASI) have installed three identical 1.6-m telescopes, called Korea Microlensing Telescope Network (KMTNet), which cover 2 x 2 degree field of view with the plate scale of 0.4 arcsec/pixel at three observatories - CTIO, SSO and SAAO in southern hemisphere. The uniqueness of the system is the uninterupted 24-hour monitoring with a wide field optics in southern hemisphere. The telescope adopts prime focus using a parabolic mirror and four spherical flattening lenses. The structural design and driving systems are modified from the degin of 2MASS telescope. The one piece filter-shutter assembly has a sliding shutter and four 310-mm square filters. Each observation system produces a 680MB size image file at site and the images are transfered to KASI data center using the Global Ring Network for Advanced Application Development (GLORIAD) network with the band width of 50Mbps in average. The main science goal of the KMTNet is to discover Earth like extra solar planet using the microlensing technique during bulge season, and 50% of the total observation time is allocated for the science program solely. The other telescope times are allocated for pre-selected seven science programs during non-bulge season. From the test observation, we verify that the most important two requirements are satisfied: 10 arcsec in RMS for the pointing accuracy and 1 arcsec of delivered image quality in I-band. In this presentation, we introduce finally installed system at each observatory and its observational performance obtained from the test observation.

  15. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  16. FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS

    SciTech Connect

    Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide raw material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  17. Managing the Development of the Wide-Field Infrared Survey Explorer Mission

    NASA Technical Reports Server (NTRS)

    Irace, William; Cutri, Roc; Duval, Valerie; Eisenhardt, Peter; Elwell, John; Greanias, George; Heinrichsen, Ingolf; Howard, Joan; Liu, Feng-Chuan; Royer, Donald; Wright, Edward L.

    2010-01-01

    The Wide-field Infrared Survey Explorer (WISE), a NASA Medium-Class Explorer (MIDEX) mission, is surveying the entire sky in four bands from 3.4 to 22 microns with a sensitivity hundreds to hundreds of thousands times better than previous all-sky surveys at these wavelengths. The single WISE instrument consists of a 40 cm three-mirror anastigmatic telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 6" resolution (full-width-half-maximum). WISE was placed into a Sun-synchronous polar orbit on a Delta II 7320 launch vehicle on December 14, 2009. NASA selected WISE as a MIDEX in 2002 following a rigorous competitive selection process. To gain further confidence in WISE, NASA extended the development period one year with an option to cancel the mission if certain criteria were not met. MIDEX missions are led by the principal investigator who in this case delegated day-to-day management to the project manager. With a cost cap and relatively short development schedule, it was essential for all WISE partners to work seamlessly together. This was accomplished with an integrated management team representing all key partners and disciplines. The project was developed on budget and on schedule in spite of the need to surmount significant technical challenges. This paper describes our management approach, key challenges and critical decisions made. Results are described from a programmatic, technical and scientific point of view. Lessons learned are offered for projects of this type.

  18. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV. PMID:22559541

  19. Pulsed light imaging for wide-field dosimetry of photodynamic therapy in the skin

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Sexton, Kristian; Chapman, Michael Shane; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Photodynamic therapy using aminoluvelinic acid (ALA) is an FDA-approved treatment for actinic keratoses, pre-cancerous skin lesions which pose a significant risk for immunocompromised individuals, such as organ transplant recipients. While PDT is generally effective, response rates vary, largely due to variations in the accumulation of the photosensitizer protoporphyrin IX (PpIX) after ALA application. The ability to quantify PpIX production before treatment could facilitate the use of additional interventions to improve outcomes. While many groups have demonstrated the ability to image PpIX in the clinic, these systems generally require darkening the room lights during imaging, which is unpopular with clinicians. We have developed a novel wide-field imaging system based on pulsed excitation and gated acquisition to image photosensitizer activity in the skin. The tissue is illuminated using four pulsed LED's to excite PpIX, and the remitted light acquired with a synchronized ICCD. This approach facilitates real-time background subtraction of ambient light, precluding the need to darken the exam room. Delivering light in short bursts also allows the use of elevated excitation intensity while remaining under the maximum permissible exposure limits, making the modality more sensitive to photosensitizer fluorescence than standard approaches. Images of tissue phantoms indicate system sensitivity down to 250nM PpIX and images of animals demonstrate detection of PpIX fluorescence in vivo under normal room light conditions.

  20. Wide-field laser ophthalmoscopy for imaging of gas-filled eyes after macular hole surgery

    PubMed Central

    Nakao, Shintaro; Arita, Ryoichi; Sato, Yuki; Enaida, Hiroshi; Ueno, Akifumi; Matsui, Takaaki; Salehi-Had, Hani; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Background and objective Existing ophthalmoscopy methods are unable to obtain clear fundus autofluorescence (FAF) images in gas-filled eyes. The purpose of this study was to evaluate the capability of wide-field laser ophthalmoscopy (Optos) in obtaining FAF images in gas-filled eyes for the assessment of macular hole (MH) closure after surgery. Methods This was an interventional case series. Eighteen consecutive patients with unilateral MH underwent vitrectomy with internal limiting membrane peeling and 20% sulfur hexafluoride gas tamponade. FAF images using Optos were recorded preoperatively and postoperatively (days 1, 2, and 7). Results On postoperative days 1, 2, and 7, FAF images were obtained from 11/18 (61.1%), 9/18 (50.0%), and 17/18 eyes (94.4%), respectively, using Optos. The quality of FAF images using Optos was sufficient to determine MH closure in 9/18 (50.0%) of gas-filled eyes postoperatively. Quantitative analysis of FAF images was helpful in determining complete or partial closure of the MH. Conclusion FAF imaging using Optos might be a useful adjunct to optical coherence tomography as a supportive method to guide the release from facedown posturing in some cases of MH. PMID:27601877

  1. Characterization of high proper motion objects from the wide-field infrared survey explorer

    SciTech Connect

    Luhman, K. L.; Sheppard, Scott S.

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ∼12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08–623558.7, may belong to the thick disk.

  2. Blood vessel segmentation and width estimation in ultra-wide field scanning laser ophthalmoscopy.

    PubMed

    Pellegrini, Enrico; Robertson, Gavin; Trucco, Emanuele; MacGillivray, Tom J; Lupascu, Carmen; van Hemert, Jano; Williams, Michelle C; Newby, David E; van Beek, Edwin; Houston, Graeme

    2014-12-01

    Features of the retinal vasculature, such as vessel widths, are considered biomarkers for systemic disease. The aim of this work is to present a supervised approach to vessel segmentation in ultra-wide field of view scanning laser ophthalmoscope (UWFoV SLO) images and to evaluate its performance in terms of segmentation and vessel width estimation accuracy. The results of the proposed method are compared with ground truth measurements from human observers and with existing state-of-the-art techniques developed for fundus camera images that we optimized for UWFoV SLO images. Our algorithm is based on multi-scale matched filters, a neural network classifier and hysteresis thresholding. After spline-based refinement of the detected vessel contours, the vessel widths are estimated from the binary maps. Such analysis is performed on SLO images for the first time. The proposed method achieves the best results, both in vessel segmentation and in width estimation, in comparison to other automatic techniques. PMID:25574441

  3. Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection

    PubMed Central

    Eldridge, Will J.; Meiri, Amihai; Sheinfeld, Adi; Rinehart, Matthew T.; Wax, Adam

    2014-01-01

    We present a fast, wide-field holography system for detecting photothermally excited gold nanospheres with combined quantitative phase imaging. An interferometric photothermal optical lock-in approach (POLI) is shown to improve SNR for detecting nanoparticles (NPs) on multiple substrates, including a monolayer of NPs on a silanized coverslip, and NPs bound to live cells. Furthermore, the set up allowed for co-registered quantitative phase imaging (QPI) to be acquired in an off-axis holographic set-up. An SNR of 103 was obtained for NP-tagging of epidermal growth factor receptor (EGFR) in live cells with a 3 second acquisition, while an SNR of 47 was seen for 20 ms acquisition. An analysis of improvements in SNR due to averaging multiple frames is presented, which suggest that residual photothermal signal can be a limiting factor. The combination of techniques allows for high resolution imaging of cell structure via QPI with the ability to identify receptor expression via POLI. PMID:25136482

  4. Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0

    NASA Astrophysics Data System (ADS)

    Dressel, L.

    2012-12-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument. It was installed in the Hubble Space Telescope (HST) during Servicing Mission 4 (SM4) in May 2009. WFC3 saw first light on June 24, 2009, following the cooling of its detectors. Servicing Mission 4 Observatory Verification (SMOV) activities were completed in late August 2009, and were followed by the Cycle 17 calibration and science programs. This WFC3 Instrument Handbook has been prepared by the WFC3 team at STScI. It is the basic technical reference manual for WFC3 observers. The information in this Handbook is intended to be useful for Cycle 21 Phase I proposers, for the subsequently selected General Observers (GOs) as they prepare their Phase II specifications, and for those analyzing WFC3 data. The HST Primer and the HST Call for Proposals also contain valuable information for proposers, and the Call for Proposals is the final authority on HST policy. This edition of the WFC3 Instrument Handbook (Version 5.0) was written near the end of the execution of the Cycle 19 calibration plan. It supersedes Version 4.0, and includes results from analysis of the first three cycles of on-orbit performance.

  5. Alignment of four-mirror wide field corrector for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Oh, Chang Jin; Frater, Eric H.; Coyle, Laura; Dubin, Matt; Lowman, Andrew; Zhao, Chunyu; Burge, James H.

