Science.gov

Sample records for advanced x-ray sources

  1. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  2. Advanced X-Ray Sources Ensure Safe Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.

  3. Development of grating-based x-ray Talbot interferometry at the advanced photon source

    SciTech Connect

    Marathe, Shashidhara; Xiao Xianghui; Wojcik, Michael J.; Divan, Ralu; Butler, Leslie G.; Ham, Kyungmin; Fezzaa, Kamel; Erdmann, Mark; Wen, Han H.; Lee, Wah-Keat; Macrander, Albert T.; De Carlo, Francesco; Mancini, Derrick C.; Assoufid, Lahsen

    2012-07-31

    We report on the ongoing effort to develop hard x-ray Talbot interferometry at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We describe the design of the interferometer and preliminary results obtained at 25 keV using a feather and a phantom sample lithographically fabricated of gold. We mention the future developmental goals and applications of this technique as a metrology tool for x-ray optics and beam wavefront characterization.

  4. X-ray micro-Tomography at the Advanced Light Source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  5. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    SciTech Connect

    Lai, B.; Kemner, K. M.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.

  6. Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source

    SciTech Connect

    Warwick, T.; Padmore, H.; Ade, H.; Hitchcock, A.P.; Rightor, E.G.; Tonner, B.P.

    1996-08-01

    Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

  7. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    SciTech Connect

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike; Christensen, Phil A.; Johnson, William A.; Owen, Roger D.; Ross, Randy

    2011-06-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  8. Superconducting Cavity Design for Short-Pulse X-Rays at the Advanced Photon Source

    SciTech Connect

    G.J. Waldschmidt, R. Nassiri, G. Cheng, R.A. Rimmer, H. Wang

    2011-03-01

    Superconducting cavities have been analyzed for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). Due to the strong damping requirements in the APS storage ring, single-cell superconducting cavities have been designed. The geometry has been optimized for lower-order and higher-order mode damping, reduced peak surface magnetic fields, and compact size. The integration of the cavity assembly, with dampers and waveguide input coupler, into a cryomodule will be discussed.

  9. Toward femtosecond X-ray spectroscopy at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Chong, Henry Herng Wei

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ˜100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a DeltaS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  10. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    SciTech Connect

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ~100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  11. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    SciTech Connect

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  12. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    SciTech Connect

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  13. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    SciTech Connect

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  14. A quasi-realtime x-ray microtomography system at the Advanced Photon Source.

    SciTech Connect

    DeCarlo, F.; Foster, I.; Insley, J.; Kesselman, C.; Lane, P.; Mancini, D.; McNulty, I.; Su, M.; Tieman, B.; Wang, Y.; von Laszewski, G.

    1999-07-16

    The combination of high-brilliance x-ray sources, fast detector systems, wide-bandwidth networks, and parallel computers can substantially reduce the time required to acquire, reconstruct, and visualize high-resolution three-dimensional tomographic datasets. A quasi-realtime computed x-ray microtomography system has been implemented at the 2-BM beamline at the Advanced Photon Source at Argonne National Laboratory. With this system, a complete tomographic data set can be collected in about 15 minutes. Immediately after each projection is obtained, it is rapidly transferred to the Mathematics and Computing Sciences Division where preprocessing and reconstruction calculations are performed concurrently with the data acquisition by a SGI parallel computer. The reconstruction results, once completed, are transferred to a visualization computer that performs the volume rendering calculations. Rendered images of the reconstructed data are available for viewing back at the beamline experiment station minutes after the data acquisition was complete. The fully pipelined data acquisition and reconstruction system also gives us the option to acquire the tomographic data set in several cycles, initially with coarse then with fine angular steps. At present the projections are acquired with a straight-ray projection imaging scheme using 5-20 keV hard x rays in either phase or amplitude contrast mode at a 1-10 pm resolution. In the future, we expect to increase the resolution of the projections to below 100 nm by using a focused x-ray beam at the 2-ID-B beamline and to reduce the combined acquisition and computation time to the 1 min scale with improvements in the detectors, network links, software pipeline, and computation algorithms.

  15. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  16. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  17. A high-throughput x-ray microtomography system at the Advanced Photon Source

    SciTech Connect

    Wang, Yuxin; De Carlo, Francesco; Mancini, Derrick C.; McNulty, Ian; Tieman, Brian; Bresnahan, John; Foster, Ian; Insley, Joseph; Lane, Peter; von Laszewski, Gregor

    2001-04-01

    A third-generation synchrotron radiation source provides enough brilliance to acquire complete tomographic data sets at 100 nm or better resolution in a few minutes. To take advantage of such high-brilliance sources at the Advanced Photon Source, we have constructed a pipelined data acquisition and reconstruction system that combines a fast detector system, high-speed data networks, and massively parallel computers to rapidly acquire the projection data and perform the reconstruction and rendering calculations. With the current setup, a data set can be obtained and reconstructed in tens of minutes. A specialized visualization computer makes rendered three-dimensional (3D) images available to the beamline users minutes after the data acquisition is completed. This system is capable of examining a large number of samples at sub-{mu}m 3D resolution or studying the full 3D structure of a dynamically evolving sample on a 10 min temporal scale. In the near future, we expect to increase the spatial resolution to below 100 nm by using zone-plate x-ray focusing optics and to improve the time resolution by the use of a broadband x-ray monochromator and a faster detector system.

  18. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  19. Soft x-ray optics for spectromicroscopy at the Advanced Light Source

    SciTech Connect

    Padmore, H.A.

    1996-09-01

    A variety of systems for performing spectromicroscopy, spatially resolved spectroscopy, are in operation or under construction at the Advanced Light Source (ALS). For example, part of the program is centered around the surface analysis problems of local semiconductor industries, and this has required the construction of a microscope with wafer handling, fiducialization, optical microscopy, coordinated ion beam etching, and X-ray Photoelectron Spectroscopy (XPS) integrated in this case with Kirkpatrick-Baez (K-B) grazing incidence micro-focusing optics. The microscope is to be used in conjunction with a highly efficient entrance slitless Spherical Grating Monochromator (SGM). The design and expected performance of this instrument will be described, with emphasis on the production of the elliptically curved surfaces of the K-B mirrors by elastic bending of flat mirror substrates. For higher resolution, zone-plate (Z-P) focusing optics are used and one instrument, a Scanning Transmission X-ray Microscope (STXM) is in routine operation on undulator beamline 7.0. A second Z-P based system is being commissioned on the same beamline, and differs from the STXM in that it will operate at Ultra-High Vacuum (UHV) and will be able to perform XPS at 0.1 {micro}m spatial resolution. Spatially resolved X-ray Absorption Spectroscopy (XAS) can be performed by imaging electrons photoemitted from a material with a Photo-Emission Electron Microscope (PEEM). The optical requirements of a beamline designed for PEEM are very different to those of micro-focus systems and they give examples of bending magnet and undulator based instruments.

  20. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  1. Phase contrast medical imaging with compact X-ray sources at the Munich-Centre for Advance Photonics (MAP)

    NASA Astrophysics Data System (ADS)

    Coan, P.; Gruener, F.; Glaser, C.; Schneider, T.; Bravin, A.; Reiser, M.; Habs, D.

    2009-09-01

    In this paper, the excellence cluster "Munich-Centre for Advance Photonics" (MAP) is presented. One of the aims of the project is the development of innovative X-ray-based diagnostics imaging techniques to be implemented at an ultra-compact high-energy and high-brilliance X-ray source. The basis of the project and the developments towards the clinical application of phase contrast imaging applied to mammography and cartilage studies will be presented and discussed.

  2. 2-ps Hard X-Ray Streak Camera Measurements at Sector 7 Beamline of the Advanced Photon Source

    SciTech Connect

    Chollet, M.; Ahr, B.; Walko, D.A.; Rose-Petruck, C.; Adams, B.

    2011-08-02

    A hard X-ray streak camera capable of 2-ps time resolution is in operation at the Sector 7 beamline of the Advanced Photon Source. It is used for laser-pump, X-ray probe experiments using the Ti:Sapphire femtosecond laser system installed on the beamline. This streak camera, combined with standardized and prealigned experimental setups, can perform time-resolved liquid-phase absorption spectroscopy, reflectivity, and diffraction experiments.

  3. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  4. CELESTIAL X-RAY SOURCES.

    DTIC Science & Technology

    sources, (4) the physical conditions in the pulsating x-ray source in the Crab Nebula , and (5) miscellaneous related topics. A bibliography of all work performed under the contract is given. (Author)

  5. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source

    PubMed Central

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J.; Chance, Mark R.; Ralston, Corie

    2014-01-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale. PMID:24971962

  6. High-throughput real-time x-ray microtomography at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    De Carlo, Francesco; Albee, Paul B.; Chu, Yong S.; Mancini, Derrick C.; Tieman, Brian; Wang, Steve Y.

    2002-01-01

    It is now possible for large volumes of synchrotron- radiation-generated micro-tomography data to be produced at gigabyte-per-minute rates, especially when using currently available CCD cameras at a high-brightness source, such as the Advanced Photon Source (APS). Recent improvements in the speed of our detectors and stages, combined with increased photon flux supplied by a newly installed double multilayer monochromator, allow us to achieve these data rates on a bending magnet beamline. Previously, most x-ray microtomography experiments have produced data at comparatively lower rates, and often the data were analyzed after the experiment. The time needed to generate complete data sets meant putting off analysis to the completion of a run, thus preventing the user from evaluating the usefulness of a data set and consequently impairing decision making during data acquisition as to how to proceed. Thus, the ability to provide to a tomography user a fully reconstructed data set in few minutes is one of the major problems to be solved when dealing with high-throughput x- ray tomography. This is due to the complexity of the data analysis that involves data preprocessing, sinogram generation, 3D reconstruction, and rendering. At the APS, we have developed systems and techniques to address this issue. We present a method that uses a cluster-based, parallel- computing system based on the Message Passing Interface (MPI) standard. Among the advantages of this approach are the portability, ease-of-use, and low cost of the system. The combination of high-speed, online analysis with high- throughput acquisition allows us to acquire and reconstruct a 512x512x512-voxel sample with a few microns resolution in less than ten minutes.

  7. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source

    PubMed Central

    Le Gros, Mark A.; McDermott, Gerry; Cinquin, Bertrand P.; Smith, Elizabeth A.; Do, Myan; Chao, Weilun L.; Naulleau, Patrick P.; Larabell, Carolyn A.

    2014-01-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with ‘water window’ X-rays (284–543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies. PMID:25343808

  8. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    SciTech Connect

    Sajaev, V.; Borland, M.; Chae, Y.-C.; Decker, G.; Dejus, R.; Emery, L.; Harkay, K.; Nassiri, A.; Shastri, S.; Waldschmidt, G.; Yang, B.; Anfinrud, P.; Dolgashev, V.; NIH; SLAC

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for one APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.

  9. Short X-ray pulse generation using deflecting cavities at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Sajaev, V.; Borland, M.; Chae, Y.-C.; Decker, G.; Dejus, R.; Emery, L.; Harkay, K.; Nassiri, A.; Shastri, S.; Waldschmidt, G.; Yang, B.; Anfinrud, P.; Dolgashev, V.

    2007-11-01

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for one APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.

  10. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  11. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  12. Final report of LDRD project : compact ultrabright multikilovolt x-ray sources for advanced materials studies, 3D nanoimaging, and attosecond x-ray technology.

    SciTech Connect

    Loubriel, Guillermo Manuel; Rhodes, Charles Kirkham; Mar, Alan

    2005-02-01

    Experimental evidence and corresponding theoretical analyses have led to the conclusion that the system composed of Xe hollow atom states, that produce a characteristic Xe(L) spontaneous emission spectrum at 1 {at} 2.9 {angstrom} and arise from the excitation of Xe clusters with an intense pulse of 248 nm radiation propagating in a self-trapped plasma channel, closely represents the ideal situation sought for amplification in the multikilovolt region. The key innovation that is central to all aspects of the proposed work is the controlled compression of power to the level ({approx} 10{sup 20} W/cm{sup 3}) corresponding to the maximum achieved by thermonuclear events. Furthermore, since the x-ray power that is produced appears in a coherent form, an entirely new domain of physical interaction is encountered that involves states of matter that are both highly excited and highly ordered. Moreover, these findings lead to the concept of 'photonstaging', an idea which offers the possibility of advancing the power compression by an additional factor of {approx} 10{sup 9} to {approx} 10{sup 29} W/cm{sup 3}. In this completely unexplored regime, g-ray production ({h_bar}{omega}{sub {gamma}} {approx} 1 MeV) is expected to be a leading process. A new technology for the production of very highly penetrating radiation would then be available. The Xe(L) source at {h_bar}{omega}{sub x} {approx} 4.5 keV can be applied immediately to the experimental study of many aspects of the coupling of intense femtosecond x-ray pulses to materials. In a joint collaboration, the UIC group and Sandia plan to explore the following areas. These are specifically, (1) anomalous electromagnetic coupling to solid state materials, (2) 3D nanoimaging of solid matter and hydrated biological materials (e.g. interchromosomal linkers and actin filaments in muscle), and (3) EMP generation with attosecond x-rays.

  13. Ultraluminous X-ray Sources.

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Sholukhova, O.; Abolmasov, P.

    2008-12-01

    We discuss a new type of X-ray sources discovered in galaxies -- ultraluminous X-ray sources (ULXs). They are of two order of magnitude brighter in X-rays than the brightest Galactic black holes. Two mod- els of ULXs are discussed: "intermediate mass" black holes, 100 - 10000 solar masses, with standard accretion disks, and "stellar mass" black holes with su- percritical accretion disks like that in the Galactic object SS 433. A study of gas nebulae surrounding these objects gives us a new important information on the central sources. The observed X-ray radiation of ULXs is not enough to power their nebulae. To understand both spectra and power of the nebulae one needs a powerful UV source. The ULXs must be such bright in UV range as they are in X-rays. Spectroscopy of gas filaments surrounding SS 433 proves that the intrinsic face-on luminosity of the supercritical accretion disk in the far UV region to be "sim; 10^40 erg/s. We expect that observations of ULXs with the WSO-UV Observatory, measurements their UV fluxes and spectral slopes solve the problem of ULXs between the two known models of these sources.

  14. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  15. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  16. Compact x-ray source and panel

    SciTech Connect

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  17. Developments in synchrotron x-ray micro-tomography for in-situ materials analysis at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Venkatakrishnan, S. V.; Panerai, F.; Mansour, N. N.

    2016-10-01

    The Advanced Light Source (ALS) is a third-generation synchrotron X-ray source that operates as a user facility with more than 40 beamlines hosting over 2000 users per year. Synchrotron sources like the ALS provide high quality X-ray beams, with flux that is several orders of magnitude higher than lab-based sources. This is particularly advantageous for dynamic applications because it allows for high-speed, high-resolution imaging and microscale tomography. The hard X-ray beamline 8.3.2 at the Advanced Light Source enables imaging of samples at high temperatures and pressures, with mechanical loading and other realistic conditions using environmental test cells. These test cells enable experimental observation of samples undergoing dynamic microstructural changes in-situ. We present recent instrumentation developments that allow for continuous tomography with scan rates approaching 1 Hz per 3D image. In addition, our use of iterative reconstruction techniques allows for improved image quality despite fewer images and low exposure times used during fast tomography compared to traditional Fourier reconstruction methods.

  18. A bend magnet facility for production and application of circularly polarized soft x rays at the Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Bustamante, C.; Chen, C. T.; Sette, F.; Howells, M. R.; Hunt, A. J.; Kim, K. J.; Kincaid, B. M.; Maestre, M. F.; Nygren, D. R.; Wong, M.; Snyder, P. A.; Stern, E. A.

    1992-01-01

    The Advanced Light Source (ALS) is a synchrotron radiation facility based on a low-emittance, 1.5-GeV electron storage ring presently under construction at the Lawrence Berkeley Laboratory, U.S.A. Plans are under way to develop a polarized photon facility at the ALS, exploiting the natural polarization properties of the bend magnet synchrotron radiation. The radiation emitted in the plane of the storage ring is linearly polarized, while above and below the plane it is elliptically polarized. We will utilize these properties to obtain circularly polarized soft x rays. A participating research team (PRT A018) has been formed and is proceeding with the design of a high-resolution beamline in the soft x-ray energy region 100-1500 eV. Intense beams of monochromatic, tunable, pulsed, circularly polarized photons will become available. We will discuss the physical characteristics of this polarized soft x-ray source. New investigations in biology, materials science, physics, and chemistry will become accessible. Initial experiments using circularly polarized photons in the soft x-ray region are planned in the areas of differential scattering and absorption from chiral molecules and probing the electronic and magnetic properties of magnetic systems. This work was supported by the U.S. Department of Energy (DE-AC03-76SF00098).

  19. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  20. Performance of hard X-ray zone plates at the Advanced Photon Source

    SciTech Connect

    Maser, J.; Lai, B.; Cai, Z.; Rodrigues, W.; Legnini, D.; Ilinski, P.; Yun, W.; Chen, Z.; Krasnoperova, A.A.; Vladimirsky, Y.; Cerrina, F.; Di, E.; Fabrizio, E.; Gentili, M.

    1999-12-20

    Fresnel zone plates have been highly successful as focusing and imaging optics for soft x-ray microscopes and microprobe. More recently, with the advent of third-generation high-energy storage rings, zone plates for the hard x-ray regime have been put to use as well. The performance of zone plates manufactured using a combination of electron-beam lithography and x-ray lithography is described.

  1. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  2. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  3. TU-EF-207-03: Advances in Stationary Breast Tomosynthesis Using Distributed X-Ray Sources

    SciTech Connect

    Zhou, O.

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  4. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  5. Further development of soft X-ray scanning microscopy with anelliptical undulator at the Advanced Light Source

    SciTech Connect

    Warwick, Tony; Ade, Harald; Fakra, Sirine; Gilles, Mary; Hitchcock, Adam; Kilcoyne, David; Shuh, David; Tyliszczak, Tolek

    2003-04-02

    Soft x-ray scanning microscopy (1) is under continuing development at the Advanced Light Source. Significant progress has been made implementing new scan control systems in both operational microscopes (2) and they now operate at beam lines 5.3.2 and 11.0.2 with interferometer servo scanning and stabilization. The interferometer servo loop registers the images on a universal x/y coordinate system and locks the x-ray spot on selected features for spectro-microscopic studies. At the present time zone plates are in use with 35nm outer zone width and the imaging spatial resolution is at the diffraction limit of these lenses. Current research programs are underway in areas of polymer chemistry, environmental chemistry and materials science. A dedicated polymer STXM is in operation on a bend magnet beam line (4) and is the subject of a separate article (3) in this issue. Here we focus on the capabilities of STXM at a new beam line that employs an elliptical undulator (5) to give control of the polarization of the x-ray beam. This facility is in the process of commissioning and some results are available, other capabilities will be developed during the first half of 2003.

  6. Progress on the Development of the Next Generation X-ray Beam Position Monitors at the Advanced Photon Source

    SciTech Connect

    Lee, S.H.; Yang, B.X.; Decker, G.; Sereno, N.; Ramanathan, M.

    2016-07-27

    Accurate and stable x-ray beam position monitors (XBPMs) are ke y elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generat ion XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Com missioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulator beams are separated by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scat tering from the diamond blades placed edge-on to the x- ray beam. A prototype of the Compton scattering XBPM system was i nstalled at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contac t resistance of a joint between two solid bodies is also discussed

  7. Design analysis of a composite L5-80 slit for x-ray beamlines at the Advanced Photon Source

    SciTech Connect

    Nian, H.L.T.; Kuzay, T.M.; Shu, D.

    1996-12-31

    White-beam slits are precision high-heat-load devices used on beamlines of the Advanced Photon Source (APS) to trim and shape the incoming x-rays beam before the beam is transmitted to other optical components. At the APS, the insertion devices that generate the x-ray are very powerful. For example, the heat flux associated with an x- ray beam generated by Undulator A will be on the order of 207 W/mm{sup 2} at the L5-80 slit location (about 27.5 m away from the insertion device) at normal incidence. The total power is about 5.3 kW. The optical slits with micron-level precision are very challenging to design under such heat flux and total power considerations. A novel three-metal composite slit has been designed to meet the diverse thermal, structural, and precision requirements. A closed form solution, and a commercial code, ANSYS, have been used for the analysis of the optimized design for the slit set.

  8. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  9. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect

    Iverson, Adam; Carlson, Carl; Young, Jason; Curtis, Alden; Jensen, Brian; Ramos, Kyle; Yeager, John; Montgomery, David; Fezza, Kamel

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  10. X-ray Laue Diffraction Microscopy in 3D at the Advanced Photon Source

    SciTech Connect

    Liu, W.; Zschack, P.; Tischler, Jonathan Zachary; Ice, Gene E; Larson, Ben C

    2011-01-01

    Studies of materials on mesoscopic length-scales require a penetrating structural probe with submicron point-to-point spatial resolution. The principle research activities at beamline 34-ID-E of the Advanced Photon Source (APS) involve development of exciting new micro-/nano-diffraction techniques for characterization and microscopy in support of both applied engineering and fundamental materials research. Taking advantage of the high brightness of the source, advanced focusing mirrors, a novel depth profiling technique, and high-speed area detectors, three-dimensional scanning Laue diffraction microscopy provides detailed local structural information of crystalline materials, such as crystallographic orientation, orientation gradients, and strain tensors. It is general and applicable to single-crystal, polycrystalline, composite, deformed, and functionally graded materials. Applications include 3D diffraction investigations for a diverse and growing user community with interests in materials deformation, electro-migration, recrystallization, fatigue, solid-solution precipitation, high-pressure environments, and condensed matter physics.

