Science.gov

Sample records for advanced wide field

  1. SSC Geopositional Assessment of the Advanced Wide Field Sensor

    NASA Technical Reports Server (NTRS)

    Ross, Kenton

    2006-01-01

    The geopositional accuracy of the standard geocorrected product from the Advanced Wide Field Sensor (AWiFS) was evaluated using digital orthophoto quarter quadrangles and other reference sources of similar accuracy. Images were analyzed from summer 2004 through spring 2005. Forty to fifty check points were collected manually per scene and analyzed to determine overall circular error, estimates of horizontal bias, and other systematic errors. Measured errors were somewhat higher than the specifications for the data, but they were consistent with the analysis of the distributing vendor.

  2. Satellite Detection in AdvancedCamera for Surveys/Wide Field Channel Images

    NASA Astrophysics Data System (ADS)

    Borncamp, D.; Lim, Pey-Lian

    2016-01-01

    This document explains the process by which satellite trails can be found within individual chips of an Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) image. Since satellites are transient and sporadic events, we used the Hubble Frontier Fields (HFF) dataset which is manually checked for satellite trails has been used as a truth set to verify that the method in this document does a complete job without a high false positive rate. This document also details the process of producing a mask that will update data quality information to inform users where the trail traverses the image and properly account for the affected pixels. Along with this document, the Python source code used to detect and mask satellite trails will be released to users with as a stand-alone product within the STSDAS acstools package.

  3. Post-Flash Calibration Darks for the Advanced Camera for Surveys Wide Field Channel (ACS/WFC)

    NASA Astrophysics Data System (ADS)

    Ogaz, S.; Anderson, J.; Golimowski, D.

    2015-06-01

    We present a summary and analysis of the changes made to the ACS/WFC dark reference files. As of January 15, 2015 the ACS team has begun to produce post- flashed dark reference files for the Wide Field Channel (WFC). This change was made to combat the charge transfer efficiency (CTE) losses caused by radiation damage that the two WFC CCDs have suffered since being put into orbit by artificially increasing the background in the dark images. This has resulted in several changes to the reference file pipeline, and an improved calibration dark.

  4. Wide-Field Plate Database

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. K.; Stavrev, K. Y.; Tsvetkova, K. P.; Semkov, E. H.; Mutatov, A. S.

    The Wide-Field Plate Database (WFPDB) and the possibilities for its application as a research tool in observational astronomy are presented. Currently the WFPDB comprises the descriptive data for 400 000 archival wide field photographic plates obtained with 77 instruments, from a total of 1 850 000 photographs stored in 269 astronomical archives all over the world since the end of last century. The WFPDB is already accessible for the astronomical community, now only in batch mode through user requests sent by e-mail. We are working on on-line interactive access to the data via INTERNET from Sofia and parallel from the Centre de Donnees Astronomiques de Strasbourg. (Initial information can be found on World Wide Web homepage URL http://www.wfpa.acad.bg.) The WFPDB may be useful in studies of a variety of astronomical objects and phenomena, andespecially for long-term investigations of variable objects and for multi-wavelength research. We have analysed the data in the WFPDB in order to derive the overall characteristics of the totality of wide-field observations, such as the sky coverage, the distributions by observation time and date, by spectral band, and by object type. We have also examined the totality of wide-field observations from point of view of their quality, availability and digitisation. The usefulness of the WFPDB is demonstrated by the results of identification and investigation of the photometrical behaviour of optical analogues of gamma-ray bursts.

  5. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  6. Wide field of view telescope

    DOEpatents

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  7. Wide field imaging problems in radio astronomy

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Golap, K.; Bhatnagar, S.

    2005-03-01

    The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.

  8. Wide-field imaging of the retina.

    PubMed

    Witmer, Matthew T; Kiss, Szilárd

    2013-01-01

    The retinal periphery is the site of pathology in several eye diseases. Imaging of the peripheral retina offers a way to diagnose, monitor, and evaluate responses to the treatment of these conditions. Traditional fundus cameras have offered a 30- to 50-degree field of view. Recent technology has advanced to provide up to a 200-degree field of view. The utility of this technology in clinical practice continues to be investigated; wide-field color photography, autofluorescence imaging, and fluorescein angiography have been used for imaging peripheral retinal disease. Due to the limitations of this imaging technology and the lack of normative data, however, the clinical role of wide-field imaging remains controversial. PMID:23369515

  9. Wide Field Imager for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Nandra, Kirpal; Rau, Arne; Plattner, Markus; WFI proto-Consortium

    2015-09-01

    The Wide Field Imager focal plane instrument on ATHENA will combine unprecedented survey power through its large field of view of 40 arcmin with a high count-rate capability (> 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.1 keV to 15 keV. At energy of 6 keV for example, the full width at half maximum of the line shall be not worse than 150 eV until the end of the mission. The performance is accomplished by a set of DEPFET active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system.Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 micron thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single gateable DEPFET sensor matrix optimized for the high count rate capability of the instrument. An overview will be given about the presently developed instrument concept and design, the status of the technology development, and the expected performance. An outline of the project organization, the model philosophy as well as the schedule will complete the presentation about the Wide Field Imager for Athena.

  10. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  11. Stereoscopic wide field of view imaging system

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F. (Inventor); Sedwick, Raymond J. (Inventor); Jonas, Eric M. (Inventor)

    2011-01-01

    A stereoscopic imaging system incorporates a plurality of imaging devices or cameras to generate a high resolution, wide field of view image database from which images can be combined in real time to provide wide field of view or panoramic or omni-directional still or video images.

  12. The Wide-Field Imaging Interferometry Testbed: Recent Progress

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.

  13. IOT Overview: Wide-Field Imaging

    NASA Astrophysics Data System (ADS)

    Selman, F. J.

    The Wide Field Imager (WFI) instrument at La Silla has been the workhorse of wide-field imaging instruments at ESO for several years. In this contribution I will summarize the issues relating to its productivity for the community both in terms of the quality and quantity of data that has come out of it. Although only surveys of limited scope have been completed using WFI, it is ESO's stepping-stone to the new generation of survey telescopes.

  14. Compact infrared pinhole fisheye for wide field applications.

    PubMed

    Druart, Guillaume; Guérineau, Nicolas; Taboury, Jean; Rommeluère, Sylvain; Haïdar, Riad; Primot, Jérôme; Fendler, Manuel; Cigna, Jean-Charles

    2009-02-20

    The performances of a compact infrared optical system using advanced pinhole optics for wide field applications are given. This concept is adapted from the classical Tisse design in order to fit with infrared issues. Despite a low light gathering efficiency and a low resolution in comparison with classical lenses, pinhole imagery provides a long depth of field and a wide angular field of view. Moreover, by using a simple lens that compresses the field of view, the angular acceptance of this pinhole camera can be drastically widened to a value around 180°. This infrared compact system is named pinhole fisheye since it is based on the field lens of a classical fisheye system.

  15. Wide-field Infrared Survey Explorer

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah

    2012-01-01

    We present WISE (Wide-field Infrared Survey Explorer) mid-infrared photometry of young stellar object candidates in the Canis Majoris clouds at a distance of 1 kpc. WISE has identified 682 objects with apparent 12 and 22 micron excess emission in a 7 deg x 10 deg field around the CMa Rl cloud . While a substantial fraction of these candidates are likely galaxies, AGB stars, and artifacts from confusion along the galactic plane, others are part of a spectacular cluster of YSOs imaged by WISE along a dark filament in the R1 cloud. Palomar Double Spectrograph observations of several sources in this cluster confirm their identity as young A and B stars with strong emission lines. In this contribution, we plot the optical -mid-infrared spectral energy distribution for the WISE YSO candidates and discuss potential contaminants to the sample . The data demonstrate the utility of WISE in performing wide-area surveys for young stellar objects.

  16. The Wide-Field Infrared Explorer

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Hacking, Perry

    1993-01-01

    More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.

  17. Lensless imaging for wide field of view

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Yagi, Yasushi

    2015-02-01

    It is desirable to engineer a small camera with a wide field of view (FOV) because of current developments in the field of wearable cameras and computing products, such as action cameras and Google Glass. However, typical approaches for achieving wide FOV, such as attaching a fisheye lens and convex mirrors, require a trade-off between optics size and the FOV. We propose camera optics that achieve a wide FOV, and are at the same time small and lightweight. The proposed optics are a completely lensless and catoptric design. They contain four mirrors, two for wide viewing, and two for focusing the image on the camera sensor. The proposed optics are simple and can be simply miniaturized, since we use only mirrors for the proposed optics and the optics are not susceptible to chromatic aberration. We have implemented the prototype optics of our lensless concept. We have attached the optics to commercial charge-coupled device/complementary metal oxide semiconductor cameras and conducted experiments to evaluate the feasibility of our proposed optics.

  18. The DESI Wide Field Corrector Optics

    SciTech Connect

    Doel, Peter; Sholl, Michael J.; Liang, Ming; Brooks, David; Flaugher, Brenna; Gutierrez, Gaston; Kent, Stephen; Lampton, Michael; Miller, Timothy; Sprayberry, David

    2014-01-01

    The Dark Energy Spectroscopic instrument (DESI) is a 5000 fiber multi-object spectrometer system under development for installation on the National Optical Astronomy Observatory (NOAO) Kitt Peak 4m telescope (the Mayall telescope). DESI is designed to perform a 14,000˚ (square) galaxy and Quasi-Stellar Object (QSO) redshift survey to improve estimates of the dark energy equation of state. The survey design imposes numerous constraints on a prime focus corrector design, including field of view, geometrical blur, stability, fiber injection efficiency, zenith angle, mass and cost. The DESI baseline wide-field optical design described herein provides a 3.2˚ diameter field of view with six 0.8- 1.14m diameter lenses and an integral atmospheric dispersion compensator.

  19. Imaging spectrometer wide field catadioptric design

    DOEpatents

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  20. Wide field-of-view bifocal eyeglasses

    NASA Astrophysics Data System (ADS)

    Barbero, Sergio; Rubinstein, Jacob

    2015-09-01

    When vision is affected simultaneously by presbyopia and myopia or hyperopia, a solution based on eyeglasses implies a surface with either segmented focal regions (e.g. bifocal lenses) or a progressive addition profile (PALs). However, both options have the drawback of reducing the field-of-view for each power position, which restricts the natural eye-head movements of the wearer. To avoid this serious limitation we propose a new solution which is essentially a bifocal power-adjustable optical design ensuring a wide field-of-view for every viewing distance. The optical system is based on the Alvarez principle. Spherical refraction correction is considered for different eccentric gaze directions covering a field-of-view range up to 45degrees. Eye movements during convergence for near objects are included. We designed three bifocal systems. The first one provides 3 D for far vision (myopic eye) and -1 D for near vision (+2 D Addition). The second one provides a +3 D addition with 3 D for far vision. Finally the last system is an example of reading glasses with +1 D power Addition.

  1. Wide field camera observations of Baade's Window

    NASA Technical Reports Server (NTRS)

    Holtzman, Jon A.; Light, R. M.; Baum, William A.; Worthey, Guy; Faber, S. M.; Hunter, Deidre A.; O'Neil, Earl J., Jr.; Kreidl, Tobias J.; Groth, E. J.; Westphal, James A.

    1993-01-01

    We have observed a field in Baade's Window using the Wide Field Camera (WFC) of the Hubble Space Telescope (HST) and obtain V- and I-band photometry down to V approximately 22.5. These data go several magnitudes fainter than previously obtained from the ground. The location of the break in the luminosity function suggests that there are a significant number of intermediate age (less than 10 Gyr) stars in the Galactic bulge. This conclusion rests on the assumptions that the extinction towards our field is similar to that seen in other parts of Baade's Window, that the distance to the bulge is approximately 8 kpc, and that we can determine fairly accurate zero points for the HST photometry. Changes in any one of these assumptions could increase the inferred age, but a conspiracy of lower reddening, a shorter distance to the bulge, and/or photometric zero-point errors would be needed to imply a population entirely older than 10 Gyr. We infer an initial mass function slope for the main-sequence stars, and find that it is consistent with that measured in the solar neighborhood; unfortunately, the slope is poorly constrained because we sample only a narrow range of stellar mass and because of uncertainties in the observed luminosity function at the faint end.

  2. A Wide Field of View Plasma Spectrometer

    DOE PAGES

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; Harper, Ron W.; Kihara, Keith H.; Bower, Jonathan S.

    2016-07-23

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  3. A wide field of view plasma spectrometer

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  4. Wide-angle flat field telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1986-01-01

    Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto.

  5. Aquila field: Advanced contracting strategies

    SciTech Connect

    1997-04-01

    Aquila oil field, in 2,800 ft of water, is in the middle of the Otranto Channel in the Mediterranean Sea, approximately 28 miles offshore southern Italy, and is subject to difficult sea and weather conditions. The many difficulties, caused mainly by water depth, requires the use of advanced technology that can be obtained only through the direct association with contractor companies. This solution safeguards the technological reliability and allows for maximum control of time and cost. The selection of a floating production, storage, and offloading (FPSO) system resulted from a feasibility study that indicated this solution was the only method that would provide economical exploitation of the Aquila field. The system includes flowlines and control lines. The ship, FPSO Agip Firenze, has been specially redesigned to manage the field development. Agip will provide the subsea production system, the Christmas tree, control system, and artificial lift.

  6. The wide field imager instrument for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea E.; Tenzer, Chris; Wilms, Jörn

    2014-07-01

    The "Hot and Energetic Universe" has been selected as the science theme for ESA's L2 mission, scheduled for launch in 2028. The proposed Athena X-ray observatory provides the necessary capabilities to achieve the ambitious goals of the science theme. The X-ray mirrors are based on silicon pore optics technology and will have a 12 m focal length. Two complementary camera systems are foreseen which can be moved in and out of the focal plane by an interchange mechanism. These instruments are the actively shielded micro-calorimeter spectrometer X-IFU and the Wide Field Imager (WFI). The WFI will combine an unprecedented survey power through its large field of view of 40 arcmin with a high countrate capability (approx. 1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 keV to 15 keV during the entire mission lifetime (e.g. FWHM <= 150 eV at 6 keV). This performance is accomplished by a set of DEPFET active pixel sensor matrices with a pixel size matching the angular resolution of 5 arcsec (on-axis) of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 micron thick silicon bulk. The signal electrons generated by an X-ray photon are collected in a so-called internal gate below the transistor channel. The resulting change of the conductivity of the transistor channel is proportional to the number of electrons and thus a measure for the photon energy. DEPFETs have already been developed for the "Mercury Imaging X-ray Spectrometer" on-board of ESA's BepiColombo mission. For Athena we develop enhanced sensors with integrated electronic shutter and an additional analog storage area in each pixel. These features improve the peak-to-background ratio of the spectra and minimize dead time. The sensor will be read out with a new, fast, low-noise multi-channel analog signal processor with integrated sequencer and serial analog output. The architecture of sensor and readout

  7. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  8. Wide field strip-imaging optical system

    NASA Technical Reports Server (NTRS)

    Vaughan, Arthur H. (Inventor)

    1994-01-01

    A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.

  9. Wide Field X-Ray Telescope Mission Concept Study Results

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  10. Optical Design of WFIRST-AFTA Wide-Field Instrument

    NASA Technical Reports Server (NTRS)

    Pasquale, Bert; Content, Dave; Kruk, Jeffrey; Vaughn, David; Gong, Qian; Howard, Joseph; Jurling, Alden; Mentzell, Eric; Armani, Nerses; Kuan, Gary

    2014-01-01

    The WFIRSTAFTA Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq FOV at 0.11 pixel scale, operating between 0.6 2.4m, including a spectrograph mode (1.3-1.95m.) An IFU provides a discrete 3x3.15 field at 0.15 sampling.

  11. Wide-Field Infrared Survey Telescope (WFIRST) Interim Report

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Gaudi, S.; Lauer, T.; Perlmutter, S.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Sumi, T.; Gerhels, N.; Sambruna, R.; Barry, R. K.; Content, D.; Grady, K; Jackson, C.; Kruk, J.; Melton, M.; Rioux, N.

    2011-01-01

    measurements. The Infrared Astronomical Satellite (IRAS), the Cosmic Background Explorer (COBE), Herschel, Spitzer, and Wide-field Infrared Sur-vey Explorer (WISE) are all space missions that have produced stunning new scientific advances by going to space to observe in the infrared. This interim report describes progress as of June 2011 on developing a requirements flowdown and an evaluation of scientific performance. An Interim Design Reference Mission (IDRM) configuration is presented that is based on the specifications of NWNH with some refinements to optimize the design in accordance with the new scientific requirements. Analysis of this WFIRST IDRM concept is in progress to ensure the capability of the observatory is compatible with the science requirements. The SDT and Project will continue to refine the mission concept over the coming year as design, analysis and simulation work are completed, resulting in the SDT s WFIRST Design Reference Mission (DRM) by the end of 2012.

  12. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  13. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  14. Wide Field Imaging of the Molecular Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Heyer, Mark

    1999-10-01

    Wide field imaging of the interstellar medium is an essential tool to investigate the physical processes which operate within a range of size scales or densities. The ability to construct images with high spatial dynamic range at millimeter wavelengths has increased in recent years with focal plane arrays on single dish telescopes and routine mosaicing of interferometers. In this contribution, I will demonstrate the value of wide field imaging from images of the molecular interstellar medium obtained with focal plane arrays on the FCRAO 14 meter telescope. These include data from wide field surveys of the Galaxy, a 12CO J=1-0 image of M31, and 13CO J=1-0 major axis maps of several galaxies. The images enable investigations of the equilibrium state of the molecular gas, interstellar turbulence, and radial variations of molecular gas properties and emissivities.

  15. Paramagnetic shimming for wide-range variable-field NMR.

    PubMed

    Ichijo, Naoki; Takeda, Kazuyuki; Takegoshi, K

    2014-09-01

    We propose a new passive shimming strategy for variable-field NMR experiments, in which the magnetic field produced by paramagnetic shim pieces placed inside the magnet bore compensates the inhomogeneity of a variable-field magnet for a wide range of magnet currents. Paramagnetic shimming is demonstrated in (7)Li, (87)Rb, and (45)Sc NMR of a liquid solution sample in magnetic fields of 3.4, 4.0, and 5.4T at a fixed carrier frequency of 56.0MHz. Since both the main-field inhomogeneity and the paramagnetic magnetization are proportional to the main-magnet current, the resonance lines are equally narrowed by the improved field homogeneity with an identical configuration of the paramagnetic shim pieces. Paramagnetic shimming presented in this work opens the possibility of high-resolution variable-field NMR experiments. PMID:25080372

  16. Wide-Field Sky Monitoring - Optical and X-rays

    NASA Astrophysics Data System (ADS)

    Hudec, R.; BART Teams; Ondrejov Observatory Lobster Eye Team

    We report on selected projects in wide-field sky imaging. This includes the recent efforts to digitize the astronomical sky plate archives and to apply these data for various scientific projects. We also address and discuss the status of the development of related algorithms and software programs. These data may easily provide very long term monitoring over very extended time intervals (up to more than 100 years) with limiting magnitudes between 12 and 23. The further experiments include CCD sky monitors, OMC camera onboard the ESA Integral satellite, robotic telescopes, and innovative wide-field X-ray telescopes.

  17. Wide-field lensfree imaging of tissue slides

    NASA Astrophysics Data System (ADS)

    Morel, Sophie Nhu An; Delon, Antoine; Blandin, Pierre; Bordy, Thomas; Cioni, Olivier; Hervé, Lionel; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2015-07-01

    We developed a new imaging tool that can help pathologists in recording wide-field images of tissue slides. We present a simple cost-effective lens-free imaging method to record 2-4μm resolution wide-field (10 mm2 - 6 cm2) images of stained and unstained tissue slides. To our knowledge, our method is the first technique that enables fast (less than 5 minutes) wide-field lens-free imaging of such dense samples. Multiple holograms are recorded with different wavelength illumination, and a multispectral algorithm is used to retrieve both amplitude and phase. Our method can be used to retrieve images of stained tissue slides. For such absorbing object, the useful information is included in the modulus of the reconstructed complex field. Our method can also be applied to retrieve images of unstained tissue slides, where the useful information is in the retrieved phase. This technique is much cheaper and compact than a conventional microscope and could be made portable. Moreover, it enables wide field unstained tissue slides imaging, which could quickly provide useful information, for example on frozen section biopsies, when a rapid diagnosis is needed during surgery.

  18. Wide-field feedback neurons dynamically tune early visual processing.

    PubMed

    Tuthill, John C; Nern, Aljoscha; Rubin, Gerald M; Reiser, Michael B

    2014-05-21

    An important strategy for efficient neural coding is to match the range of cellular responses to the distribution of relevant input signals. However, the structure and relevance of sensory signals depend on behavioral state. Here, we show that behavior modifies neural activity at the earliest stages of fly vision. We describe a class of wide-field neurons that provide feedback to the most peripheral layer of the Drosophila visual system, the lamina. Using in vivo patch-clamp electrophysiology, we found that lamina wide-field neurons respond to low-frequency luminance fluctuations. Recordings in flying flies revealed that the gain and frequency tuning of wide-field neurons change during flight, and that these effects are mimicked by the neuromodulator octopamine. Genetically silencing wide-field neurons increased behavioral responses to slow-motion stimuli. Together, these findings identify a cell type that is gated by behavior to enhance neural coding by subtracting low-frequency signals from the inputs to motion detection circuits. PMID:24853944

  19. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.

    2008-01-01

    Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.

  20. Wide-field in vivo oral OCT imaging

    PubMed Central

    Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine; Lane, Pierre

    2015-01-01

    We have built a polarization-sensitive swept source Optical Coherence Tomography (OCT) instrument capable of wide-field in vivo imaging in the oral cavity. This instrument uses a hand-held side-looking fiber-optic rotary pullback catheter that can cover two dimensional tissue imaging fields approximately 2.5 mm wide by up to 90 mm length in a single image acquisition. The catheter spins at 100 Hz with pullback speeds up to 15 mm/s allowing imaging of areas up to 225 mm2 field-of-view in seconds. A catheter sheath and two optional catheter sheath holders have been designed to allow imaging at all locations within the oral cavity. Image quality of 2-dimensional image slices through the data can be greatly enhanced by averaging over the orthogonal dimension to reduce speckle. Initial in vivo imaging results reveal a wide-field view of features such as epithelial thickness and continuity of the basement membrane that may be useful in clinic for chair-side management of oral lesions. PMID:26203389

  1. Imaging of small particles using wide-field confocal microscopy

    NASA Astrophysics Data System (ADS)

    Morgan, Stephen P.; Sawyer, N. B. E.; Somekh, Michael G.; See, Chung Wah; Shekunov, B. Y.; Astrakharchik, E.

    2003-10-01

    Particle measurement is important in many applications such as the manufacture of drugs and paints, and aerosols. In bioimaging there is interest understanding the imaging of nanoparticles and subcellular scatterers. We present in this paper a wide field, phase measuring confocal microscope that can be used for such measurements. The wide field confocal response is obtained by illuminating both sample and reference arms of an interferometric microscope with nominally identical speckle patterns. When the speckle patterns are highly correlated the interference is significant. Contributions from out of focus planes result in uncorrelated speckle patterns and no interference. This provides a wide field confocal response. High speed measurements are enabled by parallel phase stepping using polarization optics. We have also developed a vector diffraction microscope model, using Mie theory as a scattering function, to validate the images of small particles. Correctly scaling the amplitudes of the unscattered and scattered electric fields enables co-polar transmission imaging to be modeled. Finally it is demonstrated that the phase is a more sensitive measurement of particle size than the amplitude.

  2. Science with the Second Wide Field and Planetary Camera

    NASA Astrophysics Data System (ADS)

    Trauger, J.

    1992-07-01

    With the commencement of Cycle 4 observations, the General Observor community will have access to the second Wide Field and Planetary Camera (WFPC2), a replacement for the orginal WFPC instrument. WFPC2, a wide-field photometric camera which covers the spectrum from 12000 to 10000 Angstroms, will be installed in the Hubble radial bay during the currently manifested December 1993 Shuttle servicing mission. Besides optical correction for the aberrated Hubble primary mirror, the WFPC2 incorporates evolutionary improvement in photometric imaging capabilities. The CCD sensors, signal chain electronics, filter set, FUV performance, internal calibrations, and operational efficiency have all been improved through new technologies and lessons learned from WFPC operations and Hubble experience since launch. Here we provide an overview of the new instrument, beginning with the assumption that the reader is already familiar with the original WFPC now in service.

  3. Automatic detection of asteroids and meteoroids. A Wide Field Survey

    NASA Astrophysics Data System (ADS)

    Vereš, P.; Tóth, J.; Jedicke, R.; Tonry, J.; Denneau, L.; Wainscoat, R.; Kornoš, L.; Šilha, J.

    2014-07-01

    We propose a low-cost robotic optical survey aimed at 1-300 m Near Earth Objects (NEO) based on four state-of-the-art telescopes having extremely wide field of view. The small Near-Earth Asteroids (NEA) represent a potential risk but also easily accessible space resources for future robotic or human space in-situ exploration, or commercial activities. The survey system will be optimized for the detection of fast moving-trailed-asteroids, space debris and will provide real-time alert notifications. The expected cost of the system including 1-year development and 2-year operation is 1,000,000 EUR. The successful demonstration of the system will promote cost-effectiveicient ADAM-WFS (Automatic Detection of Asteroids and Meteoroids -- A Wide Field Survey) systems to be built around the world.

  4. Optical modeling of the wide-field imaging interferometry testbed

    NASA Astrophysics Data System (ADS)

    Thompson, Anita K.; Martino, Anthony J.; Rinehart, Stephen A.; Leisawitz, David T.; Leviton, Douglas B.; Frey, Bradley J.

    2006-06-01

    The technique of wide field imaging for optical/IR interferometers for missions like Space Infrared Interferometric (SPIRIT), Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder (TPF-I)/DARWIN has been demonstrated through the Wide-field Imaging Interferometry Testbed (WIIT). In this paper, we present an optical model of the WIIT testbed using the commercially available optical modeling and analysis software FRED. Interferometric results for some simple source targets are presented for a model with ideal surfaces and compared with theoretical closed form solutions. Measured surface deformation data of all mirror surfaces in the form of Zernike coefficients are then added to the optical model compared with results of some simple source targets to laboratory test data. We discuss the sources of error and approximations in the current FRED optical model. Future plans to refine the optical model are also be discussed.

  5. A wide-field soft X-ray camera

    NASA Technical Reports Server (NTRS)

    Petre, R.

    1981-01-01

    A wide-field soft X-ray camera (WFSXC) sensitive in the 50 to 250 eV band is described. The camera features Wolter-Schwarzschild optics with an 8 degree field of view and 300 cu cu collecting area. The focal plane instrument is a microchannel plate detector. Broad-band energy discrimination is provided by thin-film filters mounted immediately in front of the focal plane. The WFSXC is capable of detecting sources with intensities greater than 5 percent of HZ 43 during typical sounding rocket exposures, and it would approach the same sensitivity range as EUVE during a typical exposure from the Shuttle.

  6. In-Flight Performance of Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  7. High-Resolution, Wide-Field-of-View Scanning Telescope

    NASA Technical Reports Server (NTRS)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  8. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  9. Wide Integral Field Infrared Spectroscopic Survey of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Moon, Dae-Sik; Zaritsky, Dennis F.; Chou, Richard; Meyer, Elliot; Ma, Ke; Jarvis, Miranda; Eisner, Joshua A.

    2015-01-01

    We are constructing a novel infrared integral field spectrograph with a large field of view (~50'x20') that will be available on the Kitt Peak 90' Bok telescope this spring. This wide integral field infrared spectrograph (WIFIS) operates over two wavelength ranges, zJ-band (0.9-1.35 microns) and H-band (1.5-1.8 microns), and has moderate spectral resolving power, 3,000 in zJ-band and 2,200 in H-band, respectively. WIFIS' field-of-view is comparable to current optical integral field spectrographs that are carrying out large galaxy surveys, e.g. SAMI, CALIFA, and MaNGA. We are designing a large nearby galaxy survey to complement the data already been taken by these optical integral field spectroscopic surveys. The near-infrared window provides a sensitive probe of the initial mass functions of stellar populations, the OB stellar fractions in massive star forming regions, and the kinematics of and obscured star formation within merging systems. This will be the first large scale infrared integral field spectroscopic survey of nearby galaxies.

  10. The development of WIFIS: a wide integral field infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Chou, Richard C. Y.; Moon, Dae-Sik; Ma, Ke; Millar-Blanchaer, Maxwell; Eikenberry, Stephen S.; Chun, Moo-Young; Kim, Sang Chul; Raines, Steven N.; Eisner, Joshua

    2012-09-01

    We present the current results from the development of a wide integral field infrared spectrograph (WIFIS). WIFIS offers an unprecedented combination of etendue and spectral resolving power for seeing-limited, integral field observations in the 0.9 - 1.8 μm range and is most sensitive in the 0.9 - 1.35 μ,m range. Its optical design consists of front-end re-imaging optics, an all-reflective image slicer-type, integral field unit (IFU) called FISICA, and a long-slit grating spectrograph back-end that is coupled with a HAWAII 2RG focal plane array. The full wavelength range is achieved by selecting between two different gratings. By virtue of its re-imaging optics, the spectrograph is quite versatile and can be used at multiple telescopes. The size of its field-of-view is unrivalled by other similar spectrographs, offering a 4.511x 1211 integral field at a 10-meter class telescope (or 2011 x 5011 at a 2.3-meter telescope). The use of WIFIS will be crucial in astronomical problems which require wide-field, two-dimensional spectroscopy such as the study of merging galaxies at moderate redshift and nearby star/planet-forming regions and supernova remnants. We discuss the final optical design of WIFIS, and its predicted on-sky performance on two reference telescope platforms: the 2.3-m Steward Bok telescope and the 10.4-m Gran Telescopio Canarias. We also present the results from our laboratory characterization of FISICA. IFU properties such as magnification, field-mapping, and slit width along the entire slit length were measured by our tests. The construction and testing of WIFIS is expected to be completed by early 2013. We plan to commission the instrument at the 2.3-m Steward Bok telescope at Kitt Peak, USA in Spring 2013.

  11. Deployment of the Hobby-Eberly Telescope wide field upgrade

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Drory, Niv; Good, John; Lee, Hanshin; Vattiat, Brian; Kriel, Herman; Bryant, Randy; Elliot, Linda; Landriau, Martin; Leck, Ron; Perry, David; Ramsey, Jason; Savage, Richard; Allen, Richard D.; Damm, George; DePoy, D. L.; Fowler, Jim; Gebhardt, Karl; Haeuser, Marco; MacQueen, Phillip; Marshall, J. L.; Martin, Jerry; Prochaska, Travis; Ramsey, Lawrence W.; Rheault, Jean-Philippe; Shetrone, Matthew; Schroeder Mrozinski, Emily; Tuttle, Sarah E.; Cornell, Mark E.; Booth, John; Moreira, Walter

    2014-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror optical corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will substantially increase the pupil size to 10 meters (from 9.2 m) and the field of view to 22 arcminutes (from 4 arcminutes) by replacing the corrector, tracker, and prime focus instrument package. In addition to supporting existing instruments, and a new low resolution spectrograph, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§). The upgrade is being installed and this paper discusses the current status.

  12. Wide-field surveys from the SNAP mission

    SciTech Connect

    agkim@lbl.gov

    2002-07-23

    The Supernova/Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/NIR imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. Two 7.5 square-degree fields will be observed every four days over 16 months to a magnitude depth of AB = 27.7 in each of nine filters. Co-adding images over all epochs will give an AB = 30.3 per filter. A 300 square-degree field will be surveyed with no repeat visits to AB = 28 per filter. The nine filters span 3500-17000 {angstrom}. Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data supports a broad range of auxiliary science programs.

  13. Vision and Wide-Field Imagers with Curved Focal Planes

    NASA Astrophysics Data System (ADS)

    Arianpour, Ashkan

    This dissertation provides details regarding the implementation of curved-focal surface fiber coupled imaging for medical and wide-field applications. An optomechanical fluid-filled eye model with visual acuity better than 20/20 vision was design and characterized. A wearable telescopic contact lens was worn on the optomechanical eye model and the performance characterized. Measurements of the contact lens surfaces were modeled to quantify the impact of contact lens fabrication on end-result resolution. Separately, the limitations of the field of view in fiber coupled monocentric imaging are analyzed. This dissertation describes a novel technique to address this based on conformal micro-optics. The design, simulation, and fabrication of an embossed surface relief micro-prism that increases the field of view are demonstrated.

  14. The optical design of wide integral field infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Chou, Richard C. Y.; Moon, Dae-Sik; Eikenberry, Stephen S.

    2010-07-01

    We present the optical design of the Wide Integral Field Infrared Spectrograph (WIFIS) which provides an unprecedented combination of the integral field size and the spectral resolving power in the near-infrared wavebands. The integral field size and spectral resolving power of WIFIS are ~ 5× 12on a 10-m telescope (or equivalently 13× 30on a 4-m telescope) and ~ 5300, respectively. Therefore, the affordable etendue of WIFIS is larger than any other near-infrared integral field spectrographs while its spectral resolving power is comparable to the highest value provided by other spectrographs. WIFIS optical system comprises an Offner relay-based pre-slit unit, an image slicer for integral-field unit, a collimator, diffraction gratings, and a spectrograph camera. For the integral field unit, WIFIS uses the Florida Image Slicer for Infrared Cosmological and Astrophysics which is a set of 3 monolithic mirror arrays housing 22 image slicers. The collimator system consists of one off-axis parabola and two lenses, while WIFIS relies on 3 different gratings to cover the entire JHK bands. The spectrograph camera uses 6 lenses of CaF2 and SFTM16, delivering the f/3 final beam onto a Hawaii II RG 2K × 2K detector array. WIFIS will be an ideal instrument to study the dynamics and chemistry of extended objects.

  15. Science with a wide-field UV transient explorer

    SciTech Connect

    Sagiv, I.; Gal-Yam, A.; Ofek, E. O.; Waxman, E.; Trakhtenbrot, B.; Topaz, J.; Aharonson, O.; Kulkarni, S. R.; Phinney, E. S.; Nakar, E.; Maoz, D.; Beichman, C.; Murthy, J.; Worden, S. P.

    2014-04-01

    The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our predictions using a fiducial set of observational parameters which are similar to those envisaged for the proposed ULTRASAT mission. We show that such a mission would be able to revolutionize our knowledge about massive star explosions by measuring the early UV emission from hundreds of events, revealing key physical parameters of the exploding progenitor stars. Such a mission would also detect the UV emission from many tens of tidal-disruption events of stars by supermassive black holes at galactic nuclei and enable a measurement of the rate of such events. The overlap of such a wide-field UV mission with existing and planned gravitational-wave and high-energy neutrino telescopes makes it especially timely.

  16. Wide-field wide-band Interferometric Imaging: The WB A-Projection and Hybrid Algorithms

    NASA Astrophysics Data System (ADS)

    Bhatnagar, S.; Rau, U.; Golap, K.

    2013-06-01

    Variations of the antenna primary beam (PB) pattern as a function of time, frequency, and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper, we present the wide-band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency, and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the multi-term multi-frequency synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image domain.

  17. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications

    PubMed Central

    Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K.

    2016-01-01

    Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm2), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm2. Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications. PMID:27231630

  18. OAOWFC: Okayama Astrophysical Observatory NIR Wide-Field Camera

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Yanagisawa, K.; Shimizu, Y.; Okita, K.; Nagayama, S.; Toda, H.; Ohta, K.; Kawai, N.

    2008-05-01

    In order to detect and trace the early phase of near-infrared (NIR) afterglows of Gamma Ray Bursts (GRBs) quickly, we are now developing the Okayama Astrophysical Observatory Wide-Field Camera, OAOWFC. The aperture size of OAOWFC is 91 cm. The focal plane is covered by a 2K×2K HAWAII2-RG detector with a pixel size of 18.5 μm×18.5 μm, resulting 0.95×0.95 deg2 field of view with an image scale of 1.6 arcsec/pixel. OAOWFC is designed to be a fully robotic instrument. This camera forms a part of Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME), a multi telescope system dedicated to optical-NIR follow-up observations of GRB afterglows. Very wide field of view of OAOWFC enables us to catch GRB afterglows under less accurate localization sometimes given by the first alert. OAOWFC has an ability to detect bright GRB afterglow located at z = 10 easily, and it might be detectable at z = 18 if the conditions are met.

  19. OAOWFC: Okayama Astrophysical Observatory NIR Wide-Field Camera

    SciTech Connect

    Yoshida, M.; Yanagisawa, K.; Shimizu, Y.; Okita, K.; Nagayama, S.; Toda, H.; Ohta, K.; Kawai, N.

    2008-05-22

    In order to detect and trace the early phase of near-infrared (NIR) afterglows of Gamma Ray Bursts (GRBs) quickly, we are now developing the Okayama Astrophysical Observatory Wide-Field Camera, OAOWFC. The aperture size of OAOWFC is 91 cm. The focal plane is covered by a 2Kx2K HAWAII2-RG detector with a pixel size of 18.5 {mu}mx18.5 {mu}m, resulting 0.95x0.95 deg{sup 2} field of view with an image scale of 1.6 arcsec/pixel. OAOWFC is designed to be a fully robotic instrument. This camera forms a part of Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME), a multi telescope system dedicated to optical-NIR follow-up observations of GRB afterglows. Very wide field of view of OAOWFC enables us to catch GRB afterglows under less accurate localization sometimes given by the first alert. OAOWFC has an ability to detect bright GRB afterglow located at z = 10 easily, and it might be detectable at z = 18 if the conditions are met.

  20. Facility calibration unit of Hobby Eberly Telescope wide field upgrade

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Vattiat, Brian L.; Smith, Michael P.; Haeuser, Marco

    2012-09-01

    The Hobby-Eberly Telescope (HET) Wide-Field Upgrade (WFU) will be equipped with new Facility Calibration Unit (FCU). The FCU is in support of VIRUS and the facility instruments and consists of the head and source box. The FCU head, connected to the source box through two liquid light guides, is attached to the bottom of the WFU Wide-Field Corrector (WFC) and can be deployed into the beam to inject calibration light through the WFC whenever calibration is needed. A set of Fresnel lenses is used in the FCU head to mimic the caustics of M1 as much as possible to re-produce the telescope’s focal plane illumination pattern. Various imaging/non-imaging optical components (e.g. Compound Parabolic Concentrators, cone reflectors, condenser lenses) are used for efficient coupling between different types of calibration lamps and light guides, covering wavelengths from 350nm to 1800nm. In addition, we developed an efficient and tunable Light-Emitting Diode (LED) based source and coupler for UV and Visible spectral flat field calibration. This paper presents the designs, prototypes, and as-built components / subsystems of the FCU.

  1. Wide-field aberration corrector for spherical gossamer primary mirrors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2000-10-01

    If gossamer primary mirrors were to be constructed in a spherical form, it would be possible to arrange a simple null- test in situ. However, spherical mirrors would require correction of the large amount of spherical aberration created in pupils that generally will be greater than 2 m diameter. The design requirement is for diffraction-limited performance over a useful angular field. The otherwise excellent wide- field design solutions of the classical Schmidt and Maksutov are inapplicable in gossamer structures because of the mass and size penalty of large refractive components. However, it is possible for this mode of correction to be achieved near the prime focus by means of pupil transfer optics that minify the large entrance pupil down to more acceptable dimensions. A problem with these solutions is constraint of field coverage due to pupil aberrations created by the large spherical aberration of the primary mirror. This leads the designer towards slower primaries and the penalty of larger, heavier structures. A solution is presented here for spherical primaries with speeds up to f/4. This is based on the 'KiwiStar' principle presented here in 1997, in which a large spherical catoptric is combined by pupil-transfer with a smaller spherical catadioptric to give well corrected wide field images of high speed. This system is well suited to correction at the prime focus of large spherical mirrors, and has only one relatively small weak aspheric surface to provide zonal correction, all other surfaces being spherical. An example is presented of a 4 m diameter, f/2.5 system that is diffraction-limited over the whole of a 0.25 degree field (43 mm diameter), for a bandpass of 486 - 850 nm.

  2. Non-mydriatic, wide field, fundus video camera

    NASA Astrophysics Data System (ADS)

    Hoeher, Bernhard; Voigtmann, Peter; Michelson, Georg; Schmauss, Bernhard

    2014-02-01

    We describe a method we call "stripe field imaging" that is capable of capturing wide field color fundus videos and images of the human eye at pupil sizes of 2mm. This means that it can be used with a non-dilated pupil even with bright ambient light. We realized a mobile demonstrator to prove the method and we could acquire color fundus videos of subjects successfully. We designed the demonstrator as a low-cost device consisting of mass market components to show that there is no major additional technical outlay to realize the improvements we propose. The technical core idea of our method is breaking the rotational symmetry in the optical design that is given in many conventional fundus cameras. By this measure we could extend the possible field of view (FOV) at a pupil size of 2mm from a circular field with 20° in diameter to a square field with 68° by 18° in size. We acquired a fundus video while the subject was slightly touching and releasing the lid. The resulting video showed changes at vessels in the region of the papilla and a change of the paleness of the papilla.

  3. Wide-field ganglion cells in macaque retinas

    PubMed Central

    YAMADA, ELIZABETH S.; BORDT, ANDREA S.; MARSHAK, DAVID W.

    2012-01-01

    To describe the wide-field ganglion cells, they were injected intracellularly with Neurobiotin using an in vitro preparation of macaque retina and labeled with streptavidin-Cy3. The retinas were then labeled with antibodies to choline acetyltransferase and other markers to indicate the depth of the dendrites within the inner plexiform layer (IPL) and analyzed by confocal microscopy. There were eight different subtypes of narrowly unistratified cells that ramified in each of the 5 strata, S1–5, including narrow thorny, large sparse, large moderate, large dense, large radiate, narrow wavy, large very sparse, and fine very sparse. There were four types of broadly stratified cells with dendritic trees extending from S4 to S2. One type resembled the parvocellular giant cell and another the broad thorny type described previously in primates. Another broadly stratified cell was called multi-tufted based on its distinctive dendritic branching pattern. The fourth type had been described previously, but not named; we called it broad wavy. There was a bistratified type with its major arbor in S5, the same level as the blue cone bipolar cell; it resembled the large, bistratified cell with blue ON-yellow OFF responses described recently. Two wide-field ganglion cell types were classified as diffuse because they had dendrites throughout the IPL. One had many small branches and was named thorny diffuse. The second was named smooth diffuse because it had straighter dendrites that lacked these processes. Dendrites of the large moderate and multi-tufted cells cofasciculated with ON-starburst cell dendrites and were, therefore, candidates to be ON- and ON–OFF direction-selective ganglion cells, respectively. We concluded that there are at least 15 morphoplogical types of wide-field ganglion cells in macaque retinas. PMID:16212697

  4. Advanced sensing technology in environmental field.

    PubMed

    Wakida, Shin-ichi

    2009-01-01

    Before the introduction of advanced sensing technology in environmental fields, environmental issues were discussed as several categories, such as local environmental issues in the 1970s, global environmental issues in the 1980s, living environmental issues in the 2000s and environmental stress issues in near future, which are of increasing interest in Japan. Using advanced sensing technologies, such as electrochemical sensors, chemically-sensitive field-effect transistors (ChemFETs) based on micro-electro mechanical system (MEMS) micromachining technology and subsequently electrophoretic separation and microfluidic Lab-on-a-Chip using MEMS technology, we have steered several kinds of environmental monitoring projects timely in response to the environmental issues for over the last 25 years. Among the local environmental issues, the global environmental issues and the living environmental issues, some fruits of R&D project will be introduced. Finally, our latest concern of the environmental stress monitoring was discussed and preliminary results were also introduced.

  5. The Wide-Field Imaging Interferometry Testbed: Recent Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2006-01-01

    We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.

  6. Science Archives at the Wide Field Astronomy Unit

    NASA Astrophysics Data System (ADS)

    Blake, R.; Read, M.; Sutorius, E.; Hambly, N.; Cross, N.; Collins, R.; Holliman, M.; Mann, B.

    The Wide Field Astronomy Unit (WFAU) at the Royal Observatory, Edinburgh (ROE) has been producing archives of astronomy data for more than a decade. It houses a collection of over 80 billion individual detections spread across five major astronomical surveys dating back over 60 years. As well as these surveys, we also host copies of external surveys to allow the cross-referencing of sources in our surveys with those detected with other instruments. This article details the data held by WFAU and the services we provide to our users.

  7. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, Klaus P.

    1989-01-01

    Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.

  8. HST Wide Field and Planetary Camera II Status Update

    NASA Astrophysics Data System (ADS)

    Heyer, I.; Biretta, J.; Baggett, S.; Gonzaga, S.; Koekemoer, A.; Lubin, L.; Mack, J.; McMaster, M.; Platais, V.; Schultz, A.

    2001-12-01

    We review the status of the Wide Field and Planetary Camera II (WFPC2) onboard the Hubble Space Telescope, as well as recent enhancements to calibration and user support. The photometric, flat field, and PSF stabilities continue to be excellent. Charge Transfer Efficiency (CTE) in the CCDs remains a concern; we discuss the latest results from on-going monitor programs, as well as the latest correction procedures. Work is underway to update the entire set of flat fields; we discuss the new flats, as well as the low-noise flat fields corrections released last summer. The "On-the-Fly-Reprocessing" system continues to perform well, though we mention issues affecting a few images. The WFPC2 Exposure Time Calculator has been updated, and is available on our website. A new WFPC2 Pointings Search Interface tool for the HST Archive has been released. The WFPC2 Instrument Handbook has been updated for Cycle 11, and a new edition of the HST Data Handbook is currently in progress. The next Servicing Mission (SM3b) is slated for February 2002; and we summarize the post-SM tests which are planned for WFPC2. These and other issues will be discussed.

  9. HST Wide Field and Planetary Camera II Status Update

    NASA Astrophysics Data System (ADS)

    Heyer, I.; Gonzaga, S.; Koekemoer, A.; Kozhurina-Platais, V.; Lubin, L.; McMaster, M.; Schultz, A.; Whitmore, B.

    2002-05-01

    We review the status of the Wide Field and Planetary Camera II (WFPC2) onboard the Hubble Space Telescope, as well as recent enhancements to calibration and user support. The photometric, flat field, and PSF stabilities continue to be excellent, and they do not appear to have been affected by the recent servicing mission. Charge Transfer Efficiency (CTE) in the CCDs remains a concern; we discuss the latest results from on-going monitor programs, as well as the latest correction procedures. We also discuss a reanalysis of the "long-vs-short" anomaly, which suggests that the effect is primarily relevant for very crowded fields (several thousand stars per CCD). The entire set of flat fields for the standard filters redward of F300W has been updated. Plans are under way for Cycle 11 calibration programs, and some of the highlights are discussed. A new edition of the WFPC2 Data Analysis Tutorial is available. The WFPC2 Instrument Handbook has been updated for Cycle 11, and a new edition of the HST Data Handbook is also available. Efforts have begun to update the WFPC2 website to make it easier for people to find desired documents. The Servicing Mission SM3b occurred February 2002, and we summarize the WFPC2 SMOV results. These and other issues will be discussed.

  10. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging

    PubMed Central

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226

  11. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    NASA Technical Reports Server (NTRS)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  12. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  13. Wide-field fluorescent microscopy on a cell-phone.