    2013-09-01

    The Hobby-Eberly Telescope (HET) Wide Field Corrector (WFC) is a four-mirror optical system which corrects for aberrations from the 10-m segmented spherical primary mirror. The WFC mirror alignments must meet particularly tight tolerances for the system to meet performance requirements. The system uses 1-m class highly aspheric mirrors, which precludes conventional alignment methods. For the WFC system alignment a "center reference fixture" has been used as the reference for each mirror's vertex and optical axis. The center reference fixtures have both a CGH and sphere mounted retroreflector (SMR) nests. The CGH is aligned to the mirror's optical axis to provide a reference for mirror decenter and tilt. The vertex of each mirror is registered to the SMR nests on the center reference fixtures using a laser tracker. The spacing between the mirror vertices is measured during the system alignment using these SMR nest locations to determine the vertex locations. In this paper we present the procedures and results from creating and characterizing these center reference fixtures. As a verification of our alignment methods we also present results from their application in the WFC system alignment are also presented.

  6. The First Ultra-cool Brown Dwarf Discovered by the Wide-field Infrared Survey Explorer

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Cushing, Michael C.; Skrutskie, M.; Gelino, C. R.; Kirkpatrick, J. Davy; Jarrett, T.; Masci, F.; Marley, Mark S.; Saumon, D.; Wright, E.; Beaton, R.; Dietrich, M.; Eisenhardt, P.; Garnavich, P.; Kuhn, O.; Leisawitz, D.; Marsh, K.; McLean, I.; Padgett, D.; Rueff, K.

    2011-01-01

    We report the discovery of the first new ultra-cool brown dwarf (BDs) found with the Wide-field Infrared Survey Explorer (WISE). The object's preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8-2.5 μm spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new BD is easily detected by WISE, with a signal-to-noise ratio of ~36 at 4.6 μm. Current estimates place it at a distance of 6-10 pc. This object represents the first in what will likely be hundreds of nearby BDs found by WISE that will be suitable for follow-up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new BD proves that WISE is capable of fulfilling this objective.

  7. Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy.

    PubMed

    Kim, Boyoung; Naemura, Takeshi

    2015-01-01

    This paper proposes a new deconvolution method for 3D fluorescence wide-field microscopy. Most previous methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical, since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an imaging condition of a target image is different from that of the pre-measuring. To solve these problems, this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms of suppressing axial blur. The proposed method is composed of the following three steps: First, a non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson's parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is restored by using a depth-variant version of a generalized expectation-maximization. PMID:25950821

  8. A wide-field study of Holmberg II and evidence for ram pressure stripping.

    NASA Astrophysics Data System (ADS)

    Bernard, E. J.; Ferguson, A. M. N.; Barker, M. K.; Irwin, M. J.; Jablonka, P.; Arimoto, N.

    We present a deep, wide-field optical study of the M81 group dwarf galaxy Holmberg II (HoII) based on Subaru/Suprime-Cam imaging. Individual stars are resolved down to I˜25.2, i.e., about 1.5 mag below the tip of the red giant branch (RGB). We use resolved star counts in the outskirts of the galaxy to measure the radial surface brightness profile down to mu_V ˜ 32 mag arcsec-2, from which we determine a projected exponential scalelength of 0.70arcmin ±0.01arcmin (i.e., 0.69± 0.01 kpc). The low surface-brightness stellar component of HoII is regular and symmetric and has an extent much smaller than the vast H I cloud in which it is embedded. We compare the spatial distribution of the young and old stellar populations, and find that the old RGB stars are significantly more centrally concentrated than the young stellar populations, contrary to what is observed in most dwarf galaxies of the Local Universe. We discuss these properties in the context of the comet-like distribution of H I gas around HoII, and argue for the presence of a hot intragroup medium in the vicinity of HoII to explain the contrasting morphologies of the gas and stars.

  9. Wide-field conserved scalar imaging in turbulent diffusion flames by a Raman and Rayleigh method

    SciTech Connect

    Kelman, J.B.; Masri, A.R.; Staarner, S.H.; Bilger, R.W.

    1994-12-31

    A new experimental approach to two-dimensional (2D) measurements of mixture fraction and other scalars in turbulent flames has been developed, based on simultaneous fuel Raman and Rayleigh imaging. The inherently weak Raman signal is enhanced by high laser energy, low f-number optics, and a multipass cell. Measurements have been obtained in piloted flames of air-diluted methane, at Reynolds number 28,000--53,000. With the assumptions of unity Lewis number and a one-step reaction, single-shot images of mixture fraction, fuel mass fraction, and temperature have been derived with spatial resolution of about 10 Kolmogorov scales. Advantages and difficulties in the use of the multipass cell are discussed and some early results presented. The wide-field images enable determination of scalar turbulence macroscales that are found to be anisotropic and to vary with radius. The location of the instantaneous stoichiometric mixture fraction contours indicates that there is little reaction in the outer regions where entrainment takes place. Generally, the stoichiometric contour is aligned with regions of high scalar dissipation.

  10. Intraoperative detection and removal of microscopic residual sarcoma using wide-field imaging

    PubMed Central

    Mito, Jeffrey K; Ferrer, Jorge M; Brigman, Brian E; Lee, Chang-Lung; Dodd, Rebecca D; Eward, William C; Marshall, Lisa F; Cuneo, Kyle C; Carter, Jessica E; Ramasunder, Shalini; Kim, Yongbaek; Lee, W David; Griffith, Linda G; Bawendi, Moungi G; Kirsch, David G

    2012-01-01

    Abstract BACKGROUND: The goal of limb-sparing surgery for a soft tissue sarcoma of the extremity is to remove all malignant cells while preserving limb function. After initial surgery, microscopic residual disease in the tumor bed will cause a local recurrence in approximately 33% of patients with sarcoma. To help identify these patients, the authors developed an in vivo imaging system to investigate the suitability of molecular imaging for intraoperative visualization. METHODS: A primary mouse model of soft tissue sarcoma and a wide field-of-view imaging device were used to investigate a series of exogenously administered, near-infrared (NIR) fluorescent probes activated by cathepsin proteases for real-time intraoperative imaging. RESULTS: The authors demonstrated that exogenously administered cathepsin-activated probes can be used for image-guided surgery to identify microscopic residual NIR fluorescence in the tumor beds of mice. The presence of residual NIR fluorescence was correlated with microscopic residual sarcoma and local recurrence. The removal of residual NIR fluorescence improved local control. CONCLUSIONS: The authors concluded that their technique has the potential to be used for intraoperative image-guided surgery to identify microscopic residual disease in patients with cancer. Cancer 2012. © 2012 American Cancer Society. PMID:22437667

  11. A TECHNIQUE FOR PRIMARY BEAM CALIBRATION OF DRIFT-SCANNING, WIDE-FIELD ANTENNA ELEMENTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Jacobs, Daniel C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Parashare, Chaitali R.; Carilli, Chris L.; Gugliucci, Nicole E.

    2012-02-15

    We present a new technique for calibrating the primary beam of a wide-field, drift-scanning antenna element. Drift-scan observing is not compatible with standard beam calibration routines, and the situation is further complicated by difficult-to-parameterize beam shapes and, at low frequencies, the sparsity of accurate source spectra to use as calibrators. We overcome these challenges by building up an interrelated network of source 'crossing points'-locations where the primary beam is sampled by multiple sources. Using the single assumption that a beam has 180 Degree-Sign rotational symmetry, we can achieve significant beam coverage with only a few tens of sources. The resulting network of crossing points allows us to solve for both a beam model and source flux densities referenced to a single calibrator source, circumventing the need for a large sample of well-characterized calibrators. We illustrate the method with actual and simulated observations from the Precision Array for Probing the Epoch of Reionization.

  12. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    SciTech Connect

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.; Hoffman, Douglas I.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.

  13. Dome Degradation Characterization of Wide-Field-of-View Nonscanner Aboard ERBE and Its Reprocessing

    NASA Technical Reports Server (NTRS)

    Shrestha, Alok K.; Kato, Seiji; Wong, Takmeng; Su, Wenying; Stackhouse, Paul W., Jr.; Rose, Fred; Miller, Walter F.; Bush, Kathryn; Rutan, David A.; Minnis, Patrick; Doelling, David R.; Smith, George L.

    2015-01-01

    Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanners aboard ERBS and NOAA- 9/NOAA-10 provided broadband shortwave and longwave irradiances from 1985 to 1999. The previous analysis showed dome degradation in the shortwave nonscanner instruments. The correction was performed with a constant spectral (gray assumption) degradation. We suspect that the gray assumption affected daytime longwave irradiance and led to a day-minus-night longwave flux differences (little change in night time longwave) increase over time. Based on knowledge from the CERES process, we will reprocess entire ERBE nonscanner radiation dataset by characterizing shortwave dome transmissivity with spectral dependent degradation using the solar data observed by these instruments. Once spectral dependent degradation is derived, imager derived cloud fraction and the cloud phase as well as surface type over the FOV of nonscanner instruments will be used to model unfiltering coefficients. This poster primarily explains the reprocessing techniques and includes initial comparison of several months of data processed with existing and our recent methods.

  14. The New Milky Way: A Wide-Field Survey of Optical Transients near the Galactic plane

    NASA Astrophysics Data System (ADS)

    Sokolovsky, K.; Korotkiy, S.; Lebedev, A.

    2014-12-01

    Currently, it may take days for a bright nova outburst to be detected. With a few exceptions, little is known about novae behaviour prior to maximum light. A theoretically-predicted population of ultra-fast novae with t2<1d is evading observational discovery because it is not possible to routinely organize fast follow-up observations of nova candidates. With the aim of bringing the detection time of novae and other bright (V<13.5) optical transients from days down to hours or less, we developed an automated wide-field (8°×6°) system capable of surveying the whole Milky Way area visible from the observing site in one night. The system is built using low-cost mass-produced components and the transient detection pipeline is based on the open source VaST software. We describe the instrument design and report results of the first observations conducted in 2011 October-November and 2012 January-April. The results include the discovery of Nova Sagittarii 2012 No. 1 as well as two X-ray emitting cataclysmic variables 1RXS J063214.8+25362 and XMMSL1 J014956.7+533504. The rapid detection of Nova Sagittarii 2012 No. 1 enabled us to conduct its X-ray and UV observations with Swift 22 hours after discovery (˜eq 31 hour after the outburst onset). All images obtained during the transient search survey are available online.