  11. Status of the Short-Pulse X-ray Project (SPX) at the Advanced Photon Source (APS)

    SciTech Connect

    Nassiri, R; Berenc, G; Borland, M; Bromberek, D J; Chae, Y -C; Decker, G; Emery, L; Fuerst, J D; Grelick, A E; Horan, D; Lenkszus, F; Lill, R M; Sajaev, V; Smith, T L; Waldschmidt, G J; Wu, G; Yang, B X; Zholents, A; Byrd, J M; Doolittle, L R; Huang, G; Cheng, G; Ciovati, G; Henry, J; Kneisel, P; Mammosser, J D; Rimmer, R A; Turlington, L; Wang, H

    2011-03-01

    The Advanced Photon Source Upgrade project (APS-U) at Argonne includes implementation of Zholents’* deflecting cavity scheme for production of short x-ray pulses. This is a joint project between Argonne National Laboratory, Thomas Jefferson National Laboratory, and Lawrence Berkeley National Laboratory. This paper describes performance characteristics of the proposed source and technical issues related to its realization. Ensuring stable APS storage ring operation requires reducing quality factors of these modes by many orders of magnitude. These challenges reduce to those of the design of a single-cell SC cavity that can achieve the desired operating deflecting fields while providing needed damping of all these modes. The project team is currently prototyping and testing several promising designs for single-cell cavities with the goal of deciding on a winning design in the near future. Here

  12. The Wakefield Effects of Pulsed Crab Cavities at the Advanced Photon Source for Short-X-ray Pulse Generation

    SciTech Connect

    Chae, Y.-C.; Waldschmidt, G.; Dolgashev, V.; /SLAC

    2007-11-07

    In recent years we have explored the application to the Advanced Photon Source (APS) of Zholents' crab-cavity based scheme for production of short x-ray pulses. As a near-term project, the APS has elected to pursue a pulsed system using room-temperature cavities. The cavity design has been optimized to heavily damp parasitic modes while maintaining large shunt impedance for the deflecting dipole mode. We evaluated a system consisting of three crab cavities as an impedance source and determined their effect on the single- and multi-bunch instabilities. In the single-bunch instability we used the APS impedance model as the reference system in order to predict the overall performance of the ring when the crab cavities are installed in the future. For multi-bunch instabilities we used a realistic fill pattern, including hybrid-fill, and tracked multiple bunches where each bunch was treated as soft in distribution.

  13. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    DOE PAGES

    Lee, S. H.; Yang, B. X.; Collins, J. T.; ...

    2017-02-07

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  14. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  15. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.

    SciTech Connect

    Benson, C.; Jaski, Y.; Maser, J.; Powers, T.; Schmidt, O.; Rossi, E.

    2007-01-01

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

  16. White Beam Slits and Pink Beam Slits for the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source

    SciTech Connect

    Benson, C.; Jaski, Y.; Powers, T.; Schmidt, O.; Rossi, E.; Maser, J.

    2007-01-19

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

  17. Optical design of the Short Pulse Soft X-ray Spectroscopy beamline at the Advanced Photon Source

    PubMed Central

    Reininger, R.; Keavney, D. J.; Borland, M.; Young, L.

    2013-01-01

    The Short Pulse X-ray facility planned for the Advanced Photon Source (APS) upgrade will provide two sectors with photon beams having picosecond pulse duration. The Short Pulse Soft X-ray Spectroscopy (SPSXS) beamline will cover the 150–2000 eV energy range using an APS bending magnet. SPSXS is designed to take full advantage of this new timing capability in addition to providing circular polarized radiation. Since the correlation between time and electron momentum is in the vertical plane, the monochromator disperses in the horizontal plane. The beamline is designed to maximize flux and preserve the time resolution by minimizing the number of optical components. The optical design allows the pulse duration to be varied from 1.5 to 100 ps full width at half-maximum (FWHM) without affecting the energy resolution, and the resolution to be changed with minimal effect on the pulse duration. More than 109 photons s−1 will reach the sample with a resolving power of 2000 and a pulse duration of ∼2 ps for photon energies between 150 and 1750 eV. The spot size expected at the sample position will vary with pulse duration and exit slit opening. At 900 eV and at a resolving power of 2000 the spot will be ∼10 µm × 10 µm with a pulse duration of 2.3 ps FWHM. PMID:23765311

  18. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    SciTech Connect

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  19. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van der Klis, Michiel

    2006-04-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  20. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter; van der Klis, Michiel

    2010-11-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  1. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  2. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source.

    PubMed

    Luo, S N; Jensen, B J; Hooks, D E; Fezzaa, K; Ramos, K J; Yeager, J D; Kwiatkowski, K; Shimada, T

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (∼2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  3. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    NASA Astrophysics Data System (ADS)

    Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.; Ustundag, Ersan

    2009-03-01

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 μm spot of ˜5×109 photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 μm are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (˜0.2 μm) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5×10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  4. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    SciTech Connect

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  5. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    SciTech Connect

    Kunz, Martin; Tamura, Nobumichi; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.; Chen Kai; Ustundag, Ersan

    2009-03-15

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 {mu}m spot of {approx}5x10{sup 9} photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 {mu}m are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution ({approx}0.2 {mu}m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10{sup -5} strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser

  6. Superconducting Multi-Cell Deflecting Cavity for Short-Pulse X-Ray Generation at the Advanced Photon Source

    SciTech Connect

    G.J. Waldschmidt, L.H. Morrison, R. Nassiri, R.A. Rimmer, K. Tian, H. Wang

    2009-05-01

    A superconducting multi-cell cavity for the production of short x-ray pulses at the Advanced Photon Source (APS) has been explored as an alternative to a single-cell cavity design in order to improve the packing factor and potentially reduce the number of high-power RF systems and low-level RF controls required. The cavity will operate at 2815 MHz in the APS storage ring and will require heavy damping of parasitic modes to maintain stable beam operation. Novel on-cell dampers, attached directly to the cavity body, have been utilized by taking advantage of the magnetic field null on the equatorial plane in order to enhance damping. Design issues and simulation results will be discussed.

  7. High-power Waveguide Dampers for the Short-Pulse X-Ray Project at the Advanced Photon Source

    SciTech Connect

    Waldschmidt, G J; Liu, J; Middendorf, M E; Nassiri, A; Smith, T L; Wu, G; Henry, J; Mammosser, J D; Rimmer, R A; Wiseman, M

    2012-07-01

    High-power waveguide dampers have been designed and prototyped for the Short-Pulse X-ray (SPX) cavities at the Advanced Photon Source. The cavities will operate at 2.815 GHz and utilize the TM110 dipole mode. As a result, higher-order (HOM) and lower-order mode (LOM) in-vacuum dampers have been designed to satisfy the demanding broadband damping requirements in the APS storage ring. The SPX single-cell cavity consists of two WR284 waveguides for damping the HOMs and one WR284 waveguide for primarily damping the LOM where up to 2kW will be dissipated in the damping material. The damper designs and high-power experimental results will be discussed in this paper.

  8. Scanned-beam x-ray source technology for photon backscatter imaging technique of mine detection: advanced technology research

    NASA Astrophysics Data System (ADS)

    Burchanowski, Charlotte M.; Moler, Robert B.; Shope, Steve L.

    1995-06-01

    A very high power, state-of-the-art, scanning x-ray source has been developed for use with an x-ray backscatter system that detects and images buried land mines. This paper describes the distinctive qualities of the x-ray source technology necessary to prove the feasibility of the mine detection technique in the field. The imaging system requires that an x-ray beam, having a nominal illumination area on the ground of two centimeters by two centimeters, sweeps across a width of three meters in a time of 15 milliseconds or less. The source must produce an integrated flux of 106 x-rays (min) at 120 kVp (min) for each pixel. The source technology is based on a plasma-focused electrom beam operating up to 140 kilovolts with a current of 0.7 ampere. The electrom beam is magnetically shaped to form a thin ellipse with dimensions of approximately one millimeter by ten millimeters. The scanner is designed to run continuously with target temperature of 160 degrees F (max). The overall design allows the scanner to run with operational and auxilary power generators in the field. A unique 400 hertz, 440 volt, 3-phase, SCR-controlled, low energy storage DC source, with low ripple and 1% voltage regulation, supplies the scanner with 100 kilowatts of power at up to 160 kilovolts. The uniqueness of the mine detection technique and scanner design limits radiation hazards: 1) focusing and tight collimation minimizes stray x-rays; 2) the x-rays travel directly into the ground and are mostly absorbed; 3) radiation leakage from the source is not permitted; and 4) backscatter radiation is strongly localized around the irradiation area, is directed upward, and has a small angular distribution.

  9. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-05

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  10. Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.

    SciTech Connect

    Jaski, Y.; Cookson, D.; Experimental Facilities Division; Univ. of Chicago

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  11. A case for ZnO nanowire field emitter arrays in advanced x-ray source applications

    NASA Astrophysics Data System (ADS)

    Robinson, Vance S.; Bergkvist, Magnus; Chen, Daokun; Chen, Jun; Huang, Mengbing

    2016-09-01

    Reviewing current efforts in X-ray source miniaturization reveals a broad spectrum of applications: Portable and/or remote nondestructive evaluation, high throughput protein crystallography, invasive radiotherapy, monitoring fluid flow and particulate generation in situ, and portable radiography devices for battle-front or large scale disaster triage scenarios. For the most part, all of these applications are being addressed with a top-down approach aimed at improving portability, weight and size. That is, the existing system or a critical sub-component is shrunk in some manner in order to miniaturize the overall package. In parallel to top-down x-ray source miniaturization, more recent efforts leverage field emission and semiconductor device fabrication techniques to achieve small scale x-ray sources via a bottom-up approach where phenomena effective at a micro/nanoscale are coordinated for macro-scale effect. The bottom-up approach holds potential to address all the applications previously mentioned but its entitlement extends into new applications with much more ground-breaking potential. One such bottom-up application is the distributed x-ray source platform. In the medical space, using an array of microscale x-ray sources instead of a single source promises significant reductions in patient dose as well as smaller feature detectability and fewer image artifacts. Cold cathode field emitters are ideal for this application because they can be gated electrostatically or via photonic excitation, they do not generate excessive heat like other common electron emitters, they have higher brightness and they are relatively compact. This document describes how ZnO nanowire field emitter arrays are well suited for distributed x-ray source applications because they hold promise in each of the following critical areas: emission stability, simple scalable fabrication, performance, radiation resistance and photonic coupling.

  12. All-laser-driven Thomson X-ray sources

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald P.

    2015-10-01

    We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications - in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.

  13. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  14. Detection of x ray sources in PROS

    NASA Technical Reports Server (NTRS)

    Deponte, J.; Primini, F. A.

    1992-01-01

    The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

  15. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  16. Multilayers for next generation x-ray sources

    SciTech Connect

    Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

    2007-05-04

    Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

  17. Multi-scale 3D X-ray Imaging Capabilities at the Advanced Photon Source - Current status and future direction (Invited)

    NASA Astrophysics Data System (ADS)

    DeCarlo, F.; Xiao, X.; Khan, F.; Glowacki, A.; Schwarz, N.; Jacobsen, C.

    2013-12-01

    In x-ray computed μ-tomography (μ-XCT), a thin scintillator screen is coupled to a visible light lens and camera system to obtain micrometer-scale transmission imaging of specimens as large as a few millimeters. Recent advances in detector technology allow collecting these images at unprecedented frame rates. For a high x-ray flux density synchrotron facility like the Advanced Photon Source (APS), the detector exposure time ranges from hundreds of milliseconds to hundreds of picoseconds, making possible to acquire a full 3D micrometer-resolution dataset in less than one second. The micron resolution limitation of parallel x-ray beam projection systems can be overcame by Transmission X-ray Microscopes (TXM) where part of the image magnification is done in x-ray regime using x-ray optics like capillary condensers and Fresnel zone plates. These systems, when installed on a synchrotron x-ray source, can generate 2D images with up to 20 nm resolution with second exposure time and collect a full 3D nano-resolution dataset in few minutes. μ-XCT and TXM systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. In this presentation we describe the computational challenges associated with μ-XCT and TXM systems and present the framework and infrastructure developed at the APS to allow for routine multi-scale data integration between the two systems.

  18. Multi-scale 3D X-ray Imaging Capabilities at the Advanced Photon Source - Current status and future direction (Invited)

    NASA Astrophysics Data System (ADS)

    DeCarlo, F.; Xiao, X.; Khan, F.; Glowacki, A.; Schwarz, N.; Jacobsen, C.

    2011-12-01

    In x-ray computed μ-tomography (μ-XCT), a thin scintillator screen is coupled to a visible light lens and camera system to obtain micrometer-scale transmission imaging of specimens as large as a few millimeters. Recent advances in detector technology allow collecting these images at unprecedented frame rates. For a high x-ray flux density synchrotron facility like the Advanced Photon Source (APS), the detector exposure time ranges from hundreds of milliseconds to hundreds of picoseconds, making possible to acquire a full 3D micrometer-resolution dataset in less than one second. The micron resolution limitation of parallel x-ray beam projection systems can be overcame by Transmission X-ray Microscopes (TXM) where part of the image magnification is done in x-ray regime using x-ray optics like capillary condensers and Fresnel zone plates. These systems, when installed on a synchrotron x-ray source, can generate 2D images with up to 20 nm resolution with second exposure time and collect a full 3D nano-resolution dataset in few minutes. μ-XCT and TXM systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. In this presentation we describe the computational challenges associated with μ-XCT and TXM systems and present the framework and infrastructure developed at the APS to allow for routine multi-scale data integration between the two systems.

  19. PLEIADES: a picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies

    SciTech Connect

    Gibson, D J; Anderson, S G; Barty, C P; Betts, S M; Booth, R; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Hartemann, F V; Kuba, J; Le Sage, G P; Tremaine, A M; Springer, P T; Rosenzweig, J B

    2003-10-20

    The PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 {micro}m rms, at 57 MeV, with 260 C of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820-nm laser pulse had an energy of 180 mJ and a duration of 54 fs. Initial x-rays were captured with a cooled charge-coupled device using a Cesium Iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3 x 10{sup 6} photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently underway, with the goal of reaching 10{sup 8} photons per shot and a peak brightness approaching 10{sup 20} photons/mm{sup 2}/mrad{sup 2}/s/0.1%bandwidth.

  20. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam

    NASA Astrophysics Data System (ADS)

    Gustavsen, R. L.; Dattelbaum, D. M.; Watkins, E. B.; Firestone, M. A.; Podlesak, D. W.; Jensen, B. J.; Ringstrand, B. S.; Huber, R. C.; Mang, J. T.; Johnson, C. E.; Velizhanin, K. A.; Willey, T. M.; Hansen, D. W.; May, C. M.; Hodgin, R. L.; Bagge-Hansen, M.; van Buuren, A. W.; Lauderbach, L. M.; Jones, A. C.; Graber, T. J.; Sinclair, N.; Seifert, S.; Gog, T.

    2017-03-01

    Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1-10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. This report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as well as the uncertainties and sources of uncertainty associated with the calculated times and distances.

  1. Devices Materials and Processes for Nanoelectronics: Characterization with Advanced X-Ray Techniques Using Lab-Based and Synchrotron Radiation Sources

    SciTech Connect

    E Zschech; C Wyon; C Murray; G Schneider

    2011-12-31

    Future nanoelectronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nanostructures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nanoelectronics industry is reviewed. The focus of this paper is on the study of nanoscale device and on-chip interconnect materials, and materials for 3D IC integration as well.

  2. Globular cluster x-ray sources.

    PubMed

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 10(33) ergs(-1)) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  3. X-ray Optics Testing Beamline 1-BM at the Advanced Photon Source

    SciTech Connect

    Macrander, Albert; Erdmann, Mark; Kujala, Naresh; Stoupin, Stanislav; Marathe, Shashidhara; Shi, Xianbo; Wojcik, Michael; Nocher, Daniel; Conley, Raymond; Sullivan, Joseph; Goetze, Kurt A.; Maser, Jorg; Assoufid, Lahsen

    2016-07-27

    Beamline 1-BM at the APS has been reconfigured in part for testing of synchrotron optics with both monochromatic and white beams. Operational since 2013, it was reconfigured to accommodate users of the APS as well as users from other DOE facilities. Energies between 6 and 28 keV are available. The beamline was reconfigured to remove two large mirrors and to provide a 100 mm wide monochromatics beam at 54 m from the source. In addition a custom white beam shutter was implemented for topography exposures as short as 65 millisec over the full available horizontal width. Primary agendas include both white beam and monochromatic beam topography, Talbot grating interferometry, and tests of focusing optics. K-B mirrors, MLLs, and FZPs have been characterized. Measurements of the spatial coherence lengths on the beamline were obtained with Talbot interferometry. Topography data has been reported.

  4. Time-resolved X-ray scattering program at the Advanced Photon Source

    SciTech Connect

    Rodricks, B.

    1994-08-01

    The Time-Resolved Scattering Program`s goal is the development of instruments and techniques for time-resolved studies. This entails the development of wide bandpass and focusing optics, high-speed detectors, mechanical choppers, and components for the measurement and creation of changes in samples. Techniques being developed are pump-probe experiments, single-bunch scattering experiments, high-speed white and pink beam Laue scattering, and nanosecond to microsecond synchronization of instruments. This program will be carried out primarily from a white-beam, bend-magnet source, experimental station, 1-BM-B, that immediately follows the first optics enclosure (1-BM-A). This paper will describe the experimental station and instruments under development to carry out the program.

  5. MM-Wave Cavity/Klystron Developments Using Deep X-Ray Lithography at the Advanced Photon Source

    SciTech Connect

    Song, J.J.; Kang, Y.W.; Kustom, R.L.; Mancini, D.C.; Nassiri, A.; Lai, B.; Jongwaard, E.N.; Caryotakis, G.; Feinerman, A.D.; White, V.; /Wisconsin U., Madison

    2006-10-25

    Recent microfabrication technologies based on LIGA (German acronym for Lithographe, Galvanoformung, und Abformung) have been applied to build high-aspect-ratio, metallic or dielectric, planar structures suitable for high-frequency rf cavity structures. The cavity structures would be used as parts of linear accelerators, microwave undulators, and mm-wave amplifiers. The microfabrication process includes manufacturing of precision x-ray masks, exposure of positive resist by x-rays through the mask, resist development, and electroforming of the final microstructure. Prototypes of a 32-cell, 108-GHz constant impedance cavity and a 66-cell, 94-GHz constant-gradient cavity were fabricated using the synchrotron radiation sources at APS. Preliminary design parameters for a 91-GHz modulator klystron along with an overview of the new technology are discussed.

  6. New Directions in X-Ray Light Sources

    ScienceCinema

    Falcone, Roger

    2016-07-12

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  7. New Directions in X-Ray Light Sources

    SciTech Connect

    Falcone, Roger

    2008-07-18

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  8. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  9. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  10. Spectra of cosmic x-ray sources

    SciTech Connect

    Holt, S.S.; Mccray, R.

    1982-02-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term spectroscopy as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  11. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  12. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  13. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  14. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope

  15. Globular cluster X-ray sources

    NASA Astrophysics Data System (ADS)

    Pooley, D.

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries. I will present an overview of the current state of globular cluster X-ray observations, as well as our work on deep Chandra observations of M4, where we reach some of the lowest X-ray luminosities in any globular cluster (comparable to the deep observations of 47 Tuc and NGC 6397). One of M4 X-ray sources previously classified as a white dwarf binary is likely a neutron star binary, and another X-ray source is a sub-subgiant, the nature of which is still unclear. skip=3pt

  16. The advanced photon source X-ray transmitting beam-position-monitor tests at the national synchrotron light source X-25 beamline

    NASA Astrophysics Data System (ADS)

    Shu, D.; Collins, J. T.; Barraza, J.; Kuzay, T. M.

    1994-08-01

    A synthetic-diamond-based X-ray transmitting beam-position monitor has been studied using focused white beam at the National Synchrotron Light Source X-25 wiggler beamline. Of particular interest are the possibilities to design an integral window and filter/photon beam-position monitor for the Advanced Photon Source high-heat-flux insertion-device beamlines. The preliminary measurements were taken using two synthetic-diamond blade samples with different thicknesses and cooling configurations. The monitor (consisting of a vacuum vessel, an ion pump, a water-cooling base, a blade mounting block, and electric feedthroughs) was mounted on a three-dimensional ( x, y, φ) stepping-motor-driven stage with a 0.064-μm stepping size and a 0.1-μm linear encoder resolution. An infrared camera system was used to monitor and record the diamond blade surface temperature field through a sapphire window and test results are presented.

  17. A hard x-ray scanning microprobe for fluorescence imaging and microdiffraction at the Advanced Photon Source

    SciTech Connect

    Cai, L.; Lai, B.; Yun, W.; Ilinski, P.; Legnini, D.; Maser, J.; Rodrigues, W.

    1999-11-02

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 {micro}m (v) x 0.6 {micro}m (h), and a photon flux of 4 x 10{sup 9} photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 {micro}m in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (L{sub a} line) of 80 attograms/{micro}m{sup 2} for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique.

  18. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    This grant was for the study of Luminous Supersoft X-Ray Sources (SSSs). During the first year a number of projects were completed and new projects were started. The projects include: 1) Time variability of SSSs 2) SSSs in M31; 3) Binary evolution scenarios; and 4) Acquiring new data.

  19. ALFT's Soft X-Ray Source Development

    NASA Astrophysics Data System (ADS)

    Panarella, Emilio

    2002-11-01

    ALFT (www.alft.com) was funded by the Federal and Provincial governments of Canada in 1987 to pursue the objective of making soft X-ray sources for microlithography.For 15 years ALFT has successfully pursued this objective. Recently, the company has found that its sources can complement the synchrotron as provider of soft X-rays for applications that range from biotechnology to nanotechnology.A beam from the Canadian Synchrotron (CLS) will deliver 10^13 photons/sec in a collimated output, whereas the weakest of ALFT's sources delivers an average of 10^15 photons/sec, two orders of magnitude higher than the synchrotron, albeit in the 4 pi direction. The most powerful of ALFT's sources delivers pulses carrying an average of 10^16 photons/sec, with peak flux of 10^24 photons/sec, again in the 4 pi.The proprietary technology of ALFT rests not only on the electron bombardment concept of X-ray production but also, by using a special plasma (the Vacuum Spark), on the pinch phenomenon, thus obtaining better efficiency than conventional sources. By discharging a simple condenser in a very low inductance circuit, a metallic plasma is generated in a vacuum vessel between two electrodes, where plasma pinch and micropinch phenomena raise the plasma temperature and density to values that lead to large soft X-ray production.The talk will present an overview of the VSX soft X-ray source development, examining first the physics of the vacuum spark, then the extendibility to higher power outputs, and then to the engineering issues that have been solved leading to the first product, the VSX 400, a machine that delivers 400 mW of soft X-rays, and to the VSX Z10, a prototype machine that delivers 10 W of X-rays.The recent visits to the CLS and follow-up discussions that are leading towards the placement of one VSX 400 machine in Saskatoon will also reported.