    PubMed

    Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2011-01-01

    We demonstrate wide-field fluorescent imaging on a cell-phone, using compact and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. Battery powered light-emitting diodes (LEDs) are used to side-pump the sample of interest using butt-coupling. The pump light is guided within the sample cuvette to excite the specimen uniformly. The fluorescent emission from the sample is then imaged with an additional lens that is put in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to the detection path, an inexpensive plastic color filter is sufficient to create the dark-field background needed for fluorescent imaging. The imaging performance of this light-weight platform (~28 grams) is characterized with red and green fluorescent microbeads, achieving an imaging field-of-view of ~81 mm(2) and a spatial resolution of ~10 μm, which is enhanced through digital processing of the captured cell-phone images using compressive sampling based sparse signal recovery. We demonstrate the performance of this cell-phone fluorescent microscope by imaging labeled white-blood cells separated from whole blood samples as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts.

  14. Deepest Wide-Field Colour Image in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-01-01

    LA SILLA CAMERA OBSERVES CHANDRA DEEP FIELD SOUTH ESO PR Photo 02a/03 ESO PR Photo 02a/03 [Preview - JPEG: 400 x 437 pix - 95k] [Normal - JPEG: 800 x 873 pix - 904k] [HiRes - JPEG: 4000 x 4366 pix - 23.1M] Caption : PR Photo 02a/03 shows a three-colour composite image of the Chandra Deep Field South (CDF-S) , obtained with the Wide Field Imager (WFI) camera on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile). It was produced by the combination of about 450 images with a total exposure time of nearly 50 hours. The field measures 36 x 34 arcmin 2 ; North is up and East is left. Technical information is available below. The combined efforts of three European teams of astronomers, targeting the same sky field in the southern constellation Fornax (The Oven) have enabled them to construct a very deep, true-colour image - opening an exceptionally clear view towards the distant universe . The image ( PR Photo 02a/03 ) covers an area somewhat larger than the full moon. It displays more than 100,000 galaxies, several thousand stars and hundreds of quasars. It is based on images with a total exposure time of nearly 50 hours, collected under good observing conditions with the Wide Field Imager (WFI) on the MPG/ESO 2.2m telescope at the ESO La Silla Observatory (Chile) - many of them extracted from the ESO Science Data Archive . The position of this southern sky field was chosen by Riccardo Giacconi (Nobel Laureate in Physics 2002) at a time when he was Director General of ESO, together with Piero Rosati (ESO). It was selected as a sky region towards which the NASA Chandra X-ray satellite observatory , launched in July 1999, would be pointed while carrying out a very long exposure (lasting a total of 1 million seconds, or 278 hours) in order to detect the faintest possible X-ray sources. The field is now known as the Chandra Deep Field South (CDF-S) . The new WFI photo of CDF-S does not reach quite as deep as the available images of the "Hubble Deep Fields

  15. Calibration Status and Results for Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.

    2006-01-01

    Wide Field Camera 3 (WFC3) is a general-purpose imager in development for installation in HST Servicing Mission 4 (SM4). Covering the wavelength range of 200-1700 nm in two observing channels, WFC3 offers powerful new capabilities, particularly in the near-ultraviolet and near-infrared bands. During 2004, the instrument was integrated and underwent a substantial suite of end-to-end characterization and performance tests. In this paper, we present a brief overview of the design and scientific purpose of WFC3, summarize the results of its test program to date, and highlight some recent developments in detector technology that will further enhance the performance of WFC3 s IR channel.

  16. Wide-Field Plate Archive of the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Poghosyan, A. V.; Pfau, W.; Tsvetkova, K. P.; Mugrauer, M.; Tsvetkov, M. K.; Hambaryan, V. V.; Neuhäuser, R.

    We present the archive of the wide-field plate observations obtained at the University Observatory Jena, which is stored at the Astrophysical Institute of the Friedrich Schiller University Jena. The archive contains plates taken in the period February 1963 to December 1982 with the 60/90/180-cm Schmidt telescope of the university observatory. A computer-readable version of the plate metadata catalogue (for 1257 plates), the logbooks, as well as the digitized Schmidt plates in low and high resolution are now accessible to the astronomical community.This paper describes the properties of the archive, as well as the processing procedure of all plates in detail. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich Schiller University.

  17. Data Reduction Algorithm for Optical Wide Field Patrol (OWL)

    NASA Astrophysics Data System (ADS)

    Park, S.; Park, Y.; Yim, H.; Jo, J.; Moon, H.; Bae, Y.; Lim, Y.; Choi, J.; Choi, Y.; Park, J.; Son, J.

    2014-09-01

    OWL (Optical Wide-field Patrol) has a detector system which has the chopper which consists of 4 blades in front of the CCD camera to acquire efficiently the position and time information of moving objects such as artificial satellites. Using this system, it is possible to get more position data by splitting the streaks of the moving object into many pieces with fast rotating blades during tracking. At the same time, the time data of the rotating chopper can be acquired by the time tagger connected to the photo diode. In order to derive the orbits of the targets, we need a sequential data reduction procedure including the calculation of WCS (World Coordinate System) solution to transform the positions into equatorial coordinate systems, and the combination of the time data from the time tagger and the position data. We present such a data reduction procedure and the preliminary results after applying this procedure to the observation images.

  18. Wide-Field Astronomical Surveys in the Next Decade

    SciTech Connect

    Strauss, Michael A.; Tyson, J.Anthony; Anderson, Scott F.; Axelrod, T.S.; Becker, Andrew C.; Bickerton, Steven J.; Blanton, Michael R.; Burke, David L.; Condon, J.J.; Connolly, A.J.; Cooray, Asantha R.; Covey, Kevin R.; Csabai, Istvan; Ferguson, Henry C.; Ivezic, Zeljko; Kantor, Jeffrey; Kent, Stephen M.; Knapp, G.R.; Myers, Steven T.; Neilsen, Eric H., Jr.; Nichol, Robert C.; /Portsmouth U., ICG /Harish-Chandra Res. Inst. /Caltech, IPAC /Potsdam, Max Planck Inst. /Harvard U. /Hawaii U. /UC, Berkeley, Astron. Dept. /Baltimore, Space Telescope Sci. /NOAO, Tucson /Carnegie Mellon U. /Chicago U., Astron. Astrophys. Ctr.

    2011-11-14

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  19. Wide-Field Astronomical Surveys in the Next Decade

    SciTech Connect

    Strauss, Michael A.; Tyson, J.Anthony; Anderson, Scott F.; Axelrod, T.S.; Becker, Andrew C.; Bickerton, Steven J.; Blanton, Michael R.; Burke, David L.; Condon, J.J.; Connolly, A.J.

    2009-03-01

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  20. EUV band pass filters for the ROSAT Wide Field Camera

    NASA Astrophysics Data System (ADS)

    Kent, B. J.; Reading, D. H.; Swinyard, B. M.; Spurrett, P. H.; Graper, E. B.

    1990-11-01

    Large-area thin-film bandpass filters have been constructed to provide four wavelength bands for the Wide Field Camera telescope on the Rosat satellite. The filters consist of a polycarbonate substrate coated with one of carbon, beryllium, or aluminum; additionally, a tin/aluminum filter is also available. These provide wavelength bands of mean wavelength 100, 140, 180, and 600 angstroms, respectively. This paper describes manufacture, and qualification details in the context of filters launched at ambient pressure, with a very stringent requirement for opacity, at around 1800 A, of better than 10 exp-8 of the filter area. Measures taken to protect filters against erosion by low earth orbit atomic oxygen are also briefly presented. Calibration procedures and results are discussed together with comparison of measured transmission profiles with those derived from published absorption coefficients over the range 40 to 2000 A.

  1. Wide-Field InfraRed Survey Telescope WFIRST

    NASA Technical Reports Server (NTRS)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Fan, X.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Gehrels, N.; Sambruna, R.; Traub, W.; Barry, R. K.; Content, D.; Goullioud, R.; Grady, K.; Kruk, J.; Melton, M.; Peddie, C.; Rioux, N.; Seiffert, M.

    2012-01-01

    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASA's James Webb Space Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based Large Synoptic Survey Telescope (henceforth LSST), and again to reduce overall mission cost, while staying faithful to NWNH. This report presents both DRM1 and DRM2.

  2. Curved Focal Plane Wide Field of View Telescope Design

    NASA Astrophysics Data System (ADS)

    Grayson, Timothy P.

    2002-12-01

    Ground-based surveillance of deep space has traditionally been the purview of optical telescope systems. Unlike their imaging counterparts, space surveillance telescopes emphasize wide field of view (FOV) over resolution, permitted the most rapid survey of the entire sky. At the same time there is a constant push to detect ever fainter objects, such as small pieces of space debris or small, distant asteroids. Unfortunately increased sensitivity requires very large aperture diameters, which when combined with the requirement for wide FOV results in very fast f/# telescopes. How far this set of requirements can be expanded is typically limited by large, complex, and costly corrector optics to flatten the wavefront. An alternative approach is to design the telescope to a curved focal plane. This is an approach that was once taken with film, but it has not been feasible with electronic focal plane arrays (FPA). A major break-through in FPA design may open up a new range of telescope design options. A new array fabrication technique now provides the ability to produce FPAs with a specified degree of curvature while preserving required electro-optical characteristics. This paper presents a design for a new space surveillance telescope utilizing these curved FPAs.

  3. Selected aspects of wide-field stellar interferometry

    NASA Astrophysics Data System (ADS)

    D'Arcio, Luigi Arsenio

    1999-11-01

    In Michelson stellar interferometry, the high-resolution information about the source structure is detected by performing observations with widely separated telescopes, interconnected to form an interferometer. At optical wavelengths, this method provides a technically viable approach for achieving angular resolutions in the milliarcsecond range, comparable to those of a 100 m diameter telescope, whose realization is beyond the immediate engineering capabilities. Considerable efforts are currently devoted to the definition of dedicated interferometric instruments, which will allow to address ambitious astronomical tasks such as high-resolution imaging, astrometry at microarcsecond level, and the direct detection of exoplanets. Astrometry and related techniques employ the so-called wide field-of-view interferometric mode, where phase measurements are performed simultaneously at two (or more) sources; often, the actual observable is the instantaneous phase difference of the two object signals. The future success of wide-field interferometry critically depends on the development of techniques for the accurate control of field-dependent (anisoplanatic) phase errors. In this thesis, we address two aspects of this problem in detail. The first one is theoretical in nature. For ground-based measurements, atmospheric turbulence is the largest source of random phase fluctuations between the on- and the off-axis fringes. We developed a model of the temporal power spectrum of this disturbance, whose validity is not limited to low frequencies only, as it is the case with earlier models. This extension opens the possibility of the analysis of dynamic issues, such as the determination of the allowable coherent integration time T for the off-axis fringes. The spectrum turns out to be well approximated by a sequences of four power-law branches. In first instance, its overall form is determined by the values of the baseline length, telescope diameter, and average beam separation in

  4. Clinical Trial Results Vary Widely, But Always Advance Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Clinical Trials Clinical Trial Results Vary Widely, But Always Advance Research Past ... very emotional." Should You Be Interested in a Clinical Trial People volunteer to take part in clinical trials ...

  5. Wide-field high-performance geosynchronous imaging

    NASA Astrophysics Data System (ADS)

    Wood, H. John; Jenstrom, Del; Wilson, Mark; Hinkal, Sanford; Kirchman, Frank

    1998-01-01

    The NASA Mission to Planet Earth (MTPE) Program and the National Oceanographic and Atmospheric Administration (NOAA) are sponsoring the Advanced Geosynchronous Studies (AGS) to develop technologies and system concepts for Earth observation from geosynchronous orbit. This series of studies is intended to benefit both MTPE science and the NOAA GOES Program. Within the AGS program, advanced imager trade studies have investigated two candidate concepts for near-term advanced geosynchronous imagers. One concept uses a scan mirror to direct the line of sight from a 3-axis stabilized platform. Another eliminates the need for a scan mirror by using an agile spacecraft bus to scan the entire instrument. The purpose of this paper is to discuss the optical design trades and system issues encountered in evaluating the two scanning approaches. The imager design started with a look at first principles: what is the most efficient way to image the Earth in those numerous spectral bands of interest to MTPE scientists and NOAA weather forecasters. Optical design trades included rotating filter wheels and dispersive grating instruments. The design converged on a bandpass filter instrument using four focal planes to cover the spectral range 0.45 to 13.0 micrometers. The first imager design uses a small agile spacecraft supporting an afocal optical telescope. Dichroic beamsplitters feed refractive objectives to four focal planes. The detectors are a series of long linear and rectangular arrays which are scanned in a raster fashion over the 17 degree Earth image. The use of the spacecraft attitude control system to raster the imager field-of-view (FOV) back and forth over the Earth eliminates the need for a scan mirror. However, the price paid is significant energy and time required to reverse the spacecraft slew motions at the end of each scan line. Hence, it is desired to minimize the number of scan lines needed to cover the full Earth disk. This desire, coupled with the ground

  6. Wide Field-of-View Fluorescence Imaging of Coral Reefs

    PubMed Central

    Treibitz, Tali; Neal, Benjamin P.; Kline, David I.; Beijbom, Oscar; Roberts, Paul L. D.; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys. PMID:25582836

  7. PILOT: a wide-field telescope for the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Saunders, Will; Gillingham, Peter; McGrath, Andrew; Haynes, Roger; Brzeski, Jurek; Storey, John; Lawrence, Jon

    2008-07-01

    PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed Australian/European optical/infrared telescope for Dome C on the Antarctic Plateau, with target first light in 2012. The telescope is 2.4m diameter, with overall focal ratio f/10, and a 1 degree field-of-view. It is mounted on a 30m tower to get above most of the turbulent surface layer, and has a tip-tilt secondary for fast guiding. In median seeing conditions, it delivers 0.3" FWHM wide-field image quality, from 0.7-2.5 microns. In the best quartile of conditions, it delivers diffraction-limited imaging down to 1 micron, or even less with lucky imaging. The major challenges have been (a) preventing frost-laden external air reaching the optics, (b) overcoming residual surface layer turbulence, (c) keeping mirror, telescope and dome seeing to acceptable levels in the presence of large temperature variations with height and time, (d) designing optics that do justice to the site conditions. The most novel feature of the design is active thermal and humidity control of the enclosure, to closely match the temperature of external air while preventing its ingress.

  8. Development of stable monolithic wide-field Michelson interferometers.

    PubMed

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. PMID:21772398

  9. Wide-field, high-resolution Fourier ptychographic microscopy

    PubMed Central

    Zheng, Guoan; Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation. PMID:25243016

  10. SSC Geopositional Assessment of the Advanced Wide Field Sensor

    NASA Technical Reports Server (NTRS)

    Ross, Kenton

    2007-01-01

    The objective is to provide independent verification of IRS geopositional accuracy claims and of the internal geopositional characterization provided by Lutes (2005). Six sub-scenes (quads) were assessed; Three from each AWiFS camera. Check points were manually matched to digital orthophoto quarter quadrangle (DOQQ) reference (assumed accuracy approx. 5 m, RMSE) Check points were selected to meet or exceed Federal Geographic Data Committee's guidelines. Used ESRI ArcGIS for data collection and SSC-written MATLAB scripts for data analysis.

  11. System and methods for wide-field quantitative fluorescence imaging during neurosurgery.

    PubMed

    Valdes, Pablo A; Jacobs, Valerie L; Wilson, Brian C; Leblond, Frederic; Roberts, David W; Paulsen, Keith D

    2013-08-01

    We report an accurate, precise and sensitive method and system for quantitative fluorescence image-guided neurosurgery. With a low-noise, high-dynamic-range CMOS array, we perform rapid (integration times as low as 50 ms per wavelength) hyperspectral fluorescence and diffuse reflectance detection and apply a correction algorithm to compensate for the distorting effects of tissue absorption and scattering. Using this approach, we generated quantitative wide-field images of fluorescence in tissue-simulating phantoms for the fluorophore PpIX, having concentrations and optical absorption and scattering variations over clinically relevant ranges. The imaging system was tested in a rodent model of glioma, detecting quantitative levels down to 20 ng/ml. The resulting performance is a significant advance on existing wide-field quantitative imaging techniques, and provides performance comparable to a point-spectroscopy probe that has previously demonstrated significant potential for improved detection of malignant brain tumors during surgical resection. PMID:23903142

  12. An all-reflective wide-angle flat-field telescope for space

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1984-01-01

    An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.

  13. PRIMO: A Wide Field Prime Focus Infrared Mosaic Camera

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bally, J.; Green, J.; Morse, J.; Probst, R.; Green, R.; Joyce, R.; Liang, M.; Arentz, R.; Reitsema, H.; Marriott, J.

    2000-12-01

    We describe a proposal for a major new facility infrared camera for the NOAO 4-m telescopes. With a half-degree field of view at prime focus, a refractive collimator-camera design, and a 1-2.5 um range, PRIMO will enable deep, wide-field infrared surveys. The need for surveys which bridge the five-magnitude gap between 2MASS and 8-10 m spectroscopic sensitivity is well established. PRIMO will enable high-latitude broadband surveys to trace the luminosity and clustering evolution of galaxies, investigations into the composition and history of young stellar populations throughout the total volume of star-forming complexes, narrow-band imaging surveys of star forming regions, and of nebulae formed in late stellar evolutionary stages. The NOAO 4-m telescopes are well suited to this role, and PRIMO will also empower US investment in Gemini and other new generation very large telescopes. By leveraging this instrument with the previous NSF investment in these telescopes, we will provide the US community with a survey facility comparable to the UK VISTA project at a fraction of the latter's cost. This project will be carried out through teaming of an accomplished university group, CU-Boulder, a national center, NOAO, and an aerospace industry partner, Ball Aerospace & Technologies Corp. Our approach is a new model for developing major ground-based astronomical instruments. The instrument concept has been developed and costed, and we meet our performance goals with a straightforward, low-risk design. The project schedule is aggressive: two years from start of funding to first light.

  14. Development of the wide field imager for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Eder, Josef; Fürmetz, Maria; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Reiffers, Jonas; Strecker, Rafael; Barbera, Marco; Brand, Thorsten; Wilms, Jörn

    2015-08-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be <= 150 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of four large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single smaller gateable DEPFET sensor matrix optimized for high count-rate observations. Here we present the conceptual design of the instrument with focus on the critical subsystems and describe the instrument performance expectations. An outline of the model philosophy and the project organization completes the presentation.

  15. Update on the Wide-field Infrared Survey Explorer (WISE)

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Eisenhardt, Peter; Wright, Edward L.; Liu, Feng-Chuan; Irace, William; Heinrichsen, Ingolf; Cutri, Roc; Duval, Valerie

    2006-01-01

    The Wide-field Infrared Survey Explorer (WISE), a NASA MIDEX mission, will survey the entire sky in four bands from 3.3 to 23 microns with a sensitivity 1000 times greater than the IRAS survey. The WISE survey will extend the Two Micron All Sky Survey into the thermal infrared and will provide an important catalog for the James Webb Space Telescope. Using 1024(sup 2) HgCdTe and Si:As arrays at 3.3, 4.7, 12 and 23 microns, WISE will find the most luminous galaxies in the universe, the closest stars to the Sun, and it will detect most of the main belt asteroids larger than 3 km. The single WISE instrument consists of a 40 cm diamond-turned aluminum afocal telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 5 resolution (full-width-half-maximum). The use of dichroics and beamsplitters allows four color images of a 47' x47' field of view to be taken every 8.8 seconds, synchronized with the orbital motion to provide total sky coverage with overlap between revolutions. WISE will be placed into a Sun-synchronous polar orbit on a Delta 7320-10 launch vehicle. The WISE survey approach is simple and efficient. The three-axis-stabilized spacecraft rotates at a constant rate while the scan mirror freezes the telescope line of sight during each exposure. WISE has completed its mission Preliminary Design Review and its NASA Confirmation Review, and the project is awaiting confirmation from NASA to proceed to the Critical Design phase. Much of the payload hardware is now complete, and assembly of the payload will occur over the next year. WISE is scheduled to launch in late 2009; the project web site can be found at www.wise.ssl.berkeley.edu.

  16. The Wide-Field Infrared Explorer (WIRE) Mission

    NASA Astrophysics Data System (ADS)

    Fang, F.; Hacking, P.; Gautier, T. N.; Lonsdale, C.; Shupe, D.; Werner, M. W.; Herter, Terry; Stacey, Gordon; Houck, J. R.; Graf, P.; Moseley, H.; Soifer, B. T.

    1996-12-01

    The Wide-field Infrared Explorer (WIRE) was selected in 1994 for launch in 1998 as NASA's 5th Small Explorer mission. WIRE's primary science objective is to conduct a deep infrared survey to investigate the evolution of starburst galaxies and search for luminous protogalaxies at high redshifts. WIRE will survey hundreds of square degrees at 12 and 25 micron at 200-2000 times fainter flux density levels than the IRAS Faint Source Catalog (0.1 - 1.0 mJy, depending on wavelength and depth of coverage). We anticipate that WIRE will detect about 100,000 starburst galaxies, at typical redshifts of 0.5, and potentially hundreds of protogalaxies at much higher redshifts. The WIRE instrument consists of a 30cm telescope in a dual-stage, solid hydrogen cryostat, and utilizes two 128x128 format Si:As BIB detectors. NASA is currently planning an Announcement of Opportunity for Associate Investigators to utilize WIRE in collaboration with the WIRE science team on topics not related to WIRE's primary objective.

  17. Wide field of view multifocal scanning microscopy with sparse sampling

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wu, Jigang

    2016-02-01

    We propose to use sparsely sampled line scans with a sparsity-based reconstruction method to obtain images in a wide field of view (WFOV) multifocal scanning microscope. In the WFOV microscope, we used a holographically generated irregular focus grid to scan the sample in one dimension and then reconstructed the sample image from line scans by measuring the transmission of the foci through the sample during scanning. The line scans were randomly spaced with average spacing larger than the Nyquist sampling requirement, and the image was recovered with sparsity-based reconstruction techniques. With this scheme, the acquisition data can be significantly reduced and the restriction for equally spaced foci positions can be removed, indicating simpler experimental requirement. We built a prototype system and demonstrated the effectiveness of the reconstruction by recovering microscopic images of a U.S. Air Force target and an onion skin cell microscope slide with 40, 60, and 80% missing data with respect to the Nyquist sampling requirement.

  18. Wide-Field Slitless Spectroscopy with JWST's NIRISS

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Ravindranath, Swara; Willott, Chris J.

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) aboard the James Webb Space Telescope (JWST) will offer wide-field slitless spectroscopy (WFSS) with a resolving power R = 150 at wavelengths from 0.8 to 2.25 microns. In this band, NIRISS will be sensitive to Lyman α emission lines and continuum breaks in the spectra of galaxies with redshifts 6 < z < 17, allowing it to probe the first stars and ionizing sources in the early universe. NIRISS observations of the high-redshift universe will provide a wealth of information on foreground objects, creating a unique library of optical emission-line spectra from the faintest galaxies at lower redshifts. To explore its ability to identify and characterize galaxies at all redshifts, we have modeled a NIRISS observation of a massive strong-lensing galaxy cluster and analyzed the synthetic images using standard software tools. Our simulations demonstrate that WFSS with NIRISS will provide a powerful tool for the exploration of galaxies near and far.

  19. WISH: Wide-field Imaging Durvayor for High-redshift

    NASA Astrophysics Data System (ADS)

    Yamada, Toru

    2015-08-01

    We introduce the concept and current status of WISH project and discuss the science cases. WISH is a proposed space science mission for JAXA, which is dedicated for the deep and wide-field near-infrared imaging surveys. The mission contains the 1.5m cooled telescope as well as the imager with the FoV of ~850 square arcmin. The main goal of WISH is to detect and study galaxies at z=8-15 in the earliest history of structure formation in the universe. The key feature is to conduct WISH Ultra Deep Survey, which images in total of 100 square degrees in 6 broad-band filters at 0.9-4.5 micron down to 28AB magnitude. While more than 10^5 galaxies at z=8-9, 10^4 galaxies at z=11-12 will be detected, WISH-UDS is designed to constrain UV luminosity function at z=15. Depending on the models of the earliest evolution history, 1-1000 galaxies at z~15 (~100 galaxies for the moderate cases) will be detected. The UV spectral properties as well as the clustering properties of galaxies at z=8-15 can be studied as well; UV slope can be measured up to z=15, and the stellar and dark-matter-halo masses can be obtained up to z=9. WISH UDS can provide excellent opportunities for studying SNe at high redshift. Up to ~7000 type Ia SNe at z>1 can be detected and the distance modulus can be constrained with the precision of 0.9-1.5% at z>1.5. More than 100 Super Luminous SNe at z>6, and 10 SLSN at z>10 can also be detected, which allow us to study the earliest history of massive star formation in the universe. WISH imaging surveys as well as WISHSpec, which is an optional parallel-operation simple IFU spectrograph, also provide unique opportunities in various astronomical fields. WISH mission proposal was submitted to JAXA in February 2015 for the first down selection of JAXA Large Strategic Science Mission targeting the launch date in 2020-22. International collaborations including SAO (G.Fazio et al.), LAM (D. Burgarella et al.) and Canada (M.Sawicki et al.) are also actively coordinated.

  20. Wide-Field Optic for Autonomous Acquisition of Laser Link

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit

    2011-01-01

    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to

  1. Recent Advances in the Trichomonas vaginalis Field.

    PubMed

    Leitsch, David

    2016-01-01

    The microaerophilic protist parasite Trichomonas vaginalis is occurring globally and causes infections in the urogenital tract in humans, a condition termed trichomoniasis. In fact, trichomoniasis is the most prevalent non-viral sexually transmitted disease with more than 250 million people infected every year. Although trichomoniasis is not life threatening in itself, it can be debilitating and increases the risk of adverse pregnancy outcomes, HIV infection, and, possibly, neoplasias in the prostate and the cervix. Apart from its role as a pathogen, T. vaginalis is also a fascinating organism with a surprisingly large genome for a parasite, i. e. larger than 160 Mb, and a physiology adapted to its microaerophilic lifestyle. In particular, the hydrogenosome, a mitochondria-derived organelle that produces hydrogen, has attracted much interest in the last few decades and rendered T. vaginalis a model organism for eukaryotic evolution. This review will give a succinct overview of the major advances in the T. vaginalis field in the last few years. PMID:26918168

  2. Recent Advances in the Trichomonas vaginalis Field

    PubMed Central

    Leitsch, David

    2016-01-01

    The microaerophilic protist parasite Trichomonas vaginalis is occurring globally and causes infections in the urogenital tract in humans, a condition termed trichomoniasis. In fact, trichomoniasis is the most prevalent non-viral sexually transmitted disease with more than 250 million people infected every year. Although trichomoniasis is not life threatening in itself, it can be debilitating and increases the risk of adverse pregnancy outcomes, HIV infection, and, possibly, neoplasias in the prostate and the cervix. Apart from its role as a pathogen, T. vaginalis is also a fascinating organism with a surprisingly large genome for a parasite, i. e. larger than 160 Mb, and a physiology adapted to its microaerophilic lifestyle. In particular, the hydrogenosome, a mitochondria-derived organelle that produces hydrogen, has attracted much interest in the last few decades and rendered T. vaginalis a model organism for eukaryotic evolution. This review will give a succinct overview of the major advances in the T. vaginalis field in the last few years. PMID:26918168

  3. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell'Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass-metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010-1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%-38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  4. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  5. High gain, wide field of view concentrator for optical communications.

    PubMed

    Collins, Steve; O'Brien, Dominic C; Watt, Andrew

    2014-04-01

    The field of view and gain of optical concentrators used within free space optical communications systems are constrained by conservation of etendue. In this Letter, consideration of the processes in a fluorescent concentrator leads to a simple design strategy for these concentrators for this application. Significantly, because fluorescent concentrators do not conserve etendue, this can lead to concentrators with wider fields of view and higher gains. A model of a fluorescent concentrator containing a quantum dot material suggests that it could have a gain 50 times higher than an etendue conserving concentrator with the same field of view.

  6. Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.

  7. MOS CCDs for the extended wide-field imager of XEUS

    NASA Astrophysics Data System (ADS)

    Holland, Andrew D.; Ambrosi, Richard M.; Hutchinson, Ian; Calafell, J.; Turner, Martin J. L.; Lumb, David H.; Pool, Peter J.

    2003-03-01

    XEUS is the post-XMM next generation x-ray observatory which is currently under study by ESA. The mission aims to image the x-ray early universe through the study of feint, high red-shift objects. To provide sufficient photons to enable spectroscopy on these distant objects requires a telescope collecting area greatly in excess of those in use today, and an x-ray optic with collecting area ~100x of XMM is ultimately envisaged. With a focal length of 50m, the plate scale of the optic is 6.5x that of XMM, which using existing focal plane technology will reduce the effective field of view to a few arc minutes. Cryogenic instrumentation, with detector sizes of a few mm can only be used for narrow field studies of target objects, and a wide field instrument is under consideration using a DEPFET pixel array to image out to a diameter of 5 arcminutes, requiring an array of dimension 70mm. Since the useful field of view of the XEUS optic will extend to a diameter of 30 arcminutes, the potential of the optic could be very under-utilized. Here we propose an extension to the wide field imager, the E-WFI, comprised of a ring array of CCDs which will increase the coverage of the focal plane, and greatly increase the serendipitous science resulting from the mission. Here we describe the first design concept for the E-WFI, and discuss the technical advancements in MOS CCD technology which will enhance the science of the mission.

  8. Fast and compact wide-field Gregorian telescope

    NASA Astrophysics Data System (ADS)

    Bahrami, Mehdi; Goncharov, Alexander V.

    2012-09-01

    A traditional Gregorian telescope features an intermediate focus, which makes the system longer than an equivalent fnumber Cassegrain design. One could shorten the Gregorian system by inserting a flat mirror before the secondary mirror. We explore the potential of this compact configuration for sky survey imaging with relaxed requirements for angular resolution. A 0.5 m f/1.4 telescope with 4 deg full field is presented. The modified design consists of two elliptical mirrors and a folding flat in between. A plano-convex field flattener is used near the focal plane. The telescope optical performance is analyzed and possible improvements are discussed based on aberration balancing. A special emphasis is given to stay light analysis and baffle designs are considered.

  9. Design of a wide field of view infrared scene projector

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenyu; Li, Lin; Huang, YiFan

    2008-03-01

    In order to make the projected scene cover the seeker's field-of-view promptly the conventional projection optical systems used for hardware-in-the-loop simulation test usually depend on the 5 axes flight-motion-simulator. Those flight-motion-simulator tables are controlled via servomechanisms. The servomechanism needs many axis position transducers and many electromechanical devices. The structure and controlling procedure of the system are complicated. It is hard to avoid the mechanical motion and controlling errors absolutely. The target image jitter will be induced by the vibration of mechanical platform, and the frequency response is limited by the structural performance. To overcome these defects a new infrared image simulating projection system for hardware-in-the-loop simulation test is presented in this paper. The system in this paper consists of multiple lenses joined side by side on a sphere surface. Each single lens uses one IR image generator or resistor array etc. Every IR image generator displays special IR image controlled by the scene simulation computer. The scene computer distributes to every IR image generator the needed image. So the scene detected by the missile seeker is integrated and uninterrupted. The entrance pupil of the seeker lies in the centre of the sphere. Almost semi-sphere range scene can be achieved by the projection system, and the total field of view can be extended by increasing the number of the lenses. However, the luminance uniformity in the field-of-view will be influenced by the joint between the lenses. The method of controlling the luminance uniformity of field-of-view is studied in this paper. The needed luminous exitance of each resist array is analyzed. The experiment shows that the new method is applicable for the hardware-in-the-loop simulation test.

  10. Engineering a highly segmented very wide-field spectrograph

    NASA Astrophysics Data System (ADS)

    Ragazzoni, R.; Fontana, A.; Maccagni, D.; Baruffolo, A.; Bianco, A. G.; diPaola, A.; Farinato, J.; Gentile, G.; Giallongo, E.; Pedichini, F.; Speziali, R.; Testa, V.

    2010-07-01

    The concept of segmenting the focal plane of an existing 8m class telescope in order to fill it with an array of several fast cameras has been developed further and in this work the status of an engineering program aimed to produce a design qualified for the construction, and to assess its cost estimates is presented. The original concept of just having simple cameras with all identical optical components other than a pupil plane corrector to remove the fixed aberrations at the off-axis field of a telescope has been extended to introduce a spectroscopic capability and to assess a trade-off between a very large number (of the order of thousand) of cameras with a small single Field of View with a smaller number of cameras able to compensate the aberration on a much larger Field of View with a combination of different optical elements and different ways to mount and align them. The scientific target of a few thousands multi-slit spectra over a Field of View of a few square degrees, combined with the ambition to mount this on an existing 8m class telescope makes the scientific rationale of such an instrument a very interesting one. In the paper we describe the different options for a possible optical design, the trade off between variations on the theme of the large segmentation and we describe briefly the way this kind of instrument can handle a multi-slit configuration. Finally, the feasibility of the components and a brief description of how the cost analysis is being performed are given. Perspectives on the construction of this spectrograph are given as well.

  11. A Compact, Fast, Wide-Field Imaging Spectrometer System

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; VanGorp, Byron E.; White, Victor E.; Mumolo, Jason M.; Hebert, Daniel; Feldman, Martin

    2011-01-01

    We present test results from a compact, fast (F/1.4) imaging spectrometer system with a 33 degree field of view, operating in the 450-1650 nm wavelength region with an extended response InGaAs detector array. The system incorporates a simple two-mirror telescope and a steeply concave bilinear groove diffraction grating made with gray scale x-ray lithography techniques. High degree of spectral and spatial uniformity (97%) is achieved.

  12. Wide Field Imaging of the Hubble Deep Field-South Region III: Catalog

    NASA Technical Reports Server (NTRS)

    Palunas, Povilas; Collins, Nicholas R.; Gardner, Jonathan P.; Hill, Robert S.; Malumuth, Eliot M.; Rhodes, Jason; Teplitz, Harry I.; Woodgate, Bruce E.

    2002-01-01

    We present 1/2 square degree uBVRI imaging around the Hubble Deep Field - South. These data have been used in earlier papers to examine the QSO population and the evolution of the correlation function in the region around the HDF-S. The images were obtained with the Big Throughput Camera at CTIO in September 1998. The images reach 5 sigma limits of u approx. 24.4, B approx. 25.6, V approx. 25.3, R approx. 24.9 and I approx. 23.9. We present a catalog of approx. 22,000 galaxies. We also present number-magnitude counts and a comparison with other observations of the same field. The data presented here are available over the world wide web.

  13. Science yield estimate with the Wide-Field Infrared Survey Telescope coronagraph

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.; Breckinridge, James; Greene, Thomas P.; Guyon, Olivier; Jeremy Kasdin, N.; Macintosh, Bruce

    2016-01-01

    The coronagraph instrument (CGI) on the Wide-Field Infrared Survey Telescope will directly image and spectrally characterize planets and circumstellar disks around nearby stars. Here we estimate the expected science yield of the CGI for known radial-velocity (RV) planets and potential circumstellar disks. The science return is estimated for three types of coronagraphs: the hybrid Lyot and shaped pupil are the currently planned designs, and the phase-induced amplitude apodizing complex mask coronagraph is the backup design. We compare the potential performance of each type for imaging as well as spectroscopy. We find that the RV targets can be imaged in sufficient numbers to produce substantial advances in the science of nearby exoplanets. To illustrate the potential for circumstellar disk detections, we estimate the brightness of zodiacal-type disks, which could be detected simultaneously during RV planet observations.

  14. A Powerful New Imager for HST: Performance and Early Science Results from Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2009-01-01

    Wide Field Camera 3 (WFC3) was installed into the Hubble Space Telescope during the highly successful Servicing Mission 4 in May, 2009. WFC3 offers sensitive, high resolution imaging over a broad wavelength range from the near UV through the visible to the near IR (200nm - 1700nm). Its capabilities in the near UV and near IR ends of that range represent particularly large advances vs. those of previous HST instruments. In this talk, I will review the purpose and design of the instrument, describe its performance in flight, and highlight some of the initial scientific results from the instrument, including its use in deep infrared surveys in search of galaxies at very high redshift, in investigations of the global processes of star formation in nearby galaxies, and in the study of the recent impact on Jupiter.

  15. A mobile phone-based retinal camera for portable wide field imaging.

    PubMed

    Maamari, Robi N; Keenan, Jeremy D; Fletcher, Daniel A; Margolis, Todd P

    2014-04-01

    Digital fundus imaging is used extensively in the diagnosis, monitoring and management of many retinal diseases. Access to fundus photography is often limited by patient morbidity, high equipment cost and shortage of trained personnel. Advancements in telemedicine methods and the development of portable fundus cameras have increased the accessibility of retinal imaging, but most of these approaches rely on separate computers for viewing and transmission of fundus images. We describe a novel portable handheld smartphone-based retinal camera capable of capturing high-quality, wide field fundus images. The use of the mobile phone platform creates a fully embedded system capable of acquisition, storage and analysis of fundus images that can be directly transmitted from the phone via the wireless telecommunication system for remote evaluation. PMID:24344230

  16. Advanced field automation in the Tuscaloosa trend

    SciTech Connect

    MacDonald, T.E.

    1986-01-01

    The Tuscaloosa Automated Production System (TAPS) was developed in response to the difficult producing environment of the Tuscaloosa deep gas trend. It has subsequently been expanded to include a waterflood project in a shallow oil field. This paper illustrates how TAPS transforms field automation into a simple tool that the entire staff can use to optimize and analyze field conditions. Examples of features such as the annunciator, schematic diagrams, and process control demonstrate the system's ability to aid in field operations. Other options including online history, real time data graphs, and automatic reporting show how automation is used to analyze field conditions. Four years of experience have proven these features enable both field and office staffs, that have no ''computer''training, to use the system as an integral part of the daily producing routine.

  17. Wide-Field H2D+ Observations of Starless Cores

    NASA Astrophysics Data System (ADS)

    Di Francesco, James; Friesen, R.; Caselli, P.; Myers, P. C.; van der Tak, F. F. S.; Ceccarelli, C.

    2009-01-01

    In recent years, isolated starless cores have been revealed to have significant chemical differentiation with very low abundances of carbon-bearing molecules (such as CO and its isotopologues) in their cold, dense interiors. The inner regions of such cores, however, may be quite interesting, e.g., if contraction or collapse begins there. To explore these regions, we present detections of six isolated starless cores in the 110-111 line of H2D+ at 372 GHz using the new HARP instrument at the James Clerk Maxwell Telescope. Since the detection of this line requires very dry conditions on Mauna Kea (i.e., κ(225 GHz) < 0.05), only a multi-beam receiver system like the 4 X 4 HARP array can locate H2D+ emission across such cores in a practical amount of observing time. In all cases, the brightest line emission is coincident with the local peak of submillimeter continuum emission, but significant H2D+ emission is detected offset from the continuum peak in some. In addition, we describe the thermal and turbulent velocity fields in these cores revealed by these lines.

  18. The Rothney Astrophysical Observatory's Wide Field Variable Star Search Program

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; Milone, E. F.

    2005-05-01

    We describe a variable star search program being carried out on a 0.5-m f/1 Patrol Camera at the RAO. The detector is a 4Kx4K chip mounted in an FLI camera, purchased by P. Brown (UWO). The 4.4 by 4.4 deg. image frames provide stellar images of 2 pixels (FWHM). Results from the first well-studied night sequence reveal a significant number of apparently real variability detections. The search covers stars in a range of 11-14 magnitudes in the natural system (approximately Johnson-Cousins R). In the first field studied there are 8500 stars in this range, with average 1 sigma errors of 0.05 magnitudes. We expect to achieve 1 sigma errors smaller than 0.02 magn. for stars brighter than 12 magn. Results show that we are close to the predicted noise levels with 1100 stars within this precision limit. There are 75 stars that have 1 sigma errors below 0.01 magnitude. This level of precision allows for the detection of hot Jupiter transits that have a decrease in brightness on the order of 0.03 magnitudes (or less). The Patrol Camera is a former Baker-Nunn satellite tracking camera, modified by DFM Engineering as part of a retrofit supervised by M.J. Mazur, in a collaboration funded by grants from the Alberta Science Research Authority (to EFM), and others. The survey is being carried out by MDW as part of his PhD program and is being supported in part by NSERC grants to EFM and the University of Calgary Department of Physics & Astronomy.

  19. Assessment Practices of Advanced Field Ecology Courses

    ERIC Educational Resources Information Center

    Lei, Simon A.

    2010-01-01

    Learning is an active process, best facilitated by involving the learning in cognitive engagement with the information to be learned. Most college ecology instructors consist of lecture and exams, but also include active components of laboratories and field trips (campus and off-campus). Field trips can be subdivided into three major phases:…

  20. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  1. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  2. Cysticercosis Control: Bringing Advances to the Field

    PubMed Central

    O’Neal, SE; Winthrop, KL; Gonzalez, AE

    2011-01-01

    Progress towards Taenia solium control is evident in the development of new technologies and in increasing regional coordination, yet disease eradication remains unlikely in the near future. In the meantime, translation of research advances into functioning control programs is necessary to address the ongoing disease burden in endemic areas. Multiple screening assays, effective treatments for both human and porcine infection, and vaccines blocking transmission to pigs are currently available. Strategies based on identification and treatment of T. solium adult tapeworms, as well as interventions that block cysticercosis acquisition in pigs have temporarily reduced transmission. Building on these successes with controlled community trials in varying endemic scenarios will drive progress towards regional elimination. PMID:21731303

  3. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Chieh

    The study of the imaging principles of natural compound eyes has become an active area of research and has fueled the advancement of modern optics with many attractive design features beyond those available with conventional technologies. Most prominent among all compound eyes is the reflecting superposition compound eyes (RSCEs) found in some decapods. They are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Inspired by their remarkable visual system, we were able to implement the unique lens-free, reflection-based imaging mechanisms into a miniaturized, large-FOV optical imaging device operating at the wide visible spectrum to minimize chromatic aberration without any additional post-image processing. First, two micro-transfer printing methods, a multiple and a shear-assisted transfer printing technique, were studied and discussed to realize life-sized artificial RSCEs. The processes exploited the differential adhesive tendencies of the microstructures formed between a donor and a transfer substrate to accomplish an efficient release and transfer process. These techniques enabled conformal wrapping of three-dimensional (3-D) microstructures, initially fabricated in two-dimensional (2-D) layouts with standard fabrication technology onto a wide range of surfaces with complex and curvilinear shapes. Final part of this dissertation was focused on implementing the key operational features of the natural RSCEs into large-FOV, wide-spectrum artificial RSCEs as an optical imaging device suitable for the wide visible spectrum. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to the performance of conventional refractive lenses of comparable size, our devices demonstrated minimum chromatic aberration, exceptional

  4. Field development projects advance in Norwegian Sea

    SciTech Connect

    Vielvoye, R.

    1992-03-30

    This paper reports on the Norwegian Sea, lying between the Norwegian North Sea and the western flank of the Barents Sea, which is set to become Norway's second oil and gas producing province. Oil is scheduled to start to flow near the end of next year when AS Norske Shell places on production 428 million bbl Draugen field in Block 6407/9, about 60 miles off the coast of mid-Norway in the frontier sea area known as Haltenbanken. Two years later, in 1995, Norske Conoco AS will add to the 95,000 b/d from Draugen when it commissions the world's first concrete hull tension leg platform (TLP) in Heidrun field. The TLP is expected to produce 200,000 b/d of oil and move associated gas by pipeline to the Norwegian mainland to feed a worldscale methanol plant planned for construction at Tjeldbergodden. The Norwegian government also has been asked to approve a gas pipeline link between Haltenbanken and the gas export infrastructure in the North Sea.

  5. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.

    2016-09-01

    Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.

  6. World-wide association of timberline forest advance with microsite type along a precipitation gradient

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Yeakley, A.

    2009-12-01

    Timberline forest advance associated with global climate change is occurring worldwide and is often associated with microsites. Microsites, controlled by topography, substrates, and plant cover, are localized regions dictating temperature, moisture, and solar radiation. These abiotic factors are integral to seedling survival. From a compilation of world-wide information on seedling regeneration on microsites at timberline, including our on-going research in the Pacific Northwest, we classified available literature into four microsite categories, related microsite category to annual precipitation, and used analysis of variance to detect statistical differences in microsite type and associated precipitation. We found statistical differences (p = 0.022) indicating the usefulness of understanding microsite/precipitation associations in detecting world-wide trends in timberline expansion. For example, wetter timberlines with downed wood, had regeneration associated with nurse logs, whereas on windy, drier landscapes, regeneration was typically associated with either leeward sides of tree clumps or on microsites protected from frost by overstory canopy. In our study of timberline expansion in the Pacific Northwest, we expect that such knowledge of microsite types associated with forest expansion will reveal a better understanding of mechanisms and rates of timberline forest advance during global warming.

  7. Automatic Processing of Chinese GF-1 Wide Field of View Images

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wan, Y.; Wang, B.; Kang, Y.; Xiong, J.

    2015-04-01

    The wide field of view (WFV) imaging instrument carried on the Chinese GF-1 satellite includes four cameras. Each camera has 200km swath-width that can acquire earth image at the same time and the observation can be repeated within only 4 days. This enables the applications of remote sensing imagery to advance from non-scheduled land-observation to periodically land-monitoring in the areas that use the images in such resolutions. This paper introduces an automatic data analysing and processing technique for the wide-swath images acquired by GF-1 satellite. Firstly, the images are validated by a self-adaptive Gaussian mixture model based cloud detection method to confirm whether they are qualified and suitable to be involved into the automatic processing workflow. Then the ground control points (GCPs) are quickly and automatically matched from the public geo-information products such as the rectified panchromatic images of Landsat-8. Before the geometric correction, the cloud detection results are also used to eliminate the invalid GCPs distributed in the cloud covered areas, which obviously reduces the ratio of blunders of GCPs. The geometric correction module not only rectifies the rational function models (RFMs), but also provides the self-calibration model and parameters for the non-linear distortion, and it is iteratively processed to detect blunders. The maximum geometric distortion in WFV image decreases from about 10-15 pixels to 1-2 pixels when compensated by self-calibration model. The processing experiments involve hundreds of WFV images of GF-1 satellite acquired from June to September 2013, which covers the whole mainland of China. All the processing work can be finished by one operator within 2 days on a desktop computer made up by a second-generation Intel Core-i7 CPU and a 4-solid-State-Disk array. The digital ortho maps (DOM) are automatically generated with 3 arc second Shuttle Radar Topography Mission (SRTM). The geometric accuracies of the

  8. Advanced bit establishes superior performance in Ceuta field

    SciTech Connect

    Mensa-Wilmot, G.

    1999-11-01

    A new-generation polycrystalline diamond compact (PDC) bit is redefining operational efficiency and reducing drilling costs in the Ceuta field, in the Lago de Maracaibo area of Venezuela. Its unique cutting structure and advancements in PDC cutter technology have established superior performance in this challenging application. The paper describes the new-generation PDC bit, advanced technology PDC cutters, and performance. A table gives cost per foot evaluation.

  9. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks.

    PubMed

    Pulizzi, Rocco; Musumeci, Gabriele; Van den Haute, Chris; Van De Vijver, Sebastiaan; Baekelandt, Veerle; Giugliano, Michele

    2016-01-01

    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics. PMID:27099182

  10. Toward Epoch of Reionization Measurements with Wide-Field Radio Observations

    NASA Astrophysics Data System (ADS)

    Morales, Miguel F.; Hewitt, Jacqueline

    2004-11-01

    This paper explores the potential for statistical epoch of reionization (EOR) measurements using wide-field radio observations. New developments in low-frequency radio instrumentation and signal processing allow very sensitive EOR measurements, and the analysis techniques enabled by these advances offer natural ways of separating the EOR signal from the residual foreground emission. This paper introduces the enabling technologies and proposes an analysis technique designed to make optimal use of the capabilities of next-generation low-frequency radio arrays. The observations we propose can directly observe the power spectrum of the EOR using relatively short observations and are significantly more sensitive than other techniques that have been discussed in the literature. For example, in the absence of foreground contamination the measurements we propose would produce five 3 σ power spectrum points in 100 hr of observation with only 4 MHz bandwidth with LOFAR for simple models of the high-redshift 21 cm emission. The challenge of residual foreground removal may be addressed by the symmetries in the three-dimensional (two spatial frequencies and radio frequency) radio interferometric data. These symmetries naturally separate the EOR signal from most classes of residual unsubtracted foreground contamination, including all foreground continuum sources and radio line emission from the Milky Way.