  15. The Wide-Field Infrared Survey Explorer (WISE): Mission Description and Initial On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.; Eisenhardt, Peter R. M.; Mainzer, Amy; Ressler, Michael E.; Cutri, Roc M.; Jarrett, Thomas; Kirkpatrick, J. Davy; Padgett, Deborah; McMillan, Robert S.; Skrutskie,Michael; Stanford, S. A.; Cohen, Martin; Walker, Russell G.; Mather, John C.; Leisawitz, David; Gautier, Thomas N., III; McLean, Ian; Benford, Dominic; Lonsdale,Carol J.; Blain, Andrew; Mendez,Bryan; Irace, William R.; Duval, Valerie; Liu, Fengchuan; Royer, Don

    2010-01-01

    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

  16. GRAAL: a seeing enhancer for the NIR wide-field imager Hawk-I

    NASA Astrophysics Data System (ADS)

    Paufique, J.; Bruton, A.; Glindemann, A.; Jost, A.; Kolb, J.; Jochum, L.; Le Louarn, M.; Kiekebusch, M.; Hubin, N.; Madec, P.-Y.; Conzelmann, R.; Siebenmorgen, R.; Donaldson, R.; Arsenault, R.; Tordo, S.

    2010-07-01

    We describe the design and development status of GRAAL, the Ground-layer adaptive optics assisted by Laser, which will deliver enhanced images to the Hawk-I instrument on the VLT. GRAAL is an adaptive optics module, part of AOF, the Adaptive optics facility, using four Laser- and one natural guide-stars to measure the turbulence, and correcting for it by deforming the adaptive secondary mirror of a Unit telescope in the Paranal observatory. The outstanding feature of GRAAL is the extremely wide field of view correction, over 10 arcmin diameter, with an image enhancement of about 20% in average in K band. When observing GRAAL will provide FWHM better than 0.3" 40% of the time. Besides the Adaptive optics facility deformable mirror and Laser guide stars, the system uses subelectron L3-CCD and a real-time computing platform, SPARTA. GRAAL completed early this year a final design phase shared internally and outsourced for its mechanical part by the Spanish company NTE. It is now in manufacturing, with a first light in the laboratory planned in 2011.

  17. Flatfielding and photometric accuracy of the first Hubble Space Telescope Wide Field Camera

    NASA Technical Reports Server (NTRS)

    Phillips, Andrew C.; Forbes, Duncan A.; Bershady, Matthew A.; Illingworth, Garth D.; Koo, David C.

    1994-01-01

    Long exposures with the original Hubble Space Telescope (HST) Wide Field Camera (WFC) through the F555W and F785LP filters show gradients in the background following standard pipeline calibration. We show that these gradients also appear in stellar photometry, and thus must be predominantly the result of inaccurate flatfielding at a level of 10 to 20%. Color errors may be even larger. Applying corrections to the flatfield frames based on the background structure leads to an improved accuracy of approximately 4% for single-measurement photometry within a single CCD chip, compared to the approximately 10% accuracy suggested by previous studies. We have reanalyzed the F555W and F785LP calibration photometry to derive zero points appropriate for corrected data; these new zero points have internal consistency at a level of approximately 1.2%, based on comparison between the chip-to-chip offsets and the sky levels observed in corrected images. This indicates that relative photometry approaching 1 to 2% is achievable with the WFC. The new zero point values for corrected data are 22.90, 23.04, 23.04, and 22.96 (F555W), and 21.56, 21.64, 21.44, and 21.47 (F785LP) for chips WF1-WF4, respectively. Comparison is made with other zero points, and the applicability of 'delta flats' is briefly discussed.

  18. Hubble Space Telescope Wide Field Camera imaging of the gravitational lens 2237 + 0305

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Schneider, Donald P.; Bahcall, John N.

    1992-01-01

    Images of the gravitational lens system 2237 + 0305, taken with the HST Wide Field Camera, are analyzed. Positions for the four quasar images, accurate to +/-0.015 arcsec, and relative magnitudes in U and R, accurate to +/-0.06 and 0.04 mag, respectively, are determined. The upper limits on the observed brightness of the fifth image are found to be less than or approximately equal to 7 percent of the brightest quasar image. The mass of the lens inside 0.9 arcsec is found to be 1.08 +/-0.02 x 10 exp 10 solar masses/h100 corresponding to a mass-to-light ratio in B of 12.3h100. This solar mass/solar luminosity estimate agrees with values obtained from stellar dynamics for other elliptical galaxies. A comparison of predictions from this mass model with the measured central velocity dispersion yields a distance-independent agreement to within 10 percent, assuming isotropic velocity dispersions.

  19. Mosaicing for fast wide-field-of-view optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Chee, Ryan K.; Forbrich, Alexander; Zemp, Roger J.

    2012-02-01

    The acquisition speed of previously reported mechanically-scanned Optical-Resolution Photoacoustic Microscopy (OR-PAM) systems has been limited by both laser pulse repetition rate and mechanical scanning speed. In this paper we introduce a mosaicing scheme wherein a grid of small sub-mm-scale field-of-view (FOV) patches are acquired in 0.5s per patch, and a 3-axis stepper-motor system is used to mechanically move the object to be imaged from patch-to-patch in less than 0.5s. Patch images are aligned and stitched to generate a large FOV image composite. This system retains the SNR-advantages of focused-transducer OR-PAM systems, and is a hybrid approach between optical-scanning and mechanical scanning. With this strategy we reduce the data acquisition time of previously reported large-FOV systems by a factor of around 23. SCID hairless mice are imaged. The wide-FOV, high-speed data acquisition OR-PAM system broadens the potential applications of the imaging modality.

  20. Development of a Data Reduction algorithm for Optical Wide Field Patrol

    NASA Astrophysics Data System (ADS)

    Park, Sun-youp; Keum, Kang-Hoon; Lee, Seong-Whan; Jin, Ho; Park, Yung-Sik; Hong-Suh; Jo, Jung Hyun; Moon, Hong-Kyu; Bae, Young-Ho; Choi, Jin; Choi, Young-Jun; Park, Jang-Hyun; Lee, Jung-Ho

    2013-09-01

    The detector subsystem of the Optical Wide-field Patrol (OWL) network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS) solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.

  1. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  2. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  3. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  4. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  5. Enhanced flight symbology for wide-field-of-view helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Rogers, Steven P.; Asbury, Charles N.; Szoboszlay, Zoltan P.

    2003-09-01

    A series of studies was conducted to improve the Army aviator's ability to perform night missions by developing innovative symbols that capitalize on the advantages of new wide field-of-view (WFOV) helmet-mounted displays (HMDs). The most important outcomes of the research were two new symbol types called the Cylinder and the Flight Path Predictor. The Cylinder provides a large symbolic representation of real-world orientation that enables pilots to maintain the world frame of reference even if the visibility of the world is lost due to dust, smoke, snow, or inadvertent instrument meteorological conditions (IMC). Furthermore, the Cylinder is peripherally presented, supporting the "ambient" visual mode so that it does not require the conscious attention of the viewer. The Flight Path Predictor was developed to show the predicted flight path of a maneuvering aircraft using earth-referenced HMD symbology. The experimental evidence and the pilot interview results show that the new HMD symbology sets are capable of preventing spatial disorientation, improving flight safety, enhancing flight maneuver precision, and reducing workload so that the pilot can more effectively perform the critical mission tasks.

  6. Faint Tidal Features in Galaxies within the Canada-France-Hawaii Telescope Legacy Survey Wide Fields

    NASA Astrophysics Data System (ADS)

    Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M_{r^\\prime }<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide raw material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >1010.5 M ⊙, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  7. (Sn)DICE: A Calibration System Designed for Wide Field Imagers

    NASA Astrophysics Data System (ADS)

    Regnault, N.; Barrelet, E.; Guyonnet, A.; Juramy, C.; Rocci, P.-F.; Le Guillou, L.; Schahmanèche, K.; Villa, F.

    2016-05-01

    Dark Energy studies with type Ia supernovae set very tight constraints on the photometric calibration of the imagers used to detect the supernovae and follow up their flux variations. Among the key challenges is the measurement of the shape and normalization of the instrumental throughput. The DICE system was developed by members of the Supernova Legacy Survey (SNLS) , building upon the lessons learnt working with the MegaCam imager. It consists in a very stable light source, placed in the telescope enclosure, and generating compact, conical beams, yielding an almost flat illumination of the imager focal plane. The calibration light is generated by narrow spectrum LEDs selected to cover the entire wavelength range of the imager. It is monitored in real time using control photodiodes. A first DICE demonstrator, SnDICE has been installed at CFHT. A second generation instrument (SkyDICE) has been installed in the enclosure of the SkyMapper telescope. We present the main goals of the project. We discuss the main difficulties encoutered when trying to calibrate a wide field imager, such as MegaCam (or SkyMapper) using such a calibrated light source.

  8. A DEEP, WIDE-FIELD H{alpha} SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    SciTech Connect

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-04-01

    We present the results of a wide-field H{alpha} imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured H{alpha} fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M{sub Sun} yr{sup -1}. This paper describes the observations, data processing, and source identification procedures, and presents an H{alpha} and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted H{alpha} emission in more distant clusters.

  9. THE FIRST ULTRA-COOL BROWN DWARF DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Mainzer, A.; Cushing, Michael C.; Eisenhardt, P.; Skrutskie, M.; Beaton, R.; Gelino, C. R.; Kirkpatrick, J. Davy; Jarrett, T.; Masci, F.; Marsh, K.; Padgett, D.; Marley, Mark S.; Saumon, D.; Wright, E.; McLean, I.; Dietrich, M.; Garnavich, P.; Rueff, K.; Kuhn, O.; Leisawitz, D.