  20. The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source.

    PubMed

    Jiang, Zhang; Li, Xuefa; Strzalka, Joseph; Sprung, Michael; Sun, Tao; Sandy, Alec R; Narayanan, Suresh; Lee, Dong Ryeol; Wang, Jin

    2012-07-01

    As an increasingly important structural-characterization technique, grazing-incidence X-ray scattering (GIXS) has found wide applications for in situ and real-time studies of nanostructures and nanocomposites at surfaces and interfaces. A dedicated beamline has been designed, constructed and optimized at beamline 8-ID-E at the Advanced Photon Source for high-resolution and coherent GIXS experiments. The effectiveness and applicability of the beamline and the scattering techniques have been demonstrated by a host of experiments including reflectivity, grazing-incidence static and kinetic scattering, and coherent surface X-ray photon correlation spectroscopy. The applicable systems that can be studied at 8-ID-E include liquid surfaces and nanostructured thin films.

  1. Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report

    SciTech Connect

    Clarke, Roy

    2003-09-10

    This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation.

  2. X-ray Optics for BES Light Source Facilities

    SciTech Connect

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of

  3. Optical design of the short pulse x-ray imaging and microscopy time-angle correlated diffraction beamline at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Reininger, R.; Dufresne, E. M.; Borland, M.; Beno, M. A.; Young, L.; Kim, K.-J.; Evans, P. G.

    2013-05-01

    The short pulse x-ray imaging and microscopy beamline is one of the two x-ray beamlines that will take full advantage of the short pulse x-ray source in the Advanced Photon Source (APS) upgrade. A horizontally diffracting double crystal monochromator which includes a sagittally focusing second crystal will collect most of the photons generated when the chirped electron beam traverses the undulator. A Kirkpatrick-Baez mirror system after the monochromator will deliver to the sample a beam which has an approximately linear correlation between time and vertical beam angle. The correlation at the sample position has a slope of 0.052 ps/μrad extending over an angular range of 800 μrad for a cavity deflection voltage of 2 MV. The expected time resolution of the whole system is 2.6 ps. The total flux expected at the sample position at 10 keV with a 0.9 eV energy resolution is 5.7 × 1012 photons/s at a spot having horizontal and vertical full width at half maximum of 33 μm horizontal by 14 μm vertical. This new beamline will enable novel time-dispersed diffraction experiments on small samples using the full repetition rate of the APS.

  4. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Rosanne

    2003-01-01

    We have made remarkable progress in the study of luminous supersoft X-ray sources during the past year. We have begun to discover a population of ultraluminous SSSs (e.g., in NGC 300 [Kong & Di Stefano 20031 as well as in Ml0l [Di Stefano & Kong 2003]), which may be accreting intermediate-mass (50-100 solar mass) black holes. This work follows from an algorithm we have developed (Di Stefano & Kong 2003) to identify SSSs in external galaxies, selecting them from among each galaxy s total population of X-ray sources. We have applied the algorithm to approximately one dozen galaxies and will make it public after it has been published in its entirety. Through our own application of the algorithm, we have discovered SSSs in every galaxy, mapping their spatial distribution, to obtain important clues to their fundamental natures. We have discovered that there is a large population of X-ray sources which are slightly hotter (100-250 eV) than standard SSSs. Some of these may be accreting BHs with masses between roughly 50 anf 100 solar masses. To explore this possibility, we are working on theoretical models for the formation and evolution of such systems (Di Stefano 2003).

  5. Compact X-ray Light Source Workshop Report

    SciTech Connect

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  6. The advanced light source at Lawrence Berkeley Laboratory—A high-brightness soft x-ray synchrotron-radiation facility

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1990-12-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets.

  7. Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria.

    SciTech Connect

    Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-09-30

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

  8. A Soft X-Ray Undulator Beamline at the Advanced Light Source with Circular and Variable Linear Polarization for the Spectroscopy and Microscopy of Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Young, Anthony T.; Arenholz, Elke; Feng, Jun; Padmore, Howard; Marks, Steve; Schlueter, Ross; Hoyer, Egon; Kelez, Nicholas; Steier, Christoph

    A new undulator beamline at the Advanced Light Source, Lawrence Berkeley National Laboratory is described. This new beamline has an Apple II type undulator which produces linearly and elliptically polarized X-rays. A high resolution monochromator directs the radiation to two branchlines. The first branchline is optimized for spectroscopy and accommodates multiple endstations simultaneously. The second branchline features a photoemission electron microscope. A novel feature of the beamline is the ability to produce linearly polarized radiation at arbitrary, user-selectable angles. Applications of the new beamline are also described.

  9. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  10. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  11. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  12. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  13. Picosecond x-ray diagnostics for third and fourth generation synchrotron sources

    SciTech Connect

    DeCamp, Matthew

    2016-03-30

    In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies at a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.

  14. Plasma x-ray radiation source.

    PubMed

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  15. Hard X-Ray Footprint Source Sized

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Kontar, E. P.

    2010-01-01

    RHESSI has detected compact hard (25 - 100 keV) X-ray sources that are <4 arcseconds (FWHM) in extent for certain flares (Dennis and Pernak (2009). These sources are believed to be at magnetic loop footpoints that are known from observations at other wavelengths to be very small. Flare ribbons seen in the W with TRACE, for example, are approx. 1 arcsecond in width, and white light flares show structure at the approx. 1 arcsecond level. However, Kontar and Jeffrey (2010) have shown that the measured extent should be >6 arcseconds, even if the X-ray emitting thick-target source is point-like. This is because of the strong albedo contribution in the measured energy range for a source located at the expected altitude of 1 Mm near the top of the chromosphere. This discrepancy between observations and model predictions may indicate that the source altitude is significantly lower than assumed or that the RHESSI image reconstruction procedures are not sensitive to the more diffuse albedo patch in the presence of a strong compact source. Results will be presented exploring the latter possibility using the Pixon image reconstruction procedure and other methods based on visibilities.

  16. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    SciTech Connect

    Schulze, D. ); Anderson, S. ); Mattigod, S. )

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  17. Smart x-ray beam position monitor system using artificial intelligence methods for the Advanced Photon Source insertion-device beamlines

    SciTech Connect

    Shu, D.; Ding, H.; Barraza, J.; Kuzay, T.M.; Haeffner, D.; Ramanathan, M.

    1997-09-01

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front-end has two XBPMs to monitor the X-ray beam position for both that vertical and horizontal directions. Performance challenges for a conventional photoemission type X-ray beam position monitor (XBPM) during operations are contamination of the signal from the neighboring bending magnet sources and the sensitivity of the XBPM to the insertion device (ID) gap variations. Problems are exacerbated because users change the ID gap during their operations, and hence the percentage level of the contamination in the front end XBPM signals varies. A smart XBPM system with a high speed digital signal processor has been built at the Advanced Photon Source for the ID beamline front ends. The new version of the software, which uses an artificial intelligence method, provides a self learning and self-calibration capability to the smart XBPM system. The structure of and recent test results with the system are presented in this paper.

  18. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    SciTech Connect

    Chen, S. Vine, D. J.; Lai, B.; Paunesku, T.; Yuan, Y.; Woloschak, G. E.; Deng, J.; Jin, Q.; Hong, Y. P.; Flachenecker, C.; Hornberger, B.; Brister, K.; Jacobsen, C.; Vogt, S.

    2016-01-28

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation.

  19. Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C.

    2006-03-15

    The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

  20. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  1. Exploring Cosmic X-ray Source Polarization

    NASA Technical Reports Server (NTRS)

    Swank, Jean Hebb; Jahodal, K.; Kallman, T. R.; Kaaret, P.

    2008-01-01

    Cosmic X-ray sources are expected to be polarized, either because of their asymmetry and the role of scattering in their emission or the role of magnetic fields. Polarization at other wavelengths has been useful. X-ray polarization will provide a new handle on black hole parameters, in particular the spin, on accretion flows and outflows, on neutron star spin orientations and emission mechanisms, on the quantum mechanical effects of super-strong magnetic fields of magnetars, and on the structure of supernovae shocks. The proposed Gravity and Extreme Magnetism SMEX (GEMS) will use high efficiency polarimeters behind thin foil mirrors. The statistical sensitivity and control of systematics will allow measurement of polarization fractions as small as 1% from many galactic and extragalactic sources. Targets which should be polarized at the level that GEMS can easily measure include stellar black holes, Seyfert galaxies and quasars, blazars, rotation-powered and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. The polarimeters are Time Projection Chambers that allow reconstruction of images of photoelectron tracks for 2-10 keV Xrays. They can be deep without sacrificing modulation. These polarimeters do not image the sky, but the telescope point spread function and detector collimation allow structure to be resolved at the 10 arcmin level. Rotation of the spacecraft is not needed for the signal measurement in the Time Projection Chambers, but provides for measurement and correction of systematic errors. It also allows a small Bragg reflection soft X-ray experiment to be included that can be used for isolated neutron stars and blazars.

  2. High repetition rate laser produced soft x-ray source for ultrafast x-ray absorption near edge structure measurements.

    PubMed

    Fourmaux, S; Lecherbourg, L; Harmand, M; Servol, M; Kieffer, J C

    2007-11-01

    Recent progress in high intensity ultrafast laser systems provides the opportunity to produce laser plasma x-ray sources exhibiting broad spectrum and high average x-ray flux that are well adapted to x-ray absorption measurements. In this paper, the development of a laser based x-ray absorption near edge structure (XANES) beamline exhibiting high repetition rate by using the Advanced Laser Light Source (ALLS) facility 100 Hz laser system (100 mJ, 35 fs at 800 nm) is presented. This system is based on a broadband tantalum solid target soft x-ray source and a grazing incidence grating spectrometer in the 1-5 nm wavelength range. To demonstrate the high potential of this laser based XANES technique in condensed matter physics, material science, or biology, measurements realized with several samples are presented: VO2 vanadium L edge, Si3N4 nitrogen K edge, and BPDA/PPD polyimide carbon K edge. The characteristics of this laser based beamline are discussed in terms of brightness, signal to noise ratio, and compared to conventional synchrotron broadband x-ray sources which allow achieving similar measurements. Apart from the very compact size and the relative low cost, the main advantages of such a laser based soft x-ray source are the picosecond pulse duration and the perfect synchronization between this x-ray probe and a laser pulse excitation which open the way to the realization of time resolved x-ray absorption measurements with picosecond range time resolution to study the dynamics of ultrafast processes and phase transition.

  3. The Integrated X-Ray Spectrum of Galactic Populations of Luminous Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, R.; Becker, C. M.; Fabbiano, G.

    1996-01-01

    We compute the composite X-ray spectrum of a population of unresolved SSS's in a spiral galaxy such as our own or M31. The sources are meant to represent the total underlying population corresponding to all sources which have bolometric luminosities in the range of 10(exp 37) - 10(exp 38) ergs/s and kT on the order of tens of eV. These include close-binary supersoft sources, symbiotic novae, and planetary nebulae, for example. In order to determine whether the associated X-ray signal would be detectable, we also 'seed' the galaxy with other types of X-ray sources, specifically low-mass X-ray binaries (LMXB's) and high-mass X-ray binaries (HMXB's). We find that the total spectrum due to SSS's, LMXB's, and HMXB's exhibits a soft peak which owes its presence to the SSS population. Preliminary indications are that this soft peak may be observable.

  4. THE BRIGHTEST CLUSTER X-RAY SOURCES

    SciTech Connect

    King, Andrew

    2011-05-10

    There have been several recent claims of black hole binaries in globular clusters. I show that these candidate systems could instead be ultracompact X-ray binaries (UCXBs) in which a neutron star accretes from a white dwarf. They would represent a slightly earlier evolutionary stage of known globular cluster UCXBs such as 4U 1820-30, with white dwarf masses {approx}0.2 M{sub sun} and orbital periods below 5 minutes. Accretion is slightly super-Eddington and makes these systems ultraluminous sources with rather mild beaming factors b {approx} 0.3. Their theoretical luminosity function flattens slightly just above L{sub Edd} and then steepens at {approx}3L{sub Edd}. It predicts of order two detections in elliptical galaxies such as NGC 4472, as observed. The very bright X-ray source HLX-1 lies off the plane of its host S0a galaxy. If this is an indication of globular cluster membership, it could conceivably be a more extreme example of a UCXB with white dwarf mass M{sub 2} {approx_equal} 0.34 M{sub sun}. The beaming here is tighter (b {approx} (2.5-9) x 10{sup -3}), but the system's distance of 95 Mpc easily eliminates any need to invoke improbable alignment of the beam for detection. If its position instead indicates membership of a satellite dwarf galaxy, HLX-1 could have a much higher accretor mass {approx}1000 M{sub sun}

  5. Nanomaterial-based x-ray sources

    NASA Astrophysics Data System (ADS)

    Cole, Matthew T.; Parmee, R. J.; Milne, William I.

    2016-02-01

    Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

  6. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  7. A NAIVE BAYES SOURCE CLASSIFIER FOR X-RAY SOURCES

    SciTech Connect

    Broos, Patrick S.; Getman, Konstantin V.; Townsley, Leisa K.; Feigelson, Eric D.; Garmire, Gordon P.; Povich, Matthew S.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) provides a sensitive X-ray survey of a nearby starburst region over >1 deg{sup 2} in extent. Thousands of faint X-ray sources are found, many concentrated into rich young stellar clusters. However, significant contamination from unrelated Galactic and extragalactic sources is present in the X-ray catalog. We describe the use of a naive Bayes classifier to assign membership probabilities to individual sources, based on source location, X-ray properties, and visual/infrared properties. For the particular membership decision rule adopted, 75% of CCCP sources are classified as members, 11% are classified as contaminants, and 14% remain unclassified. The resulting sample of stars likely to be Carina members is used in several other studies, which appear in this special issue devoted to the CCCP.

  8. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1980-01-01

    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.

  9. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Warwick, R.

    2014-07-01

    We make a new determination of the hard-band (2-10 keV) X-ray luminosity function (XLF) of relative low-luminosity Galactic X-ray sources based on a source sample derived from the XMM Slew Survey (XSS). The source population is comprised of coronally-active late-type stars and binaries with hard-band X-ray luminosities in the range 10^{28-32} erg s^{-1} and cataclysmic variables (magnetic and non-magnetic) with X-ray luminosities spanning the range 10^{30-34} erg s^{-1}. We use this new estimate of the XLF, to predict the 2-10 keV X-ray source counts on the Galactic Plane at faint fluxes and show that the result is fully consistent with the available observational constraints. Similarly the predicted surface brightness, both in the full 2-10 keV band and in a restricted 6-10 keV bandpass, due to the integrated emission of faint unresolved Galactic sources, is well matched to the observed intensity of the Galactic ridge X-ray emission (GRXE). We find that the coronally-active sources make the dominant contribution to both the faint Galactic X-ray source counts and the GRXE.

  10. Studies on x-ray and UV emissions in electron cyclotron resonance x-ray source

    SciTech Connect

    Baskaran, R.; Selvakumaran, T. S.

    2008-02-15

    A novel electron cyclotron resonance x-ray source is constructed based on the ECR technique. In this paper, the possibility of using the ECR x-ray source for producing UV rays by optimizing the plasma parameters is explored. X-ray and UV emissions from the ECR x-ray source are carried out for argon, nitrogen, and CO{sub 2} plasma. The x-ray spectral and dose measurements are carried with NaI(Tl) based spectrometer and dosimeter, respectively. For UV measurement, a quartz window arrangement is made at the exit port and the UV intensity is measured at 5 cm from the quartz plate using UV meter. The x-ray and UV emissions are carried out for different microwave power levels and gas pressures. The x-ray emission is observed in the pressure range {<=}10{sup -5} Torr, whereas the UV emission is found to be negligible for the gas pressures <10{sup -5} Torr and it starts increasing in the pressure range between 10{sup -5} and 10{sup -3} Torr. At high-pressure range, collision frequency of electron-atom is large which leads to the higher UV flux. At low pressure, the electron-atom collision frequency is low and hence the electrons reach high energy and by hitting the cavity wall produces higher x-ray flux. By choosing proper experimental conditions and plasma gas species, the same source can be used as either an x-ray source or an UV source.

  11. ELECTRON INJECTORS FOR NEXT GENERATION X-RAY SOURCES.

    SciTech Connect

    BLUEM,H.; BEN-ZVI,I.; SRINIVASAN-RAO,T.; ET AL.

    2004-08-02

    Next generation x-ray sources require very high-brightness electron beams that are typically at or beyond the present state-of-the-art, and thus place stringent and demanding requirements upon the electron injector parameters. No one electron source concept is suitable for all the diverse applications envisaged, which have operating characteristics ranging from high-average-current, quasi-CW, to high-peak-current, single-pulse electron beams. Advanced Energy Systems, in collaboration with various partners, is developing several electron injector concepts for these x-ray source applications. The performance and design characteristics of five specific RF injectors, spanning ''L'' to ''X''-band, normal-conducting to superconducting, and low repetition rate to CW, which are presently in various stages of design, construction or testing, is described. We also discuss the status and schedule of each with respect to testing.

  12. X-ray photoelectron spectroscopy analysis of cleaning procedures for synchrotron radiation beamline materials at the Advanced Photon Source

    SciTech Connect

    Li, Y.; Ryding, D.; Liu, C.; Kuzay, T.M.; McDowell, M.W.; Rosenberg, R.A.

    1994-12-31

    TZM (a high temperature molybdenum alloy), machinable tungsten, and 304 stainless steel were cleaned using environmentally safe, commercially available cleaning detergents. The surface cleanliness was evaluated by x-ray photoelectron spectroscopy (XPS). It was found that a simple alkaline detergent is very effective at removal of organic and inorganic surface contaminants or foreign particle residue from machining processes. The detergent can be used with ultrasonic agitation at 140 F to clean the TZM molybdenum, machinable tungsten, and 304 stainless steel. A citric-acid-based detergent was also found to be effective at cleaning metal oxides, such as iron oxide, molybdenum oxide, as well as tungsten oxides at mild temperatures with ultrasonic agitation, and it can be used to replace strong inorganic acids to improve cleaning safety and minimize waste disposal and other environmental problems. The efficiency of removing the metal oxides depends on both cleaning temperature and time.

  13. Final Report: X-ray Studies of Materials Dynamics at MHATT-CAT Sector 7 , Advanced Photon Source

    SciTech Connect

    Roy Clarke

    2006-04-25

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-03ER46023 during the period 12/01/02 ? 11/30/05. The funding supported a vigorous scientific program allowing the PI to achieve leadership in a number of important areas. In particular, research carried out during this period has opened way to ultrafast dynamics studies of materials by combining the capabilities of synchrotron radiation with those of ultrafast lasers. This enables the initiation of laser-induced excitations and studies of their subsequent dynamics using laser-pump/x-ray probe techniques. Examples of such excitations include phonons, shock waves, excitons, spin-waves, and polaritons. The breadth of phenomena that can now be studied in the time-domain is very broad, revealing new phenomena and mechanisms that are critical to many applications of materials.

  14. Neutron and X-Ray Diffraction Studies of Advanced Materials

    SciTech Connect

    Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong; Liaw, Peter K

    2010-01-01

    The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It

  15. Advanced X-Ray Telescope Mirrors Provide Sharpest Focus Ever

    NASA Astrophysics Data System (ADS)

    1997-03-01

    Performing beyond expectations, the high- resolution mirrors for NASA's most powerful orbiting X-ray telescope have successfully completed initial testing at Marshall Space Flight Center's X-ray Calibration Facility, Huntsville, AL. "We have the first ground test images ever generated by the telescope's mirror assembly, and they are as good as -- or better than -- expected," said Dr. Martin Weisskopf, Marshall's chief scientist for NASA's Advanced X-ray Astrophysics Facility (AXAF). The mirror assembly, four pairs of precisely shaped and aligned cylindrical mirrors, will form the heart of NASA's third great observatory. The X-ray telescope produces an image by directing incoming X-rays to detectors at a focal point some 30 feet beyond the telescope's mirrors. The greater the percentage of X-rays brought to focus and the smaller the size of the focal spot, the sharper the image. Tests show that on orbit, the mirror assembly of the Advanced X-ray Astrophysics Facility will be able to focus approximately 70 percent of X-rays from a source to a spot less than one-half arc second in radius. The telescope's resolution is equivalent to being able to read the text of a newspaper from half a mile away. "The telescope's focus is very clear, very sharp," said Weisskopf. "It will be able to show us details of very distant sources that we know are out there, but haven't been able to see clearly." In comparison, previous X-ray telescopes -- Einstein and Rosat -- were only capable of focusing X- rays to five arc seconds. The Advanced X-ray Telescope's resolving power is ten times greater. "Images from the new telescope will allow us to make major advances toward understanding how exploding stars create and disperse many of the elements necessary for new solar systems and for life itself," said Dr. Harvey Tananbaum, director of the Advanced X- ray Astrophysics Facility Science Center at the Smithsonian Astrophysical Observatory, in Cambridge, MA -- responsible for the telescope

  16. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    This has been a remarkably productive year. We have completed an algorithm to select SSSs in external galaxies which have been observed by Chandru or XMM-Newton. By applying this algorithm to new data, we have discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We have completed a study of SSSs in M31 and have also considered several other galaxies. From these studies, some population characteristics are beginning to emerge; these provide clues to the natures of the systems. We have considered ultraluminous SSSs in M1O1 and NGC 300. It is possible that these may correspond to accreting intermediate-mass black holes, rather than accreting white dwarfs. We have also studied individual systems, such as CAL 83, and have followed up on additional sources in fields we have studied, such as in the galaxy NGC 1313. NASA has released a press release on some of our work.