  11. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks

    PubMed Central

    Pulizzi, Rocco; Musumeci, Gabriele; Van den Haute, Chris; Van De Vijver, Sebastiaan; Baekelandt, Veerle; Giugliano, Michele

    2016-01-01

    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics. PMID:27099182

  12. A testbed for wide-field, high-resolution, gigapixel-class cameras.

    PubMed

    Kittle, David S; Marks, Daniel L; Son, Hui S; Kim, Jungsang; Brady, David J

    2013-05-01

    The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.

  13. A testbed for wide-field, high-resolution, gigapixel-class cameras

    NASA Astrophysics Data System (ADS)

    Kittle, David S.; Marks, Daniel L.; Son, Hui S.; Kim, Jungsang; Brady, David J.

    2013-05-01

    The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.

  14. Wide-field monitoring strategy for the study of fast optical transients

    NASA Astrophysics Data System (ADS)

    Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Guarnieri, Adriano; Bartolini, Corrado; Greco, Giuseppe; Piccioni, Adalberto

    2010-10-01

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  15. Wide field/planetary camera optics study. [for the large space telescope

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design feasibility of the baseline optical design concept was established for the wide field/planetary camera (WF/PC) and will be used with the space telescope (ST) to obtain high angular resolution astronomical information over a wide field. The design concept employs internal optics to relay the ST image to a CCD detector system. Optical design performance predictions, sensitivity and tolerance analyses, manufacturability of the optical components, and acceptance testing of the two mirror Cassegrain relays are discussed.

  16. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  17. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  18. VizieR Online Data Catalog: Wide field imagers ground-based astrometry. V. (Libralato+, 2014)

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Bellini, A.; Bedin, L. R.; Piotto, G.; Platais, I.; Kissler-Patig, M.; Milone, A. P.

    2014-01-01

    Astro-photometric catalogs of 7 different fields. For each field we provide equatorial and pixel coordinates, infrared wide-band photometry. For NGC 6656 and NGC 6121 we also provide proper motions and an estimate of the membership probability. (11 data files).

  19. Photometric flats: an essential ingredient for photometry with wide-field imagers

    NASA Astrophysics Data System (ADS)

    Selman, Fernando J.

    2004-09-01

    We discuss the challenges to photometry introduced by internal redistribution of light in wide-field imaging cameras with focal-reducers. We have developed a simple least-squares procedure which can be used to determine the zero-point variations across the field. The method uses three orthogonally offseted images of a reasonably dense stellar field, plus an image containing at least three standard stars scattered across the field. The method, which does not require rotating the instrument, have been applied to correct data from the Wide Field Imager at La Silla. It has been shown to reduce a 12% center-to-edge gradient down to a ~2% rms variation accross the field. A new method which can be used with data taken during non-photometric nights is also presented.

  20. Epidermal electronics with advanced capabilities in near-field communication.

    PubMed

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A

    2015-02-25

    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities.

  1. Brainnetome-wide association studies in schizophrenia: the advances and future.

    PubMed

    Jiang, Tianzi; Zhou, Yuan; Liu, Bing; Liu, Yong; Song, Ming

    2013-12-01

    Convergent evidence suggests that psychiatric disorders are the result of faulty brain networks. To understand the pathophysiological network mechanisms of psychiatric disorders, it is necessary to integrate multi-level network features obtained using various functional and anatomical brain imaging technologies on different scales. We have proposed a new concept, the brainnetome, to represent this integrative framework. In the present review, we use schizophrenia, a disorder characterized by dysconnectivity, to demonstrate how the brainnetome concept can be applied to the study of psychiatric disorders. We first review studies of abnormal brain networks in schizophrenia that are based on single regions of interest. We then present some advances and challenges in understanding the malfunctions of specific brain networks in schizophrenia. Some recent advances and challenges in understanding abnormal whole brain networks in schizophrenia are also presented. We next briefly introduce a few studies that show how genes related to the risk for schizophrenia affect brain networks. Finally, we present a brief discussion about how the brainnetome concept may influence future research and provide a perspective on challenges in this field.

  2. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    NASA Astrophysics Data System (ADS)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  3. Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.

    2012-01-01

    Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).

  4. Advanced materials and device technology for photonic electric field sensors

    NASA Astrophysics Data System (ADS)

    Toney, James E.; Stenger, Vincent E.; Kingsley, Stuart A.; Pollick, Andrea; Sriram, Sri; Taylor, Edward

    2012-10-01

    Photonic methods for electric field sensing have been demonstrated across the electromagnetic spectrum from near-DC to millimeter waves, and at field strengths from microvolts-per-meter to megavolts-per-meter. The advantages of the photonic approach include a high degree of electrical isolation, wide bandwidth, minimum perturbation of the incident field, and the ability to operate in harsh environments. Aerospace applications of this technology span a wide range of frequencies and field strengths. They include, at the high-frequency/high-field end, measurement of high-power electromagnetic pulses, and at the low-frequency/low-field end, in-flight monitoring of electrophysiological signals. The demands of these applications continue to spur the development of novel materials and device structures to achieve increased sensitivity, wider bandwidth, and greater high-field measurement capability. This paper will discuss several new directions in photonic electric field sensing technology for defense applications. The first is the use of crystal ion slicing to prepare high-quality, single-crystal electro-optic thin films on low-dielectricconstant, RF-friendly substrates. The second is the use of two-dimensional photonic crystal structures to enhance the electro-optic response through slow-light propagation effects. The third is the use of ferroelectric relaxor materials with extremely high electro-optic coefficients.

  5. TMT-AGE: wide field of regard multi-object adaptive optics for TMT

    NASA Astrophysics Data System (ADS)

    Akiyama, Masayuki; Oya, S.; Ono, Y. H.; TMT-AGE Team

    2014-07-01

    We are conducting a feasibility study on a wide field of regard Multi-Object Adaptive Optics system for TMT (TMT-AGE:TMT-Analyzer for Galaxies in the Early universe). The wide FoR is crucial to effectively observe very high-redshift UV-bright galaxies at z>5, which have low surface number density. Simulations of an MOAO system show moderate AO correction can be achieved within 10 arcmin diameter FoR. We discuss overall system design of the wide FoR MOAO system considering the system constraint from the stroke of small-size deformable mirror.

  6. DICOM index tracker enterprise: advanced system for enterprise-wide quality assurance and patient safety monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Pavlicek, William; Panda, Anshuman; Langer, Steve G.; Morin, Richard; Fetterly, Kenneth A.; Paden, Robert; Hanson, James; Wu, Lin-Wei; Wu, Teresa

    2015-03-01

    DICOM Index Tracker (DIT) is an integrated platform to harvest rich information available from Digital Imaging and Communications in Medicine (DICOM) to improve quality assurance in radiology practices. It is designed to capture and maintain longitudinal patient-specific exam indices of interests for all diagnostic and procedural uses of imaging modalities. Thus, it effectively serves as a quality assurance and patient safety monitoring tool. The foundation of DIT is an intelligent database system which stores the information accepted and parsed via a DICOM receiver and parser. The database system enables the basic dosimetry analysis. The success of DIT implementation at Mayo Clinic Arizona calls for the DIT deployment at the enterprise level which requires significant improvements. First, for geographically distributed multi-site implementation, the first bottleneck is the communication (network) delay; the second is the scalability of the DICOM parser to handle the large volume of exams from different sites. To address this issue, DICOM receiver and parser are separated and decentralized by site. To facilitate the enterprise wide Quality Assurance (QA), a notable challenge is the great diversities of manufacturers, modalities and software versions, as the solution DIT Enterprise provides the standardization tool for device naming, protocol naming, physician naming across sites. Thirdly, advanced analytic engines are implemented online which support the proactive QA in DIT Enterprise.

  7. Wide field-of-view digital night vision head-mounted display

    NASA Astrophysics Data System (ADS)

    Browne, Michael P.; Foote, Bobby D.

    2010-04-01

    SA Photonics and Vision Systems International (VSI) are developing an innovative wide field of view digital night vision head mounted display (HMD). This HMD has an 80 degree field of view and has been designed to minimize weight, peripheral obscuration and forward projection. Digital night vision sensors enable electronic image enhancement and VSI's Zero A/C Integration enables the HMD to be integrated with legacy aircraft and provide symbology overlay and recording without the need for an expensive drive electronics box.

  8. An EUV Wide-Field Imager and Spectrometer for the ISS

    NASA Technical Reports Server (NTRS)

    Golub, Leon; Savage, Sabrina

    2016-01-01

    The Coronal Spectrographic Imager in the EUV, COSIE, combines a wide-field solar coronal EUV imager (EUVC) and an on-disk EUV imaging spectrometer (EUVS). Located on the International Space Station (ISS), the goal of the mission is to enhance our understanding of the dynamics of the Transition Corona (the region in which the coronal magnetic field transitions from closed to open), and to provide improved detection and tracking of solar eruptive events for space weather research.

  9. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

    PubMed Central

    Ferguson, R. Daniel; Zhong, Zhangyi; Hammer, Daniel X.; Mujat, Mircea; Patel, Ankit H.; Deng, Cong; Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of >25 deg. AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10 μm rms, or 0.03 deg, tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching. PMID:21045887

  10. Astronomy and solar physics: very-wide-field ultraviolet sky survey.

    PubMed

    Decher, R; Gary, A

    1984-07-13

    Very-wide-field photographs of the sky were taken on Spacelab 1 at 1650, 1930, and 2530 angstroms with a limiting magnitude of 9.3 at 1930 angstroms. A 1.2 by 2.4 kiloparsec ultraviolet extension of the Shapley wing of the Small Magellanic Cloud is seen in some of the photographs.

  11. The Status of NASA's Wide-Field Meteor Camera Network and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Blaauw, R.; Cooke, W.; Kingery, A.; Suggs, R.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established two wide-field cameras to detect meteors in the millimeter-size-range. This paper outlines the concepts of the system, the hardware and software, and results of 3,440 orbits seen from December 13, 2012 until May 14, 2014.

  12. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; Pauls, T.

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  13. Application of Advanced Wide Area Early Warning Systems with Adaptive Protection

    SciTech Connect

    Blumstein, Carl; Cibulka, Lloyd; Thorp, James; Centeno, Virgilio; King, Roger; Reeves, Kari; Ashrafi, Frank; Madani, Vahid

    2014-09-30

    Recent blackouts of power systems in North America and throughout the world have shown how critical a reliable power system is to modern societies, and the enormous economic and societal damage a blackout can cause. It has been noted that unanticipated operation of protection systems can contribute to cascading phenomena and, ultimately, blackouts. This project developed and field-tested two methods of Adaptive Protection systems utilizing synchrophasor data. One method detects conditions of system stress that can lead to unintended relay operation, and initiates a supervisory signal to modify relay response in real time to avoid false trips. The second method detects the possibility of false trips of impedance relays as stable system swings “encroach” on the relays’ impedance zones, and produces an early warning so that relay engineers can re-evaluate relay settings. In addition, real-time synchrophasor data produced by this project was used to develop advanced visualization techniques for display of synchrophasor data to utility operators and engineers.

  14. Image quality criteria for wide-field x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Thompson, Patrick L.; Harvey, James E.

    1999-10-01

    For staring, wide-field applications, such as a solar x-ray imager, the severe off-axis aberrations of the classical Wolter Type-I grazing incidence x-ray telescope design drastically limits the 'resolution' near the solar limb. A specification upon on-axis fractional encircled energy is thus not an appropriate image quality criterion for such wide-angle applications. A more meaningful image quality criterion would be a field-weighted-average measure of 'resolution.' Since surface scattering effects from residual optical fabrication errors are always substantial at these very short wavelengths, the field-weighted-average half- power radius is a far more appropriate measure of aerial resolution. If an ideal mosaic detector array is being used in the focal plane, the finite pixel size provides a practical limit to this system performance. Thus, the total number of aerial resolution elements enclosed by the operational field-of-view, expressed as a percentage of the n umber of ideal detector pixels, is a further improved image quality criterion. In this paper we describe the development of an image quality criterion for wide-field applications of grazing incidence x-ray telescopes which leads to a new class of grazing incidence designs described in a following companion paper.

  15. Prime focus wide-field corrector designs with lossless atmospheric dispersion correction

    SciTech Connect

    Saunders, Will; Gillingham, Peter; Smith, Greg; Kent, Steve; Doel, Peter

    2014-07-18

    Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telecentric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a 'Compensating Lateral Atmospheric Dispersion Corrector', with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.

  16. Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram

    PubMed Central

    Zang, Pengxiao; Liu, Gangjun; Zhang, Miao; Dongye, Changlei; Wang, Jie; Pechauer, Alex D.; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang

    2016-01-01

    We propose an innovative registration method to correct motion artifacts for wide-field optical coherence tomography angiography (OCTA) acquired by ultrahigh-speed swept-source OCT (>200 kHz A-scan rate). Considering that the number of A-scans along the fast axis is much higher than the number of positions along slow axis in the wide-field OCTA scan, a non-orthogonal scheme is introduced. Two en face angiograms in the vertical priority (2 y-fast) are divided into microsaccade-free parallel strips. A gross registration based on large vessels and a fine registration based on small vessels are sequentially applied to register parallel strips into a composite image. This technique is extended to automatically montage individual registered, motion-free angiograms into an ultrawide-field view. PMID:27446709

  17. Nonmydriatic ultra-wide-field scanning laser ophthalmoscopy (Optomap) versus two-field fundus photography in diabetic retinopathy.

    PubMed

    Liegl, Raffael; Liegl, Kristine; Ceklic, Lala; Haritoglou, Christos; Kampik, Anselm; Ulbig, Michael W; Kernt, Marcus; Neubauer, Aljoscha S

    2014-01-01

    The purpose of this study was to investigate the diagnostic properties of a 2-laser wavelength nonmydriatic 200° ultra-wide-field scanning laser ophthalmoscope (SLO) versus mydriatic 2-field 45° color fundus photography (EURODIAB standard) for assessing diabetic retinopathy (DR). A total of 143 consecutive eyes of patients with different levels of DR were graded regarding DR level and macular edema based on 2-field color photographs or 1 Optomap Panoramic 200 SLO image. All SLO images were nonmydriatic and all photographs mydriatic. Grading was performed masked to patient and clinical data. Based on photography, 20 eyes had no DR, 44 had mild, 18 moderate and 42 severe nonproliferative DR, and 19 eyes had proliferative DR. Overall correlation for grading DR level compared to Optomap SLO was moderate with kappa 0.54 (p < 0.001), fair-to-moderate in macular edema grading with kappa 0.39 (p < 0.001), and substantial for grading clinically significant macular edema (kappa 0.77). The wide-field SLO offers a wider field of view and can potentially better differentiate lesions by applying the 2 laser wavelengths. However, these advantages over 2-field fundus photography need to be confirmed in further studies.

  18. Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy

    PubMed Central

    Reznicek, Lukas; Kolb, Jan P.; Klein, Thomas; Mohler, Kathrin J.; Wieser, Wolfgang; Huber, Robert; Kernt, Marcus; Märtz, Josef; Neubauer, Aljoscha S.

    2015-01-01

    Purpose. To evaluate the feasibility of wide-field Megahertz (MHz) OCT imaging in patients with diabetic retinopathy. Methods. A consecutive series of 15 eyes of 15 patients with diagnosed diabetic retinopathy were included. All patients underwent Megahertz OCT imaging, a close clinical examination, slit lamp biomicroscopy, and funduscopic evaluation. To acquire densely sampled, wide-field volumetric datasets, an ophthalmic 1050 nm OCT prototype system based on a Fourier-domain mode-locked (FDML) laser source with 1.68 MHz A-scan rate was employed. Results. We were able to obtain OCT volume scans from all included 15 patients. Acquisition time was 1.8 seconds. Obtained volume datasets consisted of 2088 × 1044 A-scans of 60° of view. Thus, reconstructed en face images had a resolution of 34.8 pixels per degree in x-axis and 17.4 pixels per degree. Due to the densely sampled OCT volume dataset, postprocessed customized cross-sectional B-frames through pathologic changes such as an individual microaneurysm or a retinal neovascularization could be imaged. Conclusions. Wide-field Megahertz OCT is feasible to successfully image patients with diabetic retinopathy at high scanning rates and a wide angle of view, providing information in all three axes. The Megahertz OCT is a useful tool to screen diabetic patients for diabetic retinopathy. PMID:26273665

  19. Recent advances in globin research using genome-wide association studies and gene editing.

    PubMed

    Orkin, Stuart H

    2016-03-01

    A long-sought goal in the hemoglobin field has been an improved understanding of the mechanisms that regulate the switch from fetal (HbF) to adult (HbA) hemoglobin during development. With such knowledge, the hope is that strategies for directed reactivation of HbF in adults could be devised as an approach to therapy for the β-hemoglobinopathies thalassemia and sickle cell disease. Recent genome-wide association studies (GWAS) led to identification of three loci (BCL11A, HBS1L-MYB, and the β-globin cluster itself) in which natural genetic variation is correlated with different HbF levels in populations. Here, the central role of BCL11A in control of HbF is reviewed from the perspective of how findings may be translated to gene therapy in the not-too-distant future. This summary traces the evolution of recent studies from the initial recognition of BCL11A through GWAS to identification of critical sequences in an enhancer required for its erythroid-specific expression, thereby highlighting an Achilles heel for genome editing.

  20. Design of a wide-field imaging optical system with super-resolution reconstruction

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Xu, Jie; Wang, Jiaoyang; Chen, Xiaodong; Gong, Rui; Bi, Xiangli

    2015-05-01

    The need for a portable image acquiring system has become as strong as the extension of digital imaging technology, for this, a new mono-centric wide-field optical system is proposed. Recently, some high-resolution and wide-field imaging systems have been raised already, with which fairly clear and wide field of view (FOV) images could be easily obtained, however, their sizes are comparatively too large to be conveniently carried . With ZEMAX, a new optical design is emulated by scaling the structure of current wide-field optical systems and introducing the proposed lens-let arrays, the size of the whole system is comparatively smaller with the structure consisting of a two-glass mono-centric lens, lens-let array (the lenses in the array can be different), and a specific detector. Lens-let array is used to make the image plane from curve to almost flat. This hardware is small enough to apply to helmets and computers and the FOV of which is wide. Verified by a series of merit function, this optical design is found to have an acceptable imaging resolution and the computational imaging method is applied to this system to acquire a higher imaging resolution. From each lens-let a series of low resolution images are obtained and in this system a high-resolution image can be retrieved from multiple low-resolution images with super-resolution reconstruction method. Compared from the size and the imaging resolution, this new optical design is much smaller and has a higher imaging resolution.

  1. Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence

    PubMed Central

    Sarkar, Susanta K.; Bumb, Ambika; Wu, Xufeng; Sochacki, Kem A.; Kellman, Peter; Brechbiel, Martin W.; Neuman, Keir C.

    2014-01-01

    The sensitivity and resolution of fluorescence-based imaging in vivo is often limited by autofluorescence and other background noise. To overcome these limitations, we have developed a wide-field background-free imaging technique based on magnetic modulation of fluorescent nanodiamond emission. Fluorescent nanodiamonds are bright, photo-stable, biocompatible nanoparticles that are promising probes for a wide range of in vitro and in vivo imaging applications. Our readily applied background-free imaging technique improves the signal-to-background ratio for in vivo imaging up to 100-fold. This technique has the potential to significantly improve and extend fluorescent nanodiamond imaging capabilities on diverse fluorescence imaging platforms. PMID:24761300

  2. Single layer retarder with negative dispersion of birefringence and wide field-of-view.

    PubMed

    Hwang, Jiyong; Yang, Seungbin; Choi, Yu-Jin; Lee, Yumin; Jeong, Kwang-Un; Lee, Ji-Hoon

    2016-08-22

    A single layer retarder possessing negative dispersion (ND) of birefringence as well as wide field-of-view (FOV) was long-term objective in optical science. We synthesized new guest reactive monomers with x-shape and mixed them with the host smectic reactive mesogen. The host-guest molecules formed two dimensionally self-organized nanostructure and showed both the ND of birefringence and wide FOV properties. We simulated the antireflection property of a circular polarizer using the optical properties of the retarder. The average reflectance of the retarder was 0.52% which was much smaller than that of the commercial single layer ND retarder 1.83%. PMID:27557268

  3. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging

    NASA Astrophysics Data System (ADS)

    Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.

    2015-12-01

    Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.

  4. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  5. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574312

  6. Miniature wide field-of-view star trackers for spacecraft attitude sensing and navigation

    NASA Technical Reports Server (NTRS)

    Mccarty, William; Curtis, Eric; Hull, Anthony; Morgan, William

    1993-01-01

    Introducing a family of miniature, wide field-of-view star trackers for low cost, high performance spacecraft attitude determination and navigation applications. These devices, derivative of the WFOV Star Tracker Camera developed cooperatively by OCA Applied Optics and the Lawrence Livermore National Laboratory for the Brilliant Pebbles program, offer a suite of options addressing a wide range of spacecraft attitude measurement and control requirements. These sensors employ much wider fields than are customary (ranging between 20 and 60 degrees) to assure enough bright stars for quick and accurate attitude determinations without long integration intervals. The key benefit of this approach are light weight, low power, reduced data processing loads and high information carrier rates for wide ACS bandwidths. Devices described range from the proven OCA/LLNL WFOV Star Tracker Camera (a low-cost, space-qualified star-field imager utilizing the spacecraft's own computer and centroiding and position-finding), to a new autonomous subsystem design featuring dual-redundant cameras and completely self-contained star-field data processing with output quaternion solutions accurate to 100 micro-rad, 3 sigma, for stand-alone applications.

  7. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  8. VizieR Online Data Catalog: MYStIX Wide-Field NIR data: crowded fields (King+, 2013)

    NASA Astrophysics Data System (ADS)

    King, R. R.; Naylor, T.; Broos, P. S.; Getman, K. V.; Feigelson, E. D.

    2014-01-01

    The data were obtained using WFCAM, the IR wide-field camera on UKIRT in Hawaii for 11 regions (DR 21, Eagle Nebula, Lagoon Nebula, M 17, NGC 1893, NGC 2264, NGC 2362, NGC 6334, NGC 6357, Rosette Nebula and the Trifid Nebula). Roughly half the fields were observed as part of the Galactic Plane Survey (GPS; Lucas et al. 2008, Cat. II/316) component of UKIDSS with the remainder being obtained in Director's Discretionary Time (DDT) using identical observing procedures. (1 data file).

  9. Study on advanced nanoscale near-field photolithography.

    PubMed

    Yang, Ching-Been; Chiang, Hsiu-Lu; Huang, Jen-Ching

    2010-01-01

    At present, applying a near-field optical microscope to photolithographic line segment fabrication can only obtain nanoscale line segments of equal cutting depths, and cannot result in 3D shape fabrication. This study proposes an innovative line segment fabrication model of near-field photolithography that adjusts an optical fiber probe's field distance to control the exposure energy density, and moreover constructs an exposure energy density analysis method of the innovative photolithographic line segment fabrication. During the exposure simulation process of the innovative line segment fabrication model of near-field photolithography, the near-field distance between the optical fiber probe and the photoresist surface increases gradually, whereas the exposure energy density distribution decreases gradually. As a result, the cutting depth becomes shallower and the full-width at half maximum (FWHM) increases. The results of this study can serve as a theoretical reference for developing advanced nanoscale near-field photolithography techniques, to which an important and groundbreaking contribution is made.

  10. Wide-field fluorescence molecular tomography with compressive sensing based preconditioning

    PubMed Central

    Yao, Ruoyang; Pian, Qi; Intes, Xavier

    2015-01-01

    Wide-field optical tomography based on structured light illumination and detection strategies enables efficient tomographic imaging of large tissues at very fast acquisition speeds. However, the optical inverse problem based on such instrumental approach is still ill-conditioned. Herein, we investigate the benefit of employing compressive sensing-based preconditioning to wide-field structured illumination and detection approaches. We assess the performances of Fluorescence Molecular Tomography (FMT) when using such preconditioning methods both in silico and with experimental data. Additionally, we demonstrate that such methodology could be used to select the subset of patterns that provides optimal reconstruction performances. Lastly, we compare preconditioning data collected using a normal base that offers good experimental SNR against that directly acquired with optimal designed base. An experimental phantom study is provided to validate the proposed technique. PMID:26713202

  11. Wide field-of-view soft X-ray imaging for solar wind-magnetosphere interactions

    NASA Astrophysics Data System (ADS)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; Read, A. M.; Sembay, S.; Thomas, N. E.

    2016-04-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  12. Wide-field optical coherence tomography based microangiography for retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  13. Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy.

    PubMed

    Heinrich, Christoph; Hofer, Alexander; Ritsch, Andreas; Ciardi, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2008-02-18

    Wide-field Coherent Anti-Stokes Raman Scattering (CARS) microscopy is employed to identify saturated and unsaturated fatty acids in micro-emulsions and cells, using the ratio between the strong -C-H CARS signal at 2850 cm(-1) and the weak signal of the =C-H vibration around 3015 cm(-1) for distinction. Quantitative CARS imaging at the =C-H resonance is challenging, since it yields only a low CARS signal, and small differences on the order of 5% in the concentration of polyunsaturated fatty lipids have to be detected. For this purpose we draw advantage of the high signal-to-noise ratio of wide-field CARS microscopy that is achieved by an excitation geometry involving a "sheet-of-light"-type illumination.

  14. Ground-based complex for detection and investigation of fast optical transients in wide field

    NASA Astrophysics Data System (ADS)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  15. Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy

    PubMed Central

    Shaked, Natan T.; Satterwhite, Lisa L.; Bursac, Nenad; Wax, Adam

    2010-01-01

    We apply wide-field interferometric microscopy techniques to acquire quantitative phase profiles of ventricular cardiomyocytes in vitro during their rapid contraction with high temporal and spatial resolution. The whole-cell phase profiles are analyzed to yield valuable quantitative parameters characterizing the cell dynamics, without the need to decouple thickness from refractive index differences. Our experimental results verify that these new parameters can be used with wide field interferometric microscopy to discriminate the modulation of cardiomyocyte contraction dynamics due to temperature variation. To demonstrate the necessity of the proposed numerical analysis for cardiomyocytes, we present confocal dual-fluorescence-channel microscopy results which show that the rapid motion of the cell organelles during contraction preclude assuming a homogenous refractive index over the entire cell contents, or using multiple-exposure or scanning microscopy. PMID:21258502

  16. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection

    PubMed Central

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-01-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  17. About using wide field lens optics for Space Surveillance Systems in Odessa Astronomical observatory (Ukraine)

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Volkoff, S. K.; Karpenko, G. F.; Titenko, V. V.; Yamnitsky, V. A.; Tkachenko, A. A.

    2007-08-01

    On base results of the observations in Odessa astronomical observatory, is shown obvious fact. The possibility of the using domestic wide field lens optics for monitoring high orbital artificial Earth satellite objects for the calculations elements of orbits. With wide field lens optics "Tair-19 5003", limited magnitude consist 15m.5 per 10 seconds of the accumulation, average square-error (ASE) of the measurements of the coordinates slowly move GSS consist not more than 2 arcsec. Beside 90% measurements has ASE not more 1 arcsec. At surveillance of the area of the equator by width 5° areas 500 deg2 are discovered all 40 active "standing" GSS, 12 passive GSS and 2 high elliptical orbital satellites (HEO). Is shown perspective possibility of the use WFO for monitoring LEO height before of 2 000 km. 90% of 39 object LEO fixed in mode "beam-park" (the still telescope) in current 1 hour, surelay are identified using catalog NORAD.

  18. Wide-field optical coherence tomography based microangiography for retinal imaging

    PubMed Central

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N.; Wang, Ruikang K.

    2016-01-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261

  19. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection.

    PubMed

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-06-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  20. A Precision Metrology System for the Hubble Space Telescope Wide Field Camera 3 Instrument

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2003-01-01

    The Wide Field Camera 3 (WFC3) instrument for the Hubble Space Telescope (HST) will replace the current Wide Field and Planetary Camera 2 (WFPC2). By providing higher throughput and sensitivity than WFPC2, and operating from the near-IR to the near-UV, WFC3 will once again bring the performance of HST above that from ground-based observatories. Crucial to the integration of the WFC3 optical bench is a pair of 2-axis cathetometers used to view targets which cannot be seen by other means when the bench is loaded into its enclosure. The setup and calibration of these cathetometers is described, along with results from a comparison of the cathetometer system with other metrology techniques.

  1. A Precision Metrology System for the Hubble Space Telescope Wide Field Camera 3 Instrument

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2003-01-01

    The Wide Field Camera 3 (WFC3) instrument for the Hubble Space Telescope (HST) will replace the current Wide Field and Planetary Camera 2 (WFPC2). By providing higher throughput and sensitivity than WFPC2, and operating from the near-IR to the near-UV, WFC3 will once again bring the pefiormance of HST above that from ground-based observatories. Crucial to the integration of the WFC3 optical bench is a pair of 2-axis cathetometers used to view targets which cannot be seen by other means when the bench is loaded into its enclosure. The setup and calibration of these cathetometers is described, along with results from a comparison of the cathetometer system with other metrology techniques. Finally, the use of the cathetometers on the flight optical bench and measurement results are given.

  2. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery

    PubMed Central

    Jermyn, Michael; Gosselin, Yoann; Valdes, Pablo A.; Sibai, Mira; Kolste, Kolbein; Mercier, Jeanne; Angulo, Leticia; Roberts, David W.; Paulsen, Keith D.; Petrecca, Kevin; Daigle, Olivier; Wilson, Brian C.; Leblond, Frederic

    2015-01-01

    In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX sensitivity in wide-field fluorescence imaging may improve the residual tumor detection during surgery with consequent impact on survival. PMID:26713218

  3. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    NASA Technical Reports Server (NTRS)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; Kruk, J.; Kuan, G.; Melton, M.; Ruffa, J.; Underhill, M.; Buren, D. Van

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  4. Wide-field fluorescence molecular tomography with compressive sensing based preconditioning.

    PubMed

    Yao, Ruoyang; Pian, Qi; Intes, Xavier

    2015-12-01

    Wide-field optical tomography based on structured light illumination and detection strategies enables efficient tomographic imaging of large tissues at very fast acquisition speeds. However, the optical inverse problem based on such instrumental approach is still ill-conditioned. Herein, we investigate the benefit of employing compressive sensing-based preconditioning to wide-field structured illumination and detection approaches. We assess the performances of Fluorescence Molecular Tomography (FMT) when using such preconditioning methods both in silico and with experimental data. Additionally, we demonstrate that such methodology could be used to select the subset of patterns that provides optimal reconstruction performances. Lastly, we compare preconditioning data collected using a normal base that offers good experimental SNR against that directly acquired with optimal designed base. An experimental phantom study is provided to validate the proposed technique.

  5. Electrowetting liquid lens array on curved substrates for wide field of view image sensor

    NASA Astrophysics Data System (ADS)

    Bang, Yousung; Lee, Muyoung; Won, Yong Hyub

    2016-03-01

    In this research, electrowetting liquid lens array on curved substrates is developed for wide field of view image sensor. In the conventional image sensing system, this lens array is usually in the form of solid state. However, in this state, the lens array which is similar to insect-like compound eyes in nature has several limitations such as degradation of image quality and narrow field of view because it cannot adjust focal length of lens. For implementation of the more enhanced system, the curved array of lenses based on electrowetting effect is developed in this paper, which can adjust focal length of lens. The fabrication of curved lens array is conducted upon the several steps, including chamber fabrication, electrode & dielectric layer deposition, liquid injection, and encapsulation. As constituent materials, IZO coated convex glass, UV epoxy (NOA 68), DI water, and dodecane are used. The number of lenses on the fabricated panel is 23 by 23 and each lens has 1mm aperture with 1.6mm pitch between adjacent lenses. When the voltage is applied on the device, it is observed that each lens is changed from concave state to convex state. From the unique optical characteristics of curved array of liquid lenses such as controllable focal length and wide field of view, we can expect that it has potential applications in various fields such as medical diagnostics, surveillance systems, and light field photography.

  6. Wide-field Monitoring of the Galactic Plane in the K- and the H-band

    NASA Astrophysics Data System (ADS)

    Yanagisawa, K.; Nakada, Y.; Izumiura, H.; Watanabe, E.; Shimizu, Y.; Okada, N.; Okita, K.; Norimoto, K.; Okata, T.; Koyano, H.; Yoshida, M.

    The Okayama Astrophysical Observatory of NAOJ started the monitoring program of mass-losing AGB stars using an imaging camera named Okayama Astrophysical Observatory Wide Field Camera. The fast optics yields a field of view of 1¡ß1 deg2 and the pixel resolution of 2 arcsec at the focus of the 91-cm telescope. A HAWAII2 array will be installed inside the camera reaching the limiting magnitude of K=13 with a 45-s exposure. In 2003 the monitoring will start covering the Galactic plane from l=0 to 270 deg every three weeks.

  7. Hubble Space Telescope: Wide field and planetary camera instrument handbook. Version 2.1

    NASA Technical Reports Server (NTRS)

    Griffiths, Richard (Editor)

    1990-01-01

    An overview is presented of the development and construction of the Wide Field and Planetary Camera (WF/PC). The WF/PC is a duel two dimensional spectrophotometer with rudimentary polarimetric and transmission grating capabilities. The instrument operates from 1150 to 11000 A with a resolution of 0.1 arcsec per pixel or 0.043 arcsec per pixel. Data products and standard calibration methods are briefly summarized.

  8. Wide-field vibrational phase imaging in an extremely folded box-CARS scattering geometry.

    PubMed

    Berto, Pascal; Jesacher, Alexander; Roider, Clemens; Monneret, Serge; Rigneault, Hervé; Ritsch-Marte, Monika

    2013-03-01

    We present a method that allows one to measure the real and imaginary parts of the third-order susceptibility in a wide-field coherent anti-Stokes Raman scattering setup using a quadriwave lateral shearing interferometer. This permits the retrieval of the undistorted Raman spectrum and the removal of a nonresonant signal from the surrounding solvent, which otherwise may overwhelm weak resonances. PMID:23455273

  9. The Method of Measurements of Celestial Coordinates in Wide-Field TV-Frames

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna P.

    2012-06-01

    We present a method for calculations of equatorial coordinates of any point in the single frame of the wide-field TV systems. This method can be applying for the different television systems [wide-field cameras, all-sky cameras, the cameras with the hybrid TV-system (the system with coupled of the Image Intensifier) et al.]. In that system the calculations of distortions are difficult. Therefore, we devised this method which helps decrease errors (due to distortion and the electro-optical system).The method can be used for measuring of equatorial coordinates of meteor tracks under difficult conditions during the observations such as partial cloudiness, small number of stars and large distortions of the coordinate grid in the frame. These restrictions cannot be overcome by other methods. In the case of the small number of stars the present method using of the reference stars received on a series of frames during the observation period. The accuracy of the method has been estimated to be 4'-8' (for cameras with fov 50° × 40° at the CCD 720 × 576 pixels) for maximum number of reference points in the frame. The method used 3 reference points for calculation of the equatorial coordinates of the object. One can use this method if the camera was re-oriented as well. We use this method for our wide field of view cameras.

  10. Wide-field four-channel fluorescence imager for biological applications

    NASA Astrophysics Data System (ADS)

    Thakur, Madhuri; Melnik, Dmitry; Barnett, Heather; Daly, Kevin; Moran, Christine H.; Chang, Wei-Shun; Link, Stephan; Bucher, Christopher Theodore; Kittrell, Carter; Curl, Robert

    2010-03-01

    A wide-field four-channel fluorescence imager has been developed. The instrument uses four expanded laser beams to image a large section (6 mm×9 mm). An object can be sequentially illuminated with any combination of 408-, 532-, 658-, and 784-nm lasers for arbitrary (down to 1 ms) exposure times for each laser. Just two notch filters block scattered light from all four lasers. The design approach described here offers great flexibility in treatment of objects, very good sensitivity, and a wide field of view at low cost. There appears to be no commercial instrument capable of simultaneous fluorescence imaging of a wide field of view with four-laser excitation. Some possible applications are following events such as flow and mixing in microchannel systems, the transmission of biological signals across a culture, and following simulations of biological membrane diffusion. It can also be used in DNA sequencing by synthesis to follow the progress of the photolytic removal of dye and terminator. Without utilizing its time resolution, it can be used to obtain four independent images of a single tissue section stained with four targeting agents, with each coupled to a different dye matching one of the lasers.

  11. Monitoring with high temporal resolution to search for optical transients in the wide field

    NASA Astrophysics Data System (ADS)

    Beskin, Grigory; Bondar, Sergey; Ivanov, Evgeny; Karpov, Sergey; Katkova, Elena; Pozanenko, Alexei; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Greco, Giuseppe; Molinari, Emilio; Covino, Stefano

    2008-02-01

    In order to detect and investigate short stochastic optical flares from a number of variable astrophysical objects (GRBs, SNs, flare stars, CVs, X-Ray binaries) of unknown localizations as well as near-earth objects (NEOs), both natural and artificial, it is necessary to perform the systematic monitoring of large regions of the sky with high temporal resolution. Here we describe the design of a system able to perform such a task, which consists of a wide-field camera with high time resolution able to detect and classify the transient events on a subsecond time scale, and a fast robotic telescope aimed to perform their detailed investigation. In a last few years we've created the prototype FAVOR wide-field camera, placed at North Caucasus near Russian 6-m telescope, and a complete two-telescope complex TORTOREM, combining TORTORA wide-field camera with REM robotic telescope and placed at La Silla ESO observatory. Its technical parameters and first results of operation are described.

  12. Wide field fluorescence imaging in narrow passageways using scanning fiber endoscope technology

    NASA Astrophysics Data System (ADS)

    Lee, Cameron M.; Chandler, John E.; Seibel, Eric J.

    2010-02-01

    An ultrathin scanning fiber endoscope (SFE) has been developed for high resolution imaging of regions in the body that are commonly inaccessible. The SFE produces 500 line color images at 30 Hz frame rate while maintaining a 1.2-1.7 mm outer diameter. The distal tip of the SFE houses a 9 mm rigid scan engine attached to a highly flexible tether (minimum bend radius < 8 mm) comprised of optical fibers and electrical wires within a protective sheath. Unlike other ultrathin technologies, the unique characteristics of this system have allowed the SFE to navigate narrow passages without sacrificing image quality. To date, the SFE has been used for in vivo imaging of the bile duct, esophagus and peripheral airways. In this study, the standard SFE operation was tailored to capture wide field fluorescence images and spectra. Green (523 nm) and blue (440 nm) lasers were used as illumination sources, while the white balance gain values were adjusted to accentuate red fluorescence signal. To demonstrate wide field fluorescence imaging of small lumens, the SFE was inserted into a phantom model of a human pancreatobiliary tract and navigated to a custom fluorescent target. Both wide field fluorescence and standard color images of the target were captured to demonstrate multimodal imaging.

  13. Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Maruyama, Yuta; Suzuki, Takamasa; Nin, Fumiaki; Hibino, Hiroshi; Sasaki, Osami

    2015-12-01

    Conventional laser Doppler vibrometry and heterodyne interferometry suffer during the simultaneous measurement of the spatial distribution of vibration parameters such as the amplitude, frequency and phase in a wide field of view. Although demand is increasing for methods that can measure vibrations over a wide field of view for a wide range of applications from industrial product inspections to biological measurements, full-field (FF) techniques for high-speed vibration measurements without a spatial scan are untapped. We propose a new method for high-speed FF vibration measurement that can easily be combined with profilometry and tomographic interferometry using a conventional CCD or CMOS camera. In principle, the measurable vibration frequency is unrestricted because the heterodyne signal produced by the modulated interferogram can be controlled to accommodate the CCD frame rate. The validity of the proposed method and the measurement accuracy of the spatial vibration amplitude were evaluated through simulations and experiments. In experiments, the spatial vibration parameters of a mirror vibrated at a frequency of 1 kHz and amplitude of approximately 5-65 nm were successfully measured with a spatial fluctuation of 3%-6.5%.

  14. Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei

    2014-06-01

    Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs.

  15. KOALA: a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Ireland, M.; Lawrence, J. S.; Tims, J.; Staszak, N.; Brzeski, J.; Parker, Q. A.; Sharp, R.; Bland-Hawthorn, J.; Case, S.; Colless, M.; Croom, S.; Couch, W.; De Marco, O.; Glazebrook, K.; Saunders, W.; Webster, R.; Zucker, D. B.

    2012-09-01

    KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000 fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial sampling of 1.25" or 0.7" respectively. To achieve this KOALA will use a telecentric double lenslet array with interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is expected to be ≍ 52% at 3700A and ≍ 66% at 6563°Å with a throughput of > 52% over the entire wavelength range.

  16. TMT-AGE: wide field of regard multi-object adaptive optics for TMT

    NASA Astrophysics Data System (ADS)

    Akiyama, Masayuki; Oya, Shin; Ono, Yoshito H.; Takami, Hideki; Ozaki, Shinobu; Hayano, Yutaka; Iwata, Ikuru; Hane, Kazuhiro; Wu, Tong; Yamamuro, Tomoyasu; Ikeda, Yuji

    2014-07-01

    We introduce current status of the feasibility study on a wide field of regard (FoR) Multi-Object Adaptive Optics (MOAO) system for TMT (TMT-AGE: TMT-Analyzer for Galaxies in the Early universe). MOAO is a system which realize high spatial-resolution observations of multiple objects scattered in a wide FoR. In this study, we put emphasise on the FoR as wide as 10' diameter. The wide FoR is crucial to effectively observe very high-redshift galaxies, which have low surface number density. Simulations of an MOAO system with 8 LGSs show close-to-diffraction-limited correction can be achieved within 5' diameter FoR and moderate AO correction can be achieved within 10' diameter FoR. We discuss overall system design of the wide FoR MOAO system considering the constraint from the stroke of small-size deformable mirror (DM). We also introduce current status of developments of key components of an MOAO system; high-dynamic range wavefront sensor (WFS) and large-stroke small-size DM, and real time computer (RTC) with fast tomographic reconstruction.

  17. The Wide Field Imager of the International X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Stefanescu, A.; Bautz, M. W.; Burrows, D. N.; Bombelli, L.; Fiorini, C.; Fraser, G.; Heinzinger, K.; Herrmann, S.; Kuster, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Meuris, A.; Murray, S. S.; Porro, M.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Strüder, L.; Treis, J.; Tsunemi, H.; de Vita, G.; Wilms, J.

    2010-12-01

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m 2 at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ft×18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024×1024 pixels of 100×100 μm2 size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  18. The 64 Mpixel wide field imager for the Wendelstein 2m telescope: design and calibration

    NASA Astrophysics Data System (ADS)

    Kosyra, Ralf; Gössl, Claus; Hopp, Ulrich; Lang-Bardl, Florian; Riffeser, Arno; Bender, Ralf; Seitz, Stella

    2014-11-01

    The Wendelstein Observatory of Ludwig Maximilians University of Munich has recently been upgraded with a modern 2m robotic telescope. One Nasmyth port of the telescope has been equipped with a wide-field corrector which preserves the excellent image quality (<0.8 " median seeing) of the site (Hopp et al. 2008) over a field of view of 0.7 degrees diameter. The available field is imaged by an optical imager (WWFI, the Wendelstein Wide Field Imager) built around a customized 2×2 mosaic of 4 k×4 k 15 μm e2v CCDs from Spectral Instruments. This paper provides an overview of the design and the WWFI's performance. We summarize the system mechanics (including a structural analysis), the electronics (and its electromagnetic interference (EMI) protection) and the control software. We discuss in detail detector system parameters, i.e. gain and readout noise, quantum efficiency as well as charge transfer efficiency (CTE) and persistent charges. First on sky tests yield overall good predictability of system throughput based on lab measurements.

  19. Prototyping results for a wide-field fiber positioner for the Giant Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; McGrath, Andrew J.

    2004-07-01

    Given the physical size of the GSMT prime focus field is approximately equivalent to that of the Subaru telescope it is possible to directly apply current technology developed for the Fiber Multi-Object Spectrograph instrument (FMOS, to be commissioned in 2005) and substantially reduce the risk associated with developing a new solution for wide-field multi-object spectroscopy on an ELT. The Anglo-Australian Observatory has recently completed a design study for an ~1000 fiber, Echidna-style positioner for the prime focus of the Giant Segmented Mirror Telescope (GSMT). The positioner forms part of the wide-field Multi-Object Multi-Fiber Optical Spectrograph (MOMFOS), an ELT prime focus instrument offering a minimum of 800 fibers patrolling the corrected 20 arcmin field. The design study identified 2 components of an equivalent MOMFOS positioner design that required prototyping. Firstly, a higher spine packing density is required to satisfy the proposed scientific program. Secondly, the fiber position measurement system adopted for FMOS cannot be simply scaled and applied to MOMFOS given space constraints in the top end unit. As such a new and, if possible, simpler system was required. Prototyping results for both components are presented.

  20. Current status of the Hobby-Eberly Telescope wide field upgrade and VIRUS

    NASA Astrophysics Data System (ADS)

    Savage, Richard D.; Booth, John A.; Gebhardt, Karl; Good, John M.; Hill, Gary J.; MacQueen, Phillip J.; Rafal, Marc D.; Smith, Michael P.; Vattiat, Brian L.

    2008-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope of 9.2 meter aperture, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker which moves the fourmirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will substantially increase the field of view by replacing the corrector, tracker and prime focus instrument package. In addition to supporting the existing suite of instruments, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). This paper discusses the current status of this upgrade.

  1. Current status of the Hobby-Eberly Telescope wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Savage, Richard; Booth, John; Cornell, Mark; Good, John; Hill, Gary J.; Lee, Hanshin; MacQueen, Phillip; Rafal, Marc; Vattiat, Brian; Gebhardt, Karl; Beno, Joseph; Zierer, Joseph; Perry, Dave; Rafferty, Tom; Ramiller, Chuck; Taylor, Charles, III; Beets, Timothy; Hayes, Richard; Heisler, James; Hinze, Sarah; Soukup, Ian; Jackson, John; Mock, Jason; Worthington, Michael; Mollison, Nicholas; Molina, Omar; South, Brian; Wardell, Douglas; Wedeking, Gregory

    2010-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope of 9.2 meter aperture, located in West Texas at the McDonald Observatory (MDO). The HET operates with a fixed segmented primary and has a tracker which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will increase the pupil size to 10 meters and the field of view to 22' by replacing the corrector, tracker and prime focus instrument package. In addition to supporting the existing suite of instruments, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX‡). This paper discusses the current status of this upgrade.

  2. Current status of the Hobby-Eberly Telescope wide field upgrade

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Booth, John A.; Cornell, Mark E.; Good, John M.; Gebhardt, Karl; Kriel, Herman J.; Lee, Hanshin; Leck, Ron; Moreira, Walter; MacQueen, Phillip J.; Perry, Dave M.; Rafal, Marc D.; Rafferty, Tom H.; Ramiller, Chuck; Savage, Richard D.; Taylor, Charles A.; Vattiat, Brian L.; Ramsey, Lawrence W.; Beno, Joseph H.; Beets, Timothy A.; Esguerra, Jorge D.; Häuser, Marco; Hayes, Richard J.; Heisler, James T.; Soukup, Ian M.; Zierer, Joseph J.; Worthington, Michael S.; Mollison, Nicholas T.; Wardell, Douglas R.; Wedeking, Gregory A.