    2011-01-01

    We report the discovery of the first new ultra-cool brown dwarf (BDs) found with the Wide-field Infrared Survey Explorer (WISE). The object's preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8-2.5 {mu}m spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new BD is easily detected by WISE, with a signal-to-noise ratio of {approx}36 at 4.6 {mu}m. Current estimates place it at a distance of 6-10 pc. This object represents the first in what will likely be hundreds of nearby BDs found by WISE that will be suitable for follow-up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new BD proves that WISE is capable of fulfilling this objective.

  10. Telescope Fabra ROA Montsec: A New Robotic Wide Field Baker-Nunn Facility

    NASA Astrophysics Data System (ADS)

    Fors, Octavi; Núñez, Jorge; Muiños, José Luis; Montojo, Francisco Javier; Baena-Gallé, Roberto; Boloix, Jaime; Morcillo, Ricardo; Merino, María Teresa; Downey, Elwood C.; Mazur, Michael J.

    2013-05-01

    A Baker-Nunn Camera (BNC), originally installed at the Real Instituto y Observatorio de la Armada (ROA) in 1958, was refurbished and robotized. The new facility, called Telescope Fabra ROA Montsec (TFRM), was installed at the Observatori Astronòmic del Montsec (OAdM). The process of refurbishment is described in detail. Most of the steps of the refurbishment project were accomplished by purchasing commercial components, which involve little posterior engineering assembling work. The TFRM is a 0.5 m aperture f/0.96 optically modified BNC, which offers a unique combination of instrumental specifications: fully robotic and remote operation, wide field of view (4°.4 × 4°.4), moderate limiting magnitude (V ~ 19.5 mag), ability of tracking at arbitrary right ascension (α) and declination (δ) rates, as well as opening and closing CCD shutter at will during an exposure. Nearly all kinds of image survey programs can benefit from those specifications. Apart from other less time-consuming programs, since the beginning of science TFRM operations we have been conducting two specific and distinct surveys: super-Earths transiting around M-type dwarfs stars, and geostationary debris in the context of Space Situational Awareness/Space Surveillance and Tracking (SSA/SST) programs. Preliminary results for both cases will be shown.

  11. Automated Classification of Periodic Variable Stars Detected by the Wide-field Infrared Survey Explorer

    NASA Astrophysics Data System (ADS)

    Masci, Frank J.; Hoffman, Douglas I.; Grillmair, Carl J.; Cutri, Roc M.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.

  12. The on-chip guiding system of the wide-field infrared camera at CFHT

    NASA Astrophysics Data System (ADS)

    Albert, Loic; Riopel, Martin; Teeple, Douglas; Ward, Jeff; Barrick, Greg

    2005-08-01

    The Canada-France-Hawaii Telescope (CFHT) is commissioning a new Wide field Infrared Camera (WIRCam) that uses a mosaic of 4 HAWAII-2RG near-infrared detectors manufactured by Rockwell. At the heart of the instrument is an On-Chip Guiding System (OCGS) that exploits the unique parallel science/guide frame readout capability of the HAWAII-2RG detectors. A small subsample of each array is continuously read at a rate of 50 Hz while the integration of the science image is ongoing with the full arrays. Each of these guiding windows is centered on a star to provide an error signal for the telescope guiding. An Image Stabilizer Unit (ISU) (i.e. a tip-tilt silica plate), provides the corrections. A Proportional Integral Differential (PID) closed loop controls the ISU such that telescope tracking is corrected at a rate of 5 Hz. The guide window size and readout rate are adjustable but typical numbers are 8×8-16×16 boxes read at 50 or 1.5 Hz. This paper presents the technical architecture of the guiding system and performance measurements on the sky with WIRCam.

  13. Infrared guiding with faint stars with the wide-field infrared camera at CFHT

    NASA Astrophysics Data System (ADS)

    Teeple, Douglas; Riopel, Martin; Baril, Marc; Barrick, Gregory; Albert, Loic; Vermeulen, Tom; Ward, Jeff

    2006-06-01

    The Canada-France-Hawaii Telescope (CFHT) is commissioning a new Wide field Infrared Camera (WIRCam) that uses a mosaic of 4 HAWAII-2RG near- infrared detectors manufactured by Rockwell. At the heart of the instrument is an On-Chip Guiding System (OCGS) that exploits the unique parallel science/guide frame readout capability of the HAWAII-2RG detectors. A small sub sample of each array is continuously read at a rate of up to 50 Hz while the integration of the science image is ongoing with the full arrays (read at a maximal rate of 1.4 s per full frame). Each of these guiding windows is centered on a star to provide an error signal for the telescope guiding. An Image Stabilizer Unit (ISU) (i.e. a tip-tilt silica plate), provides the corrections. A Proportional Integral Differential (PID) closed loop controls the ISU such that telescope tracking is corrected at a rate of 5 Hz. This paper presents the technical architecture of the guiding system and performance measurements on the sky in engineering runs with WIRCam with faint stars up to magnitude 14.

  14. Wide-field single metal nanoparticle spectroscopy for high throughput localized surface plasmon resonance sensing.

    PubMed

    Chen, Kok Hao; Hobley, Jonathan; Foo, Yong Lim; Su, Xiaodi

    2011-06-01

    Noble metal nanoparticles (mNPs) have a distinct extinction spectrum arising from their ability to support Localized Surface Plasmon Resonance (LSPR). Single-particle biosensing with LSPR is label free and offers a number of advantages, including single molecular sensitivity, multiplex detection, and in vivo quantification of chemical species etc. In this article, we introduce Single-particle LSPR Imaging (SLI), a wide-field spectral imaging method for high throughput LSPR biosensing. The SLI utilizes a transmission grating to generate the diffraction spectra from multiple mNPs, which are captured using a Charge Coupled Device (CCD). With the SLI, we are able to simultaneously image and track the spectral changes of up to 50 mNPs in a single (∼1 s) exposure and yet still retain a reasonable spectral resolution for biosensing. Using the SLI, we could observe spectral shift under different local refractive index environments and demonstrate biosensing using biotin-streptavidin as a model system. To the best of our knowledge, this is the first time a transmission grating based spectral imaging approach has been used for mNPs LSPR sensing. The higher throughput LSPR sensing, offered by SLI, opens up a new possibility of performing label-free, single-molecule experiments in a high-throughput manner. PMID:21359329

  15. Bright z ~ 3 Lyman break galaxies in deep wide field surveys

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan

    In my thesis I investigate the luminous z ˜ 3 Lyman break galaxies in deep wide field surveys. In the first part of the thesis, I use the LBT/LUCIFER to observe a lensed high-redshift star-forming galaxy (J0900+2234) at z = 2.03. With the high S/N near-IR spectroscopic observations, I reveal the detailed physical properties of this high-redshift galaxy, including SFR, metallicity, dust extinction, dynamical mass, and electron number density. In the second part of the thesis, I select a large sample of LBGs at z ˜ 3 from our new LBT Bootes field survey, and study the bright end luminosity function (LF), stellar mass function (SMF) and clustering properties of bright LBGs (1L* < L < 2.5L*). Together with other LF and SMF measurements, the evolution of LF and SMF can be well described by continuously rising star formation history model. Using the clustering measurements in this work and other works, a tight relation between the average host galaxy halo mass and the galaxy star formation rate is found, which can be interpreted as arising from cold flow accretion. The relation also suggests that the cosmic star formation efficiency is about 5%-20% of the total cold flow mass. This cosmic star formation efficiency does not evolve with redshift (from z ˜ 5 to z ˜ 3), hosting dark matter halo mass (1011 -- 1013 M⊙ ), or galaxy luminosity (from 0.3L* to 3L* ). In the third and fourth parts, with the spectroscopic follow-up observations of the bright LBGs, I establish a sample of spectroscopically-confirmed ultraluminous LBGs (ULBGs) in NOAO Boo¨tes field. With this new ULBG sample, the rest-frame UV LF of LBG at M1700A = -23.0 was measured for the first time. I find that the ULBGs have larger outflow velocity, broader Lyalpha emission and ISM absorption line profiles, and more prominent C IV P-Cygni profile. This profile may imply a top-heavy IMF in these ULBGs. The ULBGs have larger stellar mass and SFR, but smaller dust extinction than the typical L* LBGs at z ˜ 2

  16. Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view

    PubMed Central

    Isikman, Serhan O.; Sencan, Ikbal; Mudanyali, Onur; Bishara, Waheb; Oztoprak, Cetin; Ozcan, Aydogan

    2010-01-01

    We demonstrate color and monochrome on-chip imaging of Caenorhabditis elegans samples over a wide field-of-view using incoherent lensless in-line holography. Digital reconstruction of the recorded lensless holograms rapidly creates the C. elegans images within <1 s over a field-of-view of >24 mm2. By digitally combining the reconstructed images at three different wavelengths (red, green and blue), color images of dyed samples are also acquired. This wide field-of-view and compact on-chip imaging modality also permits straightforward integration with microfluidic systems. PMID:20390127

  17. A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2014-04-01

    For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission

  18. Estimating gross primary production in Iowa from Advanced Wide Field Sensor (AWiFS) data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dr. E. Raymond Hunt, Jr., USDA/ARS, will be presenting recent research on the use of AWiFS shortwave infrared band (Band 5: 1.50 to 1.70 µm wavelength) for the prediction of vegetation water content. Data from many different land cover types show there is a relationship between the normalized diffe...

  19. Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations

    PubMed Central

    Cheng, Riyan; Lim, Jackie E.; Samocha, Kaitlin E.; Sokoloff, Greta; Abney, Mark; Skol, Andrew D.; Palmer, Abraham A.