  17. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Roseanne

    2005-01-01

    One of the key accomplishments of the two preceding years was our development of an algorithm to select SSSs in external galaxies which have been observed by Chandra or XMM-Newton. By applying this algorithm to data from a number of galaxies, we discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We call these new sources quasisoft sources (QSSs). During this past year, we have built on and extended this work. We have (1) continued to identify SSSs and QSSs in external galaxies, (2) worked on models for the sources and find that black hole models seem promising for a subset of them, and (3) have studied individual systems, especially M101-ULX1. This special system has been observed as an SSS in its high &ate, with a luminosity in excess of 10(exp 41) erg/s. It has also been observed as a QSS when it is less luminous, and as a hard source in its low state. It is one of the best candidates to be an accreting intermediate-mass black hole. We have several papers in preparation. Below we list papers which are complete, including only new work and papers whose status has changed (e.g., been accepted for publication) since our last report. In addition, our work on QSSs has received some publicity. It was the subject of a Chandra press release and was picked up by several media outlets.

  18. Advanced X-ray Astrophysics Facility (AXAF): An overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; ODell, S. L.; Elsner, R. F.; VanSpeybroeck, L. P.

    1995-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) is the x-ray component of NASA's Great Observatories. To be launched in late 1998, AXAF will provide unprecedented capabilities for high-resolution imaging, spectrometric imaging, and high-resolution disperse spectroscopy, over the x-ray band from about 0.1 keV to 10 keV. With these capabilities, AXAF observations will address many of the outstanding questions in astronomy, astrophysics, and cosmology.

  19. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Warwick, R. S.

    2014-11-01

    Using the XMM-Newton slew survey, we construct a hard-band selected sample of low-luminosity Galactic X-ray sources. Two source populations are represented, namely coronally active stars and binaries (ASBs) and cataclysmic variables (CVs), with X-ray luminosities collectively spanning the range 1028-34 erg s-1 (2-10 keV). We derive the 2-10 keV X-ray luminosity function (XLF) and volume emissivity of each population. Scaled to the local stellar mass density, the latter is found to be 1.08 ± 0.16 × 1028 and 2.5 ± 0.6 × 10^{27} {erg s}^{-1} M_{{⊙}}^{-1}, for the ASBs and CVs, respectively, which in total is a factor of 2 higher than previous estimates. We employ the new XLFs to predict the X-ray source counts on the Galactic plane at l = 28.5° and show that the result is consistent with current observational constraints. The X-ray emission of faint, unresolved ASBs and CVs can account for a substantial fraction of the Galactic ridge X-ray emission (GRXE). We discuss a model in which ˜80 per cent of the 6-10 keV GRXE intensity is produced in this way, with the remainder attributable to X-ray scattering in the interstellar medium and/or young Galactic source populations. Much of the hard X-ray emission attributed to the ASBs is likely to be produced during flaring episodes.

  20. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  1. AXAF: The Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) will be the X-ray astronomy component of U.S. space exploration via Great Observatories (mostly orbital) for the remainder of the century. AXAF and the research planned for it are discussed for a lay audience.

  2. Water-window flash x-ray production from linear plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sagae, Michiaki; Toriyabe, Hiroyuki; Awaji, Wataru; Hayasi, Yasuomi; Takayama, Kazuyoshi; Ido, Hideaki; Tamakawa, Yoshiharu

    2000-12-01

    The fundamental study on a high-intensity flash water-window x-ray generator is describe. This flash x-ray generator was improved in order to increase the x-ray intensity and to produce high-intensity characteristic x-rays by forming the linear plasma x-ray source. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, an oil-diffusion pump, and a radiation tube with a capillary. High-voltage condenser of 0.2 (mu) F in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. In the present work, the chamber is evacuated by the pump with a pressure of about 1 mPa, and the titanium anode and cathode electrodes are employed to produce L-series characteristic x-rays in the water-window range. The diameter and the length of the ferrite capillary are 2.0 and 30 mm, respectively, and both the cathode voltage and the discharge current displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -11.2 kV and 4.4 kA, respectively. The pulse durations of the water- windows x-rays were nearly equivalent to those of the damped oscillations in the voltage and current, and their values were less than 15 microsecond(s) . In the spectrum measurement, we observed water-window x-rays.

  3. X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source.

    PubMed

    Barrea, R A; Antipova, O; Gore, D; Heurich, R; Vukonich, M; Kujala, N G; Irving, T C; Orgel, J P R O

    2014-09-01

    The small source sizes of third-generation synchrotron sources are ideal for the production of microbeams for diffraction studies of crystalline and non-crystalline materials. While several such facilities have been available around the world for some time now, few have been optimized for the handling of delicate soft-tissue specimens under cryogenic conditions. Here the development of a new X-ray micro-diffraction instrument at the Biophysics Collaborative Access Team beamline 18-ID at the Advanced Photon Source, and its use with newly developed cryo-diffraction techniques for soft-tissue studies, are described. The combination of the small beam sizes delivered by this instrument, the high delivered flux and successful cryo-freezing of rat-tail tendon has enabled us to record data to better than 4 Å resolution. The ability to quickly raster scan samples in the beam allows selection of ordered regions in fibrous samples for markedly improved data quality. Examples of results of experiments obtainable using this instrument are presented.

  4. X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source

    PubMed Central

    Barrea, R. A.; Antipova, O.; Gore, D.; Heurich, R.; Vukonich, M.; Kujala, N. G.; Irving, T. C.; Orgel, J. P. R. O.

    2014-01-01

    The small source sizes of third-generation synchrotron sources are ideal for the production of microbeams for diffraction studies of crystalline and non-crystalline materials. While several such facilities have been available around the world for some time now, few have been optimized for the handling of delicate soft-tissue specimens under cryogenic conditions. Here the development of a new X-ray micro-diffraction instrument at the Biophysics Collaborative Access Team beamline 18-ID at the Advanced Photon Source, and its use with newly developed cryo-diffraction techniques for soft-tissue studies, are described. The combination of the small beam sizes delivered by this instrument, the high delivered flux and successful cryo-freezing of rat-tail tendon has enabled us to record data to better than 4 Å resolution. The ability to quickly raster scan samples in the beam allows selection of ordered regions in fibrous samples for markedly improved data quality. Examples of results of experiments obtainable using this instrument are presented. PMID:25178013

  5. Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Pierce, David L. (Technical Monitor)

    2002-01-01

    The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.

  6. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  7. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source

    PubMed Central

    Classen, Scott; Hura, Greg L.; Holton, James M.; Rambo, Robert P.; Rodic, Ivan; McGuire, Patrick J.; Dyer, Kevin; Hammel, Michal; Meigs, George; Frankel, Kenneth A.; Tainer, John A.

    2013-01-01

    The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world’s mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B4C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources. PMID:23396808

  8. RF Measurements on DXRL (Deep X-ray Li-thog-ra-phy)-Fabricated mmWave Accelerating Cavity Structures at the Advanced Photon Source (APS)

    NASA Astrophysics Data System (ADS)

    Song, J. J.; Kang, Y. W.

    1997-05-01

    Recently rf structures have been proposed for frequencies in the mmwave (30--300 GHz) range. This miniaturization is feasible with a 3-D micromachining process known as LIGA (German acronym for lithographe, galvanoformung, und abformung) or DXRL (deep x-ray lithography).(J.J. Song, et. al, ``LIGA-Fabrication of mmWave Accelerating Cavity Structures at the Advanced Photon Source (APS),'' these proceedings.) A 32-cell 108-GHz constant-impedance cavity and a 66-cell 94-GHz constant-gradient cavity were fabricated using DXRL micromachining with the synchrotron radiation sources at NSLS and APS. Their eventual application could be parts of linear accelerators, microwave undulators, or free-electron lasers. Radiofrequency measurement on the structures was performed by the bead-perturbation method with e-beam sputtered aluminum beads. The form factor of the bead was measured with the pillbox cavity and compared with the calculation. This paper will describe the rf measur! ement on the mmwave cavity structure.

  9. Development of ultrafast laser-based x-ray in-vivo phase-contrast micro-CT beamline for biomedical applications at Advanced Laser Light Source (ALLS).

    PubMed

    Kincaid, Russell; Krol, Andrzej; Fourmaux, Sylvain; Kieffer, Jean-Claude; Serbanescu, Cristina; Servol, Marina; Vogelsang, Levon; Wilkins, Steve; Stevenson, Andrew; Nesterets, Yakov; Lipson, Edward; Ye, Hongwei; Pogany, Andrew

    2008-01-01

    We are developing and exploring the imaging performance of, an in vivo, in-line holography, x-ray phase-contrast, micro-CT system with an ultrafast laser-based x-ray (ULX) source. By testing and refining our system, and by performing computer simulations, we plan to improve system performance in terms of contrast resolution and multi-energy imaging to a level beyond what can be obtained using a conventional microfocal x-ray tube. Initial CT projection sets at single energy (Mo K(alpha) and K(beta) lines) were acquired in the Fresnel regime and reconstructed for phantoms and a euthanized mouse. We also performed computer simulations of phase-contrast micro-CT scans for low-contrast, soft-tissue, tumor imaging. We determined that, in order to perform a phase-contrast, complete micro-CT scan using ULX, the following conditions must be met: (i) the x-ray source needs to be stable during the scan; (ii) the laser focal spot size needs to be less than 10 mum for source-to-object distance greater than 30 cm; (iii) the laser light intensity on the target needs to be in the range of 5 x 10(17) to 5 x 10(19) W/cm(2); (iv) the ablation protection system needs to allow uninterrupted scans; (v) the laser light focusing on the target needs to remain accurate during the entire scan; (vi) a fresh surface of the target must be exposed to consecutive laser shots during the entire scan; (vii) the effective detector element size must be less than 12 mum. Based on the results obtained in this research project, we anticipate that the new 10 Hz, 200 TW laser with 50 W average power that is being commissioned at ALLS will allow us practical implementation of in vivo x-ray phase-contrast micro-CT.

  10. High resolution soft x-ray bending magnet beamline 9.3.2 with circularly polarized radiation capability at the Advanced Light Source

    SciTech Connect

    Hussain, Z.; Heimann, P.A.; McKinney, W.; Padmore, H.A.; Huff, W.R.A.; Kellar, S.A.; Moler, E.J. |; Fadley, C.S. |; Shirley, D.A.

    1995-08-01

    Bending magnet beamline 9.3.2 at the Advanced Light Source (ALS) was designed for high resolution spectroscopy in the soft x-ray energy region, covering a range from 30 eV to 1500 eV with three gratings. The monochromator itself is a standard fixed included angle 55 m spherical grating monochromator and was originally used at the Stanford Synchrotron Radiation Laboratory (SSRL) as a prototype for later insertion device based monochromators for the ALS. For operations at the ALS, the toroidal pre-mirror used at SSRL to vertically focus onto the entrance slit and horizontally focus onto the exit slit was replaced by two separate crossed mirrors (Kirkpatrick-Baez configuration). Circularly polarized radiation is obtained by inserting a water-cooled movable aperture in front of the vertically focusing mirror to allow selecting the beam either above or below the horizontal plane. To maintain a stable beam intensity through the entrance slit, the photocurrent signals from the upper and lower jaws of the entrance slit are utilized to set a feedback loop with the vertically deflecting mirror Piezoelectric drive. The beamline end station has a rotatable platform (through 60{degree}) that accommodates two experimental chambers, enabling the synchrotron radiation to be directed to either one without breaking vacuum.

  11. Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1986-01-01

    The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.

  12. Attenuation of supersoft X-ray sources by circumstellar material

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Gilfanov, M.

    2015-11-01

    Recent studies have suggested the possibility of significantly obscuring supersoft X-ray sources in relatively modest amounts of local matter lost from the binaries themselves. If correct, then this would have explained the paucity of observed supersoft X-ray sources and would have significance for the search for single-degenerate Type Ia supernova progenitors. We point out that earlier studies of circumbinary obscuration ignored photoionizations of the gas by the emission from the supersoft X-ray source. We revisit the problem using a full, self-consistent calculation of the ionization state of the circumbinary material photoionized by the radiation of the central source. Our results show that the circumstellar mass-loss rates required for obscuration of supersoft X-ray sources is about an order of magnitude larger than those reported in earlier studies, for comparable model parameters. While this does not entirely rule out the possibility of circumstellar material obscuring supersoft X-ray sources, it makes it unlikely that this effect alone can account for the majority of the missing supersoft X-ray sources. We discuss the observational appearance of hypothetical obscured nuclear-burning white dwarfs and show that they have signatures making them distinct from photoionized nebulae around supersoft X-ray sources imbedded in the low-density interstellar medium.

  13. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  14. AXAF: The Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Pellerin, Charles J.; Weisskopf, Martin C.; Neal, Valerie

    2005-01-01

    X-rays are produced by violent, energetic, and explosive phenomena in the universe. The Advanced X-Ray Astrophysics Facility (AXAF) is an orbiting observatory designed to view these X-rays. The National Academy of Sciences Survey Committee on Astronomy and Astrophysics has recommended AXAF as the #1 priority among all major new astronomy programs. The scientific importance of AXAF was also highlighted by the Academy's Survey Committee on Physics. Why has AXAF earned such enthusiastic support, not only among astronomers, but also broadly within the nation's scientific community?

  15. X-ray spectra from three cosmic sources.

    PubMed

    Grader, R J; Hill, R W; Seward, F D; Toor, A

    1966-06-10

    Three cosmic x-ray sources have been observed from a water-launched rocket carrying two x-ray detectors to an altitude of 200 kilometers. The x-ray spectra, measured in the photon energy range between I and 40 kiloelectron volts, are all different. The sources in order of hardness of spectra are Cyg XR-1, Tau XR-1, and Sco XR-1. The intensity of Sco XR-J decreased at low photon energies. The differences in spectra might source mechanisms.

  16. Compact Laser-Compton X-ray Source at LLNL

    NASA Astrophysics Data System (ADS)

    Hwang, Yoonwoo; Marsh, Roark; Gibson, David; Anderson, Gerald; Barty, Christopher; Tajima, Toshiki

    2016-10-01

    The scaling of laser-Compton X-ray and gamma-ray sources is dependent upon high-current, low-emittance accelerator operation and implementation of efficient laser-electron interaction architectures. Laser-Compton X-rays have been produced using the unique compact X-band linear accelerator at LLNL operated in a novel multibunch mode, and results agree extremely well with modeling predictions. An Andor X-ray CCD camera and image plates have been calibrated and used to characterize the 30 keV laser-Compton X-ray beam. The X-ray source size and the effect of scintillator blur have been measured. K-edge absorption measurements using thin metallic foils confirm the production of narrow energy spread X-rays and results validate X-ray image simulations. Future plans for medically relevant imaging will be discussed with facility upgrades to enable 250 keV X-ray production. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. X-ray plasma source design simulations

    SciTech Connect

    Cerjan, C.

    1993-07-01

    The optimization of soft x-ray production from a laser-produced plasma for lithographic applications is discussed in the context of recent experiments by R. Kauffman et al. which indicate that a conversion efficiency of 0.01 can be obtained with Sn targets at modest laser intensity. Computer simulations of the experiments delineate the critical phenomena underlying these high conversion efficiencies, especially the role of hydrodynamic expansion and radiative emission. Qualitative features of the experiments are reproduced including the transition from one-dimensional to two-dimensional flow. The quantitative discrepancy is ascribed to incorrect initiation of the ablating plasma and to inadequate atomic transition rate evaluation.

  18. X-Ray Sources in the Dwarf Spheroidal Galaxy Draco

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I.

    2016-04-01

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with LX > 3 × 1033 erg s-1 in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  19. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1981-01-01

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  20. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  1. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  2. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  3. Quasisoft X-ray Sources: their physical natures revealed

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Primini, Francis A.; Guo, Jincheng; Liu, Jifeng

    2016-04-01

    Quasisoft X-ray sources (QSSs) have been the Mona Lisa of X-ray sources. They have remained enigmatic, even though we have known of their existence and basic properties for more than a decade. QSSs have X-ray luminosities greater than 10^{36} erg/s, but emit few or no photons above 2 keV. They were discovered in external galaxies during searches for softer sources, supersoft X-ray sources (SSSs). Every external galaxy contains QSSs, but it has been challenging to find any in the Milky Way and the Magellanic Clouds. Recent work, however, reveals that a significant fraction of QSSs may be black holes. We review what is known about QSSs to date, because this obscure class of objects may at last to be ready for "prime time'', capable of identifying BHs in a wide range of Galactic environments.

  4. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  5. X-ray plasma source design simulations.

    PubMed

    Cerjan, C

    1993-12-01

    The optimization of soft x-ray production from a laser-produced plasma for lithographic applications is discussed in the context of recent experiments by Kauffman et al. [Appl. Opt. 32, 6897 (1993)], which indicate that a conversion efficiency of 0.01 can be obtained with Sn targets at modest laser intensity. Computer simulations of the experiments delineate the critical phenomena underlying these high conversion efficiencies, especially the role of hydrodynamic expansion and radiative emission. Qualitative features of the experiments are reproduced, including the transition from one-dimensional to two-dimensional flow. The quantitative discrepancy is ascribed to incorrect initiation of the ablating plasma and to inadequate atomic transition rate evaluation.

  6. Advanced mercuric iodide detectors for X-ray microanalysis

    SciTech Connect

    Warburton, W.K.; Iwanczyk, J.S.

    1987-01-01

    We first present a brief tutorial on Mercuric Iodide (HgI/sub 2/) detectors and the intimately related topic of near-room temperature ultralow noise preamplifiers. This provides both a physical basis and technological perspective for the topics to follow. We next describe recent advances in HgI/sub 2/ applications to x-ray microanalysis, including a space probe Scanning Electron Microscope (SEM), Synchrotron x-ray detectors, and energy dispersive detector arrays. As a result of this work, individual detectors can now operate stably for long periods in vacuum, detect soft x-rays to the oxygen K edge at 523 eV, or count at rates exceeding 2x10(5)/sec. The detector packages are small, lightweight, and use low power. Preliminary HgI/sub 2/ detector arrays of 10 elements with 500eV resolution have also been constructed and operate stably. Finally, we discuss expected advances in HgI/sub 2/ array technology, including improved resolution, vacuum operation, and the development of soft x-ray transparent encapsulants. Array capabilities include: large active areas, high (parallel) count rate capability and spatial sensitivity. We then consider areas of x-ray microanalysis where the application of such arrays would be advantageous, particularly including elemental microanalysis, via x-ray fluorescence spectroscopy, in both SEMs and in scanning x-ray microscopes. The necessity of high count rate capability as spatial resolution increases is given particular attention in this connection. Finally, we consider the possibility of Extended X-ray Absorption Fine Structure (EXAFS) studies on square micron sized areas, using detector arrays.

  7. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source.

    PubMed

    Park, Changyong; Popov, Dmitry; Ikuta, Daijo; Lin, Chuanlong; Kenney-Benson, Curtis; Rod, Eric; Bommannavar, Arunkumar; Shen, Guoyin

    2015-07-01

    The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10(8) photons/s at 30 keV. The instrumental resolution, Δq/qmax, reaches to 2 × 10(-3) and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition.

  8. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source

    SciTech Connect

    Park, Changyong Popov, Dmitry; Ikuta, Daijo; Lin, Chuanlong; Kenney-Benson, Curtis; Rod, Eric; Bommannavar, Arunkumar; Shen, Guoyin

    2015-07-15

    The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10{sup 8} photons/s at 30 keV. The instrumental resolution, Δq/q{sub max}, reaches to 2 × 10{sup −3} and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition.

  9. ULTRALUMINOUS X-RAY SOURCES IN ARP 147

    SciTech Connect

    Rappaport, S.; Steinhorn, B.; Levine, A.; Pooley, D. E-mail: aml@space.mit.ed

    2010-10-01

    The Chandra X-Ray Observatory was used to image the collisional ring galaxy Arp 147 for 42 ks. We detect nine X-ray sources with luminosities in the range of (1.4-7) x 10{sup 39} erg s{sup -1} (assuming that the sources emit isotropically) in or near the blue knots of star formation associated with the ring. A source with an X-ray luminosity of 1.4 x 10{sup 40} erg s{sup -1} is detected in the nuclear region of the intruder galaxy. X-ray sources associated with a foreground star and a background quasar are used to improve the registration of the X-ray image with respect to Hubble Space Telescope (HST) high-resolution optical images. The intruder galaxy, which apparently contained little gas before the collision, shows no X-ray sources other than the one in the nuclear bulge which may be a poorly fed supermassive black hole. These observations confirm the conventional wisdom that collisions of gas-rich galaxies trigger large rates of star formation which, in turn, generate substantial numbers of X-ray sources, some of which have luminosities above the Eddington limit for accreting stellar-mass black holes (i.e., ultraluminous X-ray sources, 'ULXs'). We also utilize archival Spitzer and Galex data to help constrain the current star formation rate in Arp 147 to {approx}7 M{sub sun} yr{sup -1}. All of these results, coupled with binary evolution models for ULXs, allow us to tentatively conclude that the most intense star formation may have ended some 15 Myr in the past.

  10. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  11. Simultaneous radio and X-ray observations of the X-ray burst source MXB 1636-53

    NASA Technical Reports Server (NTRS)

    Thomas, R. M.; Duldig, M. L.; Haynes, R. F.; Simons, L. W.; Murdin, P.; Hoffman, J. A.; Lewin, W. H. G.; Wheaton, W. A.; Doty, J.

    1979-01-01

    On June 17, 1977, the X-ray burst source MXB 1636-53 was simultaneously monitored for about 4 hr with the Parkes 64-m radio telescope at a frequency of 14.7 GHz and the SAS 3 X-ray satellite (1.3-12 keV). One X-ray burst was observed; an upper limit (2 sigmas) of 200 mJy is reported for any radio burst coincident with the X-ray event. During the X-ray burst the radio/X-ray time-integrated flux ratio was no more than 375 with a 90 percent confidence. An upper limit (2 sigmas) of 22 mJy was determined for any steady 14.7-GHz source coincident with the X-ray position.

  12. Ionization nebulae surrounding supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.

    1994-01-01

    In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.

  13. New Directions in X-Ray Light Sources or Fiat Lux: what's under the dome and watching atoms with x-rays (LBNL Summer Lecture Series)

    SciTech Connect

    Falcone, Roger

    2008-07-15

    Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  14. New Directions in X-Ray Light Sources or Fiat Lux: what's under the dome and watching atoms with x-rays (LBNL Summer Lecture Series)

    ScienceCinema

    Falcone, Roger

    2016-07-12

    Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  15. Assembling x-ray sources by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sessa, V.; Lucci, M.; Toschi, F.; Orlanducci, S.; Tamburri, E.; Terranova, M. L.; Ciorba, A.; Rossi, M.; Hampai, D.; Cappuccio, G.