    2012-09-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope of 9.2 meter aperture, located in West Texas at the McDonald Observatory (MDO). The HET operates with a fixed segmented primary and has a tracker which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will increase the pupil size to 10 meters and the field of view to 22' by replacing the corrector, tracker and prime focus instrument package. In addition to supporting the existing suite of instruments, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEXχ). This paper discusses the current status of this upgrade.

  3. The Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and Its Extension OMEGAWINGS

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W.; D'Onofrio, M.; Dressler, A.; Fritz, J.; Kjaergaard, P.; Gullieuszik, M.; Moles, M.; Moretti, A.; Omizzolo, A.; Paccagnella, A.; Varela, J.; Vulcani, B.

    WINGS is a wide-field multi-wavelength survey of 76 X-ray selected clusters at low redshift. The WINGS database has been used for a variety of cluster and cluster galaxy studies, investigating galaxy star formation, morphologies, structure, stellar mass functions and other properties. We present the recent wider-field extension of WINGS, OMEGAWINGS, conducted with OmegaCAM@VST and AAOmega@AAT. We show two of our latest results regarding jellyfish galaxies and galaxy sizes. OMEGAWINGS has allowed the first systematic search of galaxies with signs of ongoing ram pressure stripping (jellyfishes), yielding a catalog of ˜ 240 galaxies in 41 clusters. We discuss the first results obtained from this sample and the prospects for integral field data. Finally, we summarize our results regarding the discovery of compact massive galaxies at low redshift, their properties, dependence on environment and the implications for the evolution of galaxy sizes from high- to low-z.

  4. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  5. Characterization of spatially varying aberrations for wide field-of-view microscopy

    PubMed Central

    Zheng, Guoan; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2013-01-01

    We describe a simple and robust approach for characterizing the spatially varying pupil aberrations of microscopy systems. In our demonstration with a standard microscope, we derive the location-dependent pupil transfer functions by first capturing multiple intensity images at different defocus settings. Next, a generalized pattern search algorithm is applied to recover the complex pupil functions at ~350 different spatial locations over the entire field-of-view. Parameter fitting transforms these pupil functions into accurate 2D aberration maps. We further demonstrate how these aberration maps can be applied in a phase-retrieval based microscopy setup to compensate for spatially varying aberrations and to achieve diffraction-limited performance over the entire field-of-view. We believe that this easy-to-use spatially-varying pupil characterization method may facilitate new optical imaging strategies for a variety of wide field-of-view imaging platforms. PMID:23842300

  6. Wide field x-ray telescopes: Detecting x-ray transients/afterglows related to GRBs

    SciTech Connect

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul

    1998-05-16

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited fields of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70's but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster-eye type are presented and discussed. The optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed.

  7. All-spherical catadioptric telescope design for wide-field imaging.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2010-10-20

    The current trend in building medium-size telescopes for wide-field imaging is to use a Ritchey-Chrétien (RC) design with a multilens corrector near the focus. Our goal is to find a cost-effective alternative design to the RC system for seeing-limited observations. We present an f/4.5 all-spherical catadioptric system with a 1.5° field of view. The system consists of a 0.8 m spherical primary and 0.4 m flat secondary mirror combined with a meniscus lens and followed by a three-lens field corrector. The optical performance is comparable to an equivalent f/4.5 RC system. We conclude that, for telescopes with apertures up to 2 m, the catadioptric design is a good alternative to the RC system. PMID:20962933

  8. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  9. Fractionated Wide-Field Radiation Therapy Followed by Fractionated Local-Field Irradiation for Treating Widespread Painful Bone Metastasis

    SciTech Connect

    Ki, Yongkan; Kim, Wontaek; Nam, Jiho; Kim, Donghyun; Jeon, Hosang; Park, Dahl; Kim, Dongwon

    2011-01-01

    Purpose: Wide-field radiation therapy (WFRT) is an effective treatment for widespread bone metastasis. We evaluated local-field irradiation (LFI) after fractionated WFRT (f-WFRT) for treating the patients with multiple painful bone lesions. Methods and Materials: From 1998 to 2007, 32 patients with multiple bone metastases were treated with fractionated LFI (f-LFI) after f-WFRT. All patients initially received 15 Gy in 5 fractions to a wide field, followed by LFI (9-15 Gy in 3 Gy fractions). Response was assessed by evaluating the degree of pain relief using a visual analog scale before radiotherapy, after f-WFRT, and after f-LFI. Results: Fractionated LFI following f-WFRT yielded an overall relief rate of 93.8% and a complete relief rate of 43.8%. The rate of the appearance of new disease was 6.3% for the patients with complete relief, 20.5% for the patients with a partial relief, and 50% for the patients with no relief. Conclusion: Fractionated LFI after f-WFRT is a well-tolerated and effective treatment for multiple metastatic bone disease.

  10. Recent Advance in Organic Spintronics and Magnetic Field Effect

    NASA Astrophysics Data System (ADS)

    Valy Vardeny, Z.

    2013-03-01

    In this talk several important advances in the field of Organic Spintronics and magnetic field effect (MFE) of organic films and optoelectronic devices that have occurred during the past two years from the Utah group will be surveyed and discussed. (i) Organic Spintronics: We demonstrated spin organic light emitting diode (spin-OLED) using two FM injecting electrodes, where the electroluminescence depends on the mutual orientation of the electrode magnetization directions. This development has opened up research studies into organic spin-valves (OSV) in the space-charge limited current regime. (ii) Magnetic field effect: We demonstrated that the photoinduced absorption spectrum in organic films (where current is not involved) show pronounced MFE. This unravels the underlying mechanism of the MFE in organic devices, to be more in agreement with the field of MFE in Biochemistry. (iii) Spin effects in organic optoelectronic devices: We demonstrated that certain spin 1/2 radical additives to donor-acceptor blends substantially enhance the power conversion efficiency of organic photovoltaic (OPV) solar cells. This effect shows that studies of spin response and MFE in OPV devices are promising. In collaboration with T. Nguyen, E. Ehrenfreund, B. Gautam, Y. Zhang and T. Basel. Supported by the DOE grant 04ER46109 ; NSF Grant # DMR-1104495 and MSF-MRSEC program DMR-1121252 [2,3].

  11. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  12. A Wide Field Auroral Imager (WFAI) for low Earth orbit missions

    NASA Astrophysics Data System (ADS)

    Bannister, N. P.; Bunce, E. J.; Cowley, S. W. H.; Fairbend, R.; Fraser, G. W.; Hamilton, F. J.; Lapington, J. S.; Lees, J. E.; Lester, M.; Milan, S. E.; Pearson, J. F.; Price, G. J.; Willingale, R.

    2007-03-01

    A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI).

  13. Advanced Use of Wolrd-Wide Web in the Online System of Delphi

    NASA Astrophysics Data System (ADS)

    DöNszelmann, M.; Carvalho, D.; Mundim, L. M.; Du, S.; Rodden, K.; TennebØ, F.

    The World-Wide Web technology is used by the DELPHI experiment at CERN to provide easy access to information of the `On-line System'. WWW technology on both client and server side is used in five different projects. The World-Wide Web has its advantages concerning the network technology, the practical user interface and its scalability. It however also demands a stateless protocol and format negotiation.

  14. Wide-field MAXI: soft x-ray transient monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki; Tomida, Hiroshi; Yatsu, Yoichi; Mihara, Tatehiro; Ueno, Shiro; Kimura, Masashi; Arimoto, Makoto; Serino, Motoko; Sakamoto, Takanori; Tsunemi, Hiroshi; Kohmura, Takayoshi; Negoro, Hitoshi; Ueda, Yoshihiro; Morii, Mikio; Tsuboi, Yoko; Ebisawa, Ken; Yoshida, Atsumasa

    2014-07-01

    WF-MAXI is a soft X-ray transient monitor proposed for the ISS/JEM. Unlike MAXI, it will always cover a large field of view (20 % of the entire sky) to detect short transients more efficiently. In addition to the various transient sources seen by MAXI, we hope to localize X-ray counterparts of gravitational wave events, expected to be directly detected by Advanced-LIGO, Virgo and KAGRA in late 2010's. The main instrument, the Soft X-ray Large Solid Angle Cameras (SLC) is sensitive in the 0.7-12 keV band with a localization accuracy of ~ 0:1°. The Hard X-ray Monitor (HXM) covers the same sky field in the 20 keV-1 MeV band.

  15. A wide field-of-view microscope based on holographic focus grid

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei

    2010-02-01

    We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.

  16. Photometric redshifts for the CFHTLS T0004 deep and wide fields

    NASA Astrophysics Data System (ADS)

    Coupon, J.; Ilbert, O.; Kilbinger, M.; McCracken, H. J.; Mellier, Y.; Arnouts, S.; Bertin, E.; Hudelot, P.; Schultheis, M.; Le Fèvre, O.; Le Brun, V.; Guzzo, L.; Bardelli, S.; Zucca, E.; Bolzonella, M.; Garilli, B.; Zamorani, G.; Zanichelli, A.; Tresse, L.; Aussel, H.

    2009-06-01

    Aims: We compute photometric redshifts in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u^*, g', r', i', z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three wide fields. Methods: We used a template-fitting method to compute photometric redshifts calibrated with a large catalogue of 16 983 high-quality spectroscopic redshifts from the VVDS-F02, VVDS-F22, DEEP2, and the zCOSMOS surveys. The method includes correction of systematic offsets, template adaptation, and the use of priors. We also separated stars from galaxies using both size and colour information. Results: Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σΔ z/(1+z_s), of 0.028-0.30 and an outlier rate, |Δ z| ≥ 0.15× (1+z_s), of 3-4% in the deep field at i'_AB < 24. In the wide fields, we find a dispersion of 0.037-0.039 and an outlier rate of 3-4% at i'_AB < 22.5. Beyond i'_AB = 22.5 in the wide fields the number of outliers rises from 5% to 10% at i'_AB < 23 and i'_AB < 24, respectively. For the wide sample the systematic redshift bias stays below 1% to i'_AB < 22.5, whereas we find no significant bias in the deep fields. We investigated the effect of tile-to-tile photometric variations and demonstrated that the accuracy of our photometric redshifts is reduced by at most 21%. Application of our star-galaxy classifier reduced the contamination by stars in our catalogues from 60% to 8% at i'_AB < 22.5 in our field with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release includes 592891 (i'_AB < 22.5) and 244701 (i'_AB < 24) reliable galaxy photometric redshifts in the wide and deep fields, respectively. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is

  17. New wide field camera for Subaru Telescope: Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Miyazaki, Satoshi

    2015-08-01

    Hyper Suprime-Cam (HSC) is a new wide field optical imaging camera built for 8.2 m Subaru telescope. The field of view is 1.5 degree in diameter and the nearly 50 cm image circle was paved by 116 fully depleted CCDs (2k x 4k 15 micron square pixels). To realize a seeing limit imaging at Mauna Kea, the specification on the overall instrument PSF is set as 0.32 arc-second (FWHM). This is crucial for our primary scientific objectives: weak gravitational lensing survey to probe dark matter distribution. We started building the camera in 2006 and had a first light in 2012. The delivered image quality turned out to be mostly seeing limited as designed. We once observed the seeing size of 0.43 arc-second (median value over the field of view) in Y-band with 300 seconds exposure. Our 300 nights observing proposal has been accepted. The program started in March 2014 and continues over 5 years. The wide survey plans to cover 1,400 square degree with the limiting magnitude of i_AB = 26 (5 sigma, 2 arcsec aperture). General observer programs are carried out in parallel. In this talk, we will present the design and the actual performance of the camera as well as how we implement the massive (1.6 GByte/exposure) data management system.

  18. Outer density profiles of 19 Galactic globular clusters from deep and wide-field imaging

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Gieles, Mark; Sollima, Antonio; Koposov, Sergey; Martínez-Delgado, David; Peñarrubia, Jorge

    2012-01-01

    Using deep photometric data from Wide Field Camera at the Isaac Newton Telescope and Wide Field Imager at the ESO 2.2-m telescope we measure the outer number density profiles of 19 stellar clusters located in the inner region of the Milky Way halo (within a Galactocentric distance range of 10-30 kpc) in order to assess the impact of internal and external dynamical processes on the spatial distribution of stars. Adopting power-law fitting templates, with index -γ in the outer region, we find that the clusters in our sample can be divided in two groups: a group of massive clusters (≥105 M⊙) that has relatively flat profiles with 2.5 < γ < 4, and a group of low-mass clusters (≤105 M⊙), with steep profiles (γ > 4) and clear signatures of interaction with the Galactic tidal field. We refer to these two groups as 'tidally unaffected' and 'tidally affected', respectively. Our results also show a clear trend between the slope of the outer parts and the half-mass density of these systems, which suggests that the outer density profiles may retain key information on the dominant processes driving the dynamical evolution of globular clusters.

  19. Microlensing Surveys of M31 in the Wide Field Imaging ERA

    SciTech Connect

    Baltz, E.

    2004-10-27

    The Andromeda Galaxy (M31) is the closest large galaxy to the Milky Way, thus it is an important laboratory for studying massive dark objects in galactic halos (MACHOs) by gravitational microlensing. Such studies strongly complement the studies of the Milky Way halo using the Large and Small Magellanic Clouds. We consider the possibilities for microlensing surveys of M31 using the next generation of wide field imaging telescopes with fields of view in the square degree range. We consider proposals for such imagers both on the ground and in space. For concreteness, we specialize to the SNAP proposal for a space telescope and the LSST proposal for a ground based telescope. We find that a modest space-based survey of 50 visits of one hour each is considerably better than current ground based surveys covering 5 years. Crucially, systematic effects can be considerably better controlled with a space telescope because of both the infrared sensitivity and the angular resolution. To be competitive, 8 meter class wide-field ground based imagers must take exposures of several hundred seconds with several day cadence.

  20. Wide-field x-ray imaging for future missions, including XEUS

    NASA Astrophysics Data System (ADS)

    Conconi, Paolo; Pareschi, Giovanni; Campana, Sergio; Chincarini, Guido; Tagliaferri, Gianpiero

    2004-02-01

    It is well known that the Wolter I design for focusing X-ray telescopes provides perfect on-axis images, while, despite the absence of spherical aberration, the off-axis angular resolution rapidly degrades because of coma, field curvature and astigmatism. However, more general mirror designs than Wolter's exist in which primary and secondary mirror profiles can be described by polynomial equations. These power series solutions are particularly well indicated to be optimized, in order to achieve high imaging performances even at large off-axis incidence angles, despite a small degradation of the on-axis response. The concept, derived from the Ritchey-Chretien telescope widely used in optical astronomy, has already been experimentally proven for X-ray astronomical applications at the Brera Astronomical Observatory (Italy), in the context of the feasibility study of the Wide Field X-ray Telescope mission. Here we present a new design (including a model for slope errors and mechanical tolerances) for a X-ray telescope of medium-size class assuming monolithic mirror shells made of glass, optimized to have a Half Energy Width better than 5 arcsec over a 30 arcmin field of view (radius) and an effective area almost twice that one of Chandra. The use of polynomial mirrors seems extremely well suited also for the case of the XEUS optics. Indeed, the small aspect-ratio between the large focal length of the XEUS telescope (50 m) and the total mirror height (1 m) makes it very favorable to diminish the aberration effects due to the field curvature. With the assumption of mirror shells with polynomial profile it would be possible to achieve for XEUS an imaging response almost constant up to a field of view of 20 arcmin in radius.

  1. Palm-size wide-field Fourier spectroscopic imager with uncooled infrared microbolometer arrays for smartphone

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Suzuki, Yo; Qi, Wei; Hosono, Satsuki; Saito, Tsubasa; Ogawa, Satoshi; Sato, Shun; Fujiwara, Masaru; Nishiyama, Akira; Wada, Kenji; Tanaka, Naotaka; Ishimaru, Ichiro

    2015-03-01

    We proposed the imaging-type 2-dimensional Fourier spectroscopy that is a near-common-path interferometer with strong robustness against mechanical vibrations. We introduced the miniature uncooled infrared microbolometer arrays for smartphone (e.g. product name: FILR ONE price: around 400USD). And we constructed the phase-shifter with the piezo impact drive mechanism (maker: Technohands.co.Ltd., stroke: 4.5mm, resolution: 0.01μm, size: 20mm, price: around 800USD). Thus, we realized the palm-size mid-infrared spectroscopic imager [size: L56mm×W69mm×H43mm weight: 500g]. And by using wide-angle lens as objective lens, the proposed method can obtain the wide-field 2- dimensional middle-infrared (wavelength: 7.5-13.5[μm]) spectroscopic imaging of radiation lights emitted from human bodies itself

  2. Readout electronics for the Wide Field of view Cherenkov/Fluorescence Telescope Array

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, S.; Zhang, Y.; Zhou, R.; Bai, L.; Zhang, J.; Huang, J.; Yang, C.; Cao, Z.

    2015-08-01

    The aim of the Large High Altitude Air Shower Observatory (LHAASO), supported by IHEP of the Chinese Academy of Sciences, is a multipurpose project with a complex detectors array for high energy gamma ray and cosmic ray detection. The Wide Field of view Cherenkov Telescope Array (WFCTA), as one of the components of the LHAASO project, aim to tag each primary particle that causes an air shower. The WFCTA is a portable telescope array used to detect cosmic ray spectra. The design of the readout electronics of the WFCTA is described in this paper Sixteen photomultiplier tubes (PMTs), together with their readout electronics are integrated into a single sub-cluster. To maintain good resolution and linearity over a wide dynamic range, a dual-gain amplification configuration on an analog board is used The digital board contains two 16channel 14-bit, 50 Msps analog-to-digital converters (ADC) and its power consumption, noise level, and relative deviation are all tested.

  3. Optical/NIR Imaging of AKARI NEP-Wide Survey Field

    NASA Astrophysics Data System (ADS)

    Jeon, Y.; Im, M.; Kang, E.; Lee, I.; Ibrahimov, M.

    2009-12-01

    We describe the characteristics of optical and NIR imaging data of the NEP-Wide field in B, R, I, J and H band filters. The NEP-Wide is an AKARI survey of the North Ecliptic Pole covering 5.8 deg2 area. Our optical/NIR imaging observation supports the AKARI’s IR imaging data by providing a crucial coverage in optical/NIR. The optical data were obtained at Maidanak Observatory in Uzbekistan using the 1.5m telescope and the Seoul National University’s 4k×4k CCD. The NIR data were obtained using FLAMINGOS on KPNO 2.1m telescope. We present the astrometric accuracy, galaxy number counts and completeness. The photometric data will be used for identifying optical counterparts of the IR data provided by AKARI, studying their SEDs and the selection of interesting objects for spectroscopic follow-up studies.

  4. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography

    PubMed Central

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    This paper presents a method to simultaneously acquire an aberration-corrected, wide field-of-view fluorescence image and a high-resolution coherent bright-field image using a computational microscopy method. First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff spatial frequency of the microscope objective lens. At the same time, redundancy within the set of acquired FPM bright-field images offers a means to estimate microscope aberrations. Second, the procedure acquires an aberrated fluorescence image, and computationally improves its resolution through deconvolution with the estimated aberration map. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by up to 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of at least ~18. PMID:26977345

  5. Wide-field retinotopy defines human cortical visual area v6.

    PubMed

    Pitzalis, Sabrina; Galletti, Claudio; Huang, Ruey-Song; Patria, Fabiana; Committeri, Giorgia; Galati, Gaspare; Fattori, Patrizia; Sereno, Martin I

    2006-07-26

    The retinotopic organization of a newly identified visual area near the midline in the dorsalmost part of the human parieto-occipital sulcus was mapped using high-field functional magnetic resonance imaging, cortical surface-based analysis, and wide-field retinotopic stimulation. This area was found in all 34 subjects that were mapped. It represents the contralateral visual hemifield in both hemispheres of all subjects, with upper fields located anterior and medial to areas V2/V3, and lower fields medial and slightly anterior to areas V3/V3A. It contains a representation of the center of gaze distinct from V3A, a large representation of the visual periphery, and a mirror-image representation of the visual field. Based on similarity in position, visuotopic organization, and relationship with the neighboring extrastriate visual areas, we suggest it might be the human homolog of macaque area V6, and perhaps of area M (medial) or DM (dorsomedial) of New World primates.

  6. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography.

    PubMed

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-02-01

    This paper presents a method to simultaneously acquire an aberration-corrected, wide field-of-view fluorescence image and a high-resolution coherent bright-field image using a computational microscopy method. First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff spatial frequency of the microscope objective lens. At the same time, redundancy within the set of acquired FPM bright-field images offers a means to estimate microscope aberrations. Second, the procedure acquires an aberrated fluorescence image, and computationally improves its resolution through deconvolution with the estimated aberration map. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by up to 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of at least ~18. PMID:26977345

  7. Wide-field Infrared Polarimetry of the ρ Ophiuchi Cloud Core

    NASA Astrophysics Data System (ADS)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.; Nakajima, Yasushi; Nishiyama, Shogo; Kusakabe, Nobuhiko; Nagata, Tetsuya; Kandori, Ryo

    2015-09-01

    We conducted wide and deep simultaneous JHKs-band imaging polarimetry of the ρ Ophiuchi cloud complex. Aperture polarimetry in the JHKs band was conducted for 2136 sources in all three bands, of which 322 sources have significant polarizations in all the JHKs bands and have been used for a discussion of the core magnetic fields. There is a positive correlation between degrees of polarization and H - Ks color up to H - Ks ≈ 3.5. The magnetic field structures in the core region are revealed up to at least AV ≈ 47 mag and are unambiguously defined in each sub-region (core) of Oph-A, Oph-B, Oph-C, Oph-E, Oph-F, and Oph-AC. Their directions, degrees of polarization, and polarization efficiencies differ but their changes are gradual; thus, the magnetic fields appear to be connected from core to core, rather than as a simple overlap of the different cloud core components. Comparing our results with the large-scale field structures obtained from previous optical polarimetric studies, we suggest that the magnetic field structures in the core were distorted by the cluster formation in this region, which may have been induced by shock compression due to wind/radiation from the Scorpius-Centaurus association.

  8. WIDE-FIELD INFRARED POLARIMETRY OF THE ρ OPHIUCHI CLOUD CORE

    SciTech Connect

    Kwon, Jungmi; Tamura, Motohide; Kusakabe, Nobuhiko; Hough, James H.; Nakajima, Yasushi; Nishiyama, Shogo; Nagata, Tetsuya; Kandori, Ryo

    2015-09-15

    We conducted wide and deep simultaneous JHK{sub s}-band imaging polarimetry of the ρ Ophiuchi cloud complex. Aperture polarimetry in the JHK{sub s} band was conducted for 2136 sources in all three bands, of which 322 sources have significant polarizations in all the JHK{sub s} bands and have been used for a discussion of the core magnetic fields. There is a positive correlation between degrees of polarization and H − K{sub s} color up to H − K{sub s} ≈ 3.5. The magnetic field structures in the core region are revealed up to at least A{sub V} ≈ 47 mag and are unambiguously defined in each sub-region (core) of Oph-A, Oph-B, Oph-C, Oph-E, Oph-F, and Oph-AC. Their directions, degrees of polarization, and polarization efficiencies differ but their changes are gradual; thus, the magnetic fields appear to be connected from core to core, rather than as a simple overlap of the different cloud core components. Comparing our results with the large-scale field structures obtained from previous optical polarimetric studies, we suggest that the magnetic field structures in the core were distorted by the cluster formation in this region, which may have been induced by shock compression due to wind/radiation from the Scorpius–Centaurus association.

  9. The development of a wide-field, high-resolution UV Raman hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Nelson, Matthew P.; Angel, S. M.

    2015-05-01

    Raman spectroscopy is a valuable tool for the investigation and analysis of explosive and biological analytes because it provides a unique molecular fingerprint that allows for unambiguous target identification. Raman can be advantageous when utilized with deep UV excitation, but typical deep UV Raman systems have numerous limitations that hinder their performance and make their potential integration onto a field portable platform difficult. These systems typically offer very low throughput, are physically large and heavy, and can only probe an area the size of a tightly focused laser, severely diminishing the ability of the system to investigate large areas efficiently. The majority of these limitations are directly related to a system's spectrometer, which is typically dispersive grating based and requires a very narrow slit width and long focal length optics to achieve high spectral resolution. To address these shortcomings, ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, are developing a revolutionary wide-field Raman hyperspectral imaging system capable of providing wide-area, high resolution measurements with greatly increased throughput in a small form factor, which would revolutionize the way Raman is conducted and applied. The innovation couples a spatial heterodyne spectrometer (SHS), a novel slit-less spectrometer that operates similar to Michelson interferometer, with a fiber array spectral translator (FAST) fiber array, a two-dimensional imaging fiber for hyperspectral imagery. This combination of technologies creates a novel wide-field, high throughput Raman hyperspectral imager capable of yielding very high spectral resolution measurements using defocused excitation, giving the system a greater area coverage and faster search rate than traditional Raman systems. This paper will focus on the need for an innovative UV Raman system, provide an overview of spatial heterodyne Raman spectroscopy, and discuss the development

  10. Very Wide Field Imager(VWFI) for the Hubble Origins Probe(HOP)

    NASA Astrophysics Data System (ADS)

    Tsuneta, S.; Miyazaki, S.; Nakaya, H.; Yamada, T.; Iye, M.; Kaifu, N.; Taniguchi, Y.; Doi, M.; Okamura, S.; Ikeda, Y.; Takeyama, N.; Kaido, N.; Yamaguchi, K.; Norman, C.; Ford, H.; Kruk, J.; Ouchi, M.; Woodruff, R.

    2004-12-01

    High-resolution high-throughput multi-color wide-field imaging from space allows us to: (1) study origins of galaxy morphology (z=1-2); (2) to map the post-reionization universe of z=5-10; (3) to investigate the nature of dark energy through an efficient search for distant type Ia SNe; and (4) to map the distribution of dark matter and to measure cosmological parameters with weak gravitational lensing. These science drivers can be carried out by the Very Wide Field Imager (VWFI) aboard the Hubble Origins Probe (HOP) with the other onboard science instruments COS and WFC3. VWFI consists of > 40 2K x 2K CCDs occupying >2 quadrants of the HOP focal plane with off-axis aberration corrector optics. The astigmatism corrector optics consists of a pair of simple fused-silica prisms optimized and dedicated to each CCD. The FOV of VWFI is >170 square-arcmin, and the HOP OTA with the corrector delivers stable and high Strehl-ratio images with a 0.05 arcsec CCD pixel size over the wide field of view. CCDs are cooled down to -80 degree C with a mechanical cooling system and an external dedicated radiator. The fully-depleted CCDs to be provided by Hamamatsu Photonics have a demonstrated capability of high quantum efficiency approx. 0.7 at 1 micron. The very high efficiency at red wavelengths makes VWFI exceptionally qualified to pursue the above science drivers. Multiple optimized filters either allocated to each CCDs or with the mechanical filter wheels allow multi-color imaging. VWFI is currently being studied with US-Japan working group under the auspices of the NASA Origins Probes Study. VWFI is expected to be primarily provided by Japan.

  11. An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging

    PubMed Central

    Mohammed, Ali I.; Gritton, Howard J.; Tseng, Hua-an; Bucklin, Mark E.; Yao, Zhaojie; Han, Xue

    2016-01-01

    Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks. PMID:26854041

  12. An integrative approach for analyzing hundreds of neurons in task performing mice using wide-field calcium imaging.

    PubMed

    Mohammed, Ali I; Gritton, Howard J; Tseng, Hua-an; Bucklin, Mark E; Yao, Zhaojie; Han, Xue

    2016-01-01

    Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks. PMID:26854041

  13. On the Design of Wide-Field X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weiskopf, Martin C.

    2009-01-01

    X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the X-ray sky and potentially for study of the Sun s X-ray emission. We discuss the various considerations affecting the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of on-axis spatial resolution, and the positioning of focal plane detectors.

  14. Range performance of the DARPA AWARE wide field-of-view visible imager.

    PubMed

    Nichols, J M; Judd, K P; Olson, C C; Novak, K; Waterman, J R; Feller, S; McCain, S; Anderson, J; Brady, D

    2016-06-01

    In a prior paper, we described a new imaging architecture that addresses the need for wide field-of-view imaging combined with the resolution required to identify targets at long range. Over the last two years substantive improvements have been made to the system, both in terms of the size, weight, and power of the camera as well as to the optics and data management software. The result is an overall improvement in system performance, which we demonstrate via a maritime target identification experiment.

  15. Wide Field Camera 3: A Powerful New Imager for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2008-01-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera in development for installation into the Hubble Space Telescope during upcoming Servicing Mission 4. WFC3 provides two imaging channels. The UVIS channel incorporates a 4096 x 4096 pixel CCD focal plane with sensitivity from 200 to 1000 nm. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 850 to 1700 nm. We report here on the design of the instrument, the performance of its flight detectors, results of the ground test and calibration program, and the plans for the Servicing Mission installation and checkout.

  16. The High-Speed and Wide-Field TORTORA Camera: description & results .

    NASA Astrophysics Data System (ADS)

    Greco, G.; Beskin, G.; Karpov, S.; Guarnieri, A.; Bartolini, C.; Bondar, S.; Piccioni, A.; Molinari, E.

    We present the description and the most significant results of the wide-field and ultra-fast TORTORA camera devoted to the investigation of rapid changes in light intensity in a phenomenon occurring within an extremely short period of time and randomly distributed over the sky. In particular, the ground-based TORTORA observations synchronized with the gamma -ray BAT telescope on board of the Swift satellite has permitted to trace the optical burst time-structure of the Naked-Eye GRB 080319B with an unprecedented level of accuracy.

  17. Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    NASA Astrophysics Data System (ADS)

    Kotredes, L.; Charbonneau, D.; O'Donovan, F. T.; Looper, D. L.

    2003-12-01

    The current challenge facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a telescope that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin instruments in Tenerife and northern Arizona.

  18. Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    NASA Astrophysics Data System (ADS)

    Kotredes, Lewis; Charbonneau, David; Looper, Dagny L.; O'Donovan, Francis T.

    2004-06-01

    The most significant challenge currently facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a system that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin system instruments in Tenerife and northern Arizona.

  19. Developments of wide field submillimeter optics and lens antenna-coupled MKID cameras

    NASA Astrophysics Data System (ADS)

    Sekimoto, Y.; Nitta, T.; Karatsu, K.; Sekine, M.; Sekiguchi, S.; Okada, T.; Shu, S.; Noguchi, T.; Naruse, M.; Mitsui, K.; Okada, N.; Tsuzuki, T.; Dominjon, A.; Matsuo, H.

    2014-07-01

    Wide field cryogenic optics and millimeter-wave Microwave Kinetic Inductance Detector (MKID) cameras with Si lens array have been developed. MKID is a Cooper-pair breaking photon detector and consists of supercon- ducting resonators which enable microwave (~GHz) frequency multiplexing. Antenna-coupled Aluminum CPW resonators are put in a line on a Si substrate to be read by a pair of coaxial cables. A 220 GHz - 600 pixels MKID camera with anti-reflection (AR) coated Si lens has been demonstrated in an 0.1 K cryostat. A compact cryogenic system with high refractive index materials has been developed for the MKID camera.

  20. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Griffin, G. T.; Gerlach, L.; Wozniakiewicz, P. J.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  1. Estimating the Supernova Cosmological Constraints Possible With the Wide-Field Infrared Survey Telescope

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Rubin, David; Aldering, Greg Scott; Baltay, Charles; Fagrelius, Parker; Law, David R.; Perlmutter, Saul; Pontoppidan, Klaus

    2016-01-01

    The proposed Wide-Field Infrared Survey Telescope (WFIRST) supernova survey will measure precision distances continuously in redshift to 1.7 with excellent systematics control. However, the Science Definition Team report presented a idealized version of the survey, and we now work to add realism. Using SNe from HST programs, we investigate the expected contamination from the host-galaxy light to estimate required exposure times. We also present estimates of purity and completeness, generated by degrading well-measured nearby SN spectra to WFIRST resolution and signal-to-noise. We conclude with a more accurate prediction of the cosmological constraints possible with WFIRST SNe.

  2. The First Hundred Brown Dwarfs Discovered by the Wide-Field Infrared Survey Explorer (WISE)

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Mainzer, Amanda K.; Eisenhardt, Peter R.; McLean, Ian S.; Bauer, James M.; Benford, Dominic J.; Lake, Sean E.; Petty, Sara M.; Tsai, Chao-Wei; Beichman, Charles; Stapelfeldt, Karl R.; Stern, Daniel; Vacca, William D.

    2011-01-01

    We present ground-based spectroscopic verification of six Y dwarfs also Cushing et al.), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types > or =T6, six of which have been announced earlier in Mainzer et al. and I3urgasser et al. We present color-color and colortype diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. "

  3. Far ultraviolet wide field imaging and photometry - Spartan-202 Mark II Far Ultraviolet Camera

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Opal, Chet B.; Witt, Adolf N.; Henize, Karl G.

    1988-01-01

    The U.S. Naval Research Laboratory' Mark II Far Ultraviolet Camera, which is expected to be a primary scientific instrument aboard the Spartan-202 Space Shuttle mission, is described. This camera is intended to obtain FUV wide-field imagery of stars and extended celestial objects, including diffuse nebulae and nearby galaxies. The observations will support the HST by providing FUV photometry of calibration objects. The Mark II camera is an electrographic Schmidt camera with an aperture of 15 cm, a focal length of 30.5 cm, and sensitivity in the 1230-1600 A wavelength range.

  4. Far ultraviolet wide field imaging with a SPARTAN /Experiment of Opportunity/ Payload

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.

    1982-01-01

    A wide-field electrographic Schmidt camera, sensitive in the far UV (1230-2000 A), has been developed and utilized in three sounding rocket flights. It is now being prepared for Shuttle flight as an Experiment of Opportunity Payload (EOP) (recently renamed as the SPARTAN program). In this paper, we discuss (1) design of the instrument and payload, particularly as influenced by our experience in rocket flights; (2) special problems of EOP in comparison to sounding rocket missions; (3) relationship of this experiment to, and special capabilities in comparison to, other space astronomy instruments such as Space Telescope; and (4) a tentative observing plan for an EOP mission.

  5. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates.

    PubMed

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-12-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10(-11) to 10(-6) Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source.

  6. Wide-field compact catadioptric telescope spanning 0.7-14 μm wavelengths.

    PubMed

    Marks, Daniel L; Hagen, Nathan; Durham, Mark; Brady, David J

    2013-06-20

    We present a wide-field compact f-1.2, f-1.6 effective illumination catadioptric telescope that spans the wavelengths 0.7-14.0 μm. Such a telescope replaces several telescopes designed for different infrared bands, while having a track length shorter than most single-band telescopes. Incorporated with a suitable multiband focal plane array, many wavelength bands may be imaged simultaneously in the same instrument. We have constructed and tested prototypes of the telescopes and found the performance is near the predicted values.

  7. DWARF IRREGULAR GALAXY LEO A: SUPRIME-CAM WIDE-FIELD STELLAR PHOTOMETRY

    SciTech Connect

    Stonkutė, Rima; Narbutis, Donatas; Vansevičius, Vladas; Arimoto, Nobuo; Hasegawa, Takashi; Tamura, Naoyuki

    2014-10-01

    We have surveyed a complete extent of Leo A—an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The B, V, and I passband CCD images (typical seeing ∼0.''8) were obtained with the Subaru Telescope equipped with the Suprime-Cam mosaic camera. The wide-field (20' × 24') photometry catalog of 38,856 objects (V ∼ 16-26 mag) is presented. This survey is also intended to serve as ''a finding chart'' for future imaging and spectroscopic observation programs of Leo A.

  8. Wide field-of-view digital night vision head-mounted display

    NASA Astrophysics Data System (ADS)

    Browne, Michael P.

    2011-06-01

    SA Photonics has developed (with support from the Air Force Research Lab, the US Army and Vision Systems International) an innovative wide field of view digital night vision head mounted display (HMD). This HMD has an 80 degree field of view to greatly improve operator situational awareness. By using creating an all-digital system, we provide the capability to enhance and record night vision imagery, overlay symbology, and inset video from remote sensors, either mounted on the aircraft or on UAVs. This HMD has been designed with maximum pilot utility in mind, and is easily stowable without impacting center of gravity or maneuverability of the pilot's head within the cockpit. Because the sensors are digital, they can be located right above the pilot's eyes removing any hyperstereoopsis.

  9. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  10. Wide-field broadband extreme ultraviolet transmission ptychography using a high-harmonic source.

    PubMed

    Baksh, Peter D; Odstrčil, Michal; Kim, Hyun-Su; Boden, Stuart A; Frey, Jeremy G; Brocklesby, William S

    2016-04-01

    High-harmonic generation (HHG) provides a laboratory-scale source of coherent radiation ideally suited to lensless coherent diffractive imaging (CDI) in the EUV and x-ray spectral region. Here we demonstrate transmission extreme ultraviolet (EUV) ptychography, a scanning variant of CDI, using radiation at a wavelength around 29 nm from an HHG source. Image resolution is diffraction-limited at 54 nm and fields of view up to ∼100  μm are demonstrated. These results demonstrate the potential for wide-field, high-resolution, laboratory-scale EUV imaging using HHG-based sources with potential application in biological imaging or EUV lithography pellicle inspection. PMID:27192225

  11. Studies on wide-field-of-view multiphoton imaging using the flexible clinical multiphoton tomograph MPTflex

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2012-03-01

    Multiphoton imaging systems are capable of high-resolution 3-D image acquisition of deep tissue. A first commercially available CE-certified biomedical system for subcelluar resolution of human skin has been launched by JenLab company with the DermaInspectR in 2002. The demand for more flexibility caused the development of the MPTflexR, which provides an increased flexibility and accessibility especially for clinical and cosmetic examinations. However the high resolution of clinical multiphoton tomographs are adherent with a small field-of-view (FOV) of about 360×360μm2. Especially time-consuming is the relocation of areas of interest (AOI) like lesions, sweat glands or hair shafts during a multiphoton examination. This limitation can be be overcome by macroscopic large-area (wide-field-ofview) multiphoton tomography, which is tested first within this work.

  12. Stellar photometry with the Hubble Space Telescope Wide-field/Planetary camera - A progress report

    NASA Technical Reports Server (NTRS)

    Holtzman, Jon A.; Hunter, Deidre; Groth, Edward J.; Light, Robert M.; Faber, S. M.

    1991-01-01

    The prospects for the use of the Wide-Field/Planetary Camera (WFPC) for stellar photometry are described. The large halos of the point-spread function (PSF) resulting from spherical aberration and from spatial, temporal, and color variations of the PSF are the main limitations to accurate photometry. Degradations caused by crowding are exacerbated by the halos of the PSF. An attempt is made to quantify these effects and determine the current accuracy of stellar photometry with the WFPC. In realistic cases, the brighter stars in crowded fields have 0.09 mag errors; fainter stars have larger errors depending on the degree of crowding. It is shown that measuring Cepheids in Virgo Cluster galaxies is not currently possible without inordinate increases in exposure times.

  13. Advancing the field of 3D biomaterial printing.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-01-11

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.

  14. Advancing the field of 3D biomaterial printing.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-02-01

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications. PMID:26752507

  15. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    NASA Technical Reports Server (NTRS)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  16. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    NASA Astrophysics Data System (ADS)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  17. Integration of wide field-of-view imagery functions in a detector dewar cooler assembly

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; de la Barriere, Florence; Guerineau, Nicolas; Lasfargues, Gilles; Fendler, Manuel; Lhermet, Nicolas; Taboury, Jean; Reibel, Yann; Moullec, Jean-Baptiste

    2012-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). A dewar is a sealed environment where the detector is cooled on a cold plate. We show in this paper that wide field of view imagery functions can be simply added to the dewar. We investigate two ways of integration and make two demonstrators. The first one called FISBI consists in replacing the window by a fish-eye lens and in integrating a lens in the cold shield. This optical system has a field of view of 180°. The second one, called IR-Cam-on-Chip, consists in integrating the optics directly on the focal plane array. This optical system has a field of view of 120°. The additional mass of the optics is sufficiently small to be compatible with the cryogenic environment of the DDCA. The performance of these cameras will be discussed and several evolutions of these cameras will be introduced too.

  18. Wide Field Collimator 2 (WFC2) for GOES Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Etemad, Shahriar; Bremer, James C.; Zukowski, Barbara J.; Pasquale, Bert A.; zukowski, Tmitri J.; Prince, Robert E.; O'Neill, Patrick A.; Ross, Robert W.

    2004-01-01

    Two of the GOES instruments, the Imager and the Sounder, perform scans of the Earth to provide a full disc picture of the Earth. To verify the entire scan process, an image of a target that covers an 18 deg. circular field-of-view is collimated and projected into the field of regard of each instrument. The Wide Field Collimator 2 (WFC2) has many advantages over its predecessor, WFC1, including lower thermal dissipation higher fir field MTF, smaller package, and a more intuitive (faster) focusing process. The illumination source is an LED array that emits in a narrow spectral band centered at 689 nm, within the visible spectral bands of the Imager and Sounder. The illumination level can be continuously adjusted electronically. Lower thermal dissipation eliminates the need for forced convection cooling and minimizes time to reach thermal stability. The lens system has been optimized for the illumination source spectral output and athernalized to remain in focus during bulk temperature changes within the laboratory environment. The MTF of the lens is higher than that of the WFC1 at the edge of FOV. The target is focused in three orthogonal motions, controlled by an ergonomic system that saves substantial time and produces a sharper focus. Key words: Collimator, GOES, Imager, Sounder, Projector

  19. Electrolocation-based underwater obstacle avoidance using wide-field integration methods.

    PubMed

    Dimble, Kedar D; Faddy, James M; Humbert, J Sean

    2014-03-01

    Weakly electric fish are capable of efficiently performing obstacle avoidance in dark and navigationally challenging aquatic environments using electrosensory information. This sensory modality enables extraction of relevant proximity information about surrounding obstacles by interpretation of perturbations induced to the fish's self-generated electric field. In this paper, reflexive obstacle avoidance is demonstrated by extracting relative proximity information using spatial decompositions of the perturbation signal, also called an electric image. Electrostatics equations were formulated for mathematically expressing electric images due to a straight tunnel to the electric field generated with a planar electro-sensor model. These equations were further used to design a wide-field integration based static output feedback controller. The controller was implemented in quasi-static simulations for environments with complicated geometries modelled using finite element methods to demonstrate sense and avoid behaviours. The simulation results were confirmed by performing experiments using a computer operated gantry system in environments lined with either conductive or non-conductive objects acting as global stimuli to the field of the electro-sensor. The proposed approach is computationally inexpensive and readily implementable, making underwater autonomous navigation in real-time feasible.

  20. Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.

    2014-05-01

    We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.

  1. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes.

    PubMed

    Huang, Chi-Chieh; Wu, Xiudong; Liu, Hewei; Aldalali, Bader; Rogers, John A; Jiang, Hongrui

    2014-08-13

    In nature, reflecting superposition compound eyes (RSCEs) found in shrimps, lobsters and some other decapods are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Here, we present life-sized, large-FOV, wide-spectrum artificial RSCEs as optical imaging devices inspired by the unique designs of their natural counterparts. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to imaging at visible wavelengths using conventional refractive lenses of comparable size, our artificial RSCEs demonstrate minimum chromatic aberration, exceptional FOV up to 165° without distortion, modest aberrations and comparable imaging quality without any post-image processing. Together with an augmenting cruciform pattern surrounding each focused image, our large-FOV, wide-spectrum artificial RSCEs possess enhanced motion-tracking capability ideal for diverse applications in military, security, medical imaging and astronomy.

  2. Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging

    PubMed Central

    Pang, Shuo; Han, Chao; Erath, Jessey; Rodriguez, Ana; Yang, Changhuei

    2013-01-01

    The capability to perform multicolor, wide field-of-view (FOV) fluorescence microscopy imaging is important in screening and pathology applications. We developed a microscopic slide-imaging system that can achieve multicolor, wide FOV, fluorescence imaging based on the Talbot effect. In this system, a light-spot grid generated by the Talbot effect illuminates the sample. By tilting the excitation beam, the Talbot-focused spot scans across the sample. The images are reconstructed by collecting the fluorescence emissions that correspond to each focused spot with a relay optics arrangement. The prototype system achieved an FOV of 12 × 10 mm2 at an acquisition time as fast as 23 s for one fluorescence channel. The resolution is fundamentally limited by spot size, with a demonstrated full-width at half-maximum spot diameter of 1.2 μm. The prototype was used to image green fluorescent beads, double-stained human breast cancer SK-BR-3 cells, Giardia lamblia cysts, and the Cryptosporidium parvum oocysts. This imaging method is scalable and simple for implementation of high-speed wide FOV fluorescence microscopy. PMID:23787643

  3. Improved wide-field collimator for dynamic testing of the GOES imager and sounder

    NASA Astrophysics Data System (ADS)

    Bremer, James C.; Etemad, Shahriar; Zukowski, Barbara J.; Pasquale, Bert A.; Zukowski, Tmitri J.; Prince, Robert E.; Holmes, Vincent; Ryskewich, John A.; O'Neill, Patrick; Murphy-Morris, Jeanine E.

    2002-09-01

    The GOES Imager and Sounder instruments each observe the full Earth disk, 17.4° in diameter, from geostationary orbit. Pre-launch, each instrument's dynamic scanning performance is tested using the projection of a test pattern from a wide-field collimator. We are fabricating a second wide-field collimator (WFC2) to augment this test program. The WFC2 has several significant advantages over the existing WFC1. The WFC2 target illumination system uses an array of light-emitting diodes (LEDs) radiating at 680nm, which is within the visible bands of both the Imager and Sounder. The light from the LEDs is projected through a non-Lambertian diffuser plate and the target plate to the pupil of the projection lens. The WFC2's power dissipation is much lower than that of WFC1, decreasing stabilization time and eliminating the need for cooling fans. The WFC2's custom-designed 5-element projection lens has the same effective focal length (EFL) as the WFC1 projection lens. The WFC2 lens is optimized for the LED's narrow spectral band simplifying the design and improving image quality. The target plate is mounted in a frame with a mechanized micro-positioner system that controls three degrees of freedom: tip, tilt, and focus. The tip and tilt axes intersect in the WFC's image plane, and all adjustments are controlled remotely by the operator observing the target plate through an auto-collimating telescope.

  4. Wide field OCT based microangiography in living human eye (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Chen, Chieh-Li; Chu, Zhongdi; Zhang, Anqi; An, Lin; Durbin, Mary; Sharma, Utkarsh; Rosenfeld, Philip J.; Wang, Ruikang K.

    2016-03-01

    To investigate the application of optical microangiography (OMAG) in living human eye. Patients with different macular diseases were recruited, including diabetic retinopathy (DR), geographic atrophy (GA), retinitis pigmentosa (RP), and venous occlusion, et al. Wide field OCT angiography images can be generated by montage scanning protocol based on the tracking system. OMAG algorithm based on complex differentiation was used to extract the blood flow and removed the bulk motion by 2D cross-correlation method. The 3D angiography was segmented into 3 layers in the retina and 2 layers in the choroid. The en-face maximum projection was used to obtain 2-dimensional angiograms of different layers coded with different colors. Flow and structure images were combined for cross-sectional view. En face OMAG images of different macular diseases showed a great agreement with FA. Meanwhile, OMAG gave more distinct vascular network visions that were less affected by hemorrhage and leakage. The MAs were observed in both superficial and middle retinal layers based on OMAG angiograms in different layers of DR patients. The contour line of FAZ was extracted as well, which can be quantitative the retinal diseases. For GA patient, the damage of RPE layer enhanced the penetration of light and enabled the acquisition of choriocapillaries and choroidal vessels. The wide field OMAG angiogram enabled the capability of capturing the entire geographic atrophy. OMAG provides depth-resolved information and detailed vascular images of DR and GA patients, providing a better visualization of vascular network compared to FA.