    2010-01-01

    Model organisms offer many advantages for the genetic analysis of complex traits. However, identification of specific genes is often hampered by a lack of recombination between the genomes of inbred progenitors. Recently, genome-wide association studies (GWAS) in humans have offered gene-level mapping resolution that is possible because of the large number of accumulated recombinations among unrelated human subjects. To obtain analogous improvements in mapping resolution in mice, we used a 34th generation advanced intercross line (AIL) derived from two inbred strains (SM/J and LG/J). We used simulations to show that familial relationships among subjects must be accounted for when analyzing these data; we then used a mixed model that included polygenic effects to address this problem in our own analysis. Using a combination of F2 and AIL mice derived from the same inbred progenitors, we identified genome-wide significant, subcentimorgan loci that were associated with methamphetamine sensitivity, (e.g., chromosome 18; LOD = 10.5) and non-drug-induced locomotor activity (e.g., chromosome 8; LOD = 18.9). The 2-LOD support interval for the former locus contains no known genes while the latter contains only one gene (Csmd1). This approach is broadly applicable in terms of phenotypes and model organisms and allows GWAS to be performed in multigenerational crosses between and among inbred strains where familial relatedness is often unavoidable. PMID:20439773

  20. THE DISCOVERY OF Y DWARFS USING DATA FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE)

    SciTech Connect

    Cushing, Michael C.; Mainzer, A.; Eisenhardt, Peter R.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Beichman, Charles A.; Skrutskie, Michael F.; Burgasser, Adam J.; Prato, Lisa A.; Simcoe, Robert A.; Marley, Mark S.; Freedman, Richard S.; Saumon, D.; Wright, Edward L.

    2011-12-10

    We present the discovery of seven ultracool brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Near-infrared spectroscopy reveals deep absorption bands of H{sub 2}O and CH{sub 4} that indicate all seven of the brown dwarfs have spectral types later than UGPS J072227.51-054031.2, the latest-type T dwarf currently known. The spectrum of WISEP J182831.08+265037.8 is distinct in that the heights of the J- and H-band peaks are approximately equal in units of f{sub {lambda}}, so we identify it as the archetypal member of the Y spectral class. The spectra of at least two of the other brown dwarfs exhibit absorption on the blue wing of the H-band peak that we tentatively ascribe to NH{sub 3}. These spectral morphological changes provide a clear transition between the T dwarfs and the Y dwarfs. In order to produce a smooth near-infrared spectral sequence across the T/Y dwarf transition, we have reclassified UGPS 0722-05 as the T9 spectral standard and tentatively assign WISEP J173835.52+273258.9 as the Y0 spectral standard. In total, six of the seven new brown dwarfs are classified as Y dwarfs: four are classified as Y0, one is classified as Y0 (pec?), and WISEP J1828+2650 is classified as >Y0. We have also compared the spectra to the model atmospheres of Marley and Saumon and infer that the brown dwarfs have effective temperatures ranging from 300 K to 500 K, making them the coldest spectroscopically confirmed brown dwarfs known to date.

  1. Image irradiance distribution in the 3MI wide field of view polarimeter

    NASA Astrophysics Data System (ADS)

    Gabrieli, Riccardo; Bartoli, Alessandro; Maiorano, Michele; Bruno, Umberto; Olivieri, Monica; Calamai, Luciano; Manolis, Ilias; Labate, Demetrio

    2015-09-01

    The Multi-Viewing, Multi-Channel, Multi-Polarisation Imager (3MI) is an imaging radiometer for the ESA/Eumetsat MeteOp-SG programme. Based on the heritage of the POLDER/PARASOL instrument, 3MI is designed to collect global observations of the top-of-atmosphere polarised bi-directional reflectance distribution function in 12 spectral bands, by observing the same target from multiple views using a pushbroom scanning concept. The demanding challenge of the 3MI optical design is represented by the polarisation and image irradiance fall-off (throughput uniformity) requirements. In a generic optical system, the image irradiance fall-off is a function of: target radiance distribution and polarisation, entrance pupil size and optical transmittance variations across the field of view (FOV), distortion and vignetting. In most applications these aspects can be considered as independent; however, when high image irradiance uniformity is required, they have to be considered as linked together. This is particularly true in case of a wide FOV polarimeter as 3MI is. In order to properly account for these aspects, an irradiance fall-off analytical model has been developed in the frame of 3MI Optics Pre-Development (OPD), whose aim is to mitigate any technological risks associated with the 3MI instrument development. It is shown how it is possible to control the image irradiance distribution acting on optical design parameters (e.g. distortion and entrance pupil size variation with FOV). Moreover, the impact of polarisation performances on irradiance fall-off is discussed.

  2. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  3. Tracker controls development and control architecture for the Hobby-Eberly Telescope Wide Field Upgrade

    NASA Astrophysics Data System (ADS)

    Mock, Jason R.; Beno, Joe; Rafferty, Tom H.; Cornell, Mark E.

    2010-07-01

    To enable the Hobby-Eberly Telescope Wide Field Upgrade, the University of Texas Center for Electromechanics and McDonald Observatory are developing a precision tracker system - a 15,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 14 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). This level of system complexity and emphasis on fail-safe operation is typical of large modern telescopes and numerous industrial applications. Due to this complexity, demanding accuracy requirements, and stringent safety requirements, a highly versatile and easily configurable centralized control system that easily links with modeling and simulation tools during the hardware and software design process was deemed essential. The Matlab/Simulink simulation environment, coupled with dSPACE controller hardware, was selected for controls development and realization. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. Custom designed position feedback loops, supplemented by feed forward force commands for enhanced performance, and algorithms to accommodate self-locking gearboxes (for safety), reside in dSPACE. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of software and hardware, design choices and analysis, and supporting simulations (primarily Simulink).

  4. THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE

    SciTech Connect

    Mainzer, A.; Masiero, J.; Bauer, J.; Ressler, M.; Eisenhardt, P.; Grav, T.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of {approx}10% and {approx}20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 {mu}m and 4.6 {mu}m, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical

  5. Thermal Model Calibration for Minor Planets Observed with Wide-field Infrared Survey Explorer/NEOWISE

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Grav, T.; Masiero, J.; Bauer, J.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.; Ressler, M.; Eisenhardt, P.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of ~10% and ~20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 μm and 4.6 μm, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model.

  6. A wide-field near- and mid-infrared Census of young stars in NGC 6334

    SciTech Connect

    Willis, S.; Marengo, M.; Allen, L.; Fazio, G. G.; Smith, H. A.; Carey, S.

    2013-12-01

    This paper presents a study of the rate and efficiency of star formation in the NGC 6334 star-forming region. We obtained observations at J, H, and K{sub s} taken with the NOAO Extremely Wide-Field Infrared Imager and combined them with observations taken with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope at wavelengths = 3.6, 4.5, 5.8, and 8.0 μm. We also analyzed previous observations taken at 24 μm using the Spitzer MIPS camera as part of the MIPSGAL survey. We have produced a point source catalog with >700, 000 entries. We have identified 2283 young stellar object (YSO) candidates, 375 Class I YSOs, and 1908 Class II YSOs using a combination of existing IRAC-based color classification schemes that we have extended and validated to the near-IR for use with warm Spitzer data. We have identified multiple new sites of ongoing star formation activity along filamentary structures extending tens of parsecs beyond the central molecular ridge of NGC 6334. By mapping the extinction, we derived an estimate for the gas mass, 2.2 × 10{sup 5} M {sub ☉}. The heavy concentration of protostars along the dense filamentary structures indicates that NGC 6334 may be undergoing a 'mini-starburst' event with Σ{sub SFR} > 8.2 M {sub ☉} Myr{sup –1} pc{sup –2} and SFE > 0.10. We have used these estimates to place NGC 6334 in the Kennicutt-Schmidt diagram to help bridge the gap between observations of local low-mass star-forming regions and star formation in other galaxies.

  7. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging

    PubMed Central

    Zhou, Juan; Joshi, Bishnu P; Duan, Xiyu; Pant, Asha; Qiu, Zhen; Kuick, Rork; Owens, Scott R; Wang, Thomas D

    2015-01-01

    Objectives: Colorectal cancer initially lies dormant as dysplasia, a premalignant state that provides an opportunity for early cancer detection. Dysplasia can be flat in morphology, focal in size, and patchy in distribution, and thus it appears “invisible” on conventional wide-field endoscopy. Aims: We aim to develop and validate a peptide that is specific for epidermal growth factor receptor (EGFR), a cell surface target that is overexpressed in colonic adenomas and is readily accessible for imaging. Methods: We expressed and purified the extracellular domain of EGFR for use with phage display to identify a peptide QRHKPRE that binds to domain 2 of this target. A near-infrared fluorescence endoscope was used to perform in vivo imaging to validate specific peptide binding to spontaneous colonic adenomas in a mouse model with topical administration. We also validated specific peptide binding to human colonic adenomas on immunohistochemistry and immunofluorescence. Results: After labeling with Cy5.5, we validated specific peptide binding to EGFR on knockdown and competition studies. Peptide binding to cells occurred within 2.46 min and had an affinity of 50 nm. No downstream signaling was observed. We measured a target-to-background ratio of 4.0±1.7 and 2.7±0.7, for polyps and flat lesions, respectively. On immunofluorescence of human colonic specimens, greater intensity from peptide binding to dysplasia than normal was found with a 19.4-fold difference. Conclusions: We have selected and validated a peptide that can be used as a specific contrast agent to identify colonic adenomas that overexpress EGFR in vivo on fluorescence endoscopy. PMID:26181290

  8. Real-time control for the high order, wide field DRAGON AO test bench

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bharmal, Nazim A.; Bitenc, Urban; Dipper, Nigel; Morris, Tim; Myers, Richard; Reeves, Andrew; Younger, Eddy

    2014-07-01

    DRAGON is a high order, wide field AO test-bench at Durham. A key feature of DRAGON is the ability to be operated at real-time rates, i.e. frame rates of up to 1kHz, with low latency to maintain AO performance. Here, we will present the real-time control architecture for DRAGON, which includes two deformable mirrors, eight wavefront sensors and thousands of Shack-Hartmann sub-apertures. A novel approach has been taken to allow access to the wavefront sensor pixel stream, reducing latency and peak computational load, and this technique can be implemented for other similar wavefront sensor cameras with no hardware costs. We report on experience with an ELT-suitable wavefront sensor camera. DRAGON will form the basis for investigations into hardware acceleration architectures for AO real-time control, and recent work on GPU and many-core systems (including the Xeon Phi) will be reported. Additionally, the modular structure of DRAGON, its remote control capabilities, distribution of AO telemetry data, and the software concepts and architecture will be reported. Techniques used in DRAGON for pixel processing, slope calculation and wavefront reconstruction will be presented. This will include methods to handle changes in CN2 profile and sodium layer profile, both of which can be modelled in DRAGON. DRAGON software simulation techniques linking hardware-in-the-loop computer models to the DRAGON real-time system and control software will also be discussed. This tool allows testing of the DRAGON system without requiring physical hardware and serves as a test-bed for ELT integration and verification techniques.