    2007-05-01

    By the use of a chemical vapour deposition technique a series of metal wires (W, Ta, Steel ) with differently shaped tips have been coated by arrays of single wall carbon nanotubes (SWNT). The field emission properties of the SWNT deposits have been measured by a home made apparatus working in medium vacuum (10 -6- 10 -7 mbar) and the SWNT-coated wires have been used to fabricate tiny electron sources for X-ray tubes. To check the efficiency of the nanotube coated wires for X-ray generation has, a prototype X-ray tube has been designed and fabricated. The X-ray tube works at pressures about 10 -6 mbar. The target ( Al film) is disposed on a hole in the stainless steel sheath: this configuration makes unnecessary the usual Be window and moreover allows us to use low accelerating potentials (< 6 kV).

  16. The X-ray spectral evolution and radio-X-ray correlation in radiatively efficient black-hole sources

    NASA Astrophysics Data System (ADS)

    Dong, Ai-Jun; Wu, Qingwen; Cao, Xiao-Feng

    2016-02-01

    We explore X-ray spectral evolution and radio-X-ray correlation simultaneously for four X-ray binaries (XRBs). We find that hard X-ray photon indices, Γ, are anti- and positively correlated to X-ray fluxes when the X-ray flux, F 3-9keV, is below and above a critical flux, F X,crit, which may be regulated by ADAF and disk-corona respectively. We find that the data points with anti-correlation of Γ-F 3-9keV follow the universal radio-X-ray correlation of F R ~ F X b (b ~ 0.5-0.7), while the data points with positive X-ray spectral evolution follow a steeper radio-X-ray correlation (b ~ 1.4, the so-called `outliers track'). The bright active galactic nuclei (AGNs) share similar X-ray spectral evolution and radio-X-ray correlation as XRBs in `outliers' track, and we present a new fundamental plane of log L R=1.59+0.28 -0.22 log L X-0.22+0.19 -0.20 log M BH-28.97+0.45 -0.45 for these radiatively efficient BH sources.

  17. Compact Optical Counterparts of Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Tao, Lian; Feng, Hua; Grisé, Fabien; Kaaret, Philip

    2011-08-01

    Using archival Hubble Space Telescope (HST) imaging data, we report the multiband photometric properties of 13 ultraluminous X-ray sources (ULXs) that have a unique compact optical counterpart. Both magnitude and color variation are detected at timescales of days to years. The optical color, variability, and X-ray to optical flux ratio indicate that the optical emission of most ULXs is dominated by X-ray reprocessing on the disk, similar to that of low-mass X-ray binaries. For most sources, the optical spectrum is a power law, F νvpropνα with α in the range 1.0-2.0 and the optically emitting region has a size on the order of 1012 cm. Exceptions are NGC 2403 X-1 and M83 IXO 82, which show optical spectra consistent with direct emission from a standard thin disk, M101 ULX-1 and M81 ULS1, which have X-ray to optical flux ratios more similar to high-mass X-ray binaries, and IC 342 X-1, in which the optical light may be dominated by the companion star. Inconsistent extinction between the optical counterpart of NGC 5204 X-1 and the nearby optical nebulae suggests that they may be unrelated.

  18. Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.

    2011-01-01

    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.

  19. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  20. Special issue on compact x-ray sources

    NASA Astrophysics Data System (ADS)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  1. Prospects for using high power x-rays as a volumetric heat source

    SciTech Connect

    Rosenberg, R.A.; Farrell, W.; Ma, Q.

    1997-09-01

    Third-generation, high-intensity, x-ray synchrotron radiation sources are capable of producing high heat-flux x-ray beams. In many applications finding ways to handle these powers is viewed as a burden. However, there are some technological applications where the deep penetration length of the x-rays may find beneficial uses as a volumetric heat source. In this paper the authors discuss the prospects for using high power x-rays for volumetric heating and report some recent experimental results. The particular applications they focus on are welding and surface heat treatment. The radiation source is an undulator at the Advanced Photon Source (APS). Results of preliminary tests on aluminum, aluminum metal matrix composites, and steel will be presented.

  2. X-ray source safety shutter

    DOEpatents

    Robinet, McLouis

    1977-05-31

    An apparatus is provided for controlling the activation of a high energy radiation source having a shutter. The apparatus includes magnets and magnetically responsive switches appropriately placed and interconnected so that only with the shutter and other parts of the source in proper position can safe emission of radiation out an open shutter occur.

  3. X-Ray Sources in the Dwarf Spheroidal Galaxy DRACO

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Dhuga, K.; Rangelov, B.; Kargaltsev, O.

    2016-06-01

    We present the results of a spectral analysis of X - ray sources in Draco, a nearby dwarf spheroidal galaxy recently observed by XMM-Newton. While most of the sources exhibit properties consistent with AGN, few of them possess characteristics of LMXBs and CVs. We also discuss the possibility of the existence of a central IMBH in Draco.

  4. X-ray Counterparts of Infrared Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  5. Sub-Picosecond, High Flux, Thomson X-Ray Sources

    SciTech Connect

    James Boyce; David Douglas; Hiroyuki Toyokawa; Winthrop J. Brown; Fred Hartemann

    2003-05-12

    With the advent of high average power FELs, the idea of using such a device to produce x-rays via the Thomson scattering process is appealing, if sufficient flux and/or brightness can be generated. Such x-rays are produced simultaneously with FEL light, offering unprecedented opportunities for pump-probe studies. We discuss non-invasive modifications to the Jefferson Lab's FEL that would meet the criteria of high flux, sub-picosecond, x-ray source. One allows proof-of-principle experiments, is relatively inexpensive, but is not conducive as a ''User-facility.'' Another is a User facility configuration but requires FEL facility modifications. For all sources, we present Thomson scattering flux calculations and potential applications.

  6. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  7. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  8. Compact Laser-Compton X-ray Source Development

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The state-of-the-art X-ray source based on inverse-Compton scattering between a high-brightness, relativistic electron beam produced by an X-band RF accelerator and a high-intensity laser pulse generated by chirped-pulse amplification (CPA) has been carried out by our research team at Lawrence Livermore National Laboratory. This system is called "Compact Laser-Compton X-ray Source". The applications include nuclear resonance fluorescence, medical imaging and therapy, and nuclear waste imaging and assay. One of the key factors in this system is how we know the interaction happened in the vacuum chamber, which is the spectrometer of electron beams. The other key factor is the interaction after the spectrometer, which is the outgoing X-ray. In this thesis, the work in the simulation for the result of the interaction between electrons and the laser, the calibration of spectrometer, and laser focus characterization are discussed.

  9. CHANDRA ACIS Survey of X-Ray Point Sources: The Source Catalog

    NASA Astrophysics Data System (ADS)

    Wang, Song; Liu, Jifeng; Qiu, Yanli; Bai, Yu; Yang, Huiqin; Guo, Jincheng; Zhang, Peng

    2016-06-01

    The Chandra archival data is a valuable resource for various studies on different X-ray astronomy topics. In this paper, we utilize this wealth of information and present a uniformly processed data set, which can be used to address a wide range of scientific questions. The data analysis procedures are applied to 10,029 Advanced CCD Imaging Spectrometer observations, which produces 363,530 source detections belonging to 217,828 distinct X-ray sources. This number is twice the size of the Chandra Source Catalog (Version 1.1). The catalogs in this paper provide abundant estimates of the detected X-ray source properties, including source positions, counts, colors, fluxes, luminosities, variability statistics, etc. Cross-correlation of these objects with galaxies shows that 17,828 sources are located within the D 25 isophotes of 1110 galaxies, and 7504 sources are located between the D 25 and 2D 25 isophotes of 910 galaxies. Contamination analysis with the log N-log S relation indicates that 51.3% of objects within 2D 25 isophotes are truly relevant to galaxies, and the “net” source fraction increases to 58.9%, 67.3%, and 69.1% for sources with luminosities above 1037, 1038, and 1039 erg s-1, respectively. Among the possible scientific uses of this catalog, we discuss the possibility of studying intra-observation variability, inter-observation variability, and supersoft sources (SSSs). About 17,092 detected sources above 10 counts are classified as variable in individual observation with the Kolmogorov-Smirnov (K-S) criterion (P K-S < 0.01). There are 99,647 sources observed more than once and 11,843 sources observed 10 times or more, offering us a wealth of data with which to explore the long-term variability. There are 1638 individual objects (˜2350 detections) classified as SSSs. As a quite interesting subclass, detailed studies on X-ray spectra and optical spectroscopic follow-up are needed to categorize these SSSs and pinpoint their properties. In addition

  10. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    SciTech Connect

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I.

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  11. CHANDRA AND HST STUDIES OF THE X-RAY SOURCES IN GALACTIC GLOBULAR CLUSTER M92

    SciTech Connect

    Lu, Ting-Ni; Kong, Albert K. H.; Verbunt, Frank; Lewin, Walter H. G.; Anderson, Scott F.; Pooley, David

    2011-08-01

    We present the analysis of two observations of M92 taken with the Chandra X-Ray Observatory. We combined the two data sets with a total exposure of {approx}52 ks. With the combined observation, we detected 10 X-ray sources inside the half-mass radius (1.'02), five of which are inside the core radius (0.'26) of M92. The luminosities of the 10 sources are roughly within the range of 10{sup 30}-10{sup 32} erg s{sup -1} assuming cluster memberships. The background estimation suggests 7-8 cluster members and 2-3 background galaxies in M92. We identified the 10 sources by using Hubble Space Telescope Advanced Camera for Surveys observations of M92. Based on the X-ray and optical characteristics, we classified 4-5 possible candidates for cataclysmic variables within the half-mass radius. We discussed the possible formation mechanisms of the X-ray sources in M92 by comparing the predicted X-ray source number and observational results. Under the assumption that the number of X-ray sources scales with the encounter rate and the mass of the globular cluster, we expected eight X-ray sources formed from dynamical interactions and four from primordial binaries inside M92, which is consistent with the background estimation and comparable with the observational results. We therefore suggest that the X-ray sources in M92 may be contributed from both dynamical origin and primordial binaries.

  12. Beyond crystallography: Diffractive imaging using coherent x-ray light sources

    SciTech Connect

    Miao, J.; Ishikawa, T.; Robinson, I. K.; Murnane, M. M.

    2015-04-30

    X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century.

  13. Some remarks about x-ray burst sources

    SciTech Connect

    Lewin, W.H.G.

    1984-05-26

    The properties of X-ray burst sources (XRB) have recently been reviewed in great detail by Lewin and Joss (1983). Here, I will only mention some of the salient features, and I will then discuss some recent developments and some remaining problems.

  14. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    NASA Astrophysics Data System (ADS)

    Hurvitz, G.; Ehrlich, Y.; Strum, G.; Shpilman, Z.; Levy, I.; Fraenkel, M.

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  15. X-ray Emission from the Sombrero Galaxy: Discrete Sources

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Spitler, Lee R.; Jones, Christine; Forman, William R.; Kraft, Ralph P.; Di Stefano, Rosanne; Tang, Shikui; Wang, Q. Daniel; Gilfanov, Marat; Revnivtsev, Mikhail

    2010-10-01

    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L X ≈ 1037 erg s-1 and a field of view covering a galactocentric radius of ~30 kpc (11farcm5), 383 sources are detected. Cross-correlation with Spitler et al.'s catalog of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-ray sources in GCs, presumably low-mass X-ray binaries (LMXBs). Metal-rich GCs are found to have a higher probability of hosting these LMXBs, a trend similar to that found in elliptical galaxies. On the other hand, the four most luminous GC LMXBs, with apparently super-Eddington luminosities for an accreting neutron star, are found in metal-poor GCs. We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-law indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC-LF at fainter luminosities down to 1035 erg s-1. The derived index rules out a faint-end slope flatter than 1.1 at a 2σ significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1037 erg s-1. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic active galactic nuclei (52 ± 11 [1σ]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of

  16. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  17. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  18. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  19. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  20. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  1. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  2. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  3. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  4. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  5. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  6. Chandra ACIS Survey of X-Ray Point Sources in Nearby Galaxies. II. X-Ray Luminosity Functions and Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Wang, Song; Qiu, Yanli; Liu, Jifeng; Bregman, Joel N.

    2016-09-01

    Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α ˜ 1.50 ± 0.07) to elliptical (˜1.21 ± 0.02), to spirals (˜0.80 ± 0.02), to peculiars (˜0.55 ± 0.30), and to irregulars (˜0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D 25 and 2D 25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 1040 erg s-1, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M ⊙ black holes with super-Eddington radiation and intermediate mass black holes.

  7. High-energy X-ray spectra of five sources.

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  8. A Multi-Wavelength Study of the X-Ray Sources in the NGC 5018

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah; Saripalli, Lakshmi

    2004-01-01

    The E3 giant elliptical galaxy NGC-5018 was observed with the cxo X-ray Observatory's Advanced CCD Imaging Spectrometer for 30-h on 14 April 2001. Results of analysis of these X-ray data as well as of complementary optical, infrared, and radio data are reported. Seven X-ray point sources, including the nucleus, were detected. If they are intrinsic to NGC-5018, then all six non-nuclear sources have luminosities exceeding 10(exp 39)-ergl in the 0.5-8.0-keV energy band; placing them in the class of Ultra- luminous X-ray sources. Comparison of X-ray source positions to archival Hubble Space Telescope/Wide Field Planetary Camera 2 (hst/WFPC2) images reveal four of the six non-nuclear sources are spatially--coincident with bright, M$(sub V)LA -8.6 mag, objects. These four objects have optical magnitudes and (V-I) colors consistent with globular clusters in NGC-5018. However, one of these objects was observed to vary by siml mag in both V and I between observations taken 28 July 1997 and 04 Feb 1999 indicating this source is a background active galactic nucleus (AGN). The nature of the other three optically-bright objects cannot be determined from the available optical data but all have X-ray-to-optical flux ratios consistent with background AGNs. Strong, unpolarized, radio emission has been detected from another of the optically-bright counterparts. It displays an inverted radio spectrum and is the most absorbed of the seven sources in the X-ray band. It, too, is most readily explained as a background AGN, though alternative explanations cannot be ruled out. Extended X-ray emission is detected within a siml5 arcsec radius of the galaxy center at a luminosity of sim lO(exp 40)-ergl in the X-ray band. Its thermal X-ray spectrum (kT sim0.4-keV) and its spatial coincidence with strong H(alpha) emission are consistent with a hot gas origin. The nucleus itself is a weak X-ray source, LA-5 times 10(exp 39)-ergl, but displays a radio spectrum typical of AGN.

  9. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  10. Automatic classification of time-variable X-ray sources

    SciTech Connect

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  11. Observations of galactic X-ray sources by OSO-7

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Canizares, C. R.; Clark, G. W.; Hearn, D. R.; Li, F. K.; Sprott, G. F.; Winkler, P. F.

    1977-01-01

    We present the MIT data from the OSO-7 satellite for observations of the galactic plane between 1971 and 1974. A number of sources discovered in the MIT all-sky survey are described in detail: MX 0049 + 59, MX 0836 - 42, MX 1353 - 64, MX 1406 - 61, MX 1418 - 61, MX 1709 - 40, and MX 1608 - 52 (the persistent source suggested to be associated with the X-ray burst source XB 1608 - 52). Upper limits to the X-ray emission from a number of interesting objects are also derived. General results describing all of our observations of galactic sources are presented. Specifically, we display the number-intensity diagrams, luminosity functions, and color-color diagrams for all of the sources we detected. The data are divided between disk and bulge populations, and the characteristics of the two groups are contrasted. Finally, the concept of X-ray source populations and the relationship of globular cluster sources and burst sources to the disk and bulge populations are discussed.

  12. The X-ray source population of IC 10

    NASA Astrophysics Data System (ADS)

    Kilgard, Roy; Placek, Ben; Prestwich, Andrea

    2009-09-01

    The Local Group dwarf galaxy IC 10 is the nearest starburst to the Milky Way. Its proximity and low metallicity make it an ideal candidate for the study of high-mass X-ray binaries in quiescence. IC 10 presents an unique case for studying a complete sample of such objects, something made difficult in the Milky Way by absorption in the Galactic disc and in other galaxies by their distances.We present results from a set of Chandra/ACIS-S imaging observations of IC 10, including spectra, lightcurves, X-ray colors, and X-ray luminosity functions. The XLF is steeper than for the more luminous HMXBs observed in other galaxies, thus implying that the ``universal'' luminosity function for HMXBs does not extend below 1e36 erg/s. We also present initial results from a search for optical counterparts to the X-ray sources using archival HST/ACS observations. Approximately 10% of the sources have strong optical counterpart candidates, all of which appear to be high-mass stars.

  13. The X-ray Source Population of IC 10

    NASA Astrophysics Data System (ADS)

    Placek, Ben; Kilgard, R. E.; Prestwich, A. H.

    2010-01-01

    The Local Group dwarf galaxy IC 10 is the nearest starburst to the Milky Way. Its proximity and low metallicity make it an ideal candidate for the study of high-mass X-ray binaries in quiescence.  IC 10 presents an unique case for studying a complete sample of such objects, something made difficult in the Milky Way by absorption in the Galactic disc and in other galaxies by their distances. We present results from a set of Chandra/ACIS-S imaging observations of IC 10, including spectra, X-ray colors, and X-ray luminosity functions. The XLF is steeper than for the more luminous HMXBs observed in other galaxies, thus implying that the "universal" luminosity function for HMXBs does not extend below 1e36 erg/s.  We also present initial results from a search for optical counterparts to the X-ray sources using archival HST/ACS observations.  Approximately 15% of the sources have strong optical counterpart candidates, all of which appear to be high-mass stars.

  14. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-12-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 {times} 10{sup 14}/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-{mu}m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 {times} 10{sup 7} photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 {times}0.5-mm{sup 2} pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  15. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-01-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 [times] 10[sup 14]/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-[mu]m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 [times] 10[sup 7] photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 [times]0.5-mm[sup 2] pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  16. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  17. Advances toward high spectral resolution quantum X-ray calorimetry

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.

    1988-01-01

    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  18. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    NASA Astrophysics Data System (ADS)

    2000-01-01

    science theme. "Since it was first observedthirty-seven years ago, understanding the source of the X-ray background has been the Holy Grail of X-ray astronomy. Now, it is within reach." Drs. Cowie and Barger are searching for the optical counterparts to the newly discovered X-ray sources with the powerful Keck telescope atop Mauna Kea in hopes of determining their distance. However, these sources are very faint optically: They show up as a dim blue smudge or not at all. Further observations with the Hubble Space Telescope or Keck will be extremely difficult, and the power of the Next Generation Space Telescope and Constellation-X may be required to fully understand these sources. Resolution of the X-ray background relied on a 27.7-hour Chandra observation using the Advanced CCD Imaging Spectrometer (ACIS) in early December 1999, and also utilized data from the Japan-U.S. Advanced Satellite for Cosmology and Astrophysics (ASCA). The Chandra team has also reproduced the ROSAT lower-energy X-ray background observation with a factor of 2-5 times the resolution and sensitivity. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/bg/index.html AND http://chandra.nasa.gov The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  19. High duty cycle inverse Compton scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Ovodenko, A.; Agustsson, R.; Babzien, M.; Campese, T.; Fedurin, M.; Murokh, A.; Pogorelsky, I.; Polyanskiy, M.; Rosenzweig, J.; Sakai, Y.; Shaftan, T.; Swinson, C.

    2016-12-01

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this paper reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized at 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. With the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.

  20. Electrodynamics of relativistic electron beam x-ray sources

    NASA Astrophysics Data System (ADS)

    Niknejadi, Pardis

    gun has been enhanced and/or the optical cavity (the final step of this proof-of-principle experiment) has been commissioned. Due to the complexity of this integrated system, one of the goals of this work is to serve the future members and staff of the UH FEL laboratory in configuring and operating this complex system. The final goal of the UH ICS project is to establish the principles on which producing a successful turn-key commercial inverse-Compton x-ray source will depend on. In the second part of this work we start with the discussion of coherent radiation at its most fundamental level, with emphasis on conservation of energy. We show that for coherently radiating particles the failure of conventional classical electrodynamics (CED) is far more serious than the well-known failure of CED at small scales. We will present a covariant picture of radiation in terms of the theory of action-at-a-distance and introduce a time-symmetric approach to electrodynamics. We demonstrate that this time symmetric approach provides a perfect match to the energy radiated by two coherently oscillating charged particles. This work is novel, as this was an unsolved problem in classical electrodynamics up until now. We also discuss how the conceptual implication of this work is demanding. For this purpose, we will propose two different experiments that can further our understanding of the presented problem. The first experiment involves a small (lambda/10) antenna, and the goal is to measure the advanced field of the absorber at distances of 5lambda or less. Calculation and precise measurement of the antenna field/potential at distances of order lambda is challenging, causing this experiment to be a difficult yet possible task. In the second experiment, we discuss in some detail the experimental setup that would verify and/or further our understanding of the underlying physics of Self Amplified Spontaneous Emission (SASE) FELs. We provide an analytical verification as a first step

  1. AXIOM: Advanced X-Ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2011-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction

  2. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  3. Einstein observations of extended galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Seward, F. D.

    1979-01-01

    Features of the X-ray pictures taken aboard the space observatory are presented. Imaging proportional counter pictures in three broad X-ray energy ranges were obtained. The X-ray spectrum of supernova remnants is described.

  4. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source

    PubMed Central

    Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  5. Note: Studies on x-ray production in electron cyclotron resonance x-ray source based on ridged cylindrical cavity

    SciTech Connect

    Selvakumaran, T. S.; Baskaran, R.

    2012-02-15

    A ridged cylindrical cavity has been designed using MICROWAVE STUDIO programme and it is used in the electron cyclotron resonance (ECR) x-ray source. The experimental parameters of the source are optimized for maximizing the x-ray output, and an x-ray dose rate of {approx}1000 {mu}Sv/h was observed at 20 cm from the port, for 500 W of microwave power without using any target. With the molybdenum target located at optimum position of the ridged cavity, the dose rate is found to be increased only by 10%. In order to understand the experimental observation, the electric field pattern of the cavity with the target placed at various radial distances is studied. In this note, the experimental and theoretical studies on ECR x-ray source using the ridged cylindrical cavity are presented.