  5. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Schneider, Adam C.; Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Wright, Edward L.; Eisenhardt, Peter R.; Skrutskie, M. F.; Griffith, Roger L.; Marsh, Kenneth A.

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  6. T80Cam: a wide field camera for the J-PLUS survey

    NASA Astrophysics Data System (ADS)

    Marin-Franch, Antonio; Taylor, Keith; Cenarro, Javier; Cristobal-Hornillos, David; Moles, Mariano

    2015-08-01

    T80Cam is a wide-field camera mounted at the Cassegrain focus of the JAST/T80 telescope, a dedicated 0.83m wide-field telescope at the OAJ (Observatorio Astrofísico de Javalambre) in Teruel, Spain. The camera has been designed to carry out the J-PLUS (Javalambre Photometric Local Universe Survey), a multi-band photometric survey that will observe 8500 square degrees of the northern sky. The camera has been manufactured by Spectral Instruments and is equipped with an e2v CCD290-99 backside illuminated detector. This is a large format 9.2k-by-9.2k, 10μm pixel, high efficiency CCD that is read from 16 ports simultaneously allowing read times of 12s with a read out noise of 3.4 electrons (rms). T80Cam covers 2 square degrees FoV with a pixel scale of 0.55"/pixel. It will observe in the wavelength range 330-1000nm through a set of 12 carefully optimized broad-, intermediate- and narrow-band filters. In this talk the status of the T80Cam will be presented, including on telescope commissioning and performances results.

  7. Using Wide-Field Meteor Cameras to Actively Engage Students in Science

    NASA Astrophysics Data System (ADS)

    Kuehn, D. M.; Scales, J. N.

    2012-08-01

    Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.

  8. Characterization of High Proper Motion Objects from the Wide-field Infrared Survey Explorer

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Sheppard, Scott S.

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ~12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08-623558.7, may belong to the thick disk. Based on data from the Wide-field Infrared Survey Explorer, the Two Micron All-Sky Survey, the NASA Infrared Telescope Facility, Gemini Observatory, the SOAR Telescope, and the Magellan Telescopes.

  9. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.; McKinley, B.; Hurley-Walker, N.; Briggs, F. H.; Wayth, R. B.; Kaplan, D. L.; Bell, M. E.; Feng, L.; Neben, A. R.; Hughes, J. D.; Rhee, J.; Murphy, T.; Bhat, N. D. R.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Ewall-Wice, A.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Jacobs, D. C.; Kasper, J. C.; Kratzenberg, E.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Kudryavtseva, N.; Oberoi, D.; Ord, S. M.; Pindor, B.; Procopio, P.; Prabu, T.; Riding, J.; Roshi, D. A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2014-10-01

    Astronomical wide-field imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new wide-field interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependences of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarization correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.

  10. Astro-WISE Processing of Wide-field Images and Other Data

    NASA Astrophysics Data System (ADS)

    Buddelmeijer, H.; Williams, O. R.; McFarland, J. P.; Belikov, A.

    2012-09-01

    Astro-WISE (Vriend et al. 2012) is the Astronomical Wide-field Imaging System for Europe (Valentijn et al. 2007). It is a scientific information system which consists of hardware and software federated over about a dozen institutes throughout Europe. It has been developed to exploit the ever increasing avalanche of data produced by astronomical surveys and data intensive scientific experiments in general. The demo explains the architecture of the Astro-WISE information system and shows the use of Astro-WISE interfaces. Wide-field astronomical images are derived from the raw image to the final catalog according to the user's request. The demo is based on the standard Astro-WISE guided tour, which can be accessed from the Astro-WISE website. The typical Astro-WISE data processing chain is shown, which can be used for data handling for a variety of different instruments, currently 14, including OmegaCAM, MegaCam, WFI, WFC, ACS/HST, etc.

  11. Bilocal visual noise as a probe of wide field motion computation.

    PubMed

    Roy, Suva; de Ruyter van Steveninck, Rob

    2016-05-01

    Using an apparent visual motion stimulus with motion energies limited to specific separations in space and time, we study the computational structure of wide-field motion sensitive neurons in the fly visual brain. There is ample experimental evidence for correlation-based motion computation in many biological systems, but one of its central properties, namely that the response is proportional to the product of two bilocal signal amplitudes, remains to be tested. The design of the apparent motion stimuli used here allows us to manipulate the amplitudes of the bilocal input signals that serve as inputs to the computation. We demonstrate that the wide-field motion response of H1 and V1 neurons indeed shows bilinear behavior, even under contrast sign reversal, as predicted. But the response also varies inversely with contrast variance, an effect not described by the correlator operation. We also quantify the correlator contributions for different spatial and temporal separations. With suitable modification, the apparent motion stimuli used here can be applied to a broad range of neurophysiological as well as human psychophysical studies on motion perception.

  12. Optically sectioned wide-field fluorescence lifetime imaging endoscopy enabled by structured illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hinsdale, Taylor; Malik, Bilal H.; Rico-Jimenez, Jose J.; Jo, Javier A.; Maitland, Kristen C.

    2016-03-01

    We present a wide-field fluorescence lifetime imaging (FLIM) system with optical sectioning by structured illumination microscopy (SIM). FLIM measurements were made using a time gated ICCD camera in conjunction with a pulsed nitrogen dye laser operating at 450 nm. Intensity images were acquired at multiple time delays from a trigger initiated by a laser pulse to create a wide-field FLIM image, which was then combined with three phase SIM to provide optical sectioning. Such a mechanism has the potential to increase the reliability and accuracy of the FLIM measurements by rejecting background intensity. SIM also provides the opportunity to create volumetric FLIM images with the incorporation of scanning mechanisms for the sample plane. We present multiple embodiments of such a system: one as a free space endoscope and the other as a fiber microendoscope enabled by the introduction of a fiber bundle. Finally, we demonstrate the efficacy of such an imaging system by imaging dyes embedded in a tissue phantom.

  13. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation

    PubMed Central

    Yao, Ruoyang; Intes, Xavier; Fang, Qianqian

    2015-01-01

    Monte Carlo methods are commonly used as the gold standard in modeling photon transport through turbid media. With the rapid development of structured light applications, an accurate and efficient method capable of simulating arbitrary illumination patterns and complex detection schemes over large surface area is in great need. Here we report a generalized mesh-based Monte Carlo algorithm to support a variety of wide-field illumination methods, including spatial-frequency-domain imaging (SFDI) patterns and arbitrary 2-D patterns. The extended algorithm can also model wide-field detectors such as a free-space CCD camera. The significantly enhanced flexibility of source and detector modeling is achieved via a fast mesh retessellation process that combines the target domain and the source/detector space in a single tetrahedral mesh. Both simulations of complex domains and comparisons with phantom measurements are included to demonstrate the flexibility, efficiency and accuracy of the extended algorithm. Our updated open-source software is provided at http://mcx.space/mmc. PMID:26819826

  14. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; Whipple, Arthur

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  15. Bilocal visual noise as a probe of wide field motion computation.

    PubMed

    Roy, Suva; de Ruyter van Steveninck, Rob

    2016-05-01

    Using an apparent visual motion stimulus with motion energies limited to specific separations in space and time, we study the computational structure of wide-field motion sensitive neurons in the fly visual brain. There is ample experimental evidence for correlation-based motion computation in many biological systems, but one of its central properties, namely that the response is proportional to the product of two bilocal signal amplitudes, remains to be tested. The design of the apparent motion stimuli used here allows us to manipulate the amplitudes of the bilocal input signals that serve as inputs to the computation. We demonstrate that the wide-field motion response of H1 and V1 neurons indeed shows bilinear behavior, even under contrast sign reversal, as predicted. But the response also varies inversely with contrast variance, an effect not described by the correlator operation. We also quantify the correlator contributions for different spatial and temporal separations. With suitable modification, the apparent motion stimuli used here can be applied to a broad range of neurophysiological as well as human psychophysical studies on motion perception. PMID:27177388

  16. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1988-01-01

    The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.

  17. A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.

    PubMed

    Fisher, Yvette E; Leong, Jonathan C S; Sporar, Katja; Ketkar, Madhura D; Gohl, Daryl M; Clandinin, Thomas R; Silies, Marion

    2015-12-21

    Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing. PMID:26670999

  18. Advances toward field application of 3D hydraulic tomography

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Barrash, W.; Kitanidis, P. K.

    2011-12-01

    Hydraulic tomography (HT) is a technique that shows great potential for aquifer characterization and one that holds the promise of producing 3D hydraulic property distributions, given suitable equipment. First suggested over 15 years ago, HT assimilates distributed aquifer pressure (head) response data collected during a series of multiple pumping tests to produce estimates of aquifer property variability. Unlike traditional curve-matching analyses, which assume homogeneity or "effective" parameters within the radius of influence of a hydrologic test, HT analysis relies on numerical models with detailed heterogeneity in order to invert for the highly resolved 3D parameter distribution that jointly fits all data. Several numerical and laboratory investigations of characterization using HT have shown that property distributions can be accurately estimated between observation locations when experiments are correctly designed - a property not always shared by other, simpler 1D characterization approaches such as partially-penetrating slug tests. HT may represent one of the best methods available for obtaining detailed 3D aquifer property descriptions, especially in deep or "hard" aquifer materials, where direct-push methods may not be feasible. However, to date HT has not yet been widely adopted at contaminated field sites. We believe that current perceived impediments to HT adoption center around four key issues: 1) A paucity in the scientific literature of proven, cross-validated 3D field applications 2) A lack of guidelines and best practices for performing field 3D HT experiments; 3) Practical difficulty and time commitment associated with the installation of a large number of high-accuracy sampling locations, and the running of a large number of pumping tests; and 4) Computational difficulty associated with solving large-scale inverse problems for parameter identification. In this talk, we present current results in 3D HT research that addresses these four issues

  19. Cost-effective and compact wide-field fluorescent imaging on a cell-phone.

    PubMed

    Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2011-01-21

    We demonstrate wide-field fluorescent and darkfield imaging on a cell-phone with compact, light-weight and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. For this purpose, we used battery powered light-emitting diodes (LEDs) to pump the sample of interest from the side using butt-coupling, where the pump light was guided within the sample cuvette to uniformly excite the specimen. The fluorescent emission from the sample was then imaged using an additional lens that was positioned right in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to our detection path, an inexpensive plastic colour filter was sufficient to create the dark-field background required for fluorescent imaging, without the need for a thin-film interference filter. We validate the performance of this platform by imaging various fluorescent micro-objects in 2 colours (i.e., red and green) over a large field-of-view (FOV) of ∼81 mm(2) with a raw spatial resolution of ∼20 μm. With additional digital processing of the captured cell-phone images, through the use of compressive sampling theory, we demonstrate ∼2 fold improvement in our resolving power, achieving ∼10 μm resolution without a trade-off in our FOV. Further, we also demonstrate darkfield imaging of non-fluorescent specimen using the same interface, where this time the scattered light from the objects is detected without the use of any filters. The capability of imaging a wide FOV would be exceedingly important to probe large sample volumes (e.g., >0.1 mL) of e.g., blood, urine, sputum or water, and for this end we also demonstrate fluorescent imaging of labeled white-blood cells from whole blood samples, as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts. Weighing only ∼28 g (∼1 ounce), this compact and cost-effective fluorescent imaging platform

  20. Mimir: A Near-Infrared Wide-Field Imager, Spectrometer and Polarimeter

    NASA Astrophysics Data System (ADS)

    Clemens, D. P.; Sarcia, D.; Grabau, A.; Tollestrup, E. V.; Buie, M. W.; Dunham, E.; Taylor, B.

    2007-12-01

    Mimir, a new facility-class near-infrared instrument for the 1.8 m Perkins telescope on Anderson Mesa outside Flagstaff, Arizona, was commissioned and has been operating for three years. Mimir is multifunction, performing wide-field (F/5) and narrow-field (F/17) imaging, long-slit spectroscopy, and imaging polarimetry. The F/5 mode images at 0.59" per pixel onto the 1024 × 1024 pixel ALADDIN III InSb array detector, giving a 10' × 10' field of view. In the F/17 mode, the plate scale is 0.18" per pixel. Optically, Mimir is a refractive reimager for the F/17.5 Perkins beam. A six-lens collimator produces an achromatic 25 mm pupil, which is imaged by a five-lens camera (F/5), a four-lens camera (F/17), or a two-lens pupil viewer onto the detector. Three filter wheels precede the pupil, one follows the pupil. The wheels contain a rotating half-wave plate, broadband filters, narrowband filters, grisms, long-pass filters, a wire grid, and thermal IR blockers. The first telescope focus is within Mimir, where a slit and decker unit, consisting of two linear motion cars, selects one of 13 slit scenes. The slit and decker cars, the four filter wheels, the half-wave plate rotation, and the camera selector are all driven by stepper motors within the cold vacuum space. Cooling is provided by a CTI 1050 two-stage, closed-cycle helium refrigerator, keeping the optics, filters, and internal surfaces between 65 and 75 K and the detector at 33.5 K. Switching between Mimir's different modes takes only a few seconds, making it a versatile tool for conducting a wide range of investigations and for quickly reacting to changing observing conditions. Mimir on the Perkins telescope achieves imaging sensitivities 2-4 mag deeper than 2MASS, moderate resolution (R ˜ 700) JHK spectra of virtually any 2MASS source, high-precision wide-field imaging polarimetry, and L' and M' band imaging and spectroscopy.

  1. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Fu, R.; Brey, W. W.; Shetty, K.; Gor'kov, P.; Saha, S.; Long, J. R.; Grant, S. C.; Chekmenev, E. Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T. M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I. R.; Markiewicz, W. D.; Cross, T. A.

    2005-11-01

    Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console have been installed and tested with many science applications to develop this spectrometer as a user facility. Solution NMR of membrane proteins with enhanced resolution, new pulse sequences for solid state NMR taking advantage of narrowed proton linewidths, and enhanced spatial resolution and contrast leading to improved animal imaging have been documented. In addition, it is demonstrated that spectroscopy of single site 17O labeled macromolecules in a hydrated lipid bilayer environment can be recorded in a remarkably short period of time. 17O spectra of aligned samples show the potential for using this data for orientational restraints and for characterizing unique details of cation binding properties to ion channels. The success of this NHMFL magnet illustrates the potential for using a similar magnet design as an outsert for high temperature superconducting insert coils to achieve an NMR magnet with a field >25 T.

  2. Proto-Type Development of Optical Wide-field Patrol Network and Test Observation

    NASA Astrophysics Data System (ADS)

    Park, J.; Choi, Y.; Jo, J.; Moon, H.; Yim, H.; Park, Y.; Hae, Y.; Park, S.; Choi, J.; Son, J.

    2014-09-01

    We present a prototype system developed for optical satellite tracking and its early test observation results. The main objective of the OWL (Optical Wide-field patroL) network is to get orbital information for Korean domestic satellites using optical means only and to maintain their orbital elements. The network is composed of 5 small wide-field telescopes deployed over the world. Each observing station is operated in fully robotic manner from receiving observation schedule to reporting the result, and controlled by the headquarter located in Daejeon, Korea, where orbit calculation and observation strategy will be determined. We developed a compact telescope system for robotic observation and easy maintenance. The telescope is 0.5m of aperture diameter with Rechey-Cretian configuration and its field of view is 1.1 deg. It is equipped with 4K CCD with 9um pixel size, and its pixel scale is 1.2 arcsec/pixel. A chopper wheel with variable speed is adopted to get more points in a single shot. The CCD camera and all the rotating parts (chopper wheel, de-rotator, and filter wheel) are integrated into one compact component called a wheel station. Each observing station is equipped with a fully automatic dome and heavy duty environment monitoring system. We could get an image every 20 seconds and up to ~100 trail points in a single exposure. Each point is time-tagged by ~1/1000 second precision. For one of best cases, we could estimate satellite position with RMS ~ 0.5km accuracy in the along-track with only 4 exposures (~100 points). The first system was installed at the Mongolian site after completing verification test at the testbed site in Daejeon, Korea. The second and third system will be installed in the end of this year.

  3. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  4. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.

    PubMed

    Greenbaum, Alon; Zhang, Yibo; Feizi, Alborz; Chung, Ping-Luen; Luo, Wei; Kandukuri, Shivani R; Ozcan, Aydogan

    2014-12-17

    Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings.

  5. Honoring Choices Minnesota: Preliminary Data from a Community-Wide Advance Care Planning Model

    PubMed Central

    Wilson, Kent S; Kottke, Thomas E; Schettle, Sue

    2014-01-01

    Advance care planning (ACP) increases the likelihood that individuals who are dying receive the care that they prefer. It also reduces depression and anxiety in family members and increases family satisfaction with the process of care. Honoring Choices Minnesota is an ACP program based on the Respecting Choices model of La Crosse, Wisconsin. The objective of this report is to describe the process, which began in 2008, of implementing Honoring Choices Minnesota in a large, diverse metropolitan area. All eight large healthcare systems in the metropolitan area agreed to participate in the project, and as of April 30, 2013, the proportion of hospitalized individuals 65 and older with advance care directives in the electronic medical record was 12.1% to 65.6%. The proportion of outpatients aged 65 and older was 11.6% to 31.7%. Organizations that had sponsored recruitment initiatives had the highest proportions of records containing healthcare directives. It was concluded that it is possible to reduce redundancy by recruiting all healthcare systems in a metropolitan area to endorse the same ACP model, although significantly increasing the proportion of individuals with a healthcare directive in their medical record requires a campaign with recruitment of organizations and individuals. PMID:25516036

  6. Honoring Choices Minnesota: preliminary data from a community-wide advance care planning model.

    PubMed

    Wilson, Kent S; Kottke, Thomas E; Schettle, Sue

    2014-12-01

    Advance care planning (ACP) increases the likelihood that individuals who are dying receive the care that they prefer. It also reduces depression and anxiety in family members and increases family satisfaction with the process of care. Honoring Choices Minnesota is an ACP program based on the Respecting Choices model of La Crosse, Wisconsin. The objective of this report is to describe the process, which began in 2008, of implementing Honoring Choices Minnesota in a large, diverse metropolitan area. All eight large healthcare systems in the metropolitan area agreed to participate in the project, and as of April 30, 2013, the proportion of hospitalized individuals 65 and older with advance care directives in the electronic medical record was 12.1% to 65.6%. The proportion of outpatients aged 65 and older was 11.6% to 31.7%. Organizations that had sponsored recruitment initiatives had the highest proportions of records containing healthcare directives. It was concluded that it is possible to reduce redundancy by recruiting all healthcare systems in a metropolitan area to endorse the same ACP model, although significantly increasing the proportion of individuals with a healthcare directive in their medical record requires a campaign with recruitment of organizations and individuals.

  7. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  8. A wide field X-ray telescope for astronomical survey purposes: from theory to practice

    NASA Astrophysics Data System (ADS)

    Conconi, Paolo; Campana, Sergio; Tagliaferri, Gianpiero; Pareschi, Giovanni; Citterio, Oberto; Cotroneo, Vincenzo; Proserpio, Laura; Civitani, Marta

    2010-06-01

    X-ray mirrors are usually built in the Wolter I (paraboloid-hyperboloid) configuration. This design exhibits no spherical aberration on-axis but suffers from field curvature, coma and astigmatism, therefore, the angular resolution degrades rapidly with increasing off-axis angles. Different mirror designs exist in which the primary and secondary mirror profiles are expanded as a power series in order to increase the angular resolution at large off-axis positions, at the expanses of the on-axis performances. Here we present the design and global trade off study of an X-ray mirror systems based on polynomial optics in view of the Wide Field X-ray Telescope (WFXT) mission. WFXT aims at performing an extended cosmological survey in the soft X-ray band with unprecedented flux sensitivity. To achieve these goals the angular resolution required for the mission is very demanding, 5 arcsec mean resolution across a 1 field of view. In addition an effective area of 5-9000 cm2 at 1 keV is needed.

  9. Intact skull chronic windows for mesoscopic wide-field imaging in awake mice

    PubMed Central

    Silasi, Gergely; Xiao, Dongsheng; Vanni, Matthieu P.; Chen, Andrew C. N.; Murphy, Timothy H.

    2016-01-01

    Background Craniotomy-based window implants are commonly used for microscopic imaging, in head-fixed rodents, however their field of view is typically small and incompatible with mesoscopic functional mapping of cortex. New Method We describe a reproducible and simple procedure for chronic through-bone wide-field imaging in awake head-fixed mice providing stable optical access for chronic imaging over large areas of the cortex for months. Results The preparation is produced by applying clear-drying dental cement to the intact mouse skull, followed by a glass coverslip to create a partially transparent imaging surface. Surgery time takes about 30 minutes. A single set-screw provides a stable means of attachment for mesoscale assessment without obscuring the cortical field of view. Comparison with Existing Methods We demonstrate the utility of this method by showing seed-pixel functional connectivity maps generated from spontaneous cortical activity of GCAMP6 signals in both awake and anesthetized mice. Conclusions We propose that the intact skull preparation described here may be used for most longitudinal studies that do not require micron scale resolution and where cortical neural or vascular signals are recorded with intrinsic sensors. PMID:27102043

  10. Wide-field two-dimensional multifocal optical-resolution photoacoustic computed microscopy

    PubMed Central

    Xia, Jun; Li, Guo; Wang, Lidai; Nasiriavanaki, Mohammadreza; Maslov, Konstantin; Engelbach, John A.; Garbow, Joel R.; Wang, Lihong V.

    2014-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique that directly images optical absorption in tissue at high spatial resolution. To date, the majority of OR-PAM systems are based on single focused optical excitation and ultrasonic detection, limiting the wide-field imaging speed. While one-dimensional multifocal OR-PAM (1D-MFOR-PAM) has been developed, the potential of microlens and transducer arrays has not been fully realized. Here, we present the development of two-dimensional multifocal optical-resolution photoacoustic computed microscopy (2D-MFOR-PACM), using a 2D microlens array and a full-ring ultrasonic transducer array. The 10 × 10 mm2 microlens array generates 1800 optical foci within the focal plane of the 512-element transducer array, and raster scanning the microlens array yields optical-resolution photoacoustic images. The system has improved the in-plane resolution of a full-ring transducer array from ≥100 µm to 29 µm and achieved an imaging time of 36 seconds over a 10 × 10 mm2 field of view. In comparison, the 1D-MFOR-PAM would take more than 4 minutes to image over the same field of view. The imaging capability of the system was demonstrated on phantoms and animals both ex vivo and in vivo. PMID:24322226

  11. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  12. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  13. A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach.

    PubMed

    Zhao, Junming; Zhang, Lianhong; Li, Jensen; Feng, Yijun; Dyke, Amy; Haq, Sajad; Hao, Yang

    2015-01-01

    Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called "Field transformation (FT)" which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies. PMID:26638829

  14. A long-range, wide field-of-view infrared eyeblink detector.

    PubMed

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise.

  15. A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

    PubMed Central

    Zhao, Junming; Zhang, Lianhong; Li, Jensen; Feng, Yijun; Dyke, Amy; Haq, Sajad; Hao, Yang

    2015-01-01

    Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called “Field transformation (FT)” which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies. PMID:26638829

  16. Wide-field X-ray afterglow searches for gravitational wave events

    NASA Astrophysics Data System (ADS)

    Shawhan, Peter; Tervala, Justin

    2015-04-01

    The Advanced LIGO and Virgo gravitational wave (GW) detectors are on track to begin collecting science data soon and to reach full sensitivity by 2019. Low-latency analysis of the GW data will provide triggers for astronomers to seek electromagnetic transient counterparts. Many instruments will contribute to that effort, but instruments with very large fields of view will have a natural advantage for following up the typically large GW error regions. In particular, we consider ISS-Lobster, a proposed NASA mission to be deployed on the International Space Station, which features a focusing imager for soft X-rays with a field of view of over 800 square degrees. Our study using binary neutron star coalescence simulations from Singer et al. shows that a single ISS-Lobster pointing will, on average, cover over 95% of a LIGO-Virgo 3-detector sky map, while even a 2-detector sky map can be over 85% covered (on average) by a sequence of four pointings. We gratefully acknowledge the support of NSF Grants PHY-1068549 and PHY-1404121.

  17. A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

    NASA Astrophysics Data System (ADS)

    Zhao, Junming; Zhang, Lianhong; Li, Jensen; Feng, Yijun; Dyke, Amy; Haq, Sajad; Hao, Yang

    2015-12-01

    Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called “Field transformation (FT)” which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies.

  18. Experimental performance of homothetic mapping for wide-field interferometric imaging

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper; van Brug, Hedser; den Herder, Jan-Willem; D'Arcio, Luigi L.; Le Poole, Rudolf S.; Braat, Joseph J.

    2004-10-01

    Homothetic mapping is an aperture synthesis technique that allows interferometric imaging over a wide field-of-view. A laboratory experiment was set up to demonstrate the feasibility of this technique. Here, we present the first static experiments on homothetic mapping that have been done on the Delft Testbed for Interferometry (DTI). Before a changeable telescope configuration is provided, we first took a fixed telescope configuration and tested the algorithms for their ability to provide an exit pupil configuration before beam combination, that was an exact copy of this telescope configuration. By doing so, we created a homothetic imaging system. This is an imaging system that acts as a masked aperture monolithic telescope, but consists of (in our case) three telescopes of which the light follow their own optical trains.

  19. Signal-to-noise ratio for the wide field-planetary camera of the Space Telescope

    NASA Technical Reports Server (NTRS)

    Zissa, D. E.

    1984-01-01

    Signal-to-noise ratios for the Wide Field Camera and Planetary Camera of the Space Telescope were calculated as a function of integration time. Models of the optical systems and CCD detector arrays were used with a 27th visual magnitude point source and a 25th visual magnitude per arc-sq. second extended source. A 23rd visual magnitude per arc-sq. second background was assumed. The models predicted signal-to-noise ratios of 10 within 4 hours for the point source centered on a signal pixel. Signal-to-noise ratios approaching 10 are estimated for approximately 0.25 x 0.25 arc-second areas within the extended source after 10 hours integration.

  20. The Wide Field/Planetary Camera 2 (WFPC-2) molecular adsorber

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Moore, Sonya; Soules, David; Voecks, Gerald

    1995-01-01

    A device has been developed at the Jet Propulsion Laboratory, California Institute of Technology, for the adsorption of contaminants inside a space instrument during flight. The molecular adsorber was developed for use on the Wide Field Planetary Camera 2, and it has been shown to perform at its design specifications in the WFPC-2. The basic principle of the molecular adsorber is a zeolite-coated ceramic honeycomb. The arrangement is efficient for adsorption and also provides the needed rigidity to retain the special zeolite coating during the launch vibrational environment. The adsorber, on other forms, is expected to be useful for all flight instruments sensitive to internal sources of contamination. Typically, some internal contamination is unavoidable. A common design solution is to increase the venting to the exterior. However, for truly sensitive instruments, the external contamination environment is more severe. The molecular adsorber acts as a one-way vent to solve this problem. Continued development is planned for this device.

  1. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles.

    PubMed

    Pena, J; Franco, L; Gómez, F; Iglesias, A; Lobato, R; Mosquera, J; Pazos, A; Pardo, J; Pombar, M; Rodríguez, A; Sendón, J

    2004-11-01

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  2. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    NASA Technical Reports Server (NTRS)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  3. Wide-window angular spectrum method for optical field propagation through ABCD systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanyang; Guo, Jin; Liu, Lisheng; Wang, Tingfeng; Shao, Junfeng

    2014-10-01

    The wide-window angular spectrum (WWAS) method is proposed to simulate field propagation through paraxial optical systems, mainly based on the Collins formula and the scaled Fourier transform (SFT). The application of the SFT algorithm makes the sampling processes in the input space, output space and spatial-frequency domains completely independent, and as a result, we can choose a larger calculation window size for simulating long-distance propagation without increasing the calculation burden. The sampling criteria are derived analytically and used in the numerical simulations to present the correctness and effectiveness of the WWAS algorithm. The advantages of the algorithm are shown by making a comparison with other angular spectrum methods for the free-space propagation case.

  4. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R, P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.; Robinson, G. A.; Opiela, J. N.; Gerlach, L.

    2013-01-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  5. Optical Design Trade Study for the Wide Field Infrared Survey Telescope [WFIRST

    NASA Technical Reports Server (NTRS)

    Content, David A.; Goullioud, R.; Lehan, John P.; Mentzell, John E.

    2011-01-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design.

  6. Wide-field FTIR microscopy using mid-IR pulse shaping

    PubMed Central

    Serrano, Arnaldo L.; Ghosh, Ayanjeet; Ostrander, Joshua S.; Zanni, Martin T.

    2015-01-01

    We have developed a new table-top technique for collecting wide-field Fourier transform infrared (FTIR) microscopic images by combining a femtosecond pulse shaper with a mid-IR focal plane array. The pulse shaper scans the delay between a pulse pair extremely rapidly for high signal-to-noise, while also enabling phase control of the individual pulses to under-sample the interferograms and subtract background. Infrared absorption images were collected for a mixture of W(CO)6 or Mn2(CO)10 absorbed polystyrene beads, demonstrating that this technique can spatially resolve chemically distinct species. The images are sub-diffraction limited, as measured with a USAF test target patterned on CaF2 and verified with scalar wave simulations. We also find that refractive, rather than reflective, objectives are preferable for imaging with coherent radiation. We discuss this method with respect to conventional FTIR microscopes. PMID:26191843

  7. Lessons Learned from the Wide Field Camera 3 TV1 Test Campaign and Correlation Effort

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Stavley, Richard; Bast, William

    2007-01-01

    In January 2004, shortly after the Columbia accident, future servicing missions to the Hubble Space Telescope (HST) were cancelled. In response to this, further work on the Wide Field Camera 3 instrument was ceased. Given the maturity level of the design, a characterization thermal test (TV1) was completed in case the mission was re-instated or an alternate mission found on which to fly the instrument. This thermal test yielded some valuable lessons learned with respect to testing configurations and modeling/correlation practices, including: 1. Ensure that the thermal design can be tested 2. Ensure that the model has sufficient detail for accurate predictions 3. Ensure that the power associated with all active control devices is predicted 4. Avoid unit changes for existing models. This paper documents the difficulties presented when these recommendations were not followed.

  8. Wide-field FTIR microscopy using mid-IR pulse shaping.

    PubMed

    Serrano, Arnaldo L; Ghosh, Ayanjeet; Ostrander, Joshua S; Zanni, Martin T

    2015-07-13

    We have developed a new table-top technique for collecting wide-field Fourier transform infrared (FTIR) microscopic images by combining a femtosecond pulse shaper with a mid-IR focal plane array. The pulse shaper scans the delay between a pulse pair extremely rapidly for high signal-to-noise, while also enabling phase control of the individual pulses to under-sample the interferograms and subtract background. Infrared absorption images were collected for a mixture of W(CO)₆ or Mn₂(CO)₁₀ absorbed polystyrene beads, demonstrating that this technique can spatially resolve chemically distinct species. The images are sub-diffraction limited, as measured with a USAF test target patterned on CaF₂ and verified with scalar wave simulations. We also find that refractive, rather than reflective, objectives are preferable for imaging with coherent radiation. We discuss this method with respect to conventional FTIR microscopes.

  9. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2011-03-01

    We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.

  10. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Smaller Particle Impacts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.; Griffin, T.; Gerlach, L.; Wozniakiewicz, P. J.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2014-01-01

    The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.

  11. Multi-modal digital holographic microscopy for wide-field fluorescence and 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Xia, Peng; Matoba, Osamu; Nitta, Koichi; Awatsuji, Yasuhiro

    2016-03-01

    Multi-modal digital holographic microscopy is a combination of epifluorescence microscopy and digital holographic microscopy, the main function of which is to obtain images from fluorescence intensity and quantified phase contrasts, simultaneously. The proposed system is mostly beneficial to biological studies, with the reason that often the studies are depending on fluorescent labeling techniques to detect certain intracellular molecules, while phase information reflecting properties of unstained transparent elements. This paper is presenting our latest researches on applications such as randomly moving micro-fluorescent beads and living cells of Physcomitrella patens. The experiments are succeeded on obtaining a succession of wide-field fluorescent images and holograms from micro-beads, and different depths focusing is realized via numerical reconstruction. Living cells of Physcomitrella patens are recorded in the static manner, the reconstruction distance indicates thickness of cellular structure. These results are implementing practical applications toward many biomedical science researches.

  12. Performance analysis of a filtered wide field-of-view radiometer for earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Cooper, J. E.; Luther, M. R.

    1978-01-01

    The proposed Earth Radiation Budget Satellite System (ERBSS) of the 1980's will include a wide field-of-view (WFOV) fixed axes earth radiator discriminator consisting of a shortwave channel and a total (unfiltered) channel. The broadband spectral isolation required for the shortwave channel is achieved by use of a hemispherical fused silica (Suprasil W) dome filter placed in front of a wire wound thermopile radiation detector. A description is presented of the thermal response of the single-fused silica dome filter in the ERBSS WFOV shortwave channel conceptual design and the impact of that response on the channel measurement. Results from design definition and performance analysis studies are included. Problems associated with achieving the desired levels of confidence in a high accuracy filtered, WFOV radiometer are discussed. Design approaches, ground calibration, and data reduction techniques which minimize measurement uncertainties are explained.

  13. MID-INFRARED VARIABILITY FROM THE SPITZER DEEP WIDE-FIELD SURVEY

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S.; Assef, Roberto J.; Stern, Daniel; Eisenhardt, P. R.; Gorjian, V.; Griffith, R.; Ashby, Matthew L. N.; Brodwin, M.; Bock, J. J.; Borys, C.; Brand, K.; Grogin, N.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, Arjun; Gonzalez, A.; Ivison, R.

    2010-06-10

    We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg{sup 2} of the NOAO Deep Wide Field Survey Booetes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 {mu}m bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r>0.8) and that their joint variance ({sigma}{sub 12}) exceeds that for all sources with the same magnitude by 2{sigma}. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBooetes survey, radio catalogs, 24 {mu}m selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 {mu}m AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of {gamma} {approx} 0.5 at both 3.6 and 4.5 {mu}m, and an amplitude of S {sub 0} {approx_equal} 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities.

  14. Wide field array calibration dependence on the stability of measured dose distributions

    SciTech Connect

    Simon, Thomas A.; Simon, William E.; Kahler, Darren; Li, Jonathan; Liu, Chihray

    2010-07-15

    Purpose: The aim of this work was to simulate the effect of dose distribution changes on detector array calibrations and to explore compensatory methods that are used during calibration measurements. Methods: The array calibration technique that was investigated is known as wide field (WF) calibration. Using this method, a linear array [y-axis (65 detectors) of the IC PROFILER (Sun Nuclear Corporation, Melbourne, FL)] is calibrated with three measurements ({alpha}, {theta}, and {lambda}); each measurement uses the same radiation field, which is larger than the array. For measurement configuration {theta}, the array is rotated by 180 deg. from its position in {alpha}; for {lambda}, the array is shifted by one detector from its position in {theta}. The relative detector sensitivities are then determined through ratios of detector readings at the same field locations (using {theta} and {lambda}). This method results in error propagation that is proportional to the number of detectors in the array. During the procedure, the calibration protocol operates under three postulates, which state that (a) the beam shape does not change between measurements; (b) the relative sensitivities of the detectors do not change; and (c) the scatter to the array does not change as the array is moved. The WF calibration's sensitivity to a postulate (a) violation was quantified by applying a sine shaped perturbation (of up to 0.1%) to {alpha}, {theta}, or {lambda}, and then determining the change relative to a baseline calibration. Postulate (a) violations were minimized by using a continuous beam and mechanized array movement during {theta} and {lambda}. A continuously on beam demonstrated more stable beam symmetry as compared to cycling the beam on and off between measurements. Additional side-scatter was also used to satisfy postulate (c). Results: Simulated symmetry perturbations of 0.1% to {theta} or {lambda} resulted in calibration errors of up to 2%; {alpha} was relatively immune to

  15. Advancement of the Wide-angle JEM-EUSO Optical System with Holographic and Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Takizawa, Y.; Adams, J.H.

    2007-01-01

    JEM-EUSO is a space mission to observe extremely high-energy cosmic rays, evolved from the previous design studies of EUSO. It is adjusted for the Japan Experiment Module (JEM) of the International Space Station (ISS). JEM-EUSO uses a wide-angle refractive telescope in near-ultraviolet wavelength region to observe from ISS the time-and-space-resolved atmospheric fluorescence images of the extensive air showers. The JEM-EUSO optics is re-designed after the ESA-Phase A studies to upgrade the light-collecting-power by using a new material CYTOP, and its overall light-collecting power is about 1.5 times higher than the ESA-Phase A baseline optics. We describe in this paper an optimized optics design that maximizes the sensitivity of JEM-EUSO, and the results of the optics manufacturing tests.

  16. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  17. Design of a compact wide field telescope for space situational awareness

    NASA Astrophysics Data System (ADS)

    Lee, David; Born, Andrew; Parr-Burman, Philip; Hastings, Peter; Stobie, Brian; Bezawada, Naidu

    2012-09-01

    The European Space Agency, in the framework of its Space Situational Awareness (SSA) Preparatory Programme, has commissioned a study for a global network of surveillance telescopes to monitor the ever increasing number of objects in Earth orbit. A possible scenario identified by the study is a network of 20 SSA Telescopes located at various observatory sites. This paper presents the conceptual design of a telescope system optimised for wide field, short exposures and fast tracking - all requirements of SSA. The requirements of the SSA telescope will be presented followed by a brief review of potential telescope technologies. Following a trade study analysis a 1 m compact Schmidt telescope design was chosen. This design provides a field of view of 3.4 degrees diameter. The design is achromatic and covers the wavelength range 380 - 900 nm. The sensitivity of the telescope is such that it can monitor the orbital parameters of objects as small as 1 cm in low Earth orbit. This is equivalent to 17th magnitude in 0.07 seconds at a signal to noise ratio of 5. The telescope is mounted on an Altitude- Azimuth type mount that enables wide coverage of the sky and fast tracking speeds. The entire telescope is contained within a Calotte type enclosure. The camera, detector control, and telescope control system design will also be presented. Systems engineering aspects will be addressed, with particular attention given to the analysis and flow-down of requirements and a practical and pragmatic process of system-level design trade-offs.

  18. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2013-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893

  19. Improved iris localization by using wide and narrow field of view cameras for iris recognition

    NASA Astrophysics Data System (ADS)

    Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung

    2013-10-01

    Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.

  20. Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Villalobos, Joel; Fallon, James B.; Nayagam, David A. X.; Shivdasani, Mohit N.; Luu, Chi D.; Allen, Penelope J.; Shepherd, Robert K.; Williams, Chris E.

    2014-08-01

    Objective. The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. Approach. A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 μm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 μs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. Main results. The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 μC cm-2). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. Significance. Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.

  1. Wide field of view CT and acromioclavicular joint instability: A technical innovation.

    PubMed

    Dyer, David R; Troupis, John M; Kamali Moaveni, Afshin

    2015-06-01

    A 21-year-old female with a traumatic shoulder injury is investigated and managed for symptoms relating to this injury. Pathology at the acromioclavicular joint is detected clinically; however, clinical examination and multiple imaging modalities do not reach a unified diagnosis on the grading of this acromioclavicular joint injury. When management appropriate to that suggested injury grading fail to help the patient's symptoms, further investigation methods were utilised. Wide field of view, dynamic CT (4D CT) is conducted on the patient's affected shoulder using a 320 × 0.5 mm detector multislice CT. Scans were conducted with a static table as the patient completed three movements of the affected shoulder. Capturing multiple data sets per second over a z-axis of 16 cm, measurements of the acromioclavicular joint were made, to show dynamic changes at the joint. Acromioclavicular (AC) joint translations were witnessed in three planes (a previously unrecognised pathology in the grading of acromioclavicular joint injuries). Translation in multiple planes was also not evident on careful clinical examination of this patient. AC joint width, anterior-posterior translation, superior-inferior translation and coracoclavicular width were measured with planar reconstructions while volume-rendered images and dynamic sequences aiding visual understanding of the pathology. Wide field of view dynamic CT (4D CT) is an accurate and quick modality to diagnose complex acromioclavicular joint injury. It provides dynamic information that no other modality can; 4D CT shows future benefits for clinical approach to diagnosis and management of acromioclavicular joint injury, and other musculoskeletal pathologies.

  2. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    PubMed

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  3. Preliminary Results from the Wide-field Infrared Survey Explorer's NEOWISE Search for Minor Planets

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Bauer, J. M.; Grav, T.; Masiero, J.; McMillan, R. S.; Walker, R.; Tholen, D. J.; Wright, E.; Eisenhardt, P.; Cutri, R.; Neowise Team

    2011-12-01

    The Wide-Field Infrared Survey Explorer (WISE) imaged the entire sky twice between January, 2010 and January, 2011 at four wavelengths spanning the near through mid-IR at sensitivities hundreds of times greater than previous surveys [1]. The WISE band-passes (3.4, 4.6, 12 and 22mm) sample the flux from most inner-solar-system bodies near the peak of their thermal emission. Overlapping sky regions were sampled repeatedly at 3 hour intervals. The same region of sky was observed a minimum of 8 times. While the primary WISE science objectives focus on ultra-luminous infrared galaxies and brown dwarfs, additions to the baseline WISE pipeline (collectively known as "NEOWISE") have enabled the detection of undiscovered moving objects, as well as previously known bodies [2]. NEOWISE has detected more than 155,000 minor planets, including more than 500 near-Earth objects (NEOs), ~2000 Jupiter Trojans, ~120 comets, and ~20 outer Solar System objects such as Centaurs. The survey has discovered ~34,000 new minor planets, including 130 new NEOs and 20 new comets. The NEOWISE data will drive a wide range of new Solar System investigations. NEOWISE allows precise determination of IR-derived diameters and albedos for minor planets throughout the Solar System [3],[4]. We will summarize the latest results from the project, including studies of the statistical properties of asteroid populations such as the NEOs, and comparisons between albedo and asteroid taxonomic classification.

  4. Wide Field CO Mapping in the Region of IRAS 19312+1950

    NASA Astrophysics Data System (ADS)

    Nakashima, Jun-ichi; Ladeyschikov, Dmitry A.; Sobolev, Andrej M.; Zhang, Yong; Hsia, Chih-Hao; Yung, Bosco H. K.

    2016-07-01

    We report the results of wide field CO mapping in the region of IRAS 19312+1950. This Infrared Astronomical Satellite (IRAS) object exhibits SiO/H2O/OH maser emission, and is embedded in a chemically rich molecular component, the origin of which is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the 12CO J = 1-0, 13CO J = 1-0 and C18O J = 1-0 lines using the Nobeyama 45 m telescope. In conjunction with archival CO maps, we investigated a region up to 20‧ × 20‧ in size around this IRAS object. We calculated the CO gas mass assuming local thermal equilibrium, the stellar velocity through the interstellar medium assuming an analytic model of bow shock, and the absolute luminosity, using the latest archival data and trigonometric parallax distance. The derived gas mass (225 M ⊙-478 M ⊙) of the molecular component and the relatively large luminosity (2.63 × 104 L ⊙) suggest that the central SiO/H2O/OH maser source is a red supergiant rather than an asymptotic giant branch (AGB) star or post-AGB star.

  5. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    SciTech Connect

    Hanna, Chad; Mandel, Ilya; Vousden, Will E-mail: imandel@star.sr.bham.ac.uk

    2014-03-20

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ∼10-100 deg{sup 2}; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging is important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ∼1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ∼10% to ∼300% relative to follow-up strategies that

  6. Ultra-wide field angiography in the management of Eales disease

    PubMed Central

    Kumar, Vinod; Chandra, Parijat; Kumar, Atul

    2016-01-01

    Aims: This study aims to evaluate the use of ultra-wide field (UWF) angiography in patients with Eales disease (ED). Settings and Design: Prospective observational case series in tertiary eye care center. Subjects and Methods: This study involved 17 patients diagnosed with ED, who underwent UWF fluorescein angiography. The angiograms were analyzed to look for additional information as compared to Early Treatment Diabetic Retinopathy Study seven standard field. The impact of this information in the management of patients was analyzed. Results: 24 eyes of 17 patients with mean age of 26.3 years were diagnosed with ED and underwent UWF angiography. UWF fluorescein angiography was helpful in the documentation of peripheral retinal changes (in 67% of eyes), exact localization of capillary nonperfusion (CNP) (in 54% of eyes), and in determination of vascular involvement (in 21% of eyes). In 33% of eyes, immediate treatment plan changed because of changes picked up on UWF angiography. Conclusions: UWF angiography helped in the better documentation, exact quantification, and location of CNP areas and better determination of disease activity. UWF imaging may play an important part in the management of patients with ED. PMID:27609162

  7. Performance verification testing for HET wide-field upgrade tracker in the laboratory

    NASA Astrophysics Data System (ADS)

    Good, John; Hayes, Richard; Beno, Joseph; Booth, John; Cornell, Mark E.; Hill, Gary J.; Lee, Hanshin; Mock, Jason; Rafal, Marc; Savage, Richard; Soukup, Ian

    2010-07-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the McDonald Observatory (MDO) and the Center for Electro-mechanics (CEM) at the University of Texas at Austin are developing a new HET tracker in support of the Wide-Field Upgrade (WFU) and the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). The precision tracker is required to maintain the position of a 3,100 kg payload within ten microns of its desired position relative to the telescope's primary mirror. The hardware system to accomplish this has ten precision controlled actuators. Prior to installation on the telescope, full performance verification is required of the completed tracker in CEM's lab, without a primary mirror or the telescope's final instrument package. This requires the development of a laboratory test stand capable of supporting the completed tracker over its full range of motion, as well as means of measurement and methodology that can verify the accuracy of the tracker motion over full travel (4m diameter circle, 400 mm deep, with 9 degrees of tip and tilt) at a cost and schedule in keeping with the HET WFU requirements. Several techniques have been evaluated to complete this series of tests including: photogrammetry, laser tracker, autocollimator, and a distance measuring interferometer, with the laser tracker ultimately being identified as the most viable method. The design of the proposed system and its implementation in the lab is presented along with the test processes, predicted accuracy, and the basis for using the chosen method*.

  8. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  9. The Wide-Area X-ray Survey in the Legacy Stripe 82 Field

    NASA Astrophysics Data System (ADS)

    LaMassa, S.; Urry, M.; Cappelluti, N.; Comastri, A.; Glikman, E.; Richards, G.; B"ohringer, H.

    2016-06-01

    We are carrying out a wide-area X-ray survey in the Sloan Digital Sky Survey Stripe 82 field to uncover how luminous, obscured AGN evolve over cosmic time and the role they play in galaxy evolution. Stripe 82 is a legacy field with a high level of spectroscopic completeness and rich multi-wavelength coverage from the ultraviolet to far-infrared, including Spitzer and Herschel imaging. Our Stripe 82X survey currently reaches 31 deg^{2}, with ˜6200 X-ray point sources detected at ≥5σ level. I will review the characteristics of this survey, on-going programs to target obscured AGN candidates, and how we can use the lessons learned from the synergistic multi-wavelength coverage to develop strategic plans for future surveys and missions. Finally, I will comment on how extending the Stripe 82X survey area to 100 deg^{2} will provide unprecedented insight into the high-L (Lx > 10^{45} erg/s), high-z (z > 2) AGN population.