  9. A deep and wide-field view at the IC 2944/2948 complex in Centaurus*

    NASA Astrophysics Data System (ADS)

    Baume, G.; Rodríguez, M. J.; Corti, M. A.; Carraro, G.; Panei, J. A.

    2014-09-01

    We employed the ESO Max Planck Institute (MPI) wide-field camera (Baade et al.) and obtained deep images in the VIC pass-bands in the region of the IC 2944/2948 complex (l ˜ 294.8° b ˜ -1.6°), and complemented them with literature and archival data. We used this material to derive the photometric, spectroscopic and kinematic properties of the brightest (V < 16) stars in the region. The VI deep photometry on the other end, helped us to unravel the lower main sequence of a few, possibly physical, star groups in the area. Our analysis confirmed previous suggestions that the extinction towards this line of sight follows the normal law (RV = 3.1). We could recognize B-type stars spread in distance from a few hundred pc to at least 2 kpc. We found two young groups (age ˜ 3 Myr) located, respectively, at about 2.3 and 3.2 kpc from the Sun. They are characterized by a significant variable extinction (E(B - V) ranging from 0.28 to 0.45 mag), and host a significant pre-main-sequence population. We computed the initial mass functions for these groups and obtained slopes Γ from -0.94 to -1.02 (eΓ = 0.3) in a scale where the classical Salpeter law is -1.35. We estimated the total mass of both main stellar groups in ˜1100 and ˜500 M⊙, respectively. Our kinematic analysis indicated that both groups of stars deviate from the standard rotation curve of the Milky Way, in line with literature results for this specific Galactic direction. Finally, along the same line of sight, we identified a third group of early-type stars located at ˜8 kpc from the Sun. This group might be located in the far side of the Sagittarius-Carina spiral arm.

  10. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  11. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  12. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF GALACTIC SUPERNOVA REMNANTS: WIDE-FIELD CONTINUUM AND SPECTRAL-INDEX IMAGING

    SciTech Connect

    Bhatnagar, S.; Rau, U.; Rupen, M. P.; Green, D. A. E-mail: rurvashi@nrao.edu E-mail: dag9@cam.ac.uk

    2011-09-20

    The radio continuum emission from the Galaxy has a rich mix of thermal and non-thermal emission. This very richness makes its interpretation challenging since the low radio opacity means that a radio image represents the sum of all emission regions along the line of sight. These challenges make the existing narrowband radio surveys of the Galactic plane difficult to interpret: e.g., a small region of emission might be a supernova remnant (SNR) or an H II region, or a complex combination of both. Instantaneous wide bandwidth radio observations in combination with the capability for high-resolution spectral-index mapping can be directly used to disentangle these effects. Here we demonstrate simultaneous continuum and spectral-index imaging capability at the full continuum sensitivity and resolution using newly developed wide-band wide-field imaging algorithms. Observations were conducted in the L and C bands with a total bandwidth of 1 and 2 GHz, respectively. We present preliminary results in the form of a full-field continuum image covering the wide-band sensitivity pattern of the EVLA centered on a large but poorly studied SNR (G55.7 + 3.4) and relatively narrower field continuum and spectral-index maps of three fields containing SNR and diffused thermal emission. We demonstrate that spatially resolved spectral-index maps differentiate regions with emission of different physical origins (spectral-index variation across composite SNRs and separation of thermal and non-thermal emission), superimposed along the line of sight. The wide-field image centered on the SNR G55.7+3.4 also demonstrates the excellent wide-field wide-band imaging capability of the EVLA.

  13. Wide-field Functional Imaging of Blood Flow and Hemoglobin Oxygen Saturation in the Rodent Dorsal Window Chamber

    PubMed Central

    Moy, Austin J.; White, Sean M.; Indrawan, Elmer S.; Lotfi, Justin; Nudelman, Matthew J.; Costantini, Samantha J.; Agarwal, Nikita; Jia, Wangcun; Kelly, Kristen M.; Sorg, Brian S.; Choi, Bernard

    2011-01-01

    The rodent dorsal window chamber is a widely used in vivo model of the microvasculature. The model consists of a 1cm region of exposed microvasculature in the rodent dorsal skin that is immobilized by surgically implanted titanium frames, allowing the skin microvasculature to be visualized. We describe a detailed protocol for surgical implantation of the dorsal window chamber which enables researchers to perform the window chamber implantation surgery. We further describe subsequent wide-field functional imaging of the chamber to obtain hemodynamic information in the form of blood oxygenation and blood flow on a cm size region of interest. Optical imaging techniques, such as intravital microscopy, have been applied extensively to the dorsal window chamber to study microvascular-related disease and conditions. Due to the limited field of view of intravital microscopy, detailed hemodynamic information typically is acquired from small regions of interest, typically on the order of hundreds of μm. The wide-field imaging techniques described herein complement intravital microscopy, allowing researchers to obtain hemodynamic information at both microscopic and macroscopic spatial scales. Compared with intravital microscopy, wide-field functional imaging requires simple instrumentation, is inexpensive, and can give detailed metabolic information over a wide field of view. PMID:21787792

  14. ERBE Wide-Field-of-View Nonscanner Data Reprocessing and revisiting its Radiation dataset from 1985 to 199

    NASA Astrophysics Data System (ADS)

    Shrestha, A. K.; Kato, S.; Wong, T.; Stackhouse, P. W.; Rose, F. G.; Miller, W. F.; Bush, K.; Rutan, D. A.; Minnis, P.; Doelling, D.

    2015-12-01

    The Earth's radiation budget is a fundamental component of the climate system and should reflect the variation in climate. As such, it is critical to know how it has varied over past decades to ensure that climate models are properly representing climate. Broadband shortwave and longwave irradiances were measured by the Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanner instrument from 1985 to 1998. These WFOV nonscanner instruments were onboard NASA's Earth Radiation Budget Satellite (ERBS) and two NOAA's satellites (NOAA-9 and NOAA-10). However, earlier studies showed that the transmissivity of the dome for the WFOV shortwave (SW) nonscanner instrument degraded over time. To account for the degradation, WFOV instruments were calibrated assuming constant spectral degradation (gray assumption). Recent developments from analysis of data from the Clouds and the Earth's Radiant Energy System project (CERES), which has been measuring the radiation budget since 2000, suggest that transmissivity of shorter wavelength degrades faster. Therefore, a spectrally dependent degradation correction is needed for a better calibration. In addition, accounting for the spectrally dependent degradation may eliminate an additional correction applied to irradiances using a time series of daytime and nighttime longwave irradiance differences. Therefore, we have reprocessed WFOV nonscanner data by characterizing the spectrally dependent degradation of the SW dome transmissivity. Time and spectral dependent degradation of the shortwave filter function is estimated using solar data observed by these instruments during calibration days. Because the spectrum of reflected irradiance depends on scene type, we use Advanced Very High Resolution Radiometer AVHRR-derived cloud properties and surface type over the WFOV footprints in addition to time dependent filter function for the unfiltering process. This poster explains the reprocessing approach and discusses the

  15. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  16. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel

  17. THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE)

    SciTech Connect

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Tsai, Chao-Wei; Beichman, Charles A.; Cushing, Michael C.; Mainzer, A.; Eisenhardt, Peter R.; Bauer, James M.; Skrutskie, Michael F.; Wright, Edward L.; McLean, Ian S.; Lake, Sean E.; Petty, Sara M.; Thompson, Maggie A.; Benford, Dominic J.; Bridge, Carrie R.; Stanford, S. A.; Bailey, Vanessa; and others

    2011-12-01

    We present ground-based spectroscopic verification of 6 Y dwarfs (see also Cushing et al.), 89 T dwarfs, 8 L dwarfs, and 1 M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types {>=}T6, six of which have been announced earlier by Mainzer et al. and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared and, in a few cases, optical spectra are presented for these discoveries. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. Using these new discoveries, we are also able to extend the optical T dwarf classification scheme from T8 to T9. After deriving an absolute WISE 4.6 {mu}m (W2) magnitude versus spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four of our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at 2.8{sup +1.3}{sub -0.6} pc; if this 2.8 pc value persists after continued monitoring, WISE 1541-2250 will become the seventh closest stellar system to the Sun. Another 10 objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of {approx}4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from the Spitzer/Infrared Array Camera allow us to calculate proper motions and tangential velocities for roughly one-half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of

  18. Measuring metallicities with Hubble space telescope/wide-field camera 3 photometry

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon A.; Anthony-Twarog, Barbara J.; Twarog, Bruce; Bond, Howard E.; Saha, Abhijit; Walker, Alistair E-mail: holtz@nmsu.edu E-mail: btwarog@ku.edu E-mail: awalker@ctio.noao.edu

    2014-01-01

    We quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine Wide-Field Camera 3 filters on board the Hubble Space Telescope using Dartmouth isochrones and Kurucz atmosphere models. The theoretical isochrone colors were tested and calibrated against observations of five well studied galactic clusters, M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791, all of which have spectroscopically determined metallicities spanning –2.30 < [Fe/H] <+0.4. We found empirical corrections to the Dartmouth isochrone grid for each of the following color-magnitude diagrams (CMDs): (F555W-F814W, F814W), (F336W-F555W, F814W), (F390M-F555W, F814W), and (F390W-F555W, F814W). Using empirical corrections, we tested the accuracy and spread of the photometric metallicities assigned from CMDs and color-color diagrams (which are necessary to break the age-metallicity degeneracy). Testing three color-color diagrams [(F336W-F555W),(F390M-F555W),(F390W-F555W), versus (F555W-F814W)], we found the colors (F390M-F555W) and (F390W-F555W) to be the best suited to measure photometric metallicities. The color (F390W-F555W) requires much less integration time, but generally produces wider metallicity distributions and, at very low metallicity, the metallicity distribution function (MDF) from (F390W-F555W) is ∼60% wider than that from (F390M-F555W). Using the calibrated isochrones, we recovered the overall cluster metallicity to within ∼0.1 dex in [Fe/H] when using CMDs (i.e., when the distance, reddening, and ages are approximately known). The measured MDF from color-color diagrams shows that this method measures metallicities of stellar clusters of unknown age and metallicity with an accuracy of ∼0.2-0.5 dex using F336W-F555W, ∼0.15-0.25 dex using F390M-F555W, and ∼0.2-0.4 dex with F390W-F555W, with the larger uncertainty pertaining to the lowest metallicity range.