  6. The Polarimeter for Relativistic Astrophysical X-ray Sources

    NASA Astrophysics Data System (ADS)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  7. The Polarimeter for Relativistic Astrophysical X-ray Sources

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Phillip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-01-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  8. [Soft X-ray reflectometer with laser produced plasma source].

    PubMed

    Chen, Bo; Ni, Qi-liang; Cao, Ji-hong

    2005-03-01

    A soft X-ray reflectometor with laser-produced plasma source developed in the authorial lab is presented for the measurements of efficiencies of gratings, transmission of filter and reflectance of multilayer coatings. The reflectometer is composed of a soft X-ray laser-produced plasma source, a grazing incidence monochromator with a constant deviation angle, a vacuum chamber, a sample table, a photo-electronic unit and a computer controlling unit. The working wavelength is from 8 to 30 nm and the maximum sample size is 130 mm long by 120 mm wide by 120 mm high. In order to test the performances of the reflectometer, the reflectivity of multilayer coatings was obtained by using this device. The measured results agree well with the theoretical calculation. The reproducibility of measured reflectance is +/-0.6%.

  9. Are the Galactic-bulge X-ray sources magnetized?

    NASA Technical Reports Server (NTRS)

    Kundt, W.; Ozel, M. E.; Ercan, E. N.

    1987-01-01

    This paper attempts to demonstrate that a better understanding of Galactic-bulge X-ray sources can be achieved if their magnetic moments are assumed to have the same values as those of young pulsars. It is argued that most of the matter leaving the inner edge of the accretion disk can reach the neutron star's surface in the form of massive clumps in quasi-Keplerian orbits. As a result, most of the accretion flow covers a broad equatorial belt rather than the polar caps, and the star shines as an almost unpulsed source. The liberation of half of the accretion power before the surface is reached can lead to the reported UHE pulses and bright infrared bursts. Spasmodic accretion is discussed as a model for gamma-ray bursts, and the observed low-energy X-ray absorption features are considered as an indication of strong magnetic fields shifted to lower energies during super-Eddington outbursts.

  10. Optical candidates for two X-ray sources.

    NASA Technical Reports Server (NTRS)

    Brucato, R. J.; Kristian, J.

    1972-01-01

    Suggestion of the bright stars X Per and HD 77581 as possible candidates for the X-ray sources 2U 0352+30 and 2U 0900-40 respectively. The first is an active, rapidly rotating Be star which is losing mass. The second is similar to BD+34.3815 deg, a likely candidate for Cyg X-1, in spectral type and in the possibility that it may be a short-period binary.

  11. Kinematics of Compton backscattering x-ray source for angiography

    SciTech Connect

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  12. Recent Advances in Computational Studies of Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2016-06-01

    Interest in astrophysical sources of charge exchange (CX) has grown since X-ray emission from comet Hyakutake was first observed, the origin of which is primarily due to CX processes between neutral species in the comet’s atmosphere and highly charged ions from the solar wind. More recent observations have shown that CX may have a significant contribution to the X-ray emission spectra of a wide variety of environments within our solar system including solar wind charge exchange (SWCX) with neutral gases in the heliosphere and in planetary atmospheres, as well as beyond the solar system in galaxy clusters, supernova remnants, and star forming galaxies.While the basic process of CX has been studied for many decades, the reliability of the existing data is not uniform, and the coverage of the astrophysically important projectile and target combinations and collisional velocities is insufficient. The need for reliable and robust CX X-ray emission models will only be amplified with the with the high resolution X-ray spectra expected from the soft X-ray imaging calorimeter spectrometer (SXS) onboard the Hitomi X-ray observatory. In this talk, I will discuss recent advances in theoretical CX cross sections and X-ray modeling with a focus on CX diagnostics. The need for experimental X-ray spectra and cross sections for benchmarking current theory will also be highlighted. This work was performed in collaboration with David Lyons, Patrick Mullen, David Schultz, Phillip Stancil, and Robin Shelton. Work at UGA was partially supported by NASA grant NNX09AC46G.

  13. Searches for correlated X-ray and radio emission from X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Catura, R. C.; Lamb, P. A.; White, N. E.; Sanford, P. W.; Hoffman, J. A.; Lewin, W. H. G.; Jernigan, J. G.

    1978-01-01

    The NRAO Green Bank interferometer has been used to monitor MXB 1730-335 and MXB 1837+05 during periods when 68 X-ray bursts were detected by X-ray observations. No significant radio emission was detected from these objects, or from MXB 1820-30 and MXB 1906+00, which emitted no bursts throughout the simultaneous observations. The data place upper limits on radio emission from these objects in the 2695 and 8085 MHz bands.

  14. Ultraluminous X-ray sources - three exciting years

    NASA Astrophysics Data System (ADS)

    Bachetti, M.

    2015-09-01

    Ultraluminous X-ray sources are off-nuclear extragalactic sources with (apparent) luminosities exceeding the Eddington limit for a stellar-mass black hole. This naturally suggests an association with the elusive class of intermediate-mass black holes, or with super-Eddington accreting black holes. As it turns out, this peculiar class of sources is actually a variegated zoo, including both classes of accreting black holes mentioned above and, rather unexpectedly, neutron stars. In this talk I will overview the astrophysical properties of these objects, and give an update on the many breakthroughs appeared in the literature in the last three years.

  15. Phase-contrast and magnification radiography at diagnostic X-ray energies using a pseudo-microfocus X-ray source

    PubMed Central

    Robson, K J

    2014-01-01

    Objective: To investigate the use of conventional diagnostic X-ray tubes for applications in which specialist microfocus sources are normally required. Methods: A conventional diagnostic X-ray tube was used in conjunction with a range of apertures to investigate improvements in spatial resolution using a line-pairs test object. Phase-contrast effects were investigated by varying source-to-object and object-to-receptor distances using a 2-French catheter as a clinically realistic test object. Results: For magnification radiography using a computed radiography receptor and conventional X-ray tube with a 1-mm nominal focus size, the limiting spatial resolution was improved from 3.55 line-pairs per millimetre, for a conventional contact image, to 5.6 line-pairs per millimetre, for a ×2 magnified view with a 250-µm aperture. For inline phase-contrast radiography, phase contrast enhancement of a 2-French catheter was demonstrated, and the expected trends with variations in source-to-object and object-to-receptor distances were found. Images of a neonatal phantom demonstrated a subtle improvement in visibility of a superimposed 1-French catheter simulating a percutaneously inserted central catheter for no increase in patient radiation dose. Conclusion: Spatial resolution improvement and visible phase contrast can be produced in clinically relevant objects using a pseudo-microfocus geometry at X-ray energies in the normal diagnostic range, using conventional diagnostic X-ray tubes and image receptors. The disadvantages of the proposal are the large distances required to produce phase contrast and limitations imposed by the resulting tube loading. Advances in knowledge: It is possible to use conventional diagnostic X-ray equipment in applications that normally require microfocus X-ray sources. This presents some possibilities for clinical applications. PMID:24779409

  16. Neutron and X-Ray Studies of Advanced Materials V: CENTENNIAL

    SciTech Connect

    Spanos, George

    2012-05-01

    In 2012 the diffraction community will celebrate 100 years since the prediction of X-ray diffraction by M. Laue, and following his suggestion the first beautiful diffraction experiment by W. Friedrich and P. Knipping. The significance of techniques based on the analysis of the diffraction of X-rays, neutrons, electrons and Mossbauer photons discovered later, has continued to increase in the past 100 years. The aim of this symposium is to provide a forum for discussion of using state-of-the-art neutron and X-ray scattering techniques for probing advanced materials. These techniques have been widely used to characterize materials structures across all length scales, from atomic to nano, meso, and macroscopic scales. With the development of sample environments, in-situ experiments, e.g., at temperatures and applied mechanical load, are becoming routine. The development of ultra-brilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultra-sensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation and strain. X-ray microdiffraction is non-destructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Advances in neutron sources and instrumentation also bring new opportunities in neutron scattering research. In addition to characterizing the structures, neutrons are also a great tool for elucidating the dynamics of materials. Because neutrons are highly penetrating, neutrons have been used to map stress in engineering systems

  17. Simultaneous X-ray and optical observations of the flaring X-ray source, Aquila A-1

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.; Charles, P. A.

    1979-01-01

    During the summer of 1978 the recurrent transient X-ray source, Aquila X-1, underwent its first major outburst in two years. The results of extensive observations at X-ray and optical wavelengths throughout this event, which lasted for approximately two months are presented. The peak X-ray luminosity was approximately 1.3 times that of the Crab and exhibited spectral dependent flickering on timescales approximately 5 minutes. The observations are interpreted in terms of a standard accretion disk model withparticular emphasis on the similarities to Sco X-1 and other dward X-ray systems, although the transient nature of the system remains unexplained. It was found that Aquila X-1 can be described adequately by the semi-detached Roche lobe model and yields a mass ratio of less than or approximate to 3.5.

  18. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source

    SciTech Connect

    Lee, Ik-Jae; Yu, Chung-Jong; Yun, Young-Duck; Lee, Chae-Soon; Seo, In Deuk; Kim, Hyo-Yun; Lee, Woul-Woo; Chae, Keun Hwa

    2010-02-15

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipments for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  19. Advanced X-ray Astrophysics Facility (AXAF) science instruments

    NASA Technical Reports Server (NTRS)

    Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.

    1991-01-01

    The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.

  20. Studies of hard X-ray source variability using BATSE

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Harmon, B. A.; Pendleton, G. N.; Finger, M. H.; Fishman, G. J.; Meegan, C. A.; Rubin, B. C.; Wilson, R. B.

    1993-01-01

    The BATSE large-area detectors on the Compton Observatory can be used to monitor the variability of X-ray and gamma-ray sources on timescales longer than a few hours using the earth occultation technique. Spectral information is collected in 16 channels covering the energy range from about 25 to 2000 keV. Approximately 20 of the strongest sources are currently being monitored on a daily basis as part of standard BATSE operations. We discuss observations of the Crab Nebula, Cen A, and the Galactic center as examples of the current BATSE capabilities.

  1. Near-infrared spectroscopy of faint discrete X-ray point sources constituting the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Morihana, Kumiko; Tsujimoto, Masahiro; Dubath, Pierre; Yoshida, Tessei; Suzuki, Kensuke; Ebisawa, Ken

    2016-08-01

    The Galactic Ridge X-ray Emission (GRXE) is an apparently extended X-ray emission along the Galactic plane. The X-ray spectrum is characterized by a hard continuum with a strong Fe K emission feature in the 6-7 keV band. A substantial fraction (˜80%) of the GRXE in the Fe band was resolved into point sources by deep Chandra imaging observations; thus GRXE is mostly composed of dim Galactic X-ray point sources, at least in this energy band. To investigate the populations of these dim X-ray point sources, we carried out near-infrared (NIR) follow-up spectroscopic observations in two deep Chandra fields located in the Galactic plane at (l, b) = (0.1°, -1.4°) and (28.5°, 0.0°) using NTT/SofI and Subaru/MOIRCS. We obtained well-exposed NIR spectra from 65 objects and found that there are three main classes of Galactic sources based on the X-ray color and NIR spectral features: those having (A) hard X-ray spectra and NIR emission features such as H I (Brγ), He I, and He II (2 objects), (B) soft X-ray spectra and NIR absorption features such as H I, Na I, Ca I, and CO (46 objects), and (C) hard X-ray spectra and NIR absorption features such as H I, Na I, Ca I, and CO (17 objects). From these features, we argue that class A sources are cataclysmic variables (CVs), and class B sources are late-type stars with enhanced coronal activity, which is in agreement with current knowledge. Class C sources possibly belong to a new group of objects, which has been poorly studied so far. We argue that the candidate sources for class C are the binary systems hosting white dwarfs and late-type companions with very low accretion rates. It is likely that this newly recognized class of sources contribute to a non-negligible fraction of the GRXE, especially in the Fe K band.

  2. Small-Angle X-Ray Scattering on the ChemMatCARS Beamline at the Advanced Photon Source: A Study of Shear-Induced Crystallisation in Polypropylene

    SciTech Connect

    Sutton, D.; Hanley, T.; Knott, R.; Cookson, D.

    2008-09-08

    The first ever time-resolved small-angle X-ray scattering (SAXS) data from the undulator 15-ID-D beamline (ChemMatCARS) are presented. A 1.3 {angstrom} (9.54 keV) X-ray beam was selected to study the structure development in a polypropylene sample during shear-induced crystallization. A Linkam CSS450 shear cell provided the temperature and shear control. The polypropylene was first melted and then quenched to the crystallization temperature, where a step shear was applied. The SAXS data were collected using a Bruker 6000 CCD detector, which provided images of excellent resolution. The SAXS images (with 180{sup o} rotational symmetry) indicated that the polypropylene crystallizes with a high degree of anisotropy, and the lamellae are oriented perpendicular to the flow direction.

  3. X-Ray Counterparts of Puzzling Gev-Tev Sources

    NASA Astrophysics Data System (ADS)

    Kargaltsev, Oleg

    2014-09-01

    We propose to look for X-ray counterparts of the extended TeV source HESS J1616-508 that may also have been detected with Fermi at GeV energies. The nature of the source and the connection between the TeV source and the nearby GeV sources are unknown. It has been suggested that it may be a relic plerion powered by the offset PSR J1617-5055, but a deep Chandra observation of this pulsar and its wind nebula has not confirmed this hypothesis. To understand the nature of this long-standing "dark accelerator", we propose to observe the GeV sources (which could be young pulsars) and another nearby young pulsar (J1614-5048) to check whether or not they could supply relativistic particles and power the TeV source. We will also explore the nature of the GeV sources.

  4. The derived population of luminous supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Di Stefano, R.STEFANO; Rappaport, S.

    1994-01-01

    The existence of a new class of astrophysical object, luminous supersoft X-ray sources, has been established through ROSAT satellite observations and analysis during the past approximately 3 yr. Because most of the radiation emitted by supersoft sources spans a range of wavelengths readily absorbed by interstellar gas, a substantial fraction of these sources may not be detectable with present satellite instrumentation. It is therefore important to derive a reliable estimate of the underlying population, based on the approximately 30 sources that have been observed to date. The work reported here combines the observational results with a theoretical analysis, to obtain an estimate of the total number of sources likely to be present in M31, the Magellanic Clouds, and in our own Galaxy. We find that in M31, where approximately 15 supersoft sources have been identified and roughly an equal number of sources are being investigated as supersoft candidates, there are likely to be approximately 2500 active supersoft sources at the present time. In our own Galaxy, where about four supersoft sources have been detected in the Galactic plane, there are likely to be approximately 1000 active sources. Similarly, with about six and about four (nonforeground) sources observed in the Large (LMC) and Small Magellanic Clouds (SMC), respectively, there should be approximately 30 supersoft sources in the LMC, and approximately 20 in the SMC. The likely uncertainties in the numbers quoted above, and the properties of observable sources relative to those of the total underlying population, are also derived in detail. These results can be scaled to estimate the numbers of supersoft sources likely to be present in other galaxies. The results reported here on the underlying population of supersoft X-ray sources are in good agreement with the results of a prior population synthesis study of the white dwarf accretor model for luminous supersoft X-ray sources. It should be emphasized, however

  5. Uhuru observations of 4U 1608-52 - The 'steady' X-ray source associated with the X-ray burst source in Norma

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Chaisson, L. J.; Forman, W.; Jones, C.; Matilsky, T. A.

    1976-01-01

    Data are presented for the X-ray source 4U 1608-52, summarizing its light curve, location, and spectral parameters. Evidence is presented showing that this source is the 'steady' X-ray counterpart of the X-ray burst source in Norma. The spectrum of the 'steady' source is compared with the spectrum observed during two bursts, and it is noted that there is substantially more low-energy absorption during the bursts. The 'steady' source spectral data are used to examine the optical data, and it is concluded that if the X-ray spectrum is thermal, then a globular-cluster counterpart probably would have been detected (whereas none has been). Further X-ray and optical observations are suggested for this source, since an optical identification may be central in determining whether all X-ray bursts have a common origin and if this origin requires a globular-cluster environment.

  6. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  7. Flash x-ray sources powered by Blumlein pulsers: review and prospect for x rays with 100-ps switching

    NASA Astrophysics Data System (ADS)

    Davanloo, Farzin; Collins, Carl B., Jr.; Agee, Forrest J.

    2002-11-01

    The flash x-ray systems developed at the University of Texas at Dallas (UTD) center around two critical subassemblies: (1) a Blumlein pulsed power source, and (2) an x-ray diode properly designed and matched to the pulse forming line. The pulse generator consists of either a single or several traxial Blumleins. For multiple lines, Blumleins are stacked in series at one end and charged in parallel and synchronously commutated with a single switching element at the other end. Extensive characterizations of these Blumlein pulsers have been performed over the past several years. Results indicate that they are capable of producing high power waveforms with risetimes and repetition rates in the range of 0.1-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. Blumlein pulsers switched by a thyratron or a spark gap have been used to drive x-ray diode loads with different characteristics and discharge geometries and high dose rates of x-rays with pulse durations in the range 3-20 ns have been obtained. In this report the technology and characteristics of these Blumlein based flash x-ray devices are reviewed. Prospects for producing ultra-fast x-ray pulses utilizing photoconductively-switched Blumlein devices are discussed.

  8. Towards a Table-Top Laser Driven XUV/X-Ray Source

    DTIC Science & Technology

    2015-08-27

    applications, including bright x-ray and Extreme ultraviolet radiation (EUV or XUV) sources. The investigation was carried out in two phases. In the...of emission enhancement. The study also revealed that this laser-driven source of radiation has a small source size, short duration, and high photon...experimentally demonstrated. The study revealed that these advanced micro-engineered targets not only enhance the total number of electrons and their

  9. Advanced X-Ray Timing Array (AXTAR) Animation

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thompson, Kevin S.

    2011-01-01

    The animation depicts NASA's concept for a next-generation Advanced X-ray Timing Mission. The models and their textures doe not necessarily represent the final iteration. Delivery specifications include launch with Taurus II or Falcon 9, mass of 2650 kg, with a circular low earth orbit at approximately 600 km. The inclination depends on the launch vehicle and spacecraft mass. AXTAR's prime instrument will probe the physics of neutron stars and black holes through X-ray timing and spectral measurements. The primary instrument will be the Large Area Timing Array (LATA). The Sky Monitor Clusters configuration consists of 27 Sky Monitor cameras th at are grouped in five clusters. This configuration will achieve approximately 85 percent all sky coverage. Spacecraft components include a science bus to house the LATA of supermodules; a spacecraft bus to house components such as propulsion tanks, avionics, and reaction wheels; solar arrays configured from space-qualified GaAs 3-junction cells; star trackers for attitude knowledge; a propulsion system of four pods, each containing one 100 lbf and two 5 lbf engines; a launch vehicle adaptor; and a radiation shield.

  10. The Lack of Halo Ultraluminous X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.

    2006-01-01

    The premise that Ultraluminous X-ray sources (ULXs) exist beyond the optical extent of nearby galaxies is investigated. A published catalog containing 41 ULX candidates located between 1 and approx. 3 times the standard D-{25} isophotal radius of their putative host galaxies is examined. Twenty-one of these sources have spectroscopically-confirmed distances. All 21 are background objects giving a 95\\% probability that at least 37 of the 41 candidates are background sources. Thirty-nine of the 41 sources have X-ray-to-optical flux ratios, -1.61.6.) The uniform spatial distribution of the sample is also consistent with a background population. This evidence suggests that ULXs rarely, if at all, exist beyond the distribution of luminous matter in nearby galaxies and, as a consequence, there is no correlation between the population of ULXs and halo objects such as old globular clusters or Population III remnants.

  11. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  12. Conceptual study of moderately coupled plasmas and experimental comparison of laboratory x-ray sources

    SciTech Connect

    Li, Chikang

    1993-12-01

    In this thesis the fundamental concepts of moderately coupled plasmas, for which 2≲lnΛb≲10, are, for the first time, presented. This investigation is motivated because neither the conventional Fokker-Planck approximation [for weakly coupled plasmas (lnΛb≲10)] nor the theory of dielectric response with correlations for strongly coupled plasmas (lnΛb≲1) has satisfactorily addressed this regime. Specifically, herein the standard Fokker-Planck operator for Coulomb collisions has been modified to include hitherto neglected terms that are directly associated with large-angle scattering. In addition a reduced electron-ion collision operator has been calculated that, for the first time, manifests 1/lnΛb corrections. Precise calculations of some relaxation rates and crude calculations of electron transport coefficients have been made. As one of major applications of the modified Fokker-Planck equation, the stopping powers and ρR have been calculated for charged fusion products (α`s, 3H, 3He) and hot electrons interacting with plasmas relevant to inertial confinement fusion. In the second major topic of this thesis, advances made in the area of laboratory x-ray sources are presented. First, and most importantly, through the use a Cockcroft-Walton linear accelerator, a charged particle induced x-ray emission (PIXE) source has been developed. Intense line x radiation (including K-, L-, M-, and N-lines) with wavelengths from 0.5 Å to 111 Å have been successfully produced. Second, a new high intensity electron-beam x-ray generator has also been developed, and it has been used with advantage in the soft x-ray region ( < 3 keV). Finally, a direct comparisons of both sources (PIXE and electron-beam x-ray sources) to a commercially available radioactive α fluorescent x-ray source has been made.