  10. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  11. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  12. An Automatic Technique for Finding Faint Moving Objects in Wide Field CCD Images

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Meech, K. J.

    1996-09-01

    The traditional method used to find moving objects in astronomical images is to blink pairs or series of frames after registering them to align the background objects. While this technique is extremely efficient in terms of the low signal-to-noise ratio that the human sight can detect, it proved to be extremely time-, brain- and eyesight-consuming. The wide-field images provided by the large CCD mosaic recently built at IfA cover a field of view of 20 to 30' over 8192(2) pixels. Blinking such images is an enormous task, comparable to that of blinking large photographic plates. However, as the data are available digitally (each image occupying 260Mb of disk space), we are developing a set of computer codes to perform the moving object identification in sets of frames. This poster will describe the techniques we use in order to reach a detection efficiency as good as that of a human blinker; the main steps are to find all the objects in each frame (for which we rely on ``S-Extractor'' (Bertin & Arnouts (1996), A&ASS 117, 393), then identify all the background objects, and finally to search the non-background objects for sources moving in a coherent fashion. We will also describe the results of this method applied to actual data from the 8k CCD mosaic. {This work is being supported, in part, by NSF grant AST 92-21318.}

  13. Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates

    PubMed Central

    Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H.; Liu, Zhiwen; Mayer, Theresa S.

    2014-01-01

    Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ±40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities. PMID:25524830

  14. Subaru next-generation wide-field camera: HyperSuprime

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka; Miyazaki, Satoshi; Nakaya, Hidehiko; Furusawa, Hisanori; Takeshi, Kunio

    2004-09-01

    We summarize the design and the specification of a next generation instrument for Subaru Telescope: a very wide-field (2°φ) CCD camera which we name HyperSuprime. The latest design of the corrector ensures 80% encircled energy diameter of 0".3 from 600 nm to 1100 nm over the 2°φ field of view. The size of the focal plane is 612 mm in diameter and covered by about 170 four side buttable 2kx4k CCDs. Fully depleted CCD which is now being developed is the primary candidate for HyperSuprime. The readout electronics is connected behind the CCD and this CCD package is screwed to the cold plate with three positioning pins. The large entrance window of the dewar is supported with additional ribs so that the dewar is evacuated and CCDs are cooled down to about -80°C. HyperSuprime equips with a filter exchanger which can accommodate four large mosaicked filters and a roll-type shutter.

  15. Calibration of HST wide field camera for quantitative analysis of faint galaxy images

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Casertano, Stefano; Neuschaefer, Lyman W.; Wyckoff, Eric W.

    1994-01-01

    We present the methods adopted to optimize the calibration of images obtained with the Hubble Space Telescope (HST) Wide Field Camera (WFC) (1991-1993). Our main goal is to improve quantitative measurement of faint images, with special emphasis on the faint (I approximately 20-24 mag) stars and galaxies observed as a part of the Medium-Deep Survey. Several modifications to the standard calibration procedures have been introduced, including improved bias and dark images, and a new supersky flatfield obtained by combining a large number of relatively object-free Medium-Deep Survey exposures of random fields. The supersky flat has a pixel-to-pixel rms error of about 2.0% in F555W and of 2.4% in F785LP; large-scale variations are smaller than 1% rms. Overall, our modifications improve the quality of faint images with respect to the standard calibration by about a factor of five in photometric accuracy and about 0.3 mag in sensitivity, corresponding to about a factor of two in observing time. The relevant calibration images have been made available to the scientific community.

  16. High-resolution LCD projector for extra-wide-field-of-view head-up display

    NASA Astrophysics Data System (ADS)

    Brown, Robert D.; Modro, David H.; Quast, Gerhardt A.; Wood, Robert B.

    2003-09-01

    LCD projection-based cockpit displays are beginning to make entry into military and commercial aircraft. Customers for commercial Head-Up Displays (HUDs)(including airframe manufacturers) are now interested in the adaptation of the technology into existing and future HUD optical systems. LCD projection can improve mean-time-between-failure rates because the LCDs are very robust and the light sources can be replaced with scheduled maintenance by the customer without the need for re-calibration. LCD projectors promise to lower the cost of the HUD because the cost of these displays continues to drop while the cost of CRTs remain stable. LCD projectors provide the potential for multi-colors, higher brightness raster, and all-digital communication between the flight computer and display unit. Another potential benefit of LCD projection is the ability to increase field of view and viewing eyebox without exceeding existing power budgets or reducing display lifetime and reliability compared to the capabilities provided by CRTs today. This paper describes the performance requirements and improved performance of a third-generation LCD projection image source for use in a wide field of view head-up display (HUD) optical system. This paper will focus on new HUD requirements and the application of various technologies such as LCOS microdisplays, arc lamps, and rear-projection screens. Measured performance results are compared to the design requirements.

  17. The optical blocking filter for the ATHENA wide field imager: ongoing activities towards the conceptual design

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Branduardi-Raymont, G.; Collura, A.; Comastri, A.; Eder, J.; Kamisiński, T.; Lo Cicero, U.; Meidinger, N.; Mineo, T.; Molendi, S.; Parodi, G.; Pilch, A.; Piro, L.; Rataj, M.; Rauw, G.; Sciortino, L.; Sciortino, S.; Wawer, P.

    2015-08-01

    ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all type of X-ray sources that present a UV/Visible bright counterpart. In this paper, we describe the main activities that we are carrying on for the conceptual design of the optical blocking filter, that will be mounted on the filter wheel, in order to satisfy the scientific requirements on optical load from bright UV/Vis astrophysical source, to maximize the X-ray transmission, and to withstand the severe acoustic and vibration loads foreseen during launch.

  18. Recent progress in the simulation and synthesis of Wide Field Imaging Interferometry Testbed (WIIT) data

    NASA Astrophysics Data System (ADS)

    Juanola-Parramon, Roser; Leisawitz, David; Bolcar, Matthew R.; Iacchetta, Alexander; Maher, Stephen F.; Rinehart, Stephen

    2016-06-01

    The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier interferometer (DF) operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like the Space Infrared Interferometric Telescope (SPIRIT). Developed at NASA’s Goddard Space Flight Center, this testbed produces high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes, from geometrically simple to astronomically representative test scenes.Here we present the simulation of recent WIIT measurements using the Far-infrared Interferometer Instrument Simulator (FIInS). This simulation enables us to compare a synthesized spatial-spectral data cube based on FIInS-generated DF data with the input hyperspectral test scene. FIInS has been modified to perform the calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array. The results from FIInS are compared with the results obtained from recent measurements with WIIT. For this current study, the test scene under consideration spatially consists of four reference point sources intended for spectral and spatial calibration, and six science sources, comprised of binary systems. Each binary pair member has a unique spectrum. Our results demonstrate that FIInS accurately describes the performance of a real double Fourier interferometer, and that the expected hyperspectral data cube can be reconstructed from synthetic or real interferometric data.

  19. Correction: Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging.

    PubMed

    Ponsetto, Joseph Louis; Wei, Feifei; Liu, Zhaowei

    2016-02-14

    Correction for 'Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging' by Joseph Louis Ponsetto et al., Nanoscale, 2014, 6, 5807-5812.

  20. Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates

    SciTech Connect

    Mahapatra, P.; Zitney, S.

    2012-01-01

    As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  1. A Wide-field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    NASA Astrophysics Data System (ADS)

    Findlay, Joseph R.; Kobulnicky, Henry A.; Weger, James S.; Bucher, Gerald A.; Perry, Marvin C.; Myers, Adam D.; Pierce, Michael J.; Vogel, Conrad

    2016-11-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit s‑1 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several realtime video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. The construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40‧ field of view with a new 40962 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20″ rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical priorities such as planet detection, quasar variability, and long-term time-domain campaigns.

  2. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds.

    PubMed

    Chen, Edward H; Gaathon, Ophir; Trusheim, Matthew E; Englund, Dirk

    2013-05-01

    Recent advances in fluorescence microscopy have enabled spatial resolution below the diffraction limit by localizing multiple temporally or spectrally distinguishable fluorophores. Here, we introduce a super-resolution technique that deterministically controls the brightness of uniquely addressable, photostable emitters. We modulate the fluorescence brightness of negatively charged nitrogen-vacancy (NV(-)) centers in nanodiamonds through magnetic resonance techniques. Using a CCD camera, this "deterministic emitter switch microscopy" (DESM) technique enables super-resolution imaging with localization down to 12 nm across a 35 × 35 μm(2) area. DESM is particularly well suited for biological applications such as multispectral particle tracking since fluorescent nanodiamonds are not only cytocompatible but also nonbleaching and bright. We observe fluorescence count rates exceeding 1.5 × 10(6) photons per second from single NV(-) centers at saturation. When combined with emerging NV(-)-based techniques for sensing magnetic and electric fields, DESM opens the door to rapid, super-resolution imaging for tracking and sensing applications in the life and physical sciences.

  3. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  4. Design of wide-field submillimeter-wave camera using SIS photon detectors

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ariyoshi, Seiichiro; Otani, Chiko; Ezawa, Hajime; Kobayashi, Jun; Mori, Yuko; Nagata, Hirohisa; Shimizu, Hirohiko M.; Fujiwara, Mikio; Akiba, Makoto; Hosako, Iwao

    2004-10-01

    SIS photon detectors are niobium-based superconducting direct detectors for submillimeter-wave that show superior performance when compared with bolometric detectors for ground-based observations. We present the design and development of the SIS photon detectors together with optical and cryogenic components for wide field continuum observation system on Atacama Submillimeter Telescope Experiment (ASTE). Using antenna coupled distributed junctions, SIS photon detectors give wide band response in a 650-GHz atmospheric window as well as high current sensitivity, shot noise limited operation, fast response and high dynamic range. Optical noise equivalent power (NEP) was measured to be 1.6x10-16 W/Hz0.5 that is less than the background photon fluctuation limit for ground based submillimeter-wave observations. Fabrication of focal plane array with 9 detector pixels is underway to install in ASTE. Readout electronics with Si-JFETs operating at about 100 K will be used for this array. Development of readout electronics for larger array is based on GaAs-JFETs operating at 0.3 K. For the purpose of installing 100 element array of SIS photon detectors, we have developed remotely operable low-vibration cryostat, which now cools bolometers for 350, 450, 850-µm observations down to 0.34 K. GM-type 4-K cooler and He3/He4 sorption cooler is used, which can be remotely recycled to keep detectors at 0.34 K. Since we have large optical window for this cryostat, sapphire cryogenic window is used to block infrared radiation. The sapphire window is ante-reflection coated with SiO2 by chemical vapor deposition (CVD). The transmittance of the cryogenic window at 650 GHz is more than 95%.

  5. WIDE-FIELD PRECISION KINEMATICS OF THE M87 GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.; Beasley, Michael A.; Arnold, Jacob A.; Tamura, Naoyuki; Sharples, Ray M.; Arimoto, Nobuo

    2011-12-01

    We present the most extensive combined photometric and spectroscopic study to date of the enormous globular cluster (GC) system around M87, the central giant elliptical galaxy in the nearby Virgo Cluster. Using observations from DEIMOS and the Low Resolution Imaging Spectrometer at Keck, and Hectospec on the Multiple Mirror Telescope, we derive new, precise radial velocities for 451 GCs around M87, with projected radii from {approx}5 to 185 kpc. We combine these measurements with literature data for a total sample of 737 objects, which we use for a re-examination of the kinematics of the GC system of M87. The velocities are analyzed in the context of archival wide-field photometry and a novel Hubble Space Telescope catalog of half-light radii, which includes sizes for 344 spectroscopically confirmed clusters. We use this unique catalog to identify 18 new candidate ultracompact dwarfs and to help clarify the relationship between these objects and true GCs. We find much lower values for the outer velocity dispersion and rotation of the GC system than in earlier papers and also differ from previous work in seeing no evidence for a transition in the inner halo to a potential dominated by the Virgo Cluster, nor for a truncation of the stellar halo. We find little kinematical evidence for an intergalactic GC population. Aided by the precision of the new velocity measurements, we see significant evidence for kinematical substructure over a wide range of radii, indicating that M87 is in active assembly. A simple, scale-free analysis finds less dark matter within {approx}85 kpc than in other recent work, reducing the tension between X-ray and optical results. In general, out to a projected radius of {approx}150 kpc, our data are consistent with the notion that M87 is not dynamically coupled to the Virgo Cluster; the core of Virgo may be in the earliest stages of assembly.

  6. Afar-wide Crustal Strain Field from Multiple InSAR Tracks

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.

    2010-12-01

    Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a

  7. Advanced materials characterization based on full field deformation measurements

    NASA Astrophysics Data System (ADS)

    Carpentier, A. Paige

    Accurate stress-strain constitutive properties are essential for understanding the complex deformation and failure mechanisms for materials with highly anisotropic mechanical properties. Among such materials, glass-fiber- and carbon-fiber-reinforced polymer--matrix composites play a critical role in advanced structural designs. The large number of different methods and specimen types currently required to generate three-dimensional allowables for structural design slows down the material characterization. Also, some of the material constitutive properties are never measured due to the prohibitive cost of the specimens needed. This work shows that simple short-beam shear (SBS) specimens are well-suited for measurement of multiple constitutive properties for composite materials and that can enable a major shift toward accurate material characterization. The material characterization is based on the digital image correlation (DIC) full-field deformation measurement. The full-field-deformation measurement enables additional flexibility for assessment of stress--strain relations, compared to the conventional strain gages. Complex strain distributions, including strong gradients, can be captured. Such flexibility enables simpler test-specimen design and reduces the number of different specimen types required for assessment of stress--strain constitutive behavior. Two key elements show advantage of using DIC in the SBS tests. First, tensile, compressive, and shear stress--strain relations are measured in a single experiment. Second, a counter-intuitive feasibility of closed-form stress and modulus models, normally applicable to long beams, is demonstrated for short-beam specimens. The modulus and stress--strain data are presented for glass/epoxy and carbon/epoxy material systems. The applicability of the developed method to static, fatigue, and impact load rates is also demonstrated. In a practical method to determine stress-strain constitutive relations, the stress

  8. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  9. Wide-field photometry of the Galactic globular cluster M22

    NASA Astrophysics Data System (ADS)

    Monaco, L.; Pancino, E.; Ferraro, F. R.; Bellazzini, M.

    2004-04-01

    We present wide-field photometry of the Galactic globular cluster M22 in the B, V and I passbands for more than 186 000 stars. The study is complemented by the photometry in two narrow-band filters centred on Hα and the adjacent continuum, and by infrared J, H and K magnitudes derived from the Two-Micron All-Sky Survey for ~2000 stars. Profiting from this huge data base, we completely characterized the evolved stellar sequences of the cluster by determining a variety of photometric parameters, including new photometric estimates of the mean metallicity, reddening and distance to the cluster. In particular, from our multiwavelength analysis, we re-examined the long-standing metallicity spread problem in M22. According to our data set, we conclude that most of the observed width of the red giant branch must be due to differential reddening, which amounts to a maximum of ΔE(B-V) ~= 0.06, although the presence of a small metallicity spread cannot be completely ruled out. More specifically, the maximum metallicity spread allowed by our data is of the order of Δ[Fe/H]~= 0.1-0.2 dex, i.e. not much more than that allowed by the photometric errors. Finally, we identified most of the known variable stars and peculiar objects in our field of view. In particular, we have found additional evidence supporting previous optical identifications of the central star of the planetary nebula IRAS 18333-2357, which is associated with M22.

  10. A Light and Effective Wide Field Monitor for Gamma Ray Bursts and Transient Sources

    SciTech Connect

    Feroci, M.; Campana, R.; Costa, E.; Del Monte, E.; Donnarumma, I.; Evangelista, Y.; Lazzarotto, F.; Mastropietro, M.; Muleri, F.; Pacciani, L.; Rubini, A.; Soffitta, P.; Amati, L.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Morelli, E.; Orlandini, M.; Antonelli, L. A.; Fiore, F.

    2009-05-25

    We present here a concept for a light and low-power wide field monitor working in the X-ray range, suitable for simultaneous imaging of large portions of the sky and GRB localizations. Our concept evolves from and improves on the design of the 5-kg SuperAGILE experiment, flying on the AGILE mission and currently delivering arcmin-localizations of GRBs at a rate of about 1/month. Similar to SuperAGILE, our concept is based on position sensitive silicon detectors equipped with one-dimensional coded masks. Different options are available for the detector, whose properties, combined with the scientific requirements, drive the design of the experiment. Our approach is based on a modular detector. The experiment design can then be tailored to specific scientific goals of the experiment or the mission (e.g., to cite GRBs only: the brightest GRBs/XRFs on a large field of view - FoV, or many low-fluence GRBs/XRFs on a smaller FoV, or the low energy spectrum of the prompt event, or the detection of high-z GRBs). In this paper we describe the concept, the main detector properties and outline some possible experiment configurations, with examples of their expected performance. Different experiment configurations in terms of area, FoV, angular resolution may be designed starting from the same detectors. Instead, the band-pass is mostly related to the detector properties. A key point of our project is the high degree of readiness of the detectors that are at production level and may be immediately proposed for a future experiment onboard missions with high readiness requirements.

  11. Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2010-01-01

    X-ray telescopes with spatial resolution optimized over the field of view (FOV) are of special interest for missions, such as WFXT, focused on moderately deep and deep surveys of the x-ray sky, and for solar x-ray observations. Here we report on the present status of an on-going study of the properties of Wolter I and polynominal grazing incidence designs with a view to gain a deeper insight into their properties and simply the design process. With these goals in mind, we present some results in the complementary topics of (1) properties of Wolter I x-ray optics and polynominal x-ray optic ray tracing. Of crucial importance for the design of wide-field x-ray optics is the optimization criteria. Here we have adopted the minimization of a merit function, M, which measures the spatial resolution averaged over the FOV: M= ((integral of d phi) between the limits of 0 and 2 pi) (integral of d theta theta w(theta) sigma square (theta,phi) between the limits of 0 and theta(sub FOV)) (integral of d phi between the limits of 0 and phi/4) (Integral of d theta theta w(theta) between the limits of 0 and theta(sub FOV) where w(theta(sub 1) is a weighting function and Merit function: sigma-square (theta, phi) = summation of (x,y,z) [-<(x,y,z)> (exp 2)] is the spatial variance for a point source on the sky at polar and azimuthal off-axis angles (theta,phi).

  12. KMTNet: a network of 1.6-m wide field optical telescopes installed at three southern observatories

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Uk; Kim, Seung-Lee; Cha, Sang-Mok; Lee, Yongseok; Kim, Dong-Jin; Park, Byeong-Gon; Lee, Dong-Joo; Koo, Jae-Rim; Hong, Kyeongsoo; Lee, Jae Woo; Ryu, Yoon-Hyun; Lim, Beomdu; Lim, Jin-Sun; Gho, Seung-Won; Kim, Min-Jun

    2015-08-01

    Korea Astronomy and Space Science Institute (KASI) have installed three identical 1.6-m telescopes, called Korea Microlensing Telescope Network (KMTNet), which cover 2 x 2 degree field of view with the plate scale of 0.4 arcsec/pixel at three observatories - CTIO, SSO and SAAO in southern hemisphere. The uniqueness of the system is the uninterupted 24-hour monitoring with a wide field optics in southern hemisphere. The telescope adopts prime focus using a parabolic mirror and four spherical flattening lenses. The structural design and driving systems are modified from the degin of 2MASS telescope. The one piece filter-shutter assembly has a sliding shutter and four 310-mm square filters. Each observation system produces a 680MB size image file at site and the images are transfered to KASI data center using the Global Ring Network for Advanced Application Development (GLORIAD) network with the band width of 50Mbps in average. The main science goal of the KMTNet is to discover Earth like extra solar planet using the microlensing technique during bulge season, and 50% of the total observation time is allocated for the science program solely. The other telescope times are allocated for pre-selected seven science programs during non-bulge season. From the test observation, we verify that the most important two requirements are satisfied: 10 arcsec in RMS for the pointing accuracy and 1 arcsec of delivered image quality in I-band. In this presentation, we introduce finally installed system at each observatory and its observational performance obtained from the test observation.

  13. Incorporating biological pathways via a Markov random field model in genome-wide association studies.

    PubMed

    Chen, Min; Cho, Judy; Zhao, Hongyu

    2011-04-01

    Genome-wide association studies (GWAS) examine a large number of markers across the genome to identify associations between genetic variants and disease. Most published studies examine only single markers, which may be less informative than considering multiple markers and multiple genes jointly because genes may interact with each other to affect disease risk. Much knowledge has been accumulated in the literature on biological pathways and interactions. It is conceivable that appropriate incorporation of such prior knowledge may improve the likelihood of making genuine discoveries. Although a number of methods have been developed recently to prioritize genes using prior biological knowledge, such as pathways, most methods treat genes in a specific pathway as an exchangeable set without considering the topological structure of a pathway. However, how genes are related with each other in a pathway may be very informative to identify association signals. To make use of the connectivity information among genes in a pathway in GWAS analysis, we propose a Markov Random Field (MRF) model to incorporate pathway topology for association analysis. We show that the conditional distribution of our MRF model takes on a simple logistic regression form, and we propose an iterated conditional modes algorithm as well as a decision theoretic approach for statistical inference of each gene's association with disease. Simulation studies show that our proposed framework is more effective to identify genes associated with disease than a single gene-based method. We also illustrate the usefulness of our approach through its applications to a real data example.

  14. Resolving the extended stellar halos of nearby galaxies: the wide-field PISCeS survey†

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Sand, D. J.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J. D.; Strader, J.; Toloba, E.

    2016-08-01

    In the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we investigate the resolved stellar halos of two nearby galaxies (the elliptical Centaurus A and the spiral Sculptor, D ~ 3.7 Mpc) out to a projected galactocentric radius of 150 kpc with Magellan/Megacam. The survey has led to the discovery of ~20 faint satellites to date, plus prominent streams and substructures in two environments that are substantially different from the Local Group, i.e. the Centaurus A group dominated by an elliptical and the loose Sculptor group of galaxies. These discoveries clearly attest to the importance of past and ongoing accretion processes in shaping the halos of these nearby galaxies, and provide the first census of their satellite systems down to an unprecedented MV < -8. The detailed characterization of the stellar content, shape and gradients in the extended halos of Sculptor, Centaurus A, and their dwarf satellites provides key constraints on theoretical models of galaxy formation and evolution.

  15. Pulsed light imaging for wide-field dosimetry of photodynamic therapy in the skin

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Sexton, Kristian; Chapman, Michael Shane; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Photodynamic therapy using aminoluvelinic acid (ALA) is an FDA-approved treatment for actinic keratoses, pre-cancerous skin lesions which pose a significant risk for immunocompromised individuals, such as organ transplant recipients. While PDT is generally effective, response rates vary, largely due to variations in the accumulation of the photosensitizer protoporphyrin IX (PpIX) after ALA application. The ability to quantify PpIX production before treatment could facilitate the use of additional interventions to improve outcomes. While many groups have demonstrated the ability to image PpIX in the clinic, these systems generally require darkening the room lights during imaging, which is unpopular with clinicians. We have developed a novel wide-field imaging system based on pulsed excitation and gated acquisition to image photosensitizer activity in the skin. The tissue is illuminated using four pulsed LED's to excite PpIX, and the remitted light acquired with a synchronized ICCD. This approach facilitates real-time background subtraction of ambient light, precluding the need to darken the exam room. Delivering light in short bursts also allows the use of elevated excitation intensity while remaining under the maximum permissible exposure limits, making the modality more sensitive to photosensitizer fluorescence than standard approaches. Images of tissue phantoms indicate system sensitivity down to 250nM PpIX and images of animals demonstrate detection of PpIX fluorescence in vivo under normal room light conditions.

  16. Wide-field laser ophthalmoscopy for imaging of gas-filled eyes after macular hole surgery

    PubMed Central

    Nakao, Shintaro; Arita, Ryoichi; Sato, Yuki; Enaida, Hiroshi; Ueno, Akifumi; Matsui, Takaaki; Salehi-Had, Hani; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Background and objective Existing ophthalmoscopy methods are unable to obtain clear fundus autofluorescence (FAF) images in gas-filled eyes. The purpose of this study was to evaluate the capability of wide-field laser ophthalmoscopy (Optos) in obtaining FAF images in gas-filled eyes for the assessment of macular hole (MH) closure after surgery. Methods This was an interventional case series. Eighteen consecutive patients with unilateral MH underwent vitrectomy with internal limiting membrane peeling and 20% sulfur hexafluoride gas tamponade. FAF images using Optos were recorded preoperatively and postoperatively (days 1, 2, and 7). Results On postoperative days 1, 2, and 7, FAF images were obtained from 11/18 (61.1%), 9/18 (50.0%), and 17/18 eyes (94.4%), respectively, using Optos. The quality of FAF images using Optos was sufficient to determine MH closure in 9/18 (50.0%) of gas-filled eyes postoperatively. Quantitative analysis of FAF images was helpful in determining complete or partial closure of the MH. Conclusion FAF imaging using Optos might be a useful adjunct to optical coherence tomography as a supportive method to guide the release from facedown posturing in some cases of MH.

  17. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV.

  18. Background simulations for the wide field imager aboard the ATHENA X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Hauf, Steffen; Kuster, Markus; Hoffmann, Dieter H. H.; Lang, Philipp-Michael; Neff, Stephan; Pia, Maria Grazia; Strüder, Lothar

    2012-09-01

    The ATHENA X-ray observatory was a European Space Agency project for a L-class mission. ATHENA was to be based upon a simplified IXO design with the number of instruments and the focal length of the Wolter optics being reduced. One of the two instruments, the Wide Field Imager (WFI) was to be a DePFET based focal plane pixel detector, allowing for high time and spatial resolution spectroscopy in the energy-range between 0.1 and 15 keV. In order to fulfill the mission goals a high sensitivity is essential, especially to study faint and extended sources. Thus a detailed understanding of the detector background induced by cosmic ray particles is crucial. During the mission design generally extensive Monte-Carlo simulations are used to estimate the detector background in order to optimize shielding components and software rejection algorithms. The Geant4 toolkit1,2 is frequently the tool of choice for this purpose. Alongside validation of the simulation environment with XMM-Newton EPIC-pn and Space Shuttle STS-53 data we present estimates for the ATHENA WFI cosmic ray induced background including long-term activation, which demonstrate that DEPFET-technology based detectors are able to achieve the required sensitivity.

  19. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  20. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    SciTech Connect

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.; Hoffman, Douglas I.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.

  1. Wide-Field InfraRed Survey Telescope (WFIRST) slitless spectrometer: design, prototype, and results

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Content, David A.; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; Whipple, Arthur

    2016-07-01

    The slitless spectrometer plays an important role in the WFIRST mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies1. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  2. Telescope Fabra ROA Montsec: A New Robotic Wide Field Baker-Nunn Facility

    NASA Astrophysics Data System (ADS)

    Fors, Octavi; Núñez, Jorge; Muiños, José Luis; Montojo, Francisco Javier; Baena-Gallé, Roberto; Boloix, Jaime; Morcillo, Ricardo; Merino, María Teresa; Downey, Elwood C.; Mazur, Michael J.

    2013-05-01

    A Baker-Nunn Camera (BNC), originally installed at the Real Instituto y Observatorio de la Armada (ROA) in 1958, was refurbished and robotized. The new facility, called Telescope Fabra ROA Montsec (TFRM), was installed at the Observatori Astronòmic del Montsec (OAdM). The process of refurbishment is described in detail. Most of the steps of the refurbishment project were accomplished by purchasing commercial components, which involve little posterior engineering assembling work. The TFRM is a 0.5 m aperture f/0.96 optically modified BNC, which offers a unique combination of instrumental specifications: fully robotic and remote operation, wide field of view (4°.4 × 4°.4), moderate limiting magnitude (V ~ 19.5 mag), ability of tracking at arbitrary right ascension (α) and declination (δ) rates, as well as opening and closing CCD shutter at will during an exposure. Nearly all kinds of image survey programs can benefit from those specifications. Apart from other less time-consuming programs, since the beginning of science TFRM operations we have been conducting two specific and distinct surveys: super-Earths transiting around M-type dwarfs stars, and geostationary debris in the context of Space Situational Awareness/Space Surveillance and Tracking (SSA/SST) programs. Preliminary results for both cases will be shown.

  3. Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0

    NASA Astrophysics Data System (ADS)

    Dressel, L.

    2012-12-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument. It was installed in the Hubble Space Telescope (HST) during Servicing Mission 4 (SM4) in May 2009. WFC3 saw first light on June 24, 2009, following the cooling of its detectors. Servicing Mission 4 Observatory Verification (SMOV) activities were completed in late August 2009, and were followed by the Cycle 17 calibration and science programs. This WFC3 Instrument Handbook has been prepared by the WFC3 team at STScI. It is the basic technical reference manual for WFC3 observers. The information in this Handbook is intended to be useful for Cycle 21 Phase I proposers, for the subsequently selected General Observers (GOs) as they prepare their Phase II specifications, and for those analyzing WFC3 data. The HST Primer and the HST Call for Proposals also contain valuable information for proposers, and the Call for Proposals is the final authority on HST policy. This edition of the WFC3 Instrument Handbook (Version 5.0) was written near the end of the execution of the Cycle 19 calibration plan. It supersedes Version 4.0, and includes results from analysis of the first three cycles of on-orbit performance.

  4. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE

    SciTech Connect

    Wright, Edward L.; McLean, Ian; Eisenhardt, Peter R. M.; Mainzer, Amy K.; Ressler, Michael E.; Gautier, Thomas N.; Cutri, Roc M.; Jarrett, Thomas; Kirkpatrick, J. Davy; Padgett, Deborah; McMillan, Robert S.; Skrutskie, Michael; Stanford, S. A.; Cohen, Martin; Walker, Russell G.; Mather, John C.; Leisawitz, David; Benford, Dominic; Lonsdale, Carol J.; Blain, Andrew

    2010-12-15

    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite, and the Two Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 2009 December 14. WISE began surveying the sky on 2010 January 14 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in 2010 November). WISE is achieving 5{sigma} point source sensitivities better than 0.08, 0.11, 1, and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12, and 22 {mu}m. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.''1, 6.''4, 6.''5, and 12.''0 at 3.4, 4.6, 12, and 22 {mu}m, and the astrometric precision for high signal-to-noise sources is better than 0.''15.

  5. THE FIRST ULTRA-COOL BROWN DWARF DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Mainzer, A.; Cushing, Michael C.; Eisenhardt, P.; Skrutskie, M.; Beaton, R.; Gelino, C. R.; Kirkpatrick, J. Davy; Jarrett, T.; Masci, F.; Marsh, K.; Padgett, D.; Marley, Mark S.; Saumon, D.; Wright, E.; McLean, I.; Dietrich, M.; Garnavich, P.; Rueff, K.; Kuhn, O.; Leisawitz, D.

    2011-01-01

    We report the discovery of the first new ultra-cool brown dwarf (BDs) found with the Wide-field Infrared Survey Explorer (WISE). The object's preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8-2.5 {mu}m spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new BD is easily detected by WISE, with a signal-to-noise ratio of {approx}36 at 4.6 {mu}m. Current estimates place it at a distance of 6-10 pc. This object represents the first in what will likely be hundreds of nearby BDs found by WISE that will be suitable for follow-up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new BD proves that WISE is capable of fulfilling this objective.

  6. Wide-field laser ophthalmoscopy for imaging of gas-filled eyes after macular hole surgery

    PubMed Central

    Nakao, Shintaro; Arita, Ryoichi; Sato, Yuki; Enaida, Hiroshi; Ueno, Akifumi; Matsui, Takaaki; Salehi-Had, Hani; Ishibashi, Tatsuro; Sonoda, Koh-hei

    2016-01-01

    Background and objective Existing ophthalmoscopy methods are unable to obtain clear fundus autofluorescence (FAF) images in gas-filled eyes. The purpose of this study was to evaluate the capability of wide-field laser ophthalmoscopy (Optos) in obtaining FAF images in gas-filled eyes for the assessment of macular hole (MH) closure after surgery. Methods This was an interventional case series. Eighteen consecutive patients with unilateral MH underwent vitrectomy with internal limiting membrane peeling and 20% sulfur hexafluoride gas tamponade. FAF images using Optos were recorded preoperatively and postoperatively (days 1, 2, and 7). Results On postoperative days 1, 2, and 7, FAF images were obtained from 11/18 (61.1%), 9/18 (50.0%), and 17/18 eyes (94.4%), respectively, using Optos. The quality of FAF images using Optos was sufficient to determine MH closure in 9/18 (50.0%) of gas-filled eyes postoperatively. Quantitative analysis of FAF images was helpful in determining complete or partial closure of the MH. Conclusion FAF imaging using Optos might be a useful adjunct to optical coherence tomography as a supportive method to guide the release from facedown posturing in some cases of MH. PMID:27601877

  7. A Wide-Field Survey of the Clustering of Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Woods, David; Fahlman, Gregory G.; Richer, Harvey B.

    The observed clustering of galaxies at intermediate redshifts (z ~0.5-1) is a very useful diagnostic for testing galaxy evolution models. Previous studies of the angular correlation function (omega(theta)) at faint limits (I ~24) have suffered from a lack of precision due to samples containing only ~2-3 thousand galaxies. The introduction of wide-field mosaic cameras, such as the UH8k and CFH12k at CFHT, will significantly enlarge faint galaxy samples and thereby improve estimates of omega(theta). We are currently pursuing a galaxy clustering study in V and I with a survey area ~6 times larger (~0.2 sq. deg.) than our previous work (Woods and Fahlman 1997), using data obtained with the UH8k. Our analysis of the ~7000 galaxies contained in this data set will act as a pilot study leading towards the acquisition of deeper and larger samples of galaxies, to be obtained in the near future with mosaic cameras (this already being done to brighter limits by Postman et al. 1998). A preliminary analysis of a portion of the data is presented and the benefits of the upcoming, larger 2-d photometric surveys are summarized.

  8. Recalibrating the Wide-field Infrared Survey Explorer (WISE) W4 Filter

    NASA Astrophysics Data System (ADS)

    Brown, M. J. I.; Jarrett, T. H.; Cluver, M. E.

    2014-12-01

    We present a revised effective wavelength and photometric calibration for the Wide-field Infrared Survey Explorer W4 band, including tests of empirically motivated modifications to its pre-launch laboratory-measured relative system response curve. We derived these by comparing measured W4 photometry with photometry synthesised from spectra of galaxies and planetary nebulae. The difference between measured and synthesised photometry using the pre-launch laboratory-measured W4 relative system response can be as large as 0.3 mag for galaxies and 1 mag for planetary nebulae. We find the W4 effective wavelength should be revised upward by 3.3%, from 22.1 to 22.8 μm, and the W4 AB magnitude of Vega should be revised from m W4 = 6.59 to m W4 = 6.66. In an attempt to reproduce the observed W4 photometry, we tested three modifications to the pre-launch laboratory-measured W4 relative system response curve, all of which have an effective wavelength of 22.8 μm. Of the three relative system response curve models tested, a model that matches the laboratory-measured relative system response curve, but has the wavelengths increased by 3.3% (or ≃ 0.73 μm) achieves reasonable agreement between the measured and synthesised photometry.

  9. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  10. Development of a Data Reduction algorithm for Optical Wide Field Patrol

    NASA Astrophysics Data System (ADS)

    Park, Sun-youp; Keum, Kang-Hoon; Lee, Seong-Whan; Jin, Ho; Park, Yung-Sik; Hong-Suh; Jo, Jung Hyun; Moon, Hong-Kyu; Bae, Young-Ho; Choi, Jin; Choi, Young-Jun; Park, Jang-Hyun; Lee, Jung-Ho

    2013-09-01

    The detector subsystem of the Optical Wide-field Patrol (OWL) network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS) solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.

  11. Wide-field single metal nanoparticle spectroscopy for high throughput localized surface plasmon resonance sensing.

    PubMed

    Chen, Kok Hao; Hobley, Jonathan; Foo, Yong Lim; Su, Xiaodi

    2011-06-01

    Noble metal nanoparticles (mNPs) have a distinct extinction spectrum arising from their ability to support Localized Surface Plasmon Resonance (LSPR). Single-particle biosensing with LSPR is label free and offers a number of advantages, including single molecular sensitivity, multiplex detection, and in vivo quantification of chemical species etc. In this article, we introduce Single-particle LSPR Imaging (SLI), a wide-field spectral imaging method for high throughput LSPR biosensing. The SLI utilizes a transmission grating to generate the diffraction spectra from multiple mNPs, which are captured using a Charge Coupled Device (CCD). With the SLI, we are able to simultaneously image and track the spectral changes of up to 50 mNPs in a single (∼1 s) exposure and yet still retain a reasonable spectral resolution for biosensing. Using the SLI, we could observe spectral shift under different local refractive index environments and demonstrate biosensing using biotin-streptavidin as a model system. To the best of our knowledge, this is the first time a transmission grating based spectral imaging approach has been used for mNPs LSPR sensing. The higher throughput LSPR sensing, offered by SLI, opens up a new possibility of performing label-free, single-molecule experiments in a high-throughput manner. PMID:21359329

  12. Characterization of high proper motion objects from the wide-field infrared survey explorer

    SciTech Connect

    Luhman, K. L.; Sheppard, Scott S.

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ∼12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08–623558.7, may belong to the thick disk.

  13. FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS

    SciTech Connect

    Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide raw material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  14. Mosaicing for fast wide-field-of-view optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Chee, Ryan K.; Forbrich, Alexander; Zemp, Roger J.

    2012-02-01

    The acquisition speed of previously reported mechanically-scanned Optical-Resolution Photoacoustic Microscopy (OR-PAM) systems has been limited by both laser pulse repetition rate and mechanical scanning speed. In this paper we introduce a mosaicing scheme wherein a grid of small sub-mm-scale field-of-view (FOV) patches are acquired in 0.5s per patch, and a 3-axis stepper-motor system is used to mechanically move the object to be imaged from patch-to-patch in less than 0.5s. Patch images are aligned and stitched to generate a large FOV image composite. This system retains the SNR-advantages of focused-transducer OR-PAM systems, and is a hybrid approach between optical-scanning and mechanical scanning. With this strategy we reduce the data acquisition time of previously reported large-FOV systems by a factor of around 23. SCID hairless mice are imaged. The wide-FOV, high-speed data acquisition OR-PAM system broadens the potential applications of the imaging modality.

  15. Hubble Space Telescope Wide Field Camera imaging of the gravitational lens 2237 + 0305

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Schneider, Donald P.; Bahcall, John N.

    1992-01-01

    Images of the gravitational lens system 2237 + 0305, taken with the HST Wide Field Camera, are analyzed. Positions for the four quasar images, accurate to +/-0.015 arcsec, and relative magnitudes in U and R, accurate to +/-0.06 and 0.04 mag, respectively, are determined. The upper limits on the observed brightness of the fifth image are found to be less than or approximately equal to 7 percent of the brightest quasar image. The mass of the lens inside 0.9 arcsec is found to be 1.08 +/-0.02 x 10 exp 10 solar masses/h100 corresponding to a mass-to-light ratio in B of 12.3h100. This solar mass/solar luminosity estimate agrees with values obtained from stellar dynamics for other elliptical galaxies. A comparison of predictions from this mass model with the measured central velocity dispersion yields a distance-independent agreement to within 10 percent, assuming isotropic velocity dispersions.

  16. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  17. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  18. (Sn)DICE: A Calibration System Designed for Wide Field Imagers

    NASA Astrophysics Data System (ADS)

    Regnault, N.; Barrelet, E.; Guyonnet, A.; Juramy, C.; Rocci, P.-F.; Le Guillou, L.; Schahmanèche, K.; Villa, F.

    2016-05-01

    Dark Energy studies with type Ia supernovae set very tight constraints on the photometric calibration of the imagers used to detect the supernovae and follow up their flux variations. Among the key challenges is the measurement of the shape and normalization of the instrumental throughput. The DICE system was developed by members of the Supernova Legacy Survey (SNLS) , building upon the lessons learnt working with the MegaCam imager. It consists in a very stable light source, placed in the telescope enclosure, and generating compact, conical beams, yielding an almost flat illumination of the imager focal plane. The calibration light is generated by narrow spectrum LEDs selected to cover the entire wavelength range of the imager. It is monitored in real time using control photodiodes. A first DICE demonstrator, SnDICE has been installed at CFHT. A second generation instrument (SkyDICE) has been installed in the enclosure of the SkyMapper telescope. We present the main goals of the project. We discuss the main difficulties encoutered when trying to calibrate a wide field imager, such as MegaCam (or SkyMapper) using such a calibrated light source.

  19. Managing the Development of the Wide-Field Infrared Survey Explorer Mission

    NASA Technical Reports Server (NTRS)

    Irace, William; Cutri, Roc; Duval, Valerie; Eisenhardt, Peter; Elwell, John; Greanias, George; Heinrichsen, Ingolf; Howard, Joan; Liu, Feng-Chuan; Royer, Donald; Wright, Edward L.

    2010-01-01

    The Wide-field Infrared Survey Explorer (WISE), a NASA Medium-Class Explorer (MIDEX) mission, is surveying the entire sky in four bands from 3.4 to 22 microns with a sensitivity hundreds to hundreds of thousands times better than previous all-sky surveys at these wavelengths. The single WISE instrument consists of a 40 cm three-mirror anastigmatic telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 6" resolution (full-width-half-maximum). WISE was placed into a Sun-synchronous polar orbit on a Delta II 7320 launch vehicle on December 14, 2009. NASA selected WISE as a MIDEX in 2002 following a rigorous competitive selection process. To gain further confidence in WISE, NASA extended the development period one year with an option to cancel the mission if certain criteria were not met. MIDEX missions are led by the principal investigator who in this case delegated day-to-day management to the project manager. With a cost cap and relatively short development schedule, it was essential for all WISE partners to work seamlessly together. This was accomplished with an integrated management team representing all key partners and disciplines. The project was developed on budget and on schedule in spite of the need to surmount significant technical challenges. This paper describes our management approach, key challenges and critical decisions made. Results are described from a programmatic, technical and scientific point of view. Lessons learned are offered for projects of this type.

  20. A TECHNIQUE FOR PRIMARY BEAM CALIBRATION OF DRIFT-SCANNING, WIDE-FIELD ANTENNA ELEMENTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Jacobs, Daniel C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Parashare, Chaitali R.; Carilli, Chris L.; Gugliucci, Nicole E.

    2012-02-15

    We present a new technique for calibrating the primary beam of a wide-field, drift-scanning antenna element. Drift-scan observing is not compatible with standard beam calibration routines, and the situation is further complicated by difficult-to-parameterize beam shapes and, at low frequencies, the sparsity of accurate source spectra to use as calibrators. We overcome these challenges by building up an interrelated network of source 'crossing points'-locations where the primary beam is sampled by multiple sources. Using the single assumption that a beam has 180 Degree-Sign rotational symmetry, we can achieve significant beam coverage with only a few tens of sources. The resulting network of crossing points allows us to solve for both a beam model and source flux densities referenced to a single calibrator source, circumventing the need for a large sample of well-characterized calibrators. We illustrate the method with actual and simulated observations from the Precision Array for Probing the Epoch of Reionization.

  1. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV. PMID:22559541

  2. A retinal circuit model accounting for wide-field amacrine cells

    PubMed Central

    Sağlam, Murat; Murayama, Nobuki

    2008-01-01

    In previous experimental studies on the visual processing in vertebrates, higher-order visual functions such as the object segregation from background were found even in the retinal stage. Previously, the “linear–nonlinear” (LN) cascade models have been applied to the retinal circuit, and succeeded to describe the input-output dynamics for certain parts of the circuit, e.g., the receptive field of the outer retinal neurons. And recently, some abstract models composed of LN cascades as the circuit elements could explain the higher-order retinal functions. However, in such a model, each class of retinal neurons is mostly omitted and thus, how those neurons play roles in the visual computations cannot be explored. Here, we present a spatio-temporal computational model of the vertebrate retina, based on the response function for each class of retinal neurons and on the anatomical inter-cellular connections. This model was capable of not only reproducing the spatio-temporal filtering properties of the outer retinal neurons, but also realizing the object segregation mechanism in the inner retinal circuit involving the “wide-field” amacrine cells. Moreover, the first-order Wiener kernels calculated for the neurons in our model showed a reasonable fit to the kernels previously measured in the real retinal neuron in situ. PMID:19003460

  3. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  4. WIDE-FIELD MULTIBAND PHOTOMETRY OF GLOBULAR CLUSTER SYSTEMS IN THE FORNAX GALAXY CLUSTER

    SciTech Connect

    Kim, Hak-Sub; Yoon, Suk-Jin; Chung, Chul; Lee, Sang-Yoon; Lee, Young-Wook; Sohn, Sangmo Tony; Kim, Sang Chul; Kim, Eunhyeuk

    2013-01-20

    We present wide-field multiband photometry of globular cluster (GC) systems in NGC 1399, NGC 1404, and NGC 1387 located in the central region of the Fornax galaxy cluster. Observation was carried out through U, B, V, and I bands, which marks one of the widest and deepest U-band studies on extragalactic GC systems. The present U-band photometry enables us to significantly reduce the contamination by a factor of two for faint sources (V {sub 0} {approx} 23.5). The main results based on some 2000 GC candidates around NGC 1399, NGC 1404, and NGC 1387 are as follows: (1) the GC system in each galaxy exhibits bimodal color distributions in all colors examined, but the shape of color histograms varies systematically depending on colors; (2) NGC 1399 shows that the mean colors of both blue and red GCs become bluer with increasing galactocentric radius; (3) NGC 1399 shows overabundance of GCs in the directions of NGC 1404 and NGC 1387, indicating their ongoing interactions; and (4) NGC 1399 also exhibits a {approx}0.'5 offset between the center of the inner GC distribution and the galaxy's optical center, suggesting that NGC 1399 is not yet dynamically relaxed and may be undergoing merger events.

  5. Dome Degradation Characterization of Wide-Field-of-View Nonscanner Aboard ERBE and Its Reprocessing

    NASA Technical Reports Server (NTRS)

    Shrestha, Alok K.; Kato, Seiji; Wong, Takmeng; Su, Wenying; Stackhouse, Paul W., Jr.; Rose, Fred; Miller, Walter F.; Bush, Kathryn; Rutan, David A.; Minnis, Patrick; Doelling, David R.; Smith, George L.

    2015-01-01

    Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanners aboard ERBS and NOAA- 9/NOAA-10 provided broadband shortwave and longwave irradiances from 1985 to 1999. The previous analysis showed dome degradation in the shortwave nonscanner instruments. The correction was performed with a constant spectral (gray assumption) degradation. We suspect that the gray assumption affected daytime longwave irradiance and led to a day-minus-night longwave flux differences (little change in night time longwave) increase over time. Based on knowledge from the CERES process, we will reprocess entire ERBE nonscanner radiation dataset by characterizing shortwave dome transmissivity with spectral dependent degradation using the solar data observed by these instruments. Once spectral dependent degradation is derived, imager derived cloud fraction and the cloud phase as well as surface type over the FOV of nonscanner instruments will be used to model unfiltering coefficients. This poster primarily explains the reprocessing techniques and includes initial comparison of several months of data processed with existing and our recent methods.

  6. Enhanced flight symbology for wide-field-of-view helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Rogers, Steven P.; Asbury, Charles N.; Szoboszlay, Zoltan P.