  19. Measuring Metallicities with Hubble Space Telescope/Wide-Field Camera 3 Photometry

    NASA Astrophysics Data System (ADS)

    Ross, Teresa L.; Holtzman, Jon A.; Anthony-Twarog, Barbara J.; Bond, Howard E.; Twarog, Bruce; Saha, Abhijit; Walker, Alistair

    2014-01-01

    We quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine Wide-Field Camera 3 filters on board the Hubble Space Telescope using Dartmouth isochrones and Kurucz atmosphere models. The theoretical isochrone colors were tested and calibrated against observations of five well studied galactic clusters, M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791, all of which have spectroscopically determined metallicities spanning -2.30 < [Fe/H] <+0.4. We found empirical corrections to the Dartmouth isochrone grid for each of the following color-magnitude diagrams (CMDs): (F555W-F814W, F814W), (F336W-F555W, F814W), (F390M-F555W, F814W), and (F390W-F555W, F814W). Using empirical corrections, we tested the accuracy and spread of the photometric metallicities assigned from CMDs and color-color diagrams (which are necessary to break the age-metallicity degeneracy). Testing three color-color diagrams [(F336W-F555W),(F390M-F555W),(F390W-F555W), versus (F555W-F814W)], we found the colors (F390M-F555W) and (F390W-F555W) to be the best suited to measure photometric metallicities. The color (F390W-F555W) requires much less integration time, but generally produces wider metallicity distributions and, at very low metallicity, the metallicity distribution function (MDF) from (F390W-F555W) is ~60% wider than that from (F390M-F555W). Using the calibrated isochrones, we recovered the overall cluster metallicity to within ~0.1 dex in [Fe/H] when using CMDs (i.e., when the distance, reddening, and ages are approximately known). The measured MDF from color-color diagrams shows that this method measures metallicities of stellar clusters of unknown age and metallicity with an accuracy of ~0.2-0.5 dex using F336W-F555W, ~0.15-0.25 dex using F390M-F555W, and ~0.2-0.4 dex with F390W-F555W, with the larger uncertainty pertaining to the lowest metallicity range. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope

  20. The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE)

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Mainzer, A.; Eisenhardt, Peter R.; McLean, Ian S.; Thompson, Maggie A.; Bauer, James M.; Benford, Dominic J.; Bridge, Carrie R.; Lake, Sean E.; Petty, Sara M.; Stanford, S. A.; Tsai, Chao-Wei; Bailey, Vanessa; Beichman, Charles A.; Bloom, Joshua S.; Bochanski, John J.; Burgasser, Adam J.; Capak, Peter L.; Cruz, Kelle L.; Hinz, Philip M.; Kartaltepe, Jeyhan S.; Knox, Russell P.; Manohar, Swarnima; Masters, Daniel; Morales-Calderón, Maria; Prato, Lisa A.; Rodigas, Timothy J.; Salvato, Mara; Schurr, Steven D.; Scoville, Nicholas Z.; Simcoe, Robert A.; Stapelfeldt, Karl R.; Stern, Daniel; Stock, Nathan D.; Vacca, William D.

    2011-12-01

    We present ground-based spectroscopic verification of 6 Y dwarfs (see also Cushing et al.), 89 T dwarfs, 8 L dwarfs, and 1 M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types >=T6, six of which have been announced earlier by Mainzer et al. and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared and, in a few cases, optical spectra are presented for these discoveries. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. Using these new discoveries, we are also able to extend the optical T dwarf classification scheme from T8 to T9. After deriving an absolute WISE 4.6 μm (W2) magnitude versus spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four of our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at 2.8+1.3 -0.6 pc if this 2.8 pc value persists after continued monitoring, WISE 1541-2250 will become the seventh closest stellar system to the Sun. Another 10 objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of ~4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from the Spitzer/Infrared Array Camera allow us to calculate proper motions and tangential velocities for roughly one-half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of these objects and discuss

  1. Characterizing AGB stars in Wide-field Infrared Survey Explorer (WISE) bands

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Zhu, Qingfeng; Kong, Xu; He, Jinhua

    2014-04-01

    Aims: Since asymptotic giant branch (AGB) stars are bright and extended infrared objects, most Galactic AGB stars saturate the Wide-field Infrared Survey Explorer (WISE) detectors and therefore the WISE magnitudes that are restored by applying point-spread-function fitting need to be verified. Statistical properties of circumstellar envelopes around AGB stars are discussed on the basis of a WISE AGB catalog verified in this way. Methods: We cross-matched an AGB star sample with the WISE All-Sky Source Catalog and the Two Mircon All Sky Survey catalog. Infrared Space Observatory (ISO) spectra of a subsample of WISE AGB stars were also exploited. The dust radiation transfer code DUSTY was used to help predict the magnitudes in the W1 and W2 bands, the two WISE bands most affected by saturation, for calibration purpose, and to provide physical parameters of the AGB sample stars for analysis. Results: DUSTY is verified against the ISO spectra to be a good tool to reproduce the spectral energy distributions of these AGB stars. Systematic magnitude-dependent offsets have been identified in WISE W1 and W2 magnitudes of the saturated AGB stars, and empirical calibration formulas are obtained for them on the basis of 1877 (W1) and 1558 (W2) AGB stars that are successfully fit with DUSTY. According to the calibration formulas, the corrections for W1 at 5 mag and W2 at 4 mag are -0.383 and 0.217 mag, respectively. In total, we calibrated the W1/W2 magnitudes of 2390/2021 AGB stars. The model parameters from the DUSTY and the calibrated WISE W1 and W2 magnitudes are used to discuss the behavior of the WISE color-color diagrams of AGB stars. The model parameters also reveal that O-rich AGB stars with opaque circumstellar envelopes are much rarer than opaque C-rich AGB stars toward the anti-Galactic center direction, which we attribute to the metallicity gradient of our Galaxy. The synthetic photometry and input parameters for the model grid are only available at the CDS via

  2. Sampling and Analysis of Impact Crater Residues found on the Wide Field Planetary Camera-2 Radiator

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R. P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.; Robinson, G. A.; Opiela, J. N.; Gerlach, L.

    2013-01-01

    After nearly 16 years on orbit, the Wide Field Planetary Camera-2 (WFPC-2) was recovered from the Hubble Space Telescope in May 2009 during the 12 day shuttle mission designated STS-125. During that exposure to the low Earth orbit environment, the WFPC-2 radiator was struck by approximately 700 impactors producing crater features 300 micrometers and larger in size. Following an optical inspection of these features in 2009, an agreement was reached for the joint NASA-ESA examination and characterization of crater residues, the remnants of the projectile, in 2011. Active examination began in 2012, with 486 of the impact features being cored at NASA Johnson Space Center fs (JSC) Space Exposed Hardware cleanroom and curation facility. The core samples were subsequently divided between NASA and ESA. NASA's analysis was conducted at JSC fs Astromaterials Research and Exploration Science (ARES) Division, using scanning electron microscopy (SEM)/ energy dispersive X-ray spectrometry (EDS) methods, and ESA's analysis was conducted at the Natural History Museum (NHM) again using SEM/EDS, and at the University of Surrey Ion Beam Centre (IBC) using ion beam analysis (IBA) with a scanned proton microbeam. As detailed discussion of the joint findings remains premature at this point, this paper reports on the coring technique developed; the practical taxonomy developed to classify residues as belonging either to anthropogenic "orbital debris" or micrometeoroids; and the protocols for examination of crater residues. Challenges addressed in coring were the relative thickness of the surface to be cut, protection of the impact feature from contamination while coring, and the need to preserve the cleanroom environment so as to preclude or minimize cross-contamination. Classification criteria are summarized, including the assessment of surface contamination and surface cleaning. Finally, we discuss the analytical techniques used to examine the crater residues. We employed EDS from

  3. A Review of Asteroid Rotation Statistics with and without the Results from Wide-field Surveys

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.; Harris, Alan W.; Stephens, Robert D.

    2015-11-01

    Several recent wide-field surveys, e.g., Waszczak et al. (2015) and Chang et al. (2015), have added more than 10,000 asteroid rotation rates to the asteroid lightcurve database (LCDB), Warner et al. (2009). In previous works, Harris et al. (2012), Warner et al. (2011), we explored the possible effects on asteroid rotational statistics with the large infusion of results from such surveys, especially if using “sparse” data sets, e.g., those with fewer than 60 data points from a short span of 2-4 nights.Now that such data sets exist, we examine asteroid rotation statistics with and without the results from the surveys, looking at two specific points: 1) the possible biases introduced when using survey data and 2) assuming that the stated results are statistically useful, what the larger data set now tells us about asteroid rotation rates.For point #1, there appears to be the expected substantial biases against low amplitude and very short or long period lightcurves with the period problems stemming from the observing cadence and limited number of observations. Furthermore, the two latest surveys found periods for only about 20% of all observed objects, meaning that only the “easier” results were found. While the two surveys tended to go deeper and, therefore, work smaller objects, that raises yet another bias: success in finding a period depends on brightness. As a result, we would urge caution when interpreting spin properties versus size.For point #2, we first note that the vast majority of objects observed by the two surveys were in the broad regions of the inner or outer main-belt. Significantly, less than 10 NEAs were observed. For this reason, it makes it difficult to compare the effects of YORP, as seen by rotation rate distribution, on small asteroids at different distances. When considering main-belt objects with 10 < D < 40 km, the difference between plots with and without survey data show essentially the same Mawellian-like distribution.