  13. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    SciTech Connect

    M. J. Haugh and M. B. Schneider

    2008-10-31

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  14. The faint X-ray sources in and out of omega Centauri: X-ray observations and optical identifications

    NASA Technical Reports Server (NTRS)

    Cool, Adrienne M.; Grindlay, Jonathan E.; Bailyn, Charles D.; Callanan, Paul J.; Hertz, Paul

    1995-01-01

    We present the results of an observation of the globular cluster omega Cen (NGC 5139) with the Einstein high-resolution imager (HRI). Of the five low-luminosity X-ray sources toward omega Cen which were first identified with the Einstein imaging proportional counter (IPC) (Hertz and Grindlay 1983a, b), two are detected in the Einstein HRI observation: IPC sources A and D. These detections provide source positions accurate to 3 sec-4 sec; the positions are confirmed in a ROSAT HRI observation reported here. Using CCD photometry and spectroscopy, we have identified both sources as foreground dwarf M stars with emission lines (dMe). The chance projection of two Mde stars within approximately 13 min of the center of omega Cen is not extraordinary, given the space density of these stellar coronal X-ray sources. We discuss the possible nature of the three as yet unidentified IPC sources toward omega Cen, and consider the constraints that the Einstein observations place on the total population of X-ray sources in this cluster. The integrated luminosity from faint X-ray sources in omega Cen appears to be low relative to both the old open cluster M67 and the post-core-collapse globular, NGC 6397.

  15. Two Eclipsing Ultraluminous X-Ray Sources in M51

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-11-01

    We present the discovery, from archival Chandra and XMM-Newton data, of X-ray eclipses in two ultraluminous X-ray sources (ULXs), located in the same region of the galaxy M51: CXOM51 J132940.0+471237 (ULX-1, for simplicity) and CXOM51 J132939.5+471244 (ULX-2). Three eclipses were detected for ULX-1 and two for ULX-2. The presence of eclipses puts strong constraints on the viewing angle, suggesting that both ULXs are seen almost edge-on and are certainly not beamed toward us. Despite the similar viewing angles and luminosities ({L}{{X}}≈ 2× {10}39 erg s-1 in the 0.3-8 keV band for both sources), their X-ray properties are different. ULX-1 has a soft spectrum, well fitted by Comptonization emission from a medium with electron temperature {{kT}}e≈ 1 {keV}. ULX-2 is harder, well fitted by a slim disk with {{kT}}{in}≈ 1.5-1.8 keV and normalization consistent with a ˜10 M ⊙ black hole. ULX-1 has a significant contribution from multi-temperature thermal-plasma emission ({L}{{X},{mekal}}≈ 2× {10}38 erg s-1). About 10% of this emission remains visible during the eclipses, proving that the emitting gas comes from a region slightly more extended than the size of the donor star. From the sequence and duration of the Chandra observations in and out of eclipse, we constrain the binary period of ULX-1 to be either ≈ 6.3 days, or ≈12.5-13 days. If the donor star fills its Roche lobe (a plausible assumption for ULXs), both cases require an evolved donor, most likely a blue supergiant, given the young age of the stellar population in that Galactic environment.

  16. High duty cycle inverse Compton scattering X-ray source

    SciTech Connect

    Ovodenko, A.; Agustsson, R.; Babzien, M.; Campese, T.; Fedurin, M.; Murokh, A.; Pogorelsky, I.; Polyanskiy, M.; Rosenzweig, J.; Sakai, Y.; Shaftan, T.; Swinson, C.

    2016-12-22

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this article reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized at 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. Lastly, with the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.

  17. High duty cycle inverse Compton scattering X-ray source

    DOE PAGES

    Ovodenko, A.; Agustsson, R.; Babzien, M.; ...

    2016-12-22

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this article reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized at 5-more » and 15- pulses per train and compared to a single pulse operation under the same operating conditions. Lastly, with the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.« less

  18. The HEAO A-1 X-ray source catalog

    NASA Technical Reports Server (NTRS)

    Wood, K. S.; Meekins, J. F.; Yentis, D. J.; Smathers, H. W.; Mcnutt, D. P.; Bleach, R. D.; Friedman, H.; Byram, E. T.; Chubb, T. A.; Meidav, M.

    1984-01-01

    The catalog of X-ray sources detected during the NRL Large Area Sky Survey (LASS) with the HEAO 1 satellite is presented. The catalog is derived from the first six months of data from HEAO 1 and includes sources detected during one full scan. Positions and intensities for a total of 842 different sources are included, with a limiting flux of 250 nJy at 5 keV. The catalog is more than 90 percent complete at a flux level equivalent to 1.5 microjoules at 5 keV for a Crab-like spectrum. Cross-references with published literature are provided and coincidental identifications are proposed for some of the sources which have been never studied before. A cross-sectional line drawing of the sensor module of HEAO I is also provided.

  19. X-ray reverberations and the giant X-ray bursts. [short duration pulse in plasma cloud surrounding X-ray source

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1976-01-01

    It is shown that the shape and spectral evolution of the giant X-ray bursts from the source 3U 1820-30 can be explained by Compton scattering of a short, intense X-ray pulse in a cloud surrounding the source. Pulse shapes due to Thomson scattering of an X-ray burst in an electron cloud were calculated for the (1) optically thin case on the assumption of one scattering per photon, (2) intermediate case with optical depth of about unity, and (3) optically thick case where the process is regarded as diffusion of photons through a uniform sphere. For the intermediate case, the effects of the reverberation were determined explicitly by Monte Carlo calculation. For an optical depth of 3, square pulse duration of 2 sec, characteristic cloud radius of 70,000 km, characteristic cloud density of 4 times 10 to the 14th per cu cm, and temperature of 5-30 keV, the calculations give a reasonably accurate description of X-ray bursts from 3U 1820-30. The scattering model does not imply the existence of a supermassive, central black hole.

  20. Formation and evolution of luminous supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Di Stefano, R.; Smith, J. D.

    1994-01-01

    Luminous supersoft X-ray sources, with characteristic luminosities of approximately 10(exp 38) ergs/s and temperatures, kT, of approximately 35 eV, have been established as a new and distinct class of X-ray source through recent Roentgen Satellite (ROSAT) observations. Several possible physical models have been proposed for these sources. One promising scenario (van den Heuvel et al. 1992) involves mass transfer, which is unstable on a thermal timescale, from a main-sequence or subgiant donor star onto the surface of a white dwarf. For a narrow range of accretion rates, steady nuclear burning of the accreted matter can take place. This process can provide the high luminosities and the correct range of temperatures observed in the supersoft sources. However, given the limited range of mass transfer rates that are consistent with this phenomenon, it is far from obvious that a sufficient population of such systems exists in galaxies such as our own, M31, and the Magellanic Clouds, in order to account for the large number of supersoft sources which can be inferred from present observations. This work addresses the population question in detail, through a Monte Carlo simulation of the formation and evolution of such systems, which starts with zero-age primordial binaries. In order to evolve into close binary systems which contain a white dwarf component and a companion transferring mass at a rate within the requisite narrow range, a binary system must undergo a specific progression of evolutionary steps. We find that a sufficient subset of our initial binaries evolve to become systems with the requisite properties, so that they can account for the population of supersoft sources that is inferred from observations. In particular, we find that there should be more than 1000 systems in the Galaxy today with properties that very closely match those of the observed supersoft sources. From our models, we find expected luminosities, white dwarf effective temperatures, and

  1. Compact radiation sources for increased access to high brightness x-rays

    NASA Astrophysics Data System (ADS)

    O'Shea, Finn Henry

    The successful operation of the x-ray free electron lasers at LCLS and SACLA are a boon for science. The increase in brightness of 10 orders of magnitude over synchrotron sources as well as the sub-picosecond time profile of the x-rays are opening new avenues of research in fields ranging from biology to solid state physics. However, synchrotrons and free electron lasers that produce x-rays are expensive, with price tags that measured hundreds of millions. Further, the standard unit of measure for the scale of these sources is kilometers. The sheer size and prohibitive cost of these devices means that such sources are out of the reach of universities and smaller laboratories. The focus of this dissertation is in increasing access to x-ray sources by making them both smaller and, perhaps more importantly, cheaper. Current limitations to source size reduction are discussed which leads to the conclusion that smaller x-rays sources require short period undulators. In this context, two approaches to increasing access to x-rays are covered. The first is direct decrease in the period length of undulators through more advanced design and materials. This path begins with a discussion of the design and construction of a 9 mm period prototype. An analysis of the benefits of such a device, in reduced undulator and accelerator lengths at existing free electron lasers, is explored. And finally, the operation of the undulator in a realistic scenario is experimentally explored in a scaled experiment at optical frequencies. The second method for decreasing the period length of the light source is to replace the undulator with a laser, making an inverse Compton scattering source. The relationship between undulator radiation and the inverse Compton scattering process is examined, as well as the characteristics of the source itself. Lastly, as a demonstration of the function of the inverse Compton scattering source at Brookhaven National Laboratory as a diagnostic tool rather than an

  2. Population of post-nova supersoft X-ray sources

    NASA Astrophysics Data System (ADS)

    Soraisam, Monika D.; Gilfanov, Marat; Wolf, William M.; Bildsten, Lars

    2016-01-01

    Novae undergo a supersoft X-ray phase of varying duration after the optical outburst. Such transient post-nova supersoft X-ray sources (SSSs) are the majority of the observed SSSs in M31. In this paper, we use the post-nova evolutionary models of Wolf et al. to compute the expected population of post-nova SSSs in M31. We predict that depending on the assumptions about the white dwarf (WD) mass distribution in novae, at any instant there are about 250-600 post-nova SSSs in M31 with (unabsorbed) 0.2-1.0 keV luminosity Lx ≥ 1036 erg s-1. Their combined unabsorbed luminosity is of the order of ˜1039 erg s-1. Their luminosity distribution shows significant steepening around log (Lx) ˜ 37.7-38 and becomes zero at Lx ≈ 2 × 1038 erg s-1, the maximum Lx achieved in the post-nova evolutionary tracks. Their effective temperature distribution has a roughly power-law shape with differential slope of ≈4-6 up to the maximum temperature of Teff ≈ 1.5 × 106 K. We compare our predictions with the results of the XMM-Newton monitoring of the central field of M31 between 2006 and 2009. The predicted number of post-nova SSSs exceeds the observed number by a factor of ≈2-5, depending on the assumed WD mass distribution in novae. This is good agreement, considering the number and magnitude of uncertainties involved in calculations of the post-nova evolutionary models and their X-ray output. Furthermore, only a moderate circumstellar absorption, with hydrogen column density of the order of ˜1021 cm-2, will remove the discrepancy.

  3. Two-dimensional X-ray focusing by off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Grigoriev, Maxim; Fakhrtdinov, Rashid; Irzhak, Dmitry; Firsov, Alexander; Firsov, Anatoly; Svintsov, Alexander; Erko, Alexey; Roshchupkin, Dmitry

    2017-02-01

    The results of studying a two-dimensional X-ray focusing by an off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source are presented. This optics enables obtaining a focal spot of 2 μm on the laboratory X-ray source with a focusing efficiency of 30% at a high signal/noise ratio.

  4. Development of x-ray sources using PW laser systems at APRI GIST

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Lee, Kyoung Hwan; Yun, Hyeok; Kim, I. Jong; Kim, Chul Min; Pae, Ki Hong; Sung, Jae Hee; Lee, Sung Ku; Yu, Tae Jun; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Depresseux, Adrien; Nejdl, Jaroslav; Kozlová, Michaela; Jeong, Tae Moon; Nam, Chang Hee

    2013-09-01

    A PW Ti:Sapphire laser with 30-J energy and 30-fs pulse duration has been developed at GIST and applied to generate x-rays and energetic charged particles. We present the status and plan of developing ultrashort x-ray sources and their applications. We successfully demonstrated x-ray lasers and their applications to high-resolution imaging. In addition, we plan to generate high flux x-ray/gamma-ray sources using the PW laser.

  5. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    SciTech Connect

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  6. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    SciTech Connect

    Sisniega, A.; Vaquero, J. J.; Desco, M.

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  7. LIGHT SOURCE: Spot size diagnostics for flash radiographic X-ray sources at LAPA

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Gang; Li, Qin; Shi, Jin-Shui; Deng, Jian-Jun

    2009-06-01

    Spot size is one of the parameters to characterize the performance of a radiographic X-ray source. It determines the degree of blurring due to magnification directly. In recent years, a variety of measurement methods have been used to diagnose X-ray spot size at Laboratory of Accelerator Physics and Application (LAPA). Computer simulations and experiments showed that using a rolled-edge to measure the spot size are more accurate, and the intensity distribution of X-ray source was obtained by a device with a square aperture. Experimental and simulation results on a flash X-ray source at our laboratory are presented and discussed in this paper. In addition, a new method for time resolved diagnostics of X-ray spot size is introduced too.

  8. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  9. Novae as a Class of Transient X-ray Sources

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Orio, M.; Valle, M. Della

    2007-01-01

    Motivated by the recently discovered class of faint (10(exp 34)-10(exp 35) ergs/s) X-ray transients in the Galactic Center region, we investigate the 2-10 keV properties of classical and recurrent novae. Existing data are consistent with the idea that all classical novae are transient X-ray sources with durations of months to years and peak luminosities in the 10(exp 34)-10(exp 35)ergs/s range. This makes classical novae a viable candidate class for the faint Galactic Center transients. We estimate the rate of classical novae within a 15 arcmin radius region centered on the Galactic Center (roughly the field of view of XMM-Newton observations centered on Sgr A*) to be approx.0.1 per year. Therefore, it is plausible that some of the Galactic Center transients that have been announced to date are unrecognized classical novae. The continuing monitoring of the Galactic Center region carried out by Chandra and XMM-Newton may therefore provide a new method to detect classical novae in this crowded and obscured region, an

  10. Chilled disks in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Kuncic, Zdenka; Gonçalves, Anabela C.

    2007-04-01

    The "soft-excess" component fitted to the X-ray spectra of many ultraluminous X-ray sources (ULXs) remains a controversial finding, which may reveal fundamental information either on the black hole (BH) mass or on the state of the accretion flow. In the simplest model, it was explained as thermal emission from a cool accretion disk around an intermediate-mass BH (about 1000 solar masses). We argue that this scenario is highly implausible, and discuss and compare the two most likely alternatives. 1) The soft-excess does come from a cool disk; however, the temperature is low not because of a high BH mass but because most of the accretion power is drained from the inner disk via magnetic torques, and channelled into jets and outflows ("chilled disk" scenario). Using a phenomenological model, we infer that ULXs contain BHs of about 50 solar masses accreting gas at about 10 times their Eddington rate. 2) The soft excess is in fact a soft deficit, if the power-law continuum is properly fitted. Such broad absorption features are caused by smeared absorption lines in fast, highly ionized outflows. This scenario has already been successfully applied to the soft excess in AGN. If so, this spectral feature reveals details of disk outflows,but is unrelated to the BH mass.

  11. Carbon nanotube based X-ray sources: Applications in pre-clinical and medical imaging

    NASA Astrophysics Data System (ADS)

    Lee, Yueh Z.; Burk, Laurel; Wang, Ko-Han; Cao, Guohua; Lu, Jianping; Zhou, Otto

    2011-08-01

    Field emission offers an alternate method of electron production for Bremsstrahlung based X-ray tubes. Carbon nanotubes (CNTs) serve as very effective field emitters, allowing them to serve as electron sources for X-ray sources, with specific advantages over traditional thermionic tubes. CNT derived X-ray sources can create X-ray pulses of any duration and frequency, gate the X-ray pulse to any source and allow the placement of many sources in close proximity.We have constructed a number of micro-CT systems based on CNT X-ray sources for applications in small animal imaging, specifically focused on the imaging of the heart and lungs. This paper offers a review of the pre-clinical applications of the CNT based micro-CT that we have developed. We also discuss some of the current and potential clinical applications of the CNT X-ray sources.

  12. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; ...

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  13. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  14. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  15. Time-resolved and in-situ X-ray scattering methods beyond photoactivation: Utilizing high-flux X-ray sources for the study of ubiquitous non-photoactive proteins.

    PubMed

    Jain, Rohit; Techert, Simone

    2016-01-01

    X-ray scattering technique, comprising of small-angle/wide-angle X-ray scattering (SAXS/WAXS) techniques is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. It is a method of choice to characterize the flexible, partially folded and unfolded protein systems. X-ray scattering is the last resort for proteins that cannot be investigated by crystallography or NMR and acts as a complementary technique with different biophysical techniques to answer challenging scientific questions. The marriage of the X-ray scattering technique with the fourth dimension "time" yields structural dynamics and kinetics information for protein motions in hierarchical timescales from picoseconds to days. The arrival of the high-flux X-ray beam at third generation synchrotron sources, exceptional X-ray optics, state-of-the-art detectors, upgradation of X-ray scattering beamlines with microfluidics devices and advanced X-ray scattering data analysis procedures are the important reasons behind the shining years of X-ray scattering technique. The best days of the X-ray scattering technique are on the horizon with the advent of the nanofocus X-ray scattering beamlines and fourth generation X-ray lightsources, i.e., free electron lasers (XFELs). Complementary to the photon-triggered time-resolved X-ray scattering techniques, we will present an overview of the time-resolved and in-situ X-ray scattering techniques for structural dynamics of ubiquitous non-photoactive proteins.

  16. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    SciTech Connect

    Jacob, J; Ong, M; Wargo, P

    2005-07-21

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  17. Advanced Photon Source Activity Report 2003: Report of Work Conducted at the APS, January 2003-December 2003, Synchrotron x-ray diffraction at the APS, Sector 16 (HPCAT)

    SciTech Connect

    Goncharov, A F; Zaug, J M; Crowhurst, J C

    2005-01-27

    We present here the summary of the results of our studies using the APS synchrotron beamline IDB Sector 16 (HPCAT). Optical calibration of pressure sensors for high pressures and temperatures: The high-pressure ruby scale for static measurements is well established to at least 100 GPa (about 5% accuracy), however common use of this and other pressure scales at high temperature is clearly based upon unconfirmed assumptions. Namely that high temperature does not affect observed room temperature pressure derivatives. The establishment of a rigorous pressure scale along with the identification of appropriate pressure gauges (i.e. stable in the high P-T environment and easy to use) is important for securing the absolute accuracy of fundamental experimental science where results guide the development of our understanding of planetary sciences, geophysics, chemistry at extreme conditions, etc. X-ray diffraction in formic acid under high pressure: Formic acid (HCOOH) is common in the solar system; it is a potential component of the Galilean satellites. Despite this, formic acid has not been well-studied at high temperatures and pressures. A phase diagram of formic acid at planetary interior pressures and temperatures will add to the understanding of planetary formation and the potential for life on Europa. Formic acid (unlike most simple organic acids) forms low-temperature crystal structures characterized by infinite hydrogen-bonded chains of molecules. The behavior of these hydrogen bonds at high pressure is of great interest. Our current research fills this need.

  18. Performance characteristics of CCDs for the ACIS experiment. [Advanced X-ray Astrophysics Facility CCD Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James

    1988-01-01

    The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.

  19. Soft x-ray undulator for the Siam Photon Source

    SciTech Connect

    Rugmai, S.; Dasri, T.; Prawanta, S.; Siriwattanapaitoon, S.; Kwankasem, A.; Sooksrimuang, V.; Chachai, W.; Suradet, N.; Juthong, N.; Tancharakorn, S.

    2007-01-19

    An undulator for production of intense soft x-rays has been designed for the Siam Photon Source. The construction of the undulator has been completed. It is now being characterized and prepared for installation. The device, named U60, is a pure permanent magnet planar undulator, consisting of 41 magnetic periods, with 60 mm period length. Utilization of the undulator radiation in the photon energy range of 30 - 900 eV is expected. The design studies of the magnetic structure, including investigation of perturbations arising from the magnetic field of the device, their effects on the SPS storage ring and compensation schemes are described. A magnetic measurement system has been constructed for magnetic characterization of the device. Partial results of magnetic measurements are presented.

  20. Stardust Interstellar Preliminary Examination VII: Synchrotron X-Ray Fluorescence Analysis of Six Stardust Interstellar Candidates Measured with the Advanced Photon Source 2-ID-D Microprobe

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Anderson, David; Bastien, Ron K.; Brenker, Frank E.; Flynn, George J.; Frank, David; Gainsforth, Zack; Sandford, Scott A.; Simionovici, Alexandre S.; Zolensky, Michael E.

    2014-01-01

    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 < or = Z < or = 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.

  1. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  2. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  3. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    SciTech Connect

    Mascali, David Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Romano, Francesco Paolo; Torrisi, Giuseppe

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  4. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  5. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    SciTech Connect

    Michael Haugh

    2008-03-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  6. The light curve of a transient X-ray source

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Eadie, G.; Pounds, K. A.; Ricketts, M. J.; Watson, M.

    1975-01-01

    The Ariel-5 satellite has monitored the X-ray light curve of A1524-62 almost continuously from 40 days prior to maximum light until its disappearance below the effective experimental sensitivity. The source exhibited maximum light on Dec. 4, 1974, at a level of 0.9 the apparent magnitude of the Crab Nebula in the energy band 3-6 keV. Although similar to previously reported transient sources with a decay time constant of about 2 months, the source exhibited an extended, variable preflare on-state of about 1 month at a level of greater than 0.1 maximum light. The four bright (greater than 0.2 of the Crab Nebula) transient sources observed during the first half-year of Ariel-5 operation are indicative of a galactic disk distribution, a luminosity at maximum in excess of 10 to the 37-th power ergs/sec, a frequency of occurrence which may be as high as 100/yr, and a median decay time which is less than 1 month.

  7. King's College laser plasma x-ray source design

    NASA Astrophysics Data System (ADS)

    Alnaimi, Radhwan; Adjei, Daniel; Alatabi, Saleh; Appuhamilage, Indika Arachchi; Michette, Alan

    2013-05-01

    The aim of this work is to design and build a source for a range of applications, with optimized multilayer structures in order to use the source output as efficiently as possible. The source is built around a Nd:YAG laser with fundamental wavelength 1064 nm, frequency doubled 532 nm (green) and tripled 355 nm, with a pulse length of about 800 ps and a repetition rate up to 50 Hz. The target material is Mylar (C10H8O4) tape, which is cheap, readily available and has many benefits as explained in this article. A versatile cubic target chamber and a set of computer controlled stage motors are used to allow positioning of the X-ray emission point. A range of measures is used to protect delicate components and optics, including a glass slide between the focusing lens and the target to prevent the lens being coated with debris. A low pressure gas (typically 3-6 mbar) is used inside the chamber as collision of atomic size debris particles with gas molecules reduces their kinetic energy and consequently their adhesion to the surrounding surfaces. The gas used is typically helium or nitrogen, the latter also acting as a spectral filter. Finally, the chamber is continually pumped to ensure that more than 70% of the debris particles are pumped out of the chamber.