    2003-09-01

    A series of studies was conducted to improve the Army aviator's ability to perform night missions by developing innovative symbols that capitalize on the advantages of new wide field-of-view (WFOV) helmet-mounted displays (HMDs). The most important outcomes of the research were two new symbol types called the Cylinder and the Flight Path Predictor. The Cylinder provides a large symbolic representation of real-world orientation that enables pilots to maintain the world frame of reference even if the visibility of the world is lost due to dust, smoke, snow, or inadvertent instrument meteorological conditions (IMC). Furthermore, the Cylinder is peripherally presented, supporting the "ambient" visual mode so that it does not require the conscious attention of the viewer. The Flight Path Predictor was developed to show the predicted flight path of a maneuvering aircraft using earth-referenced HMD symbology. The experimental evidence and the pilot interview results show that the new HMD symbology sets are capable of preventing spatial disorientation, improving flight safety, enhancing flight maneuver precision, and reducing workload so that the pilot can more effectively perform the critical mission tasks.

  7. Resolving the extended stellar haloes of nearby galaxies: the wide-field PISCeS survey

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija; Sand, David J.; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian A.; Seth, Anil; Simon, Joshua D.; Strader, Jay; Toloba, Elisa

    2015-08-01

    I will present results from the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS): we investigate the resolved stellar haloes of two nearby galaxies (the spiral NGC253 and the elliptical Centaurus A, D~3.7 Mpc) out to a galactocentric radius of 150 kpc with Magellan/Megacam. The survey led to the discovery of ~20 faint satellites and stunning streams/substructures in two environments substantially different from the Local Group, i.e. the loose Sculptor group of galaxies and the Centaurus A group dominated by an elliptical. These discoveries clearly testify the past and ongoing accretion processes shaping the haloes of these nearby galaxies, and provide the first complete census of their satellite systems down to an unprecedented M_V<-8. This effectively enables the first direct comparison of external galaxies' resolved haloes to the PAndAS survey. The detailed characterization of the stellar content, shape and gradients in the extended haloes of NGC253, Centaurus A and in their satellites represent crucial constraints to theoretical models of galaxy formation and evolution.

  8. The Wide-Field Infrared Survey Explorer (WISE): Mission Description and Initial On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.; Eisenhardt, Peter R. M.; Mainzer, Amy; Ressler, Michael E.; Cutri, Roc M.; Jarrett, Thomas; Kirkpatrick, J. Davy; Padgett, Deborah; McMillan, Robert S.; Skrutskie,Michael; Stanford, S. A.; Cohen, Martin; Walker, Russell G.; Mather, John C.; Leisawitz, David; Gautier, Thomas N., III; McLean, Ian; Benford, Dominic; Lonsdale,Carol J.; Blain, Andrew; Mendez,Bryan; Irace, William R.; Duval, Valerie; Liu, Fengchuan; Royer, Don

    2010-01-01

    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

  9. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  10. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  11. A hidden Markov random field model for genome-wide association studies.

    PubMed

    Li, Hongzhe; Wei, Zhi; Maris, John

    2010-01-01

    Genome-wide association studies (GWAS) are increasingly utilized for identifying novel susceptible genetic variants for complex traits, but there is little consensus on analysis methods for such data. Most commonly used methods include single single nucleotide polymorphism (SNP) analysis or haplotype analysis with Bonferroni correction for multiple comparisons. Since the SNPs in typical GWAS are often in linkage disequilibrium (LD), at least locally, Bonferroni correction of multiple comparisons often leads to conservative error control and therefore lower statistical power. In this paper, we propose a hidden Markov random field model (HMRF) for GWAS analysis based on a weighted LD graph built from the prior LD information among the SNPs and an efficient iterative conditional mode algorithm for estimating the model parameters. This model effectively utilizes the LD information in calculating the posterior probability that an SNP is associated with the disease. These posterior probabilities can then be used to define a false discovery controlling procedure in order to select the disease-associated SNPs. Simulation studies demonstrated the potential gain in power over single SNP analysis. The proposed method is especially effective in identifying SNPs with borderline significance at the single-marker level that nonetheless are in high LD with significant SNPs. In addition, by simultaneously considering the SNPs in LD, the proposed method can also help to reduce the number of false identifications of disease-associated SNPs. We demonstrate the application of the proposed HMRF model using data from a case-control GWAS of neuroblastoma and identify 1 new SNP that is potentially associated with neuroblastoma.

  12. Tracker controls development and control architecture for the Hobby-Eberly Telescope Wide Field Upgrade

    NASA Astrophysics Data System (ADS)

    Mock, Jason R.; Beno, Joe; Rafferty, Tom H.; Cornell, Mark E.

    2010-07-01

    To enable the Hobby-Eberly Telescope Wide Field Upgrade, the University of Texas Center for Electromechanics and McDonald Observatory are developing a precision tracker system - a 15,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 14 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). This level of system complexity and emphasis on fail-safe operation is typical of large modern telescopes and numerous industrial applications. Due to this complexity, demanding accuracy requirements, and stringent safety requirements, a highly versatile and easily configurable centralized control system that easily links with modeling and simulation tools during the hardware and software design process was deemed essential. The Matlab/Simulink simulation environment, coupled with dSPACE controller hardware, was selected for controls development and realization. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. Custom designed position feedback loops, supplemented by feed forward force commands for enhanced performance, and algorithms to accommodate self-locking gearboxes (for safety), reside in dSPACE. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of software and hardware, design choices and analysis, and supporting simulations (primarily Simulink).

  13. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  14. THE DISCOVERY OF Y DWARFS USING DATA FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE)

    SciTech Connect

    Cushing, Michael C.; Mainzer, A.; Eisenhardt, Peter R.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Beichman, Charles A.; Skrutskie, Michael F.; Burgasser, Adam J.; Prato, Lisa A.; Simcoe, Robert A.; Marley, Mark S.; Freedman, Richard S.; Saumon, D.; Wright, Edward L.

    2011-12-10

    We present the discovery of seven ultracool brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Near-infrared spectroscopy reveals deep absorption bands of H{sub 2}O and CH{sub 4} that indicate all seven of the brown dwarfs have spectral types later than UGPS J072227.51-054031.2, the latest-type T dwarf currently known. The spectrum of WISEP J182831.08+265037.8 is distinct in that the heights of the J- and H-band peaks are approximately equal in units of f{sub {lambda}}, so we identify it as the archetypal member of the Y spectral class. The spectra of at least two of the other brown dwarfs exhibit absorption on the blue wing of the H-band peak that we tentatively ascribe to NH{sub 3}. These spectral morphological changes provide a clear transition between the T dwarfs and the Y dwarfs. In order to produce a smooth near-infrared spectral sequence across the T/Y dwarf transition, we have reclassified UGPS 0722-05 as the T9 spectral standard and tentatively assign WISEP J173835.52+273258.9 as the Y0 spectral standard. In total, six of the seven new brown dwarfs are classified as Y dwarfs: four are classified as Y0, one is classified as Y0 (pec?), and WISEP J1828+2650 is classified as >Y0. We have also compared the spectra to the model atmospheres of Marley and Saumon and infer that the brown dwarfs have effective temperatures ranging from 300 K to 500 K, making them the coldest spectroscopically confirmed brown dwarfs known to date.

  15. THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE

    SciTech Connect

    Mainzer, A.; Masiero, J.; Bauer, J.; Ressler, M.; Eisenhardt, P.; Grav, T.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of {approx}10% and {approx}20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 {mu}m and 4.6 {mu}m, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical

  16. Thermal Model Calibration for Minor Planets Observed with Wide-field Infrared Survey Explorer/NEOWISE

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Grav, T.; Masiero, J.; Bauer, J.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.; Ressler, M.; Eisenhardt, P.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of ~10% and ~20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 μm and 4.6 μm, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model.

  17. A wide-field near- and mid-infrared Census of young stars in NGC 6334

    SciTech Connect

    Willis, S.; Marengo, M.; Allen, L.; Fazio, G. G.; Smith, H. A.; Carey, S.

    2013-12-01

    This paper presents a study of the rate and efficiency of star formation in the NGC 6334 star-forming region. We obtained observations at J, H, and K{sub s} taken with the NOAO Extremely Wide-Field Infrared Imager and combined them with observations taken with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope at wavelengths = 3.6, 4.5, 5.8, and 8.0 μm. We also analyzed previous observations taken at 24 μm using the Spitzer MIPS camera as part of the MIPSGAL survey. We have produced a point source catalog with >700, 000 entries. We have identified 2283 young stellar object (YSO) candidates, 375 Class I YSOs, and 1908 Class II YSOs using a combination of existing IRAC-based color classification schemes that we have extended and validated to the near-IR for use with warm Spitzer data. We have identified multiple new sites of ongoing star formation activity along filamentary structures extending tens of parsecs beyond the central molecular ridge of NGC 6334. By mapping the extinction, we derived an estimate for the gas mass, 2.2 × 10{sup 5} M {sub ☉}. The heavy concentration of protostars along the dense filamentary structures indicates that NGC 6334 may be undergoing a 'mini-starburst' event with Σ{sub SFR} > 8.2 M {sub ☉} Myr{sup –1} pc{sup –2} and SFE > 0.10. We have used these estimates to place NGC 6334 in the Kennicutt-Schmidt diagram to help bridge the gap between observations of local low-mass star-forming regions and star formation in other galaxies.

  18. Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations

    PubMed Central

    Cheng, Riyan; Lim, Jackie E.; Samocha, Kaitlin E.; Sokoloff, Greta; Abney, Mark; Skol, Andrew D.; Palmer, Abraham A.

    2010-01-01

    Model organisms offer many advantages for the genetic analysis of complex traits. However, identification of specific genes is often hampered by a lack of recombination between the genomes of inbred progenitors. Recently, genome-wide association studies (GWAS) in humans have offered gene-level mapping resolution that is possible because of the large number of accumulated recombinations among unrelated human subjects. To obtain analogous improvements in mapping resolution in mice, we used a 34th generation advanced intercross line (AIL) derived from two inbred strains (SM/J and LG/J). We used simulations to show that familial relationships among subjects must be accounted for when analyzing these data; we then used a mixed model that included polygenic effects to address this problem in our own analysis. Using a combination of F2 and AIL mice derived from the same inbred progenitors, we identified genome-wide significant, subcentimorgan loci that were associated with methamphetamine sensitivity, (e.g., chromosome 18; LOD = 10.5) and non-drug-induced locomotor activity (e.g., chromosome 8; LOD = 18.9). The 2-LOD support interval for the former locus contains no known genes while the latter contains only one gene (Csmd1). This approach is broadly applicable in terms of phenotypes and model organisms and allows GWAS to be performed in multigenerational crosses between and among inbred strains where familial relatedness is often unavoidable. PMID:20439773

  19. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  20. A wide-field spectroscopic survey of Abell 1689 and Abell 1835 with VIMOS

    NASA Astrophysics Data System (ADS)

    Czoske, Oliver

    2004-12-01

    Spectroscopic surveys can add a third dimension, velocity, to the galaxy distribution in and PoS(BDMH2004)099 around clusters. The largest wide-field spectroscopic samples at present exist for near-by clusters. Czoske et al. (2001: A&A 372, 391; 2002: A&A 386, 31) present a catalogue of redshifts for 300 cluster members with V < 22 in Cl0024+1654 at z = 0.395, the largest currently available cluster ˜ redshift catalogue at such a high redshift. In that case, it was only the redshift information ex- tending to large cluster-centric distances which revealed the complex structure of what appeared in other observations to be a relaxed rich cluster. The recent advent of high-multiplex spectrographs on 8 10 meter class telescopes has made it possible to obtain large numbers of high-quality spectra of galaxies and around clusters of galaxies in a short amount of time. The data described by Czoske et al. (2001) were obtained over the course of four years. Samples larger by a factor of 2 . . . 3 can now be obtained in ˜ 10 hours of observation time. Here I present the first results from a spectroscopic survey of the two X-ray luminous clusters Abell 1689 (z = 0.185) and Abell 1835 (z = 0.25). We use the VIsible imaging Multi-Object Spectrograph (VIMOS) on VLT UT3/Melipal. The field of view of VIMOS available for spectroscopy consists of four quadrants of ˜ 7 × 7 , the separa- tion between the quadrants is ˜ 2 . Using the LR-Blue grism, one can place ˜ 100 . . . 150 slits per quadrant. The resulting spectra cover the wavelength range 3700 . . . 6700 Å with a resolution R 200. We use as the basis for object selection panoramic multi-colour images obtained with the CFH12k camera on CFHT (Czoske, 2002, PhD thesis), covering 40 × 30 in BRI for A1689 and VRI for A1835. The input catalogue has been cleaned of stars. We attempted to cover the entire CFH12k field of view by using 10 VIMOS pointings for each cluster. Due to technical problems with VIMOS only 8 and 9 masks

  1. ERBE Wide-Field-of-View Nonscanner Data Reprocessing and revisiting its Radiation dataset from 1985 to 199

    NASA Astrophysics Data System (ADS)

    Shrestha, A. K.; Kato, S.; Wong, T.; Stackhouse, P. W.; Rose, F. G.; Miller, W. F.; Bush, K.; Rutan, D. A.; Minnis, P.; Doelling, D.

    2015-12-01

    The Earth's radiation budget is a fundamental component of the climate system and should reflect the variation in climate. As such, it is critical to know how it has varied over past decades to ensure that climate models are properly representing climate. Broadband shortwave and longwave irradiances were measured by the Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanner instrument from 1985 to 1998. These WFOV nonscanner instruments were onboard NASA's Earth Radiation Budget Satellite (ERBS) and two NOAA's satellites (NOAA-9 and NOAA-10). However, earlier studies showed that the transmissivity of the dome for the WFOV shortwave (SW) nonscanner instrument degraded over time. To account for the degradation, WFOV instruments were calibrated assuming constant spectral degradation (gray assumption). Recent developments from analysis of data from the Clouds and the Earth's Radiant Energy System project (CERES), which has been measuring the radiation budget since 2000, suggest that transmissivity of shorter wavelength degrades faster. Therefore, a spectrally dependent degradation correction is needed for a better calibration. In addition, accounting for the spectrally dependent degradation may eliminate an additional correction applied to irradiances using a time series of daytime and nighttime longwave irradiance differences. Therefore, we have reprocessed WFOV nonscanner data by characterizing the spectrally dependent degradation of the SW dome transmissivity. Time and spectral dependent degradation of the shortwave filter function is estimated using solar data observed by these instruments during calibration days. Because the spectrum of reflected irradiance depends on scene type, we use Advanced Very High Resolution Radiometer AVHRR-derived cloud properties and surface type over the WFOV footprints in addition to time dependent filter function for the unfiltering process. This poster explains the reprocessing approach and discusses the

  2. Advanced Waste Treatment. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This operations manual represents a continuation of operator training manuals developed for the United States Environmental Protection Agency (USEPA) in response to the technological advancements of wastewater treatment and the changing needs of the operations profession. It is intended to be used as a home-study course manual (using the concepts…

  3. Automatic detection of asteroids and meteoroids --- a wide-field survey

    NASA Astrophysics Data System (ADS)

    Vereš, P.; Tóth, J.; Jedicke, R.; Tonry, J.; Denneau, L.; Wainscoat, R.; Kornoš, L.; Šilha, J.

    2014-07-01

    The small Near-Earth Asteroids (NEAs) represent a potential risk but also an easily accessible space resource for future robotic or human in-situ space exploration or commercial activities. However, the population of 1--300 m NEAs is not well understood in terms of size- frequency and orbital distribution. NEAs with diameters below 200 m tend to have much faster spin rates than large objects and they are believed to be monolithic and not rubble-pile like their large counterparts. Moreover, the current surveys do not systematically search for the small NEAs that are mostly overlooked. We propose a low- cost robotic optical survey (ADAM-WFS) aimed at small NEAs based on four state-of-the-art telescopes having extremely wide fields of view. The four Houghton-Terebizh 30-cm astrographs (Fig. left) with 4096×4096 -pixel CCD cameras will acquire 96 square degrees in one exposure with the plate scale of 4.4 arcsec/pixel. In 30 seconds, the system will be able to reach +17.5 mag in unfiltered mode. The survey will be operated on semi-automatic basis, covering the entire night sky three times per night and optimized toward fast moving targets recognition. The advantage of the proposed system is the usage of existing of-the-shelf components and software for the image processing and object identification and linking (Denneau et al., 2013). The one-year simulation of the survey (Fig. right) at the testing location at AGO Modra observatory in Slovakia revealed that we will detect 60--240 NEAs between 1--300 m that get closer than 10 lunar distances from the Earth. The number of detections will rise by a factor of 1.5--2 in case the survey is placed at a superb observing location such as Canary Islands. The survey will also serve as an impact warning system for imminent impactors. Our simulation showed that we have a 20 % chance of finding a 50-m NEA on a direct impact orbit. The survey will provide multiple byproducts from the all-sky scans, such as comet discoveries, sparse

  4. Sampling and Analysis of Impact Crater Residues found on the Wide Field Planetary Camera-2 Radiator

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R. P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.; Robinson, G. A.; Opiela, J. N.; Gerlach, L.

    2013-01-01

    After nearly 16 years on orbit, the Wide Field Planetary Camera-2 (WFPC-2) was recovered from the Hubble Space Telescope in May 2009 during the 12 day shuttle mission designated STS-125. During that exposure to the low Earth orbit environment, the WFPC-2 radiator was struck by approximately 700 impactors producing crater features 300 micrometers and larger in size. Following an optical inspection of these features in 2009, an agreement was reached for the joint NASA-ESA examination and characterization of crater residues, the remnants of the projectile, in 2011. Active examination began in 2012, with 486 of the impact features being cored at NASA Johnson Space Center fs (JSC) Space Exposed Hardware cleanroom and curation facility. The core samples were subsequently divided between NASA and ESA. NASA's analysis was conducted at JSC fs Astromaterials Research and Exploration Science (ARES) Division, using scanning electron microscopy (SEM)/ energy dispersive X-ray spectrometry (EDS) methods, and ESA's analysis was conducted at the Natural History Museum (NHM) again using SEM/EDS, and at the University of Surrey Ion Beam Centre (IBC) using ion beam analysis (IBA) with a scanned proton microbeam. As detailed discussion of the joint findings remains premature at this point, this paper reports on the coring technique developed; the practical taxonomy developed to classify residues as belonging either to anthropogenic "orbital debris" or micrometeoroids; and the protocols for examination of crater residues. Challenges addressed in coring were the relative thickness of the surface to be cut, protection of the impact feature from contamination while coring, and the need to preserve the cleanroom environment so as to preclude or minimize cross-contamination. Classification criteria are summarized, including the assessment of surface contamination and surface cleaning. Finally, we discuss the analytical techniques used to examine the crater residues. We employed EDS from

  5. Removing cosmic-ray hits from multiorbit HST Wide Field Camera images

    NASA Technical Reports Server (NTRS)

    Windhorst, Rogier A.; Franklin, Barbara E.; Neuschaefer, Lyman W.

    1994-01-01

    We present an optimized algorithm that removes cosmic rays ('CRs') from multiorbit Hubble Space Telescope (HST) Wide Field/Planetary Camera ('WF/PC') images. It computes the image noise in every iteration from the WF/PC CCD equation. This includes all known sources of random and systematic calibration errors. We test this algorithm on WF/PC stacks of 2-12 orbits as a function of the number of available orbits and the formal Poissonian sigma-clipping level. We find that the algorithm needs greater than or equal 4 WF/PC exposures to locate the minimal sky signal (which is noticeably affected by CRs), with an optimal clipping level at 2-2.5 x sigma(sub Poisson). We analyze the CR flux detected on multiorbit 'CR stacks,' which are constructed by subtracting the best CR filtered images from the unfiltered 8-12 orbit average. We use an automated object finder to determine the surface density of CRS as a function of the apparent magnitude (or ADU flux) they would have generated in the images had they not been removed. The power law slope of the CR 'counts' (gamma approximately = 0.6 for N(m) m(exp gamma)) is steeper than that of the faint galaxy counts down to V approximately = 28 mag. The CR counts show a drop off between 28 less than or approximately V less than or approximately 30 mag (the latter is our formal 2 sigma point source sensitivity without spherical aberration). This prevents the CR sky integral from diverging, and is likely due to a real cutoff in the CR energy distribution below approximately 11 ADU per orbit. The integral CR surface density is less than or approximately 10(exp 8)/sq. deg, and their sky signal is V approximately = 25.5-27.0 mag/sq. arcsec, or 3%-13% of our NEP sky background (V = 23.3 mag/sq. arcsec), and well above the EBL integral of the deepest galaxy counts (B(sub J) approximately = 28.0 mag/sq. arcsec). We conclude that faint CRs will always contribute to the sky signal in the deepest WF/PC images. Since WFPC2 has approximately 2.7x

  6. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel

  7. Measuring metallicities with Hubble space telescope/wide-field camera 3 photometry

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon A.; Anthony-Twarog, Barbara J.; Twarog, Bruce; Bond, Howard E.; Saha, Abhijit; Walker, Alistair E-mail: holtz@nmsu.edu E-mail: btwarog@ku.edu E-mail: awalker@ctio.noao.edu

    2014-01-01

    We quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine Wide-Field Camera 3 filters on board the Hubble Space Telescope using Dartmouth isochrones and Kurucz atmosphere models. The theoretical isochrone colors were tested and calibrated against observations of five well studied galactic clusters, M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791, all of which have spectroscopically determined metallicities spanning –2.30 < [Fe/H] <+0.4. We found empirical corrections to the Dartmouth isochrone grid for each of the following color-magnitude diagrams (CMDs): (F555W-F814W, F814W), (F336W-F555W, F814W), (F390M-F555W, F814W), and (F390W-F555W, F814W). Using empirical corrections, we tested the accuracy and spread of the photometric metallicities assigned from CMDs and color-color diagrams (which are necessary to break the age-metallicity degeneracy). Testing three color-color diagrams [(F336W-F555W),(F390M-F555W),(F390W-F555W), versus (F555W-F814W)], we found the colors (F390M-F555W) and (F390W-F555W) to be the best suited to measure photometric metallicities. The color (F390W-F555W) requires much less integration time, but generally produces wider metallicity distributions and, at very low metallicity, the metallicity distribution function (MDF) from (F390W-F555W) is ∼60% wider than that from (F390M-F555W). Using the calibrated isochrones, we recovered the overall cluster metallicity to within ∼0.1 dex in [Fe/H] when using CMDs (i.e., when the distance, reddening, and ages are approximately known). The measured MDF from color-color diagrams shows that this method measures metallicities of stellar clusters of unknown age and metallicity with an accuracy of ∼0.2-0.5 dex using F336W-F555W, ∼0.15-0.25 dex using F390M-F555W, and ∼0.2-0.4 dex with F390W-F555W, with the larger uncertainty pertaining to the lowest metallicity range.

  8. Wide field imaging - I. Applications of neural networks to object detection and star/galaxy classification

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.

    2000-12-01

    Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features

  9. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    SciTech Connect

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A.; Kaviraj, S.; Crockett, R. M.; Silk, J.; O'Connell, R. W.; Hathi, N. P.; McCarthy, P. J.; Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E.; Yan, H.; Kimble, R. A.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  10. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond

    PubMed Central

    Hall, L. T.; Beart, G. C. G.; Thomas, E. A.; Simpson, D. A.; McGuinness, L. P.; Cole, J. H.; Manton, J. H.; Scholten, R. E.; Jelezko, F.; Wrachtrup, Jörg; Petrou, S.; Hollenberg, L. C. L.

    2012-01-01

    A quantitative understanding of the dynamics of biological neural networks is fundamental to gaining insight into information processing in the brain. While techniques exist to measure spatial or temporal properties of these networks, it remains a significant challenge to resolve the neural dynamics with subcellular spatial resolution. In this work we consider a fundamentally new form of wide-field imaging for neuronal networks based on the nanoscale magnetic field sensing properties of optically active spins in a diamond substrate. We analyse the sensitivity of the system to the magnetic field generated by an axon transmembrane potential and confirm these predictions experimentally using electronically-generated neuron signals. By numerical simulation of the time dependent transmembrane potential of a morphologically reconstructed hippocampal CA1 pyramidal neuron, we show that the imaging system is capable of imaging planar neuron activity non-invasively at millisecond temporal resolution and micron spatial resolution over wide-fields. PMID:22574249

  11. The globular cluster system of NGC 1316. I. Wide-field photometry in the Washington system

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Bassino, L. P.; Dirsch, B.; Kumar, B.

    2012-07-01

    Context. NGC 1316 (Fornax A) is a prominent merger remnant in the outskirts of the Fornax cluster. The bulge stellar population of NGC 1316 has a strong intermediate-age component. Studies of its globular cluster system may help to further refine its probably complex star formation history. Aims: The cluster system has not yet been studied in its entirety. We therefore present a wide-field study of the globular cluster system of NGC 1316, investigating its properties in relation to the global morphology of NGC 1316. Methods: We used the MOSAIC II camera at the 4-m Blanco telescope at CTIO in the filters Washington C and Harris R. We identified globular cluster candidates and studied their color distribution and the structural properties of the system. In an appendix, we also remark on the morphology, present color maps, and present new models for the brightness and color profiles of the galaxy. Results: The cluster system is well confined to the optically visible outer contours of NGC 1316. There are about 640 cluster candidates down to R = 24 mag. The color distribution of the entire sample is unimodal, but the color distribution of bright subsamples in the bulge shows two peaks that, compared with theoretical Washington colors with solar metallicity, correspond to ages of about 2 Gyr and 0.8 Gyr, respectively. We also find a significant population of clusters in the color range 0.8 < C - R < 1.1, which must be populated by clusters younger than 0.8 Gyr, unless they are very metal-poor. The color interval 1.3 < C - R < 1.6 hosts the bulk of intermediate-age clusters, which show a surface density profile with a sharp decline at about 4'. The outer cluster population shows an unimodal color distribution with a peak at C - R = 1.1, indicating a higher contribution of old, metal-poor clusters. However, their luminosity function does not show the expected turn-over, so the fraction of younger clusters is still significant. We find a pronounced concentration of blue

  12. Quantifying the area-wide dispersal patterns of honeybees in commercial alfalfa fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the foraging range of honey bees in an agroecosystem dominated by a glyphosate-resistant Roundup Ready® (RR) alfalfa seed production field and several non-RR fields. Honey bee self-marking devices were attached to colonies originating from nine different apiary locat...

  13. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  14. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.

    Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.

    When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they

  15. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    PubMed

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second. PMID:26974110

  16. THE AGE-METALLICITY RELATIONSHIP OF THE LARGE MAGELLANIC CLOUD FIELD STAR POPULATION FROM WIDE-FIELD WASHINGTON PHOTOMETRY

    SciTech Connect

    Piatti, Andres E.; Geisler, Doug

    2013-01-01

    We analyze age and metallicity estimates for an unprecedented database of some 5.5 million stars distributed throughout the Large Magellanic Cloud (LMC) main body, obtained from CCD Washington CT{sub 1} photometry, reported on in Piatti et al. We produce a comprehensive field star age-metallicity relationship (AMR) from the earliest epoch until {approx}1 Gyr ago. This AMR reveals that the LMC has not evolved chemically as either a closed-box or bursting system, exclusively, but as a combination of both scenarios that have varied in relative strength over the lifetime of the galaxy, although the bursting model falls closer to the data in general. Furthermore, while old and metal-poor field stars have been preferentially formed in the outer disk, younger and more metal-rich stars have mostly been formed in the inner disk, confirming an outside-in formation. We provide evidence for the formation of stars between 5 and 12 Gyr, during the cluster age gap, although chemical enrichment during this period was minimal. We find no significant metallicity gradient in the LMC. We also find that the range in the metallicity of an LMC field has varied during the lifetime of the LMC. In particular, we find only a small range of the metal abundance in the outer disk fields, whereas an average range of {Delta}[Fe/H] = +0.3 {+-} 0.1 dex appears in the inner disk fields. Finally, the cluster and field AMRs show a satisfactory match only for the last 3 Gyr, while for the oldest ages (>11 Gyr), the cluster AMR is a remarkable lower envelope to the field AMR. Such a difference may be due to the very rapid early chemical evolution and lack of observed field stars in this regime, whereas the globular clusters are easily studied. This large difference is not easy to explain as coming from stripped ancient Small Magellanic Cloud (SMC) clusters, although the field SMC AMR is on average {approx}0.4 dex more metal-poor at all ages than that of the LMC but otherwise very similar.

  17. Non-invasive continuous imaging of drug release from soy-based skin equivalent using wide-field interferometry

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.

    2013-04-01

    We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.

  18. Development of Extremely Wide-Field CMOS Camera Tomo-e:Contribution to Small Solar System Objects

    NASA Astrophysics Data System (ADS)

    Watanabe, Juniichi; Yoshikawa, Makoto; Urakawa, Seitaro; Usui, Fumihiko; Ohsawa, Ryou; Sako, Shigeyuki; Arimatsu, Ko

    2016-07-01

    We are developing an ultra wide-field fast camera, Tomo-e Gozen, which will be set up on the 105cm (F3.1) Schmidt telescope in Kiso Observatory at the University of Tokyo. Tomo-e equipped with 84 CMOS image sensors, which work in a room temperature, has a 20 square degree field of view and a fast readout speed of ~2 Hz. The purpose of this camera is the observation of the transient objects such as the counterpart of the gravitational wave events, the ultra wide-field capability with a high survey efficiency is also useful for small solar system bodies; NEOs, occultation events of the TNOs, and meteors. In the presentation, the specifications of Tomo-e are shown together with some preliminary results of the experimental observation run.

  19. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners

    PubMed Central

    Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.

    2016-01-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  20. Modeling the effect of high altitude turbulence in wide-field correlating wavefront sensing and its impact on the performance of solar AO systems

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Tallon, M.; Langlois, M.; Béchet, C.; Collados Vera, M.

    2014-08-01

    Solar Adaptive Optics (AO) shares many issues with night-time AO, but it also has its own particularities. The wavefront sensing is performed using correlations to efficiently work on the solar granulation as a reference. The field of view for that measurement usually is around 10". A sensor collecting such a wide field of view averages wavefront information from different sky directions, and the anisoplanatism thus has a peculiar impact on the performance of solar AO and MCAO systems. Since we are entering the era of large solar telescopes (European Solar Telescope, Advanced Technology Solar Telescope) understanding this issue is crucial to evaluate its impact on the performance of future AO systems. In this paper we model the correlating wide field sensor and the way it senses the high altitude turbulence. Thanks to this improved modelling, we present an analysis of the influence of this sensing on the performance of each AO configuration, conventional AO and MCAO. In addition to the analytical study, simulations similar to the case of the EST AO systems with FRiM-3D (the Fractal Iterative Method for Atmospheric tomography) are used in order to highlight the relative influence of design parameters. In particular, results show the performance evolution when increasing the telescope diameter. We analyse the effect of high altitude turbulence correlation showing that increasing the diameter of the telescope does not degrade the performance when correcting on the same spatial and temporal scales.

  1. ADVANCING THE FIELD EVALUATIONS AND APPLICATIONS OF LANDFILL BIOREACTORS

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is undertaking a long-term program to conduct field evaluations of landfill bioreactors. The near-term effort is focused on the development of appropriate monitoring strategies to ensure adequate control of the landfill bioreactors an...

  2. Keratoprosthesis: A Review of Recent Advances in the Field

    PubMed Central

    Salvador-Culla, Borja; Kolovou, Paraskevi E.

    2016-01-01

    Since its discovery in the years of the French Revolution, the field of keratoprostheses has evolved significantly. However, the path towards its present state has not always been an easy one. Initially discarded for its devastating complications, the introduction of new materials and the discovery of antibiotics in the last century gave new life to the field. Since then, the use of keratoprostheses for severe ocular surface disorders and corneal opacities has increased significantly, to the point that it has become a standard procedure for corneal specialists worldwide. Although the rate of complications has significantly been reduced, these can impede the long-term success, since some of them can be visually devastating. In an attempt to overcome these complications, researchers in the field have been recently working on improving the design of the currently available devices, by introducing the use of new materials that are more biocompatible with the eye. Here we present an update on the most recent research in the field. PMID:27213461

  3. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  4. A Novel superconducting toroidal field magnet concept using advanced materials

    NASA Astrophysics Data System (ADS)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  5. [A Concept Design of Flat-Field Spectrograph for Wide Wavelength Range].

    PubMed

    Li, Shi-yuan; Zhang, Guang-cai; Teng, Ai-ping

    2015-05-01

    The radiation spectrum from the plasmas contains a large amount of information of plasmas. Thus, one of the most effective methods to detecting the plasma parameters is measure the plasma radiation spectrum. Until now, since the restriction of the Toshiba mechanically ruled aberration-corrected concave gratings, the measurable wavelength range of the incidence flat-field grazing spectrometer in the soft X-ray range are only from 5 to 40 nm. In order to extend the wavelength rang of grazing incidence flat-field spectrometer, first, a grazing incidence concave reflection grating ray-trace code is written using optical path equation. Second, under the same conditions with reference 6, we compare our numerical results with Harada's results. The results show that our results agree very well with the results of Harada. The results of comparison show that our ray-trace code is believable. Finally, the variety of the flat-field curves are detailedly investigated using the ray-trace code with the different grazing incidence conditions. The results show that the measurable wavelength range of the incidence flat-field grazing spectrometer are extended to 5~80 nm from the soft X-ray wavelength range of 5~40 nm. This result theoretically demonstrates the possibility of expanded the traditional band flat-field grazing incidence spectrometer from soft X-ray band to the extreme ultraviolet (XUV), and also bring a new design ideas for improving the use of grazing incidence flat field concave grating.

  6. Constraints on lunar dynamo mechanism for interpreting lunar-wide magnetic field

    NASA Astrophysics Data System (ADS)

    Hemant Singh, Kumar; Kuang, Weijia

    2015-04-01

    Moon, once considered an in-active celesitial body, surprisingly showed evidences of magnetized crust in satellite and returned samples from Apollo mission. Several mechanisms have been suggested in the past for the origin of the lunar magnetization, but the origin of the magnetization remains unknown. Among the suggested mechanisms is the paleo lunar dynamo, i.e. the crustal magnetization was acquired in an internal magnetic field generated by a dynamo once operated in the lunar core. A key for this to work is that the generated field strength should be sufficient to explain observations. The paleo field strengths from the past paleomagnetic measurements of returned samples show that they vary from different sample sites, ranging from 33.3 (±8.18) to 5430 (±1330) nT. Results from the satellite data are more than an order of magnitude weaker than those from the samples. The dynamo field strength could be significantly weaker. Simple envelope estimation of magnetic induction can lead to the necessary condition for a dynamo is magnetic Reynolds number ≥ 10, which is approximately two orders of magnitude smaller than that estimated for the Earth's core. Our estimation with a strong-field lunar dynamo suggests that the field strengths are between 155 and 700 nT, depending on the lunar core size. This estimation is consistent with more recent results from paleomagnetic analysis of Apollo sample (76535) which provides paleointensity of the Moon to be at least 300 to 1000 nT.

  7. Gendered Fields: Sports and Advanced Course Taking in High School

    PubMed Central

    Pearson, Jennifer; Crissey, Sarah R.; Riegle-Crumb, Catherine

    2010-01-01

    This study explores the association between sports participation and course taking in high school, specifically comparing subjects with varied gendered legacies—science and foreign language. Analyses of a nationally representative longitudinal sample (N=5,447) of U.S. adolescents from the National Longitudinal Study of Adolescent Health and the linked Adolescent Health and Academic Achievement transcript study show that male and female athletes are more likely than non-athletes to take both advanced foreign language and Physics, largely because of their higher academic orientation. However, the association between sports participation and course taking was strongest for girls’ Physics coursework, suggesting that sports may provide girls with a unique opportunity to develop the skills and confidence to persevere in the masculine domain of science. PMID:20221304

  8. Summary of field operations Technical Area I well PGS-1. Site-Wide Hydrogeologic Characterization Project

    SciTech Connect

    Fritts, J.E.; McCord, J.P.

    1995-02-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories, New Mexico is managing the project to assess and, when necessary, to remediate sites contaminated by the lab operations. Within the ER project, the site-wide hydrogeologic characterization task is responsible for the area-wide hydrogeologic investigation. The purpose of this task is to reduce the uncertainty about the rate and direction of groundwater flow beneath the area and across its boundaries. This specific report deals with the installation of PGS-1 monitoring well which provides information on the lithology and hydrology of the aquifer in the northern area of the Kirtland Air Force Base. The report provides information on the well design; surface geology; stratigraphy; structure; drilling, completion, and development techniques; and borehole geophysics information.

  9. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.

    Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.

    When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they

  10. Integrating Field-Centered, Project Based Activities with Academic Year Coursework: A Curriculum Wide Approach

    NASA Astrophysics Data System (ADS)

    Kelso, P. R.; Brown, L. M.

    2015-12-01

    Based upon constructivist principles and the recognition that many students are motivated by hands-on activities and field experiences, we designed a new undergraduate curriculum at Lake Superior State University. One of our major goals was to develop stand-alone field projects in most of the academic year courses. Examples of courses impacted include structural geology, geophysics, and geotectonics, Students learn geophysical concepts in the context of near surface field-based geophysical studies while students in structural geology learn about structural processes through outcrop study of fractures, folds and faults. In geotectonics students learn about collisional and rifting processes through on-site field studies of specific geologic provinces. Another goal was to integrate data and samples collected by students in our sophomore level introductory field course along with stand-alone field projects in our clastic systems and sequence stratigraphy courses. Our emphasis on active learning helps students develop a meaningful geoscience knowledge base and complex reasoning skills in authentic contexts. We simulate the activities of practicing geoscientists by engaging students in all aspects of a project, for example: field-oriented project planning and design; acquiring, analyzing, and interpreting data; incorporating supplemental material and background data; and preparing oral and written project reports. We find through anecdotal evidence including student comments and personal observation that the projects stimulate interest, provide motivation for learning new concepts, integrate skill and concept acquisition vertically through the curriculum, apply concepts from multiple geoscience subdisiplines, and develop soft skills such as team work, problem solving, critical thinking and communication skills. Through this projected-centered Lake Superior State University geology curriculum students practice our motto of "learn geology by doing geology."

  11. Recent advances in the field of nutritional immunology

    PubMed Central

    Monk, Jennifer M; Hou, Tim Y; Chapkin, Robert S

    2015-01-01

    Every 4 years, researchers in the cross-disciplinary field of nutritional immunology convene for a FASEB-sponsored meeting entitled, “Nutritional Immunology: Role in Health and Disease”, which was held this summer in Carefree, AZ, USA. The scope of the conference encompassed a diverse list of research topics, including, but not restricted to, obesity and immune dysfunction, nutrient–gene interactions, mucosal immunity and a discussion of future directions for the field. Here, we summarize some of the findings shared at the conference, specifically focusing on obesity, immunological function of dietary components (n-3 polyunsaturated fatty acids and flavanoids), gut immunity and the microbiota, and relevant emerging technologies and databases. PMID:22014015

  12. Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Bellini, A.; Bedin, L. R.; Piotto, G.; Platais, I.; Kissler-Patig, M.; Milone, A. P.

    2014-03-01

    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8 m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field (in the Large Magellanic Cloud). We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2 m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields. Catalogs, fortran code, and distortion maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A80Based on observations with the 8 m VLT ESO telescope.

  13. KOALA, a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope: assembly and commissioning

    NASA Astrophysics Data System (ADS)

    Zhelem, Ross; Brzeski, Jurek; Case, Scott; Churilov, Vladimir; Ellis, Simon; Farrell, Tony; Green, Andrew; Heng, Anthony; Horton, Anthony; Ireland, Michael; Jones, Damien; Klauser, Urs; Lawrence, Jon; Miziarski, Stan; Orr, David; Pai, Naveen; Staszak, Nick; Tims, Julia; Vuong, Minh; Waller, Lew; Xavier, Pascal

    2014-07-01

    The KOALA optical fibre feed for the AAOmega spectrograph has been commissioned at the Anglo-Australian Telescope. The instrument samples the reimaged telescope focal plane at two scales: 1.23 arcsec and 0.70 arcsec per image slicing hexagonal lenslet over a 49x27 and 28x15 arcsec field of view respectively. The integral field unit consists of 2D hexagonal and circular lenslet arrays coupling light into 1000 fibres with 100 micron core diameter. The fibre run is over 35m long connecting the telescope Cassegrain focus with the bench mounted spectrograph room where all fibres are reformatted into a one-dimensional slit. Design and assembly of the KOALA components, engineering challenges encountered, and commissioning results are discussed.

  14. Wide-band-tunable photomixers using resonant laser-assisted field emission

    NASA Astrophysics Data System (ADS)

    Hagmann, Mark J.

    2003-07-01

    Simulations and experiments show a resonant interaction of tunneling electrons with a radiation field, and photomixing (optical heterodyning) in laser-assisted field emission can cause current oscillations from dc to 100 THz with this effect. Recent simulations by others are shown to be consistent with Fowler-Nordheim theory when the radiation is at low frequencies, and also confirm the existence of the resonance. The relationship of these simulations to photomixing is demonstrated, and estimates are given for the power of signals that could be obtained by this means.

  15. Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging.

    PubMed

    Rajshekhar, Gannavarpu; Bhaduri, Basanta; Edwards, Chris; Zhou, Renjie; Goddard, Lynford L; Popescu, Gabriel

    2014-02-10

    We demonstrate an optical technique for large field of view quantitative phase imaging of reflective samples. It relies on a common-path interferometric design, which ensures high stability without the need for active stabilization. The technique provides single-shot, full-field and robust measurement of nanoscale topography of large samples. Further, the inherent stability allows reliable measurement of the temporally varying phase retardation of the liquid crystal cells, and thus enables real-time characterization of spatial light modulators. The technique's application potential is validated through experimental results. PMID:24663633

  16. [Application of advanced engineering technologies to medical and rehabilitation fields].

    PubMed

    Fujie, Masakatsu

    2012-07-01

    The words "Japan syndrome" can now be heard increasingly through the media. Facing the approach of an elderly-dominated society, Robot Technology(RT)is expected to play an important role in Japan's medical, rehabilitation, and daily support fields. The industrial robot, which has already spread through the world with a great success in certain isolated environments by doing the work which is specialized for the thing with the hard known characteristic. By comparison, in the medical and rehabilitation fields, environments always change intricately, and individual characteristics differ from person to person. Furthermore, there are many times when a robot will be asked to directly interact with people. Moreover, the relation between a robot and a person turns into a relation which should involve contact flexibly according to a situation, and also turns into a relation which should avoid contact. In our group, we have so far developed practical rehabilitation and medical robots which can respond to difficulties such as environmental change and individual specificity. In developing rehabilitation robots, it is especially important to consider intuitive operability and individual differences. In addition, in developing medical robots, it is important to replace the experimental knowledge of surgeons to the mechanical quantitative properties. In this article, we introduce some practical examples of rehabilitation and medical robots interweaving several detailed technologies we have so far developed. PMID:22790039

  17. [Application of advanced engineering technologies to medical and rehabilitation fields].

    PubMed

    Fujie, Masakatsu

    2012-07-01

    The words "Japan syndrome" can now be heard increasingly through the media. Facing the approach of an elderly-dominated society, Robot Technology(RT)is expected to play an important role in Japan's medical, rehabilitation, and daily support fields. The industrial robot, which has already spread through the world with a great success in certain isolated environments by doing the work which is specialized for the thing with the hard known characteristic. By comparison, in the medical and rehabilitation fields, environments always change intricately, and individual characteristics differ from person to person. Furthermore, there are many times when a robot will be asked to directly interact with people. Moreover, the relation between a robot and a person turns into a relation which should involve contact flexibly according to a situation, and also turns into a relation which should avoid contact. In our group, we have so far developed practical rehabilitation and medical robots which can respond to difficulties such as environmental change and individual specificity. In developing rehabilitation robots, it is especially important to consider intuitive operability and individual differences. In addition, in developing medical robots, it is important to replace the experimental knowledge of surgeons to the mechanical quantitative properties. In this article, we introduce some practical examples of rehabilitation and medical robots interweaving several detailed technologies we have so far developed.

  18. Ulva prolifera monitoring by GF-1 wide field-of-view sensor data

    NASA Astrophysics Data System (ADS)

    Liang, Wenxiu; Li, Junsheng; Zhou, Demin; Shen, Qian; Zhang, Fangfang; Zhang, Haobin

    2014-11-01

    Ulva prolifera, a kind of green macroalgae, is nontoxic itself, however, its bloom has bad effects on the marine environment, coastal scene, water sports and seashore tourism. Monitoring of the Ulva prolifera by remote sensing technology has the advantages of wide coverage, rapidness, low cost and dynamic monitoring over a long period of time. The GF-1 satellite was launched in April 2013, which provides a new suitable remote sensing data source for monitoring the Ulva prolifera. At present, segmenting image with a threshold is the most widely used method in Ulva prolifera extraction by remote sensing data, because it is simple and easy to operate. However, the threshold value is obtained through visual analysis or using a fixed statistical value, and could not be got automatically. Facing this problem, we proposed a new method, which can obtain the segmentation threshold automatically based on the local maximum gradient value. This method adopted the average NDVI value of local maximum gradient points as the threshold, and could get an appropriate segmentation threshold automatically for each image. The preliminary results showed that this method works well in monitoring Ulva prolifera by GF-1 WFV data.

  19. Innovations of wide-field optical-sectioning fluorescence microscopy: toward high-speed volumetric bio-imaging with simplicity

    NASA Astrophysics Data System (ADS)

    Yu, Jiun-Yann

    Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere. The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths. Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often

  20. EMBRACE@Nançay: an ultra wide field of view prototype for the SKA

    NASA Astrophysics Data System (ADS)

    Torchinsky, S. A.; Olofsson, A. O. H.; Censier, B.; Karastergiou, A.; Serylak, M.; Renaud, P.; Taffoureau, C.

    2015-07-01

    A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angular resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the ``intensity mapping'' experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans.

  1. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers

    SciTech Connect

    Yoxall, Edward Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C.; Navarro-Cía, Miguel

    2013-11-18

    We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10 μm, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100 nm, corresponding to λ/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5 μm.

  2. Interference microscope objectives for wide-field areal surface topography measurements

    NASA Astrophysics Data System (ADS)

    de Groot, Peter J.; Biegen, James F.

    2016-07-01

    We propose a type of interference objective that extends the range of application for flexible microscope platforms to larger fields of view. The objective comprises a beamsplitter plate and a partially transparent reference mirror arranged coaxially with the objective lens system. The coaxial plates are slightly tilted to direct unwanted reflections outside of the imaging pupil aperture, providing high fringe contrast with spatially extended white-light illumination. Examples include a turret-mountable 1.4× magnification objective parfocal with high-magnification objectives up to 100× and a dovetail mount 0.5× objective with a 34×34 mm field. This design is a practical alternative to the classical Michelson and Mirau type objectives for low magnifications.

  3. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  4. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    NASA Astrophysics Data System (ADS)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  5. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    NASA Astrophysics Data System (ADS)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  6. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  7. A field emission microscope in an advanced students' laboratory

    NASA Astrophysics Data System (ADS)

    Greczylo, Tomasz; Mazur, Piotr; Debowska, Ewa

    2006-03-01

    This paper describes a university level experiment during which students can observe the surface structure and determine the work function of a clean single tungsten crystal and a crystal covered with barium. The authors used a commercial field emission microscope offered by Leybold Didactic and designed an experiment which can be easily reproduced and performed in a students' laboratory. The use of a digital camera and computer allowed simultaneous observation and imaging of the surface of the body-centred cubic structure of the single tungsten crystal. Some interesting results about the changes in tungsten work function with time and with barium coverage are presented and discussed. The data help to improve knowledge and skills in the calculation of measurement uncertainty.