  4. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented. PMID:12558687

  5. Advanced Waste Treatment. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This operations manual represents a continuation of operator training manuals developed for the United States Environmental Protection Agency (USEPA) in response to the technological advancements of wastewater treatment and the changing needs of the operations profession. It is intended to be used as a home-study course manual (using the concepts…

  6. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond

    PubMed Central

    Hall, L. T.; Beart, G. C. G.; Thomas, E. A.; Simpson, D. A.; McGuinness, L. P.; Cole, J. H.; Manton, J. H.; Scholten, R. E.; Jelezko, F.; Wrachtrup, Jörg; Petrou, S.; Hollenberg, L. C. L.

    2012-01-01

    A quantitative understanding of the dynamics of biological neural networks is fundamental to gaining insight into information processing in the brain. While techniques exist to measure spatial or temporal properties of these networks, it remains a significant challenge to resolve the neural dynamics with subcellular spatial resolution. In this work we consider a fundamentally new form of wide-field imaging for neuronal networks based on the nanoscale magnetic field sensing properties of optically active spins in a diamond substrate. We analyse the sensitivity of the system to the magnetic field generated by an axon transmembrane potential and confirm these predictions experimentally using electronically-generated neuron signals. By numerical simulation of the time dependent transmembrane potential of a morphologically reconstructed hippocampal CA1 pyramidal neuron, we show that the imaging system is capable of imaging planar neuron activity non-invasively at millisecond temporal resolution and micron spatial resolution over wide-fields. PMID:22574249

  7. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    SciTech Connect

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A.; Kaviraj, S.; Crockett, R. M.; Silk, J.; O'Connell, R. W.; Hathi, N. P.; McCarthy, P. J.; Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E.; Yan, H.; Kimble, R. A.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  8. Wide field of view three-mirror telescopes having a common optical axis

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1988-01-01

    Two coincident-optical-axis, three-mirror telescopes have been designed that feature relatively low focal ratios (f/2.3 and f/3), unobscured optical aperture, large circular fields of view (6 and 8 deg), good resolution, flat field, reimaging with accessible field stop, Lyot or glare stop, effective stray light suppression, and ease of spectral filter integration. The design for the f/3 telescope with 8 deg field of view has been fabricated and validated using single-point diamond-turned optics.

  9. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  10. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.

    Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.

    When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they

  11. Quantifying the area-wide dispersal patterns of honeybees in commercial alfalfa fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the foraging range of honey bees in an agroecosystem dominated by a glyphosate-resistant Roundup Ready® (RR) alfalfa seed production field and several non-RR fields. Honey bee self-marking devices were attached to colonies originating from nine different apiary locat...

  12. “Nanosized Voltmeter” Enables Cellular-Wide Electric Field Mapping

    PubMed Central

    Tyner, Katherine M.; Kopelman, Raoul; Philbert, Martin A.

    2007-01-01

    Previously, all biological measurements of intracellular electric fields (E fields), using voltage dyes or patch/voltage clamps, were confined to cellular membranes, which account for <0.1% of the total cellular volume. These membrane-dependent techniques also frequently require lengthy calibration steps for each cell or cell type measured. A new 30-nm “photonic voltmeter”, 1000-fold smaller than existing voltmeters, enables, to our knowledge, the first complete three-dimensional E field profiling throughout the entire volume of living cells. These nanodevices are calibrated externally and then applied for E field determinations inside any live cell or cellular compartment, with no further calibration steps. The results indicate that the E fields from the mitochondrial membranes penetrate much deeper into the cytosol than previously estimated, indicating that, electrically, the cytoplasm cannot be described as a simple homogeneous solution, as often approximated, but should rather be thought of as a complex, heterogeneous hydrogel, with distinct microdomains. PMID:17513359

  13. Advanced measurements and techniques in high magnetic fields

    SciTech Connect

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film.

  14. Semi-Classical Dynamics of an Electron in a Wide Pill-Box; Non-Uniform Azimuthal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Masale, M.

    The influence of a spatially dependent magnetic field on the orbital motion of an electron in a wide pill-box is evaluated. Expressions for the velocity components perpendicular to the magnetic flux lines are obtained. these form the basis for the derivations of the analytical expressions for the particle trajectories. The results for the special case when the initial radial velocity is zero are suggestive of potential applications, for example, current- amplification'or the generation of high magnetic fields in semiconductor nanostructures. A brief discussion of the overall results is also given in the context of the problem of the critical field of a current-carrying type II superconducting cylinder.

  15. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    PubMed

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second. PMID:26974110

  16. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications.

    PubMed

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G; Koronyo, Yosef; Medina-Kauwe, Lali K; Gross, Zeev; Gray, Harry B; Farkas, Daniel L

    2011-01-01

    We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications. PMID:21339880

  17. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners.

    PubMed

    Greco, V; Frijia, F; Mikellidou, K; Montanaro, D; Farini, A; D'Uva, M; Poggi, P; Pucci, M; Sordini, A; Morrone, M C; Burr, D C

    2016-06-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  18. Development of Extremely Wide-Field CMOS Camera Tomo-e:Contribution to Small Solar System Objects

    NASA Astrophysics Data System (ADS)

    Watanabe, Juniichi; Yoshikawa, Makoto; Urakawa, Seitaro; Usui, Fumihiko; Ohsawa, Ryou; Sako, Shigeyuki; Arimatsu, Ko

    2016-07-01

    We are developing an ultra wide-field fast camera, Tomo-e Gozen, which will be set up on the 105cm (F3.1) Schmidt telescope in Kiso Observatory at the University of Tokyo. Tomo-e equipped with 84 CMOS image sensors, which work in a room temperature, has a 20 square degree field of view and a fast readout speed of ~2 Hz. The purpose of this camera is the observation of the transient objects such as the counterpart of the gravitational wave events, the ultra wide-field capability with a high survey efficiency is also useful for small solar system bodies; NEOs, occultation events of the TNOs, and meteors. In the presentation, the specifications of Tomo-e are shown together with some preliminary results of the experimental observation run.

  19. THE AGE-METALLICITY RELATIONSHIP OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION FROM WIDE-FIELD WASHINGTON PHOTOMETRY

    SciTech Connect

    Piatti, Andres E.; Geisler, Doug

    2013-01-01

    We analyze age and metallicity estimates for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud (LMC) main body, obtained from CCD Washington CT{sub 1} photometry, reported on in Piatti et al. We produce a comprehensive field star age-metallicity relationship (AMR) from the earliest epoch until {approx}1 Gyr ago. This AMR reveals that the LMC has not evolved chemically as either a closed-box or bursting system, exclusively, but as a combination of both scenarios that have varied in relative strength over the lifetime of the galaxy, although the bursting model falls closer to the data in general. Furthermore, while old and metal-poor field stars have been preferentially formed in the outer disk, younger and more metal-rich stars have mostly been formed in the inner disk, confirming an outside-in formation. We provide evidence for the formation of stars between 5 and 12 Gyr, during the cluster age gap, although chemical enrichment during this period was minimal. We find no significant metallicity gradient in the LMC. We also find that the range in the metallicity of an LMC field has varied during the lifetime of the LMC. In particular, we find only a small range of the metal abundance in the outer disk fields, whereas an average range of {Delta}[Fe/H] = +0.3 {+-} 0.1 dex appears in the inner disk fields. Finally, the cluster and field AMRs show a satisfactory match only for the last 3 Gyr, while for the oldest ages (>11 Gyr), the cluster AMR is a remarkable lower envelope to the field AMR. Such a difference may be due to the very rapid early chemical evolution and lack of observed field stars in this regime, whereas the globular clusters are easily studied. This large difference is not easy to explain as coming from stripped ancient Small Magellanic Cloud (SMC) clusters, although the field SMC AMR is on average {approx}0.4 dex more metal-poor at all ages than that of the LMC but otherwise very similar.

  20. Modeling the effect of high altitude turbulence in wide-field correlating wavefront sensing and its impact on the performance of solar AO systems

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Tallon, M.; Langlois, M.; Béchet, C.; Collados Vera, M.

    2014-08-01

    Solar Adaptive Optics (AO) shares many issues with night-time AO, but it also has its own particularities. The wavefront sensing is performed using correlations to efficiently work on the solar granulation as a reference. The field of view for that measurement usually is around 10". A sensor collecting such a wide field of view averages wavefront information from different sky directions, and the anisoplanatism thus has a peculiar impact on the performance of solar AO and MCAO systems. Since we are entering the era of large solar telescopes (European Solar Telescope, Advanced Technology Solar Telescope) understanding this issue is crucial to evaluate its impact on the performance of future AO systems. In this paper we model the correlating wide field sensor and the way it senses the high altitude turbulence. Thanks to this improved modelling, we present an analysis of the influence of this sensing on the performance of each AO configuration, conventional AO and MCAO. In addition to the analytical study, simulations similar to the case of the EST AO systems with FRiM-3D (the Fractal Iterative Method for Atmospheric tomography) are used in order to highlight the relative influence of design parameters. In particular, results show the performance evolution when increasing the telescope diameter. We analyse the effect of high altitude turbulence correlation showing that increasing the diameter of the telescope does not degrade the performance when correcting on the same spatial and temporal scales.