  8. Globalization and Health: developing the journal to advance the field.

    PubMed

    Martin, Greg; MacLachlan, Malcolm; Labonté, Ronald; Larkan, Fiona; Vallières, Frédérique; Bergin, Niamh

    2016-01-01

    Founded in 2005, Globalization and Health was the first open access global health journal. The journal has since expanded the field, and its influence, with the number of downloaded papers rising 17-fold, to over 4 million. Its ground-breaking papers, leading authors -including a Nobel Prize winner- and an impact factor of 2.25 place it among the top global health journals in the world. To mark the ten years since the journal's founding, we, members of the current editorial board, undertook a review of the journal's progress over the last decade. Through the application of an inductive thematic analysis, we systematically identified themes of research published in the journal from 2005 to 2014. We identify key areas the journal has promoted and consider these in the context of an existing framework, identify current gaps in global health research and highlight areas we, as a journal, would like to see strengthened. PMID:26961760

  9. Globalization and Health: developing the journal to advance the field.

    PubMed

    Martin, Greg; MacLachlan, Malcolm; Labonté, Ronald; Larkan, Fiona; Vallières, Frédérique; Bergin, Niamh

    2016-03-09

    Founded in 2005, Globalization and Health was the first open access global health journal. The journal has since expanded the field, and its influence, with the number of downloaded papers rising 17-fold, to over 4 million. Its ground-breaking papers, leading authors -including a Nobel Prize winner- and an impact factor of 2.25 place it among the top global health journals in the world. To mark the ten years since the journal's founding, we, members of the current editorial board, undertook a review of the journal's progress over the last decade. Through the application of an inductive thematic analysis, we systematically identified themes of research published in the journal from 2005 to 2014. We identify key areas the journal has promoted and consider these in the context of an existing framework, identify current gaps in global health research and highlight areas we, as a journal, would like to see strengthened.

  10. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  11. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  12. Comparison of Standard Versus Wide-Field Composite Images of the Corneal Subbasal Layer by In Vivo Confocal Microscopy

    PubMed Central

    Kheirkhah, Ahmad; Muller, Rodrigo; Mikolajczak, Janine; Ren, Ai; Kadas, Ella Maria; Zimmermann, Hanna; Pruess, Harald; Paul, Friedemann; Brandt, Alexander U.; Hamrah, Pedram

    2015-01-01

    Purpose To evaluate whether the densities of corneal subbasal nerves and epithelial immune dendritiform cells (DCs) are comparable between a set of three representative standard images of in vivo confocal microscopy (IVCM) and the wide-field mapped composite IVCM images. Methods This prospective, cross-sectional, and masked study included 110 eyes of 58 patients seen in a neurology clinic who underwent laser-scanning IVCM (Heidelberg Retina Tomograph 3) of the central cornea. Densities of subbasal corneal nerves and DCs were compared between the average of three representative standard images and the wide-field mapped composite images, which were reconstructed by automated mapping. Results There were no statistically significant differences between the average of three representative standard images (0.16 mm2 each) and the wide-field composite images (1.29 ± 0.64 mm2) in terms of mean subbasal nerve density (17.10 ± 6.10 vs. 17.17 ± 5.60 mm/mm2, respectively, P = 0.87) and mean subbasal DC density (53.2 ± 67.8 vs. 49.0 ± 54.3 cells/mm2, respectively, P = 0.43). However, there were notable differences in subbasal nerve and DC densities between these two methods in eyes with very low nerve density or very high DC density. Conclusions There are no significant differences in the mean subbasal nerve and DC densities between the average values of three representative standard IVCM images and wide-field mapped composite images. Therefore, these standard images can be used in clinical studies to accurately measure cellular structures in the subbasal layer. PMID:26325419

  13. Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron

    PubMed Central

    Papadopoulou, Maria; Cassenaer, Stijn; Nowotny, Thomas; Laurent, Gilles

    2011-01-01

    Summary Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable “giant” nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties. PMID:21551062

  14. Advances in field-portable ion trap GC/MS instrumentation

    NASA Astrophysics Data System (ADS)

    Diken, Eric G.; Arno, Josep; Skvorc, Ed; Manning, David; Andersson, Greger; Judge, Kevin; Fredeen, Ken; Sadowski, Charles; Oliphant, Joseph L.; Lammert, Stephen A.; Jones, Jeffrey L.; Waite, Randall W.; Grant, Chad; Lee, Edgar D.

    2012-06-01

    The rapid and accurate detection and identification of chemical warfare agents and toxic industrial chemicals can be critical to the protection of military and civilian personnel. The use of gas chromatography (GC) - mass spectrometry (MS) can provide both the sensitivity and selectivity required to identify unknown chemicals in complex (i.e. real-world) environments. While most widely used as a laboratory-based technique, recent advances in GC, MS, and sampling technologies have led to the development of a hand-portable GC/MS system that is more practical for field-based analyses. The unique toroidal ion trap mass spectrometer (TMS) used in this instrument has multiple benefits related to size, weight, start-up time, ruggedness, and power consumption. Sample separation is achieved in record time (~ 3 minutes) and with high resolution using a state-of-the-art high-performance low-thermal-mass GC column. In addition to providing a system overview highlighting its most important features, the presentation will focus on the chromatographic and mass spectral performance of the system. Results from exhaustive performance testing of the new instrument will be introduced to validate its unique robustness and ability to identify targeted and unknown chemicals.

  15. Current clinical advances and future perspectives in the psychiatry/mental health field of Latin America.

    PubMed

    Cía, Alfredo H; Rojas, Rodrigo Córdoba; Adad, Miguel Abib

    2010-01-01

    The history of Mental Health in Latin America is relatively young. It dates back to the mid nineteenth century and widely developed during the twentieth century, with formidable scientific, social, political, and ethical challenges. Latin American psychiatry has contributed in the fields of epidemiology, phenomenology, social psychiatry, psychiatric and epistemological research, and clinical genetics as well. More recent advances can also be seen in clinical psychotherapy and psychopharmacology. Now, there is a formal and informal recognition of various areas of expertise, such as children and adolescents, addictions, anxiety disorders, among others. However, we need to solve the health problems resulting from mental illnesses as well as the disorders related to the social, environmental, political, and economic factors of a continent marked by the precariousness of underdevelopment, which have a high impact on population health. Therefore, considering and trying to minimize the impact of those factors, contributing to the destigmatization of mental illnesses and their consequences, together with the growing number of non-governmental organizations (NGOs), human rights defenders, public figures, etc., and collaborating in building a society that guarantees the right to mental health and adequate treatment and rehabilitation are part of our present challenges in Latin America.

  16. The Power of Wide Field HI Surveys: ALFALFA Imaging of Massive Tidal Features in the Leo Cloud of Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2016-01-01

    Tidal interactions are well known to play an important role in galactic evolution in group environments, but the extent of these interactions, and their relative impact on the morphology-density relation is still unclear. Neutral hydrogen (HI) mapping can reveal the recent interaction history of group galaxies, but is difficult to execute due to the need for high sensitivity over wide fields. The Arecibo Legacy Fast ALFA survey (ALFALFA; Giovanelli et al. 2005; Haynes et al. 2011) provides high sensitivity, unbiased, wide field maps of HI in the local volume; here we will present a 50 deg2 ALFALFA map of a well studied region of the Leo Cloud of galaxies, which includes the NGC3226/7 group and HCG44. These observations reveal HI tails and plumes with extents exceeding 1.4 deg (~600 kpc), well beyond the primary beams of previous observations. These tails constitute a significant fraction of the total HI mass in NGC3226/7 (Arp 94) and HCG44. We will also present WSRT maps of the extended emission near Arp 94, which show tail morphologies inconsistent with 2 body interactions. These observations demonstrate that large scale group interactions will be an important science outcome for future sensitive, wide field HI surveys.This work is supported by NSF grants AST-0607007 and AST-1107390 and by grants from the Brinson Foundation.

  17. Test methodology for elemental sulfur resistant advanced materials for oil and gas field equipment

    SciTech Connect

    Steinbeck, G.; Bruckhoff, W.; Koehler, M.; Schlerkmann, H.; Schmitt, G.

    1995-10-01

    The great variety of methodologies for testing the performance of advanced materials for resistance to elemental sulfur in oil and gas industry prompted the Technical Committee for Corrosion of the German Iron and Steel Institute (VDEh) to define recommended test procedures. These procedures have already found wide acceptance in the German materials and oil and gas industry.

  18. Advancing the Field Elder Abuse: Future Directions and Policy Implications

    PubMed Central

    Dong, XinQi

    2012-01-01

    Elder abuse, sometime called elder mistreatment or elder maltreatment, includes psychological, physical, and sexual abuse, neglect (caregiver neglect and self-neglect), and financial exploitation. Evidence suggests that 1 out of 10 older adult experiences some form of elder abuse, and only 1 of out 25 cases are actually reported to social services agencies. At the same time, elder abuse is associated with significant morbidity and premature mortality. Despite these findings, there is a great paucity in research, practice, and policy dealing with the pervasive issues of elder abuse. Through my experiences as a American Political Sciences Association Congressional Policy Fellow/Health and Aging Policy Fellow working with Administration on Community Living (ACL) (Previously known at Administration on Aging (AoA)) for the last two years, I will describe the major functions of the ACL; and highlight on two major pieces of federal legislation: The Older Americans Act (OAA) and the Elder Justice Act (EJA). Moreover, I will highlight major research gaps and future policy relevant research directions for the field of elder abuse. PMID:23110488

  19. From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields.

    PubMed

    Hoffmann, Roald; Alvarez, Santiago; Mealli, Carlo; Falceto, Andrés; Cahill, Thomas J; Zeng, Tao; Manca, Gabriele

    2016-07-27

    We begin with a brief historical review of the development of our understanding of the normal ordering of nd orbitals of a transition metal interacting with ligands, the most common cases being three below two in an octahedral environment, two below three in tetrahedral coordination, and four below one in a square-planar environment. From the molecular orbital construction of these ligand field splittings evolves a strategy for inverting the normal order: the obvious way to achieve this is to raise the ligand levels above the metal d's; that is, make the ligands better Lewis bases. However, things are not so simple, for such metal/ligand level placement may lead to redox processes. For 18-electron octahedral complexes one can create the inverted situation, but it manifests itself in the makeup of valence orbitals (are they mainly on metal or ligands?) rather than energy. One can also see the effect, in small ways, in tetrahedral Zn(II) complexes. We construct several examples of inverted ligand field systems with a hypothetical but not unrealistic AlCH3 ligand and sketch the consequences of inversion on reactivity. Special attention is paid to the square-planar case, exemplified by [Cu(CF3)4](-), in which Snyder had the foresight to see a case of an inverted field, with the empty valence orbital being primarily ligand centered, the dx2-y2 orbital heavily occupied, in what would normally be called a Cu(III) complex. For [Cu(CF3)4](-) we provide theoretical evidence from electron distributions, geometry of the ligands, thermochemistry of molecule formation, and the energetics of abstraction of a CF3 ligand by a base, all consistent with oxidation of the ligands in this molecule. In [Cu(CF3)4](-), and perhaps more complexes on the right side of the transition series than one has imagined, some ligands are σ-noninnocent. Exploration of inverted ligand fields helps us see the continuous, borderless transition from transition metal to main group bonding. We also give

  20. Improvement of Traceability of Widely-Defined Measurements in the Field of Humanities

    NASA Astrophysics Data System (ADS)

    Sapozhnikova, K.; Taymanov, R.

    2010-01-01

    In the last decades, a tendency to extend the domain of "fuzzy" measurements of multiparametric quantities to the field of humanities has been observed. In the measurement process, the "fuzzy" measurements should meet the requirements of metrological traceability. The paper deals with the approach proposed for developing a measurement model of "fuzzy" measurements. The approach suggested is illustrated by an example of a model for measuring the emotions contained in musical fragments. The model is based on the hypothesis that permits to explain the origination of emotions in the evolution process.

  1. Removing static aberrations from the active optics system of a wide-field telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Arcidiacono, Carmelo; Argomedo, Javier; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Magrin, Demetrio; Marty, Laurent; Ragazzoni, Roberto; Umbriaco, Gabriele

    2012-07-01

    The wavefront sensor in active and adaptive telescopes is usually not in the optical path toward the scientific detector. It may generate additional wavefront aberrations, which have to be separated from the errors due to the telescope optics. The aberrations that are not rotationally symmetric can be disentangled from the telescope aberrations by a series of measurements taken in the center of the field, with the wavefront sensor at different orientation angles with respect to the focal plane. This method has been applied at the VLT Survey Telescope on the ESO Paranal observatory.

  2. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    SciTech Connect

    Bock, J.; Battle, J.; Sullivan, I.; Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Cooray, A.; Mitchell-Wynne, K.; Smidt, J.; Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Suzuki, K.; and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  3. Wide-field wavefront sensing in solar adaptive optics : modeling and effects on reconstruction

    NASA Astrophysics Data System (ADS)

    Béchet, Clémentine; Tallon, Michel; Montilla, Icíar; Langlois, Maud

    2013-12-01

    The planned 4-meter diameter of the European Solar Telescope (EST) is aimed at providing high spatial resolution and large photon collecting area, in order to understand in particular the mechanisms of magnetic coupling in the chromosphere and the photosphere. To reach its goals in the visible and the near-infrared, EST is designed with both a conventional and a multi-conjugate adaptive optics (AO) of similar complexity than the ones featured for the Extremely Large Telescopes. In addition, the AO on EST has to face a particularity of solar AO: the wavefront sensing on extended sources with measurement fields of about 10'' in size. Reviewing recent literature together with an independent analysis, we investigate the impact of extended-field sensing in AO for large solar telescopes. Sensing modeling and its effect on reconstruction performance are analyzed, thanks to simulations performed with the Fractal Iterative Method for tomography (FRiM-3D), showing the difficulty to correct high altitude turbulence. We introduce a new approximate direct model of extended-source sensing which greatly improves the quality of the end-to-end simulations for EST AO. Next, we try to improve the conventional solar AO correction by using this new model in the reconstruction. Our simulations do not show significant benefits from using such tomographic model in this conventional AO configuration and under typical atmospheric conditions.

  4. Wide-Area Mapping of Forest with National Airborne Laser Scanning and Field Inventory Datasets

    NASA Astrophysics Data System (ADS)

    Monnet, J.-M.; Ginzler, C.; Clivaz, J.-C.

    2016-06-01

    Airborne laser scanning (ALS) remote sensing data are now available for entire countries such as Switzerland. Methods for the estimation of forest parameters from ALS have been intensively investigated in the past years. However, the implementation of a forest mapping workflow based on available data at a regional level still remains challenging. A case study was implemented in the Canton of Valais (Switzerland). The national ALS dataset and field data of the Swiss National Forest Inventory were used to calibrate estimation models for mean and maximum height, basal area, stem density, mean diameter and stem volume. When stratification was performed based on ALS acquisition settings and geographical criteria, satisfactory prediction models were obtained for volume (R2 = 0.61 with a root mean square error of 47 %) and basal area (respectively 0.51 and 45 %) while height variables had an error lower than 19%. This case study shows that the use of nationwide ALS and field datasets for forest resources mapping is cost efficient, but additional investigations are required to handle the limitations of the input data and optimize the accuracy.

  5. Shallow water processes govern system-wide phytoplankton bloom dynamics: A field study

    USGS Publications Warehouse

    Thompson, J.K.; Koseff, Jeffrey R.; Monismith, Stephen G.; Lucas, L.V.

    2008-01-01

    Prior studies of the phytoplankton dynamics in South San Francisco Bay, California, USA have hypothesized that bivalve filter-feeders are responsible for the limited phytoplankton blooms in the system. This study was designed to examine the effects of benthic grazing and light attenuation on this shallow, turbid, and nutrient replete system. We found that grazing by shallow water bivalves was important in determining phytoplankton bloom occurrence throughout the system and that above a shallow water bivalve grazing threshold, phytoplankton biomass did not exceed bloom levels. Wind speed, used as a proxy for light attenuation in the shallow water, was similarly important in determining bloom development in the shallow water. Environmental conditions and benthic grazing in the deep water channel had a less discernible effect on system-wide phytoplankton blooms although persistent water column stratification did increase bloom magnitude. The shallow water bivalves, believed to be preyed upon by birds and fish that migrate through the system in fall and winter, disappear each year prior to the spring phytoplankton bloom. Because growth of the phytoplankton depends so strongly on shallow water processes, any change in the shallow-water benthic filter-feeders or their predators has great potential to change the phytoplankton bloom dynamics in this system. ?? 2007 Elsevier B.V. All rights reserved.

  6. Time-resolved hyperspectral single-pixel camera implementation for compressive wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Intes, Xavier

    2016-03-01

    Single-pixel imaging based on compressive sensing theory has been a highlighted technique in the biomedical imaging field for many years. This interest has been driven by the possibility of performing microscopic or macroscopic imaging based on low-cost detector arrays, increased SNR (signal-to-noise ratio) in the acquired data sets and the ability to perform high quality image reconstruction with compressed data sets by exploiting signal sparsity. In this work, we present our recent work in implementing this technique to perform time domain fluorescence-labeled investigations in preclinical settings. More precisely, we report on our time-resolved hyperspectral single-pixel camera for fast, wide-field mapping of molecular labels and lifetime-based quantification. The hyperspectral single-pixel camera implements a DMD (Digital micro-mirror device) to generate optical masks for modulating the illumination field before it is delivered onto the sample and focuses the emission light signals into a multi-anode hyperspectral time-resolved PMT (Photomultiplier tube) to acquire spatial, temporal and spectral information enriched 4-D data sets. Fluorescence dyes with lifetime and spectral contrast are embedded in well plates and thin tissues. L-1 norm based regularization or the least square method, is applied to solve the underdetermined inverse problem during image reconstruction. These experimental results prove the possibility of fast, wide-field mapping of fluorescent labels with lifetime and spectral contrast in thin media.

  7. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    NASA Astrophysics Data System (ADS)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  8. NIRMOS: a wide-field near-infrared spectrograph for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Fabricant, Daniel; Fata, Robert; Brown, Warren R.; McLeod, Brian; Mueller, Mark; Gauron, Thomas; Roll, John; Bergner, Henry; Geary, John; Kradinov, Vladimir; Norton, Tim; Smith, Matt; Zajac, Joseph

    2012-09-01

    NIRMOS (Near-Infrared Multiple Object Spectrograph) is a 0.9 to 2.5 μm imager/spectrograph concept proposed for the Giant Magellan Telescope1 (GMT). Near-infrared observations will play a central role in the ELT era, allowing us to trace the birth and evolution of galaxies through the era of peak star formation. NIRMOS' large field of view, 6.5′ by 6.5′, will be unique among imaging spectrographs developed for ELTs. NIRMOS will operate in Las Campanas' superb natural seeing and is also designed to take advantage of GMT's ground-layer adaptive optics system. We describe NIRMOS' high-performance optical and mechanical design.

  9. Megacam: A Wide-Field CCD Imager for the MMT and Magellan

    NASA Astrophysics Data System (ADS)

    McLeod, Brian; Geary, John; Conroy, Maureen; Fabricant, Daniel; Ordway, Mark; Szentgyorgyi, Andrew; Amato, Stephen; Ashby, Matthew; Caldwell, Nelson; Curley, Dylan; Gauron, Thomas; Holman, Matthew; Norton, Timothy; Pieri, Mario; Roll, John; Weaver, David; Zajac, Joseph; Palunas, Povilas; Osip, David

    2015-04-01

    Megacam is a large-format optical camera that can be operated at the f/5 Cassegrain foci of the MMT on Mount Hopkins, Arizona, and the Magellan Clay telescope at Las Campanas Observatory, Chile. Megacam's focal plane is composed of 36 closely packed e2v CCD42-90 CCDs, each with 2048 × 4608 pixels, assembled in an 18,432 × 18,432 array. Two additional CCD42-90s are provided for autoguiding and focus control. The CCDs have 13.5 μm square pixels that subtend 0 \\overset{''}{.} 08 at the f/5 foci, yielding a 25' × 25' field-of-view. The camera system includes a focal plane shutter, two filter wheels, two liquid nitrogen reservoirs, a central chamber that holds the CCD mosaic array, and two electronics boxes. Megacam is equipped with a variety of broadband and narrowband filters. Software features include automatic calculation of twilight flat exposure times.

  10. Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Katsuhiko; Yamaguchi, Hiroshi; Fujiwara, Akira; van der Zant, Herre S. J.; Steele, Gary A.

    2013-09-01

    We demonstrate high-speed charge detection at room temperature with single-electron resolution by using a radio-frequency field-effect transistor (RF-FET). The RF-FET combines a nanometer-scale silicon FET with an impedance-matching circuit composed of an inductor and capacitor. Driving the RF-FET with a carrier signal at its resonance frequency, small signals at the transistor's gate modulate the impedance of the resonant circuit, which is monitored at high speed using the reflected signal. The RF-FET driven by high-power carrier signals enables a charge sensitivity of 2 × 10-4 e/Hz0.5 at a readout bandwidth of 20 MHz.

  11. Wide field adaptive optics correction for the GMT using natural guide stars

    NASA Astrophysics Data System (ADS)

    van Dam, Marcos A.; Bouchez, Antonin H.; McLeod, Brian A.

    2014-07-01

    The conceptual design of the Giant Magellan Telescope has four wavefront sensors used to maintain the shape and alignment of the segmented primary and secondary mirrors. In this paper, we show that by reading the sensors at 200 Hz, we can also compensate for low altitude turbulence. As a result, there is a large improvement in image quality, even at visible wavelengths, over the entire science field of view of the telescope. A minimum-variance reconstructor is presented that takes slope measurements from four stars of arbitrary location and magnitude and produces the optimal adaptive secondary mirror commands. The performance of the adaptive optics system in this mode is simulated using YAO, an end-to-end simulation tool. We present the results of trade studies performed to optimize the science return of the telescope.

  12. A deep wide-field sub-mm survey of the Carina Nebula complex

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Schuller, F.; Ohlendorf, H.; Pekruhl, S.; Menten, K. M.; Zinnecker, H.

    2011-01-01

    Context. The Great Nebula in Carina is one of the most massive (Mast,total ⪆ 25 000 M_⊙) star-forming complexes in our Galaxy and contains several stars with (initial) masses exceeding ≈ 100 M_⊙; it is therefore a superb location in which to study the physics of violent massive star-formation and the resulting feedback effects, including cloud dispersal and triggered star-formation. Aims: We aim to reveal the cold dusty clouds in the Carina Nebula complex, to determine their morphology and masses, and to study the interaction of the luminous massive stars with these clouds. Methods: We used the Large APEX Bolometer Camera LABOCA at the APEX telescope to map a 1.25° × 1.25° (\\cor 50 × 50 pc2) region at 870 μm with 18” angular resolution (=0.2 pc at the distance of the Carina Nebula) and an rms noise level of ≈ 20 mJy/beam. Results: From a comparison to Hα images we infer that about 6% of the 870 μm flux in the observed area is likely free-free emission from the HII region, while about 94% of the flux is very likely thermal dust emission. The total (dust + gas) mass of all clouds for which our map is sensitive is 60 000 M_⊙, in good agreement with the mass of the compact clouds in this region derived from 13CO line observations. There is a wide range of different cloud morphologies and sizes, from large, massive clouds with several 1000 M_⊙, to small diffuse clouds containing just a few M_⊙. We generally find good agreement in the cloud morphology seen at 870 μm and the Spitzer 8 μm emission maps, but also identify a prominent infrared dark cloud. Finally, we construct a radiative transfer model for the Carina Nebula complex that reproduces the observed integrated spectral energy distribution reasonably well. Conclusions: Our analysis suggests a total gas + dust mass of about 200 000 M_⊙ in the investigated area; most of this material is in the form of molecular clouds, but a widely distributed component of (partly) atomic gas

  13. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*

    NASA Technical Reports Server (NTRS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at

  14. KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Lee; Lee, Chung-Uk; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Han, Cheongho; Chun, Moo-Young; Yuk, Insoo

    2016-02-01

    The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

  15. Pulse-field electrophoresis indicates full-length Mycoplasma chromosomes range widely in size.

    PubMed Central

    Neimark, H C; Lange, C S

    1990-01-01

    Full-size linear chromosomes were prepared from mycoplasmas by using gamma-irradiation to introduce one (on average) double-strand break in their circular chromosomes. Chromosome sizes were estimated by pulsed-field gel electrophoresis (PFGE) from the mobilities of these full-length molecules relative to DNA size references. Sizes estimated for Ureaplasma urealyticum T960 and 16 Mycoplasma species ranged from 684 kbp (M. hominis) to 1315 kbp (M. iowae). Using this sample, we found no correlation between the mobility of the full-size linear chromosomes and their G + C content. Sizes for A. laidlawii and A. hippikon were within the range expected from renaturation kinetics. PFGE size estimates are in good agreement with sizes determined by other methods, including electron microscopy, an ordered clone library, and summation of restriction fragments. Our estimates also agree with those from renaturation kinetics for both the largest and some of the smallest chromosomes, but in the intermediate size range, renaturation kinetics consistently provides lower values than PFGE or electron microscopy. Our PFGE estimates show that mycoplasma chromosomes span a continual range of sizes, with several intermediate values falling between the previously recognized large and small chromosome size clusters. Images PMID:2216718

  16. Synthetic White-light Imagery for the Wide-field Imager for Solar Probe Plus (WISPR)

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.; Thernisien, A. F.; Vourlidas, A.; Howard, R.; DeForest, C. E.; DeJong, E.; Desai, A.

    2015-12-01

    The Solar Probe Plus trajectory, approaching within 10 solar radii, will enable the white light imager, WISPR, to fly through corona features now only imaged remotely. The dependency of the Thomson scattering on the imaging geometry (distance and angle from the Sun) dictates that the outer WISPR telescope will be sensitive to the emission from plasma close to the spacecraft, in contrast to the situation for imaging from Earth orbit. Thus WISPR will be the first 'local' imager providing a crucial link between the large-scale corona and SPP's in-situ measurements. The high speed at perihelion will provide tomographic-like views of coronal structures at ≤1° resolution. As SPP approaches perihelion, WISPR, with a 95° radial by 58° transverse field of view, will resolve the fine-scale structure with high spatial resolution. To prepare for this unprecedented viewing of the structure of the inner corona, we are creating synthetic white light images and animations from the WISPR viewpoint using the white-light ray-tracing package developed at NRL (available through SolarSoft). We will present simulated observations of multi-strand models of coronal streamers and flux ropes of various size and make comparisons with views from Earth, Solar Orbiter and SPP. Analysis techniques for WISPR images will also be discussed.

  17. Fiber optic bundle array wide field-of-view optical receiver for free space optical communications.

    PubMed

    Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Sluz, Joseph E; Venkat, Radha

    2010-11-01

    We propose a design for a free space optical communications (FSOC) receiver terminal that offers an improved field of view (FOV) in comparison to conventional FSOC receivers. The design utilizes a microlens to couple the incident optical signal into an individual fiber in a bundle routed to remote optical detectors. Each fiber in the bundle collects power from a solid angle of space; utilizing multiple fibers enhances the total FOV of the receiver over typical single-fiber designs. The microlens-to-fiber-bundle design is scalable and modular and can be replicated in an array to increase aperture size. The microlens is moved laterally with a piezoelectric transducer to optimize power coupling into a given fiber core in the bundle as the source appears to move due to relative motion between the transmitter and receiver. The optimum position of the lens array is determined via a feedback loop whose input is derived from a position sensing detector behind another lens. Light coupled into like fibers in each array cell is optically combined (in fiber) before illuminating discrete detectors.

  18. All-weather calibration of wide-field optical and NIR surveys

    SciTech Connect

    Burke, David L.; Saha, Abhijit; Claver, Jenna; Claver, Chuck; Axelrod, T.; DePoy, Darren; Ivezić, Željko; Jones, Lynne; Smith, R. Chris; Stubbs, Christopher W.

    2014-01-01

    The science goals for ground-based large-area surveys, such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a percent or better. This performance will need to be achieved with data taken over the course of many years, and often in less than ideal conditions. This paper describes a strategy to achieve precise internal calibration of imaging survey data taken in less than 'photometric' conditions, and reports results of an observational study of the techniques needed to implement this strategy. We find that images of celestial fields used in this case study with stellar densities ∼1 arcmin{sup –2} and taken through cloudless skies can be calibrated with relative precision ∼0.5% (reproducibility). We report measurements of spatial structure functions of cloud absorption observed over a range of atmospheric conditions, and find it possible to achieve photometric measurements that are reproducible to 1% in images that were taken through cloud layers that transmit as little as 25% of the incident optical flux (1.5 magnitudes of extinction). We find, however, that photometric precision below 1% is impeded by the thinnest detectable cloud layers. We comment on implications of these results for the observing strategies of future surveys.

  19. Fisher analysis on wide-band polarimetry for probing the intergalactic magnetic field

    NASA Astrophysics Data System (ADS)

    Ideguchi, Shinsuke; Takahashi, Keitaro; Akahori, Takuya; Kumazaki, Kohei; Ryu, Dongsu

    2014-02-01

    We investigate the capability of current radio telescopes for probing Faraday rotation measure (RM) due to the intergalactic magnetic field (IGMF) in the large-scale structure of the universe, which is expected to be of order O (1) rad m-2. We consider polarization observations of a compact radio source such as quasars behind a diffuse source such as the Galaxy, and calculate Stokes parameters Q and U assuming a simple model of the Faraday dispersion functions with Gaussian shape. Then, we perform the Fisher analysis to estimate the expected errors in the model parameters from QU-fitting of polarization intensity, accounting for the sensitivities and frequency bands of Australian Square Kilometer Array Pathfinder, Low Frequency Array, and the Giant Meterwave Radio Telescope. Finally, we examine the conditions on the source intensities which are required to detect the IGMF. Our analysis indicates that the QU-fitting is promising for forthcoming wideband polarimetry to explore RM due to the IGMF in filaments of galaxies.

  20. Wide-field Hubble space telescope observations of the globular cluster system in NGC 1399

    SciTech Connect

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-05-10

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Using a novel technique to construct drizzled point-spread function libraries for HST/ACS data, we accurately determine the fidelity of GC structural parameter measurements from detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius, r{sub h} , compared with other GC structural parameters, such as King core and tidal radius. The measurement of r{sub h} for the major fraction of the NGC 1399 GC system reveals a trend of increasing r{sub h} versus galactocentric distance, R {sub gal}, out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found to have a mean size ratio of r {sub h,} {sub red}/r {sub h,} {sub blue} = 0.82 ± 0.11 at all galactocentric radii from the core regions of the galaxy out to ∼40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399 shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions to r{sub h} ≈ 2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric distances. We compare our results with the GC r{sub h} distribution functions in various galaxies and find that the fraction of extended GCs with r{sub h} ≥ 5 pc is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early

  1. Wide-field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399

    NASA Astrophysics Data System (ADS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-05-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Using a novel technique to construct drizzled point-spread function libraries for HST/ACS data, we accurately determine the fidelity of GC structural parameter measurements from detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius, rh , compared with other GC structural parameters, such as King core and tidal radius. The measurement of rh for the major fraction of the NGC 1399 GC system reveals a trend of increasing rh versus galactocentric distance, R gal, out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found to have a mean size ratio of r h, red/r h, blue = 0.82 ± 0.11 at all galactocentric radii from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399 shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions to rh ≈ 2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric distances. We compare our results with the GC rh distribution functions in various galaxies and find that the fraction of extended GCs with rh >= 5 pc is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC rh measurements with radial velocity data from

  2. New Material Transistor with Record-High Field-Effect Mobility among Wide-Band-Gap Semiconductors.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2016-08-01

    At an ultrathin 5 nm, we report a new high-mobility tin oxide (SnO2) metal-oxide-semiconductor field-effect transistor (MOSFET) exhibiting extremely high field-effect mobility values of 279 and 255 cm(2)/V-s at 145 and 205 °C, respectively. These values are the highest reported mobility values among all wide-band-gap semiconductors of GaN, SiC, and metal-oxide MOSFETs, and they also exceed those of silicon devices at the aforementioned elevated temperatures. For the first time among existing semiconductor transistors, a new device physical phenomenon of a higher mobility value was measured at 45-205 °C than at 25 °C, which is due to the lower optical phonon scattering by the large SnO2 phonon energy. Moreover, the high on-current/off-current of 4 × 10(6) and the positive threshold voltage of 0.14 V at 25 °C are significantly better than those of a graphene transistor. This wide-band-gap SnO2 MOSFET exhibits high mobility in a 25-205 °C temperature range, a wide operating voltage of 1.5-20 V, and the ability to form on an amorphous substrate, rendering it an ideal candidate for multifunctional low-power integrated circuit (IC), display, and brain-mimicking three-dimensional IC applications.

  3. New Material Transistor with Record-High Field-Effect Mobility among Wide-Band-Gap Semiconductors.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2016-08-01

    At an ultrathin 5 nm, we report a new high-mobility tin oxide (SnO2) metal-oxide-semiconductor field-effect transistor (MOSFET) exhibiting extremely high field-effect mobility values of 279 and 255 cm(2)/V-s at 145 and 205 °C, respectively. These values are the highest reported mobility values among all wide-band-gap semiconductors of GaN, SiC, and metal-oxide MOSFETs, and they also exceed those of silicon devices at the aforementioned elevated temperatures. For the first time among existing semiconductor transistors, a new device physical phenomenon of a higher mobility value was measured at 45-205 °C than at 25 °C, which is due to the lower optical phonon scattering by the large SnO2 phonon energy. Moreover, the high on-current/off-current of 4 × 10(6) and the positive threshold voltage of 0.14 V at 25 °C are significantly better than those of a graphene transistor. This wide-band-gap SnO2 MOSFET exhibits high mobility in a 25-205 °C temperature range, a wide operating voltage of 1.5-20 V, and the ability to form on an amorphous substrate, rendering it an ideal candidate for multifunctional low-power integrated circuit (IC), display, and brain-mimicking three-dimensional IC applications. PMID:27454211

  4. Mechanical setup for optical aperture synthesis for wide-field imaging

    NASA Astrophysics Data System (ADS)

    Giesen, Peter; Ouwerkerk, Bas; van Brug, Hedser; van den Dool, Teun C.; van der Avoort, Casper

    2004-10-01

    Homothetic mapping is a technique that combines the images from several telescopes so that it looks like as though they came form a single large telescope. This technique enables a much wider interferometric field of image than current techniques can provide. To investigate the feasibility, a research testbed is build know as Delft Testbed interferometer (DTI). DTI simulates a configuration of three telescopes collecting light of a set of 3 stars. The stars are simulated by coupling light of a Xenon light source into three fibres, which illuminate a parabolic mirror. The light that is used has wavelengths of 500 nm - 800 nm. The light of the three telescopes will be combined in such a way that the beam arrangement in the pupil plane corresponds with the telescope arrangement and the Optical Path Difference (OPD) is minimized for the three beams. To achieve white light fringes with high visibility, the mechanical testbed that is 2 m x 1 m x 0.5 m in size, requires stable mounting of components. This paper describes the mounting of the diamond turned off-axis parabolic mirrors of 200 mm in diameter and 240 mm flat mirrors; furthermore, it describes components like the telescopes and the active controllable components for repositioning of the beam arrangement. Mechanisms were developed for alignment of piezo actuators and for delay lines. The delay lines can also be used to compensate pupil rotation. Test results demonstrate that the test setup is highly stable for temperature as well as for airflow, although the system is placed in a non-thermally controlled lab. This allows measurements of nm, in presence of μm disturbances.

  5. SkICAT: A cataloging and analysis tool for wide field imaging surveys

    NASA Technical Reports Server (NTRS)

    Weir, N.; Fayyad, U. M.; Djorgovski, S. G.; Roden, J.

    1992-01-01

    We describe an integrated system, SkICAT (Sky Image Cataloging and Analysis Tool), for the automated reduction and analysis of the Palomar Observatory-ST ScI Digitized Sky Survey. The Survey will consist of the complete digitization of the photographic Second Palomar Observatory Sky Survey (POSS-II) in three bands, comprising nearly three Terabytes of pixel data. SkICAT applies a combination of existing packages, including FOCAS for basic image detection and measurement and SAS for database management, as well as custom software, to the task of managing this wealth of data. One of the most novel aspects of the system is its method of object classification. Using state-of-theart machine learning classification techniques (GID3* and O-BTree), we have developed a powerful method for automatically distinguishing point sources from non-point sources and artifacts, achieving comparably accurate discrimination a full magnitude fainter than in previous Schmidt plate surveys. The learning algorithms produce decision trees for classification by examining instances of objects classified by eye on both plate and higher quality CCD data. The same techniques will be applied to perform higher-level object classification (e.g., of galaxy morphology) in the near future. Another key feature of the system is the facility to integrate the catalogs from multiple plates (and portions thereof) to construct a single catalog of uniform calibration and quality down to the faintest limits of the survey. SkICAT also provides a variety of data analysis and exploration tools for the scientific utilization of the resulting catalogs. We include initial results of applying this system to measure the counts and distribution of galaxies in two bands down to Bj is approximately 21 mag over an approximate 70 square degree multi-plate field from POSS-II. SkICAT is constructed in a modular and general fashion and should be readily adaptable to other large-scale imaging surveys.

  6. X-RAY GROUPS OF GALAXIES IN THE AEGIS DEEP AND WIDE FIELDS

    SciTech Connect

    Erfanianfar, G.; Lerchster, M.; Nandra, K.; Connelly, J. L.; Mirkazemi, M.; Finoguenov, A.; Tanaka, M.; Laird, E.; Bielby, R.; Faber, S. M.; Kocevski, D.; Jeltema, T.; Newman, J. A.; Coil, A. L.; Brimioulle, F.; Davis, M.; McCracken, H. J.; Willmer, C.; Gerke, B.; and others

    2013-03-10

    We present the results of a search for extended X-ray sources and their corresponding galaxy groups from 800 ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). This yields one of the largest X-ray-selected galaxy group catalogs from a blind survey to date. The red-sequence technique and spectroscopic redshifts allow us to identify 100% of reliable sources, leading to a catalog of 52 galaxy groups. These groups span the redshift range z {approx} 0.066-1.544 and virial mass range M{sub 200} {approx} 1.34 Multiplication-Sign 10{sup 13}-1.33 Multiplication-Sign 10{sup 14} M{sub Sun }. For the 49 extended sources that lie within DEEP2 and DEEP3 Galaxy Redshift Survey coverage, we identify spectroscopic counterparts and determine velocity dispersions. We select member galaxies by applying different cuts along the line of sight or in projected spatial coordinates. A constant cut along the line of sight can cause a large scatter in scaling relations in low-mass or high-mass systems depending on the size of the cut. A velocity-dispersion-based virial radius can cause a larger overestimation of velocity dispersion in comparison to an X-ray-based virial radius for low-mass systems. There is no significant difference between these two radial cuts for more massive systems. Independent of radial cut, an overestimation of velocity dispersion can be created in the case of the existence of significant substructure and compactness in X-ray emission, which mostly occur in low-mass systems. We also present a comparison between X-ray galaxy groups and optical galaxy groups detected using the Voronoi-Delaunay method for DEEP2 data in this field.

  7. Wide-field near-infrared fluorescence endoscope for real-time in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyao; Miller, Sharon J.; Joshi, Bishnu P.; Wang, Thomas D.

    2012-02-01

    A diode-pumped solid state laser is used to deliver excitation at λex = 671 nm. The beam is expanded by a pair of relay lenses (f1 = 30 and f2 = 50 mm) to 3 mm diameter, filling the aperture of a fluid light cable that is coupled to a Hopkins II rigid endoscope. Near-infrared fluorescence images are collected by the endoscope and transmitted by another set of relay lenses onto a CCD detector that has dimensions of 8.7x6.9 mm2 (1388x1040 pixels). A zoom lens system (F#1.6-16 aperture) with a tunable focal length (20-100 mm) magnifies the image to fill the dimensions of the CCD. A band pass filter allows fluorescence with spectral range λem = 696 to 736 nm to be collected. The system achieves a resolution of 9.8 μm and field-of-view of 3.6 mm at a distance of 2.5 mm between the distal end of the endoscope and the tissue. Images are collected at a rate of 10 frames per second. A filter wheel is incorporated into the handle of the instrument housing to rapidly switch between reflectance and fluorescence images. Cy5.5-labeled peptides were delivered through the 1 mm diameter instrument channel in the endoscope. Near-infrared fluorescence images demonstrated specific peptide binding to spontaneous adenomas that developed beginning at 2 months of age in a genetically-engineered mouse with mutation of one allele in the APC gene. This integrated methodology represents a powerful tool that can achieve real time detection of disease in the colon and other hollow organs.

  8. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery

    NASA Astrophysics Data System (ADS)

    Rogers, B. M.; Veraverbeke, S.; Azzari, G.; Czimczik, C. I.; Holden, S. R.; Mouteva, G. O.; Sedano, F.; Treseder, K. K.; Randerson, J. T.

    2014-08-01

    Carbon emissions from boreal forest fires are projected to increase with continued warming and constitute a potentially significant positive feedback to climate change. The highest consistent combustion levels are reported in interior Alaska and can be highly variable depending on the consumption of soil organic matter. Here we present an approach for quantifying emissions within a fire perimeter using remote sensing of fire severity. Combustion from belowground and aboveground pools was quantified at 22 sites (17 black spruce and five white spruce-aspen) within the 2010 Gilles Creek burn in interior Alaska, constrained by data from eight unburned sites. We applied allometric equations and estimates of consumption to calculate carbon losses from aboveground vegetation. The position of adventitious spruce roots within the soil column, together with estimated prefire bulk density and carbon concentrations, was used to quantify belowground combustion. The differenced Normalized Burn Ratio (dNBR) exhibited a clear but nonlinear relationship with combustion that differed by forest type. We used a multiple regression model based on transformed dNBR and deciduous fraction to scale carbon emissions to the fire perimeter, and a Monte Carlo framework to assess uncertainty. Because of low-severity and unburned patches, mean combustion across the fire perimeter (1.98 ± 0.34 kg C m-2) was considerably less than within a defined core burn area (2.67 ± 0.40 kg C m-2) and the mean at field sites (2.88 ± 0.23 kg C m-2). These areas constitute a significant fraction of burn perimeters in Alaska but are generally not accounted for in regional-scale estimates. Although total combustion in black spruce was slightly lower than in white spruce-aspen forests, black spruce covered most of the fire perimeter (62%) and contributed the majority (67 ± 16%) of total emissions. Increases in spring albedo were found to be a viable alternative to dNBR for modeling emissions.

  9. A new low cost wide-field illumination method for photooxidation of intracellular fluorescent markers.

    PubMed

    da Silva Filho, Manoel; Santos, Daniel Valle Vasconcelos; Costa, Kauê Machado

    2013-01-01

    Analyzing cell morphology is crucial in the fields of cell biology and neuroscience. One of the main methods for evaluating cell morphology is by using intracellular fluorescent markers, including various commercially available dyes and genetically encoded fluorescent proteins. These markers can be used as free radical sources in photooxidation reactions, which in the presence of diaminobenzidine (DAB) forms an opaque and electron-dense precipitate that remains localized within the cellular and organelle membranes. This method confers many methodological advantages for the investigator, including absence of photo-bleaching, high visual contrast and the possibility of correlating optical imaging with electron microscopy. However, current photooxidation techniques require the continuous use of fluorescent or confocal microscopes, which wastes valuable mercury lamp lifetime and limits the conversion process to a few cells at a time. We developed a low cost optical apparatus for performing photooxidation reactions and propose a new procedure that solves these methodological restrictions. Our "photooxidizer" consists of a high power light emitting diode (LED) associated with a custom aluminum and acrylic case and a microchip-controlled current source. We demonstrate the efficacy of our method by converting intracellular DiI in samples of developing rat neocortex and post-mortem human retina. DiI crystals were inserted in the tissue and allowed to diffuse for 20 days. The samples were then processed with the new photooxidation technique and analyzed under optical microscopy. The results show that our protocols can unveil the fine morphology of neurons in detail. Cellular structures such as axons, dendrites and spine-like appendages were well defined. In addition to its low cost, simplicity and reliability, our method precludes the use of microscope lamps for photooxidation and allows the processing of many labeled cells simultaneously in relatively large tissue samples

  10. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  11. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  12. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  13. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis.

    PubMed

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient's joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient's tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm(2)), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  14. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  15. Andromeda (M31) optical and infrared disk survey. I. Insights in wide-field near-IR surface photometry

    SciTech Connect

    Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles; McDonald, Michael; De Jong, Roelof; Tully, R. Brent

    2014-05-01

    We present wide-field near-infrared J and K{sub s} images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-target nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ∼0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.

  16. Andromeda (M31) Optical and Infrared Disk Survey. I. Insights in Wide-field Near-IR Surface Photometry

    NASA Astrophysics Data System (ADS)

    Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles; McDonald, Michael; de Jong, Roelof; Tully, R. Brent

    2014-05-01

    We present wide-field near-infrared J and Ks images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-target nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ~0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.

  17. PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE

    SciTech Connect

    Mainzer, A.; Bauer, J.; Masiero, J.; Eisenhardt, P.; Grav, T.; Cutri, R. M.; Dailey, J.; Alles, R.; Beck, R.; Brandenburg, H.; Conrow, T.; Evans, T.; Fowler, J.; Jarrett, T.; McMillan, R. S.; Wright, E.; Walker, R.; Jedicke, R.; Tholen, D.; Spahr, T.

    2011-04-10

    The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called 'NEOWISE' that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and {approx}120 comets. The NEOWISE data set will enable a panoply of new scientific investigations.

  18. Method to design two aspheric surfaces for a wide field of view imaging system with low distortion.

    PubMed

    Bian, Yinxu; Li, Haifeng; Wang, Yifan; Zheng, Zhenrong; Liu, Xu

    2015-09-20

    This paper presents a distortion correction method for designing a wide field of view (FOV) lens for an imaging system. The lens is composed of two aspheric surfaces and several spheres. In the preliminary design, profiles of the aspheric surfaces can be obtained according to aplanatism, refraction law, and polynomial fitting methods, where the numeric computation, the differential geometry computation, and the polynomial fitting algorithm are stated in detail. Then the lens is optimized by the damped least squares method. Theoretically, this method cannot eliminate aberrations absolutely but can balance some kinds of aberrations to the image well. Furthermore, a projector lens with a wide FOV, low distortion, and low throw ratio [TR = (projection distance)/(image diagonal size)] is designed successfully by this method.

  19. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    PubMed

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  20. Tidal capture formation of low-mass X-ray binaries from wide binaries in the field

    NASA Astrophysics Data System (ADS)

    Michaely, Erez; Perets, Hagai B.

    2016-06-01

    We present a dynamical formation scenario for low mass X-ray binaries (LMXBs) in the field, focusing on black hole (BH) LMXBs. In this formation channel, LMXBs are formed from wide binaries (>1000 au) with a BH component and a stellar companion. The wide binary is perturbed by fly-bys of field stars, its orbit random walks, until driven into a sufficiently eccentric orbit such that the binary components tidally interact and the binary evolves to become a short period binary, which eventually evolves into an LMXB. We consider several models for the formation and survival of such wide binaries, and calculate the LMXB formation rates for each model. We find that models where BHs form through direct collapse with no/little natal kicks can give rise to high formation rates comparable with those inferred from observations. This formation scenario had several observational signatures: (1) the number density of LMXBs generally follows the background stellar density, beside the densest regions, where the dependence is stronger, (2) the mass function of the BH stellar companion should be comparable to the mass function of the background stellar population, likely peaking at 0.4-0.6 M⊙, and (3) the LMXBs orbit should not correlate with the spin of the BH. These aspects generally differ from the expectations from previously suggested LMXB formation models following common envelope binary stellar evolution. We note that neutron star LMXBs can similarly form from wide binaries, but their formation rate through this channel is likely significantly smaller due to their much higher natal kicks.