  8. Performance of the Cygnus X-ray Source

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Carlson, Randolph; Fulton, Robert D.; Altes, R.; Carboni, V.; Chavez, Jacob R.; Corcoran, P.; Coulter, William L.; Douglas, J.; Droemer, D.; Gibson, William A.; Helvin, Thomas B.; Henderson, David J.; Johnson, David L.; Maenchen, John E.; Mitton, Charlas V.; Molina, Isidro; Nishimoto, H.; Ormond, Eugene C.; Ortega, Paul A.; Quicksilver, Robert J.; Ridlon, Rae N.; Rose, Evan A.; Scholfield, David W.; Smith, I.; Valerio, Antonio R.; White, R.

    2002-12-01

    Cygnus is a radiographic x-ray source developed for support of the Sub-Critical Experiments Program at the Nevada Test Site. Major requirements for this application are: a dramatically reduced spot size as compared to both Government Laboratory and existing commercial alternatives, layout flexibility, and reliability. Cygnus incorporates proven pulsed power technology (Marx Generator, Pulse Forming Line, Water Transmission Line, and Inductive Voltage Adder sub-components) to drive a high voltage vacuum diode. In the case of Cygnus, a relatively new approach (the rod pinch diode [1]) is employed to achieve a small source diameter. Design specifications are: 2.25 MeV endpoint energy, < 1 mm source diameter, and >3 rads dose at 1 meter. The pulsed power and system architecture design plan has been previously presented [2]. The first set of Cygnus shots were geared to verification of electrical parameters and, therefore, used a large area diode configuration offering increased shot rate as compared to that of the rod pinch diode. In this paper we present results of initial rod pinch operation in terms of electrical and radiation parameters.

  9. X-ray QPOs from the Ultra-luminous X-ray Source in M82: Evidence Against Beaming

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2003-01-01

    We report the discovery with the European Photon Imaging Camera (EPIC) CCD cameras onboard XMM-Newton of a 54 mHz quasiperiodic oscillation (QPO) in the greater than 2 keV X-ray flux from the ultra-luminous X-ray source (ULX) X41.4+60 in the starburst galaxy M82. This is the first detection of a QPO in the X-ray flux from an extra-Galactic ULX, and confirms that the source is a compact object. The QPO is detected in the combined PN and MOS data at the approx. 6sigma level, and separately at lower significances in both the PN and MOS instruments. It had a centroid frequency of 54.3 +/- 0.9 mHz, a coherence Q is identical with nu(sub 0)/Delta nu(sub fwhm) is approx. 5, and an amplitude (rms) in the 2 - 10 keV band of 8.5%. Below about 0.2 Hz the power spectrum can be described by a power-law with index approx. 1, and integrated amplitude (rms) of 13.5%. The X-ray spectrum requires a curving continuum, with a disk-blackbody (diskbb) at T = 3.1 keV providing an acceptable, but not unique, fit. A broad Fe line centered at 6.55 keV is required in all fits, but the equivalent width (EW) of the line is sensitive to the choice of continuum model. There is no evidence of a reflection component. The implied bolometric luminosity is approx. 4 - 5 x 10(exp 40) ergs/s. Data from several archival Rossi X-ray Timing Explorer (RXTE) pointings at M82 also show evidence for QPOs in the 50 - 100 mHz frequency range. Several Galactic black hole candidates (BHCs), including GRS 1915+105, GRO J1655-40, and XTE 1550-564, show QPOs in the same frequency range as the 50 - 100 mHz QPOs in X41.4+60, which at first glance suggests a possible connection with such objects. However, strong, narrow QPOs provide solid evidence for disk emission, and thus present enormous theoretical difficulties for models which rely on either geometrically or relativistically beamed emission to account for the high X-ray luminosities. We discuss the implications of our findings for models of the ULX sources.

  10. X-band RF gun and linac for medical Compton scattering X-ray source

    SciTech Connect

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-07

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  11. A proposal for a collecting mirror assembly for large divergence x-ray sources.

    PubMed

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Oku, Satoshi

    2014-11-01

    We propose a new type of collecting mirror assembly (CMA) for x rays, which will enable us to build a powerful optical system for collecting x rays from large divergence sources. The CMA consists of several mirror sections connected in series. The angle of each section is designed so that the x rays reflected from it are parallel to the x rays directly incident on the following sections. A simplified CMA structure is designed and applied to the Al-Kα emission line. It is estimated that by using the CMA the number of x rays detected could be increased by a factor of about 2.5.

  12. Short X-ray pulses from third-generation light sources.

    PubMed

    Stepanov, A G; Hauri, C P

    2016-01-01

    High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50-100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.

  13. Observation of soft X-rays from extended sources. [such as Perseus star cluster

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Acton, L. W.

    1974-01-01

    Efforts were directed toward surveying several supernova remnants for the emission of soft X-rays. Rather than attempt to detect such faint X-ray emission, the program was redirected to observe the spectrum and angular structure of the extended X-ray source in the Perseus cluster of galaxies and the super-nova remnant Puppis A. An attempt was made to detect X-ray line emission from Puppis A with a Bragg crystal spectrometer. Observations provide evidence for the presence of X-ray line emission in the spectrum of Puppis A near .65 keV.

  14. A Chandra X-Ray Study of NGC 1068 IL the Luminous X-Ray Source Population

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert 2 galaxy NGC 1068, imaged with a approx. 50 ks Chandra observation. We find a total of 84 compact sources on the S3 chip, of which 66 are located within the 25.0 B-mag/arcsec isophote of the galactic disk of NGC 1068. Spectra have been obtained for the 21 sources with at least 50 counts and modeled with both multicolor disk blackbody and power-law models. The power-law model provides the better description of the spectrum for 18 of these sources. For fainter sources, the spectral index has been estimated from the hardness ratio. Five sources have 0.4 - 8 keV intrinsic luminosities greater than 10(exp 39)ergs/ s, assuming that their emission is isotropic and that they are associated with NGC 1068. We refer to these sources as intermediate-luminosity X-ray objects (ISOs). If these five sources are X-ray binaries accreting with luminosities that are both sub-Eddington and isotropic, then the implied source masses are approx greater than 7 solar mass, and so they are inferred to be black holes. Most of the spectrally modeled sources have spectral shapes similar to Galactic black hole candidates. However, the brightest compact source in NGC 1068 has a spectrum that is much harder than that found in Galactic black hole candidates and other ISOs. The brightest source also shows large amplitude variability on both short-term and long-term timescales, with the count rate possibly decreasing by a factor of 2 in approx. 2 ks during our Chundra observation, and the source flux decreasing by a factor of 5 between our observation and the grating observations taken just over 9 months later. The ratio of the number of sources with luminosities greater than 2.1 x 10(exp 38) ergs/s in the 0.4 - 8 keV band to the rate of massive (greater than 5 solar mass) star formation is the same, to within a factor of 2, for NGC 1068, the Antennae, NGC 5194 (the main galaxy in M51), and the Circinus galaxy. This suggests

  15. X-RAY SOURCES AND THEIR OPTICAL COUNTERPARTS IN THE GALACTIC GLOBULAR CLUSTER M12 (NGC 6218)

    SciTech Connect

    Lu, T.-N.; Kong, Albert K. H.; Bassa, Cees; Verbunt, Frank; Lewin, Walter H. G.; Anderson, Scott F.; Pooley, David

    2009-11-01

    We study a Chandra X-ray Observatory ACIS-S observation of the Galactic globular cluster M12. With a 26 ks exposure time, we detect six X-ray sources inside the half-mass radius (2.'16) of which two are inside the core radius (0.'72) of the cluster. If we assume that these sources are all associated with globular cluster M12, the luminosity L {sub X} among these sources between 0.3 and 7.0 keV varies roughly from 10{sup 30} to 10{sup 32} erg s{sup -1}. For identification, we also analyzed the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field and Planetary Camera 2 (WFPC2) data and identified the optical counterparts to five X-ray sources inside the HST ACS field of view. According to the X-ray and optical features, we found 2-5 candidate active binaries (ABs) or cataclysmic variables (CVs) and 0-3 background galaxies within the HST ACS field of view. Based on the assumption that the number of X-ray sources scales with the encounter rate and the mass of the globular cluster, we expect two X-ray sources inside M12, and the expectation is consistent with our observational results. Therefore, the existence of identified X-ray sources (possible CVs or ABs) in M12 suggests the primordial origin of X-ray sources in globular clusters which is in agreement with previous studies.

  16. Advanced X-ray Astrophysics Facility (AXAF): Science working group report. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Advanced X-Ray Astrophysics Facility (AXAF) mission concept is examined from a scientific viewpoint. A brief description of the development of X-ray astronomy and a summary description of AXAF, the scientific objectives of the facility, a description of representative scientific instruments, requirements for X-ray ground testing, and a summary of studies related to spacecraft and support subsystems, are included.

  17. Tabletop Ultrabright Kiloelectronvolt X-Ray Sources from Xe and Kr Hollow Atom States

    NASA Astrophysics Data System (ADS)

    Sankar, Poopalasingam

    Albert Einstein, the father of relativity, once said, "Look deep into nature, and then you will understand everything better". Today available higher resolution tabletop tool to look deep into matters and living thing is an x-ray source. Although the available tabletop x-rays sources of the 20th century, such as the ones used for medical or dental x-rays are tremendously useful for medical diagnostics and industry, a major disadvantage is that they have low quality skillful brightness, which limits its resolution and accuracy. In the other hand, x-ray free-electrons laser (XFEL) and synchrotron radiation sources provided extreme bright x-rays. However, number of applications of XFEL and synchrotron such as medical and industrials, has been hampered by their size, complexity, and cost. This has set a goal of demonstrating x-ray source with enough brightness for potential applications in an often-called tabletop compact x-ray source that could be operated in university laboratory or hospitals. We have developed two tabletop ultrabright keV x-ray sources, one from a Xe hollow-atom states and the other one from Kr hollow-atom stares with a unique characteristic that makes them complementary to currently-available extreme-light sources; XFEL, and synchrotron x-ray source. Upgraded tabletop ultra-fast KrF* pump-laser interacts with target rare-gas clusters and produces hollow-atom states, which later coherently collapse to the empty inner-shell and thereby generate keV x-ray radiation. The KrF* pump-laser beam is self-focused and forms a self-channel to guide the generated x-ray radiation in the direction of the pump-laser beam to produce directed x-ray beam. Xe (M) x-ray source operates at 1.2-1.6 nm wavelength while the Kr(L) x-ray source operates in 600-800 pm wavelength. System is mounted upon 3 optical-tables (5´x12´) with two KrF amplifiers at a repetition rate of 0.1 Hz. A lower bound for brightness value for both Xe and Kr x-ray sources is 1026 photons s-1mm-2

  18. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  19. The prospects for soft x-ray contact microscopy using laser plasmas as an x-ray source

    SciTech Connect

    Stead, A.D.; Page, A.M.; Ford, T.W.

    1995-12-31

    Since its invention, a major concern of those using a microscope has been to improve the resolution without the introduction of artifacts. While light microscopy carries little risk of the introduction of artifacts, because the preparative techniques are often minimal, the resolution is somewhat limited. The advent of the electron microscope offered greatly improved resolution but since biological specimens require extensive preparation, the possibility of causing structural damage to the specimen is also increased. The ideal technique for structural studies of biological specimens would enable hydrated material to be examined without any preparation and with a resolution equal to that of electron microscopy. Soft x-ray microscopy certainly enables living material to be examined and whilst the resolution does not equal that of electron microscopy it exceeds that attainable by light microscopy. This paper briefly reviews the limitations of light and electron microscopy for the biologist and considers the various ways that soft x-rays might be used to image hydrated biological material. Consideration is given to the different sources that have been used for soft x-ray microscopy and the relative merits of laser-plasma sources are discussed.

  20. IDENTIFICATION OF THE X-RAY THERMAL DOMINANT STATE IN AN ULTRALUMINOUS X-RAY SOURCE IN M82

    SciTech Connect

    Feng Hua; Kaaret, Philip

    2010-04-01

    The thermal dominant state in black hole binaries (BHBs) is well understood but rarely seen in ultraluminous X-ray sources (ULXs). Using simultaneous observations of M82 with Chandra and XMM-Newton, we report the first likely identification of the thermal dominant state in a ULX based on the disappearance of X-ray oscillations, low timing noise, and a spectrum dominated by multicolor disk emission with luminosity varying to the fourth power of the disk temperature. This indicates that ULXs are similar to Galactic BHBs. The brightest X-ray spectrum can be fitted with a relativistic disk model with either a highly super-Eddington (L {sub disk}/L {sub Edd} = 160) non-rotating black hole (BH) or a close to Eddington (L {sub disk}/L {sub Edd} {approx} 2) rapidly rotating BH. The latter interpretation is preferred, due to the absence of such highly super-Eddington states in Galactic BHs and active galactic nuclei, and suggests that the ULX in M82 contains a BH of 200-800 solar masses with nearly maximal spin. On long timescales, the source normally stays at a relatively low flux level with a regular 62-day orbital modulation and occasionally exhibits irregular flaring activity. These thermal dominant states are observed during outbursts.

  1. X-Ray Computed Tomography for Advanced Materials and Processes.

    DTIC Science & Technology

    1992-06-30

    1991, San Diego, CA., ASNT. 12. S. R. Stock, T. M. Breunig , A. Guvenilir, J. H. Kinney and M. C. Nichols, "Nondestructive X-ray Tomographic Microscopy...Materials, San Antonio, TX, Nov. 1990, ASTM. 13. T. M. Breunig , S. R. Stock, and S. D. Antolovich, "A F.amework Relating Macroscopic Measures and Physical...T. M. Breunig , S. R. Stock, J. H. Kinney, A. Guvenilir, and M. C. Nichols, "Impact of X-ray Tomographic Microscopy on Deformation Studies of a SiC/Al

  2. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.

    2006-03-15

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150 keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10x10 cm{sup 2} has been marked at 20 cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05 mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7 min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10{sup -5} Torr, microwave power: 350 W, and coil current: 0 A. The effective energy of the x-ray spectrum is nearly 40 keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  3. A new technique for measuring the polarization from celestial X-ray sources

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.; Minamitani, Takahisa; Ramsey, Brian D.

    1993-09-01

    The detection of polarized X-rays from cosmic X-ray sources will give useful information about the magnetic fields and matter surrounding these sources. Up to now only one experiment, OSO-8, has measured the degree of polarization from a cosmic X-ray source. In the past we demonstrated a novel new technique using an intensified camera coupled to a gas-filled proportional counter which can be used to measure X-ray polarization by imaging the tracks of photoelectrons ejected when X-rays are absorbed in the detector volume. These tracks contain information about the location of the X-ray interaction point and its polarization. In the lab we have obtained modulation factors of about 30 percent for 60 keV polarized X-rays. Here we discuss preliminary work done towards building a large-area hard X-ray imaging polarimeter which will be able to measure X-ray polarization from bright cosmic X-ray sources at energies between 40 keV and 100 keV.

  4. Observation of the X-ray source Sco X-1 from Skylab. [radiant flux density

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An attempt to observe the discrete X-ray source Sco X-1 on 20 September 1973 between 0856 and 0920 UT is reported. Data obtained with the ATM/S-056 X-ray event analyzer, in particular the flux observed with the 1.71 to 4.96 KeV counter, is analyzed. No photographic image of the source was obtained because Sco X-1 was outside the field of view of the X-ray telescope.

  5. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    SciTech Connect

    Ribeiro, T.; Lopes de Oliveira, R.

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  6. Hard X-ray phase-contrast imaging with the Compact Light Source based on inverse Compton X-rays

    PubMed Central

    Bech, Martin; Bunk, Oliver; David, Christian; Ruth, Ronald; Rifkin, Jeff; Loewen, Rod; Feidenhans’l, Robert; Pfeiffer, Franz

    2009-01-01

    The first imaging results obtained from a small-size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X-rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specifications make the Compact Light Source ideal for a recently developed grating-based differential phase-contrast imaging method. PMID:19096173

  7. X-ray imaging in advanced studies of ophthalmic diseases

    SciTech Connect

    Antunes, Andrea; Safatle, Angelica M. V.; Barros, Paulo S. M.; Morelhao, Sergio L.

    2006-07-15

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength {lambda}=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber

  8. Advances Toward Inner-Shell Photo-Ionization X-Ray Lasing at 45 (Angstrom)

    SciTech Connect

    Moon, S J; Weber, F A; Celliers, P M; Eder, D C

    2002-07-18

    The inner-shell photo-ionization (ISPI) scheme requires photon energies at least high enough to photo-ionize the K-shell. {approx}286 eV, in the case of carbon. As a consequence of the higher cross-section, the inner-shell are selectively knocked out, leaving a hole state 1s2s{sup 2}2p{sup 2} in the singly charged carbon ion. This generates a population inversion to the radiatively connected state 1s{sup 2}2s{sup 2}2p in C+, leading to gain on the 1s-2p transition at 45 {angstrom}. The resonant character of the lasing transition in the single ionization state intrinsically allows much higher quantum efficiency compared to other schemes. Competing processes that deplete the population inversion include auto-ionization, Auger decay, and in particular collisional ionization of the outer-shell electrons by electrons generated during photo-ionization. These competing processes rapidly quench the gain. Consequently, the pump method must be capable of populating the inversion at a rate faster than the competing processes. This can be achieved by an ultra-fast, high intensity laser that is able to generate an ultra-fast, bright x-ray source. With current advances in the development of high-power, ultra-short pulse lasers it is possible to realize fast x-ray sources based that can deliver powerful pulses of light in the multiple hundred terawatt regime and beyond. They will discuss in greater detail concept, target design and a series of x-ray spectroscopy investigations they have conducted in order to optimize the absorber/x-ray converter--filter package.

  9. A SEARCH FOR HYPERLUMINOUS X-RAY SOURCES IN THE XMM-NEWTON SOURCE CATALOG

    SciTech Connect

    Zolotukhin, I.; Webb, N. A.; Godet, O.; Barret, D.; Bachetti, M.

    2016-02-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 10{sup 41} < L{sub X} < 10{sup 44} erg s{sup −1}, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243–49 HLX–1 and M82 X–1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada–France–Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.

  10. A Search for Hyperluminous X-Ray Sources in the XMM-Newton Source Catalog

    NASA Astrophysics Data System (ADS)

    Zolotukhin, I.; Webb, N. A.; Godet, O.; Bachetti, M.; Barret, D.

    2016-02-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 1041 < LX < 1044 erg s-1, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243-49 HLX-1 and M82 X-1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada-France-Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.

  11. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    NASA Astrophysics Data System (ADS)

    Blankespoor, S. C.; Derenzo, S. E.; Moses, W. W.; Rossington, C. S.; Ito, M.; Oba, K.

    1994-08-01

    To search for new, fast, inorganic scintillators, we have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 mu A maximum average cathode current. The laser produces 3 x 10(sup 7) photons at 650 nm per approximately 100 ps pulse, with up to 10(sup 7) pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. We measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10(sup 6) and 3 x 10(sup 6) photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented.

  12. R&D toward a compact high-brilliance X-ray source based on channeling radiation

    NASA Astrophysics Data System (ADS)

    Piot, P.; Brau, C. A.; Gabella, W. E.; Choi, B. K.; Jarvis, J. D.; Lewellen, J. W.; Mendenhall, M. H.; Mihalcea, D.

    2012-12-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B ˜ 1012 photons.(mm-mrd)-2. (0.1% BW)-1.s-1 is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  13. R&D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    SciTech Connect

    Piot, P.; Brau, C.A.; Choi, B.K.; Gabella, W.E.; Jarvis, J.D.; Mendenhall, M.H.; Lewellen, J.W.; Mihalcea, D.; /Northern Illinois U.

    2012-08-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B {approx} 10{sup 12} photons.(mm-mrd){sup -2}.(0.1% BW){sup -1} .s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  14. The Radiation Dose Determination of the Pulsed X-ray Source

    NASA Astrophysics Data System (ADS)

    Miloichikova, I.; Stuchebrov, S.; Zhaksybayeva, G.; Wagner, A.

    2014-10-01

    In this paper the radiation dose measurement technique of the pulsed X-ray source RAP-160-5 is described. The dose rate measurement results from the pulsed X-ray beams at the different distance between the pulsed X-ray source focus and the detector obtained with the help of the thermoluminescent detectors DTL-02, the universal dosimeter UNIDOS E equipped with the plane-parallel ionization chamber type 23342, the dosimeter-radiometer DKS-96 and the radiation dosimeter AT 1123 are demonstrated. The recommendations for the dosimetry measurements of the pulsed X-ray generator RAP-160-5 under different radiation conditions are proposed.

  15. Infrared identification of hard X-ray sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nebot Gómez-Morán, A.; Motch, C.; Pineau, F.-X.; Carrera, F. J.; Pakull, M. W.; Riddick, F.

    2015-09-01

    The nature of the low- to intermediate-luminosity (LX ˜ 1032-34 erg s-1) source population revealed in hard band (2-10 keV) X-ray surveys of the Galactic plane is poorly understood. To overcome such problem, we cross-correlated the XMM-Newton 3XMM-DR4 survey with the infrared Two Micron All Sky Survey and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire catalogues. We identified reliable X-ray-infrared associations for 690 sources. We selected 173 sources having hard X-ray spectra, typical of hard X-ray high-mass stars (kT > 5 keV), and 517 sources having soft X-ray spectra, typical of active coronae. About 18 per cent of the soft sources are classified in the literature: ˜91 per cent as stars, with a minor fraction of Wolf-Rayet (WR) stars. Roughly 15 per cent of the hard sources are classified in the literature: ˜68 per cent as high-mass X-ray stars single or in binary systems (WR, Be and high-mass X-ray binaries - HMXBs), with a small fraction of G and B stars. We carried out infrared spectroscopic pilot observations at the William Herschel Telescope for five hard X-ray sources. Three of them are high-mass stars with spectral types WN7-8h, Ofpe/WN9 and Be, and LX ˜ 1032-1033erg s-1. One source is a colliding-wind binary, while another source is a colliding-wind binary or a supergiant fast X-ray transient in quiescence. The Be star is a likely γ-Cas system. The nature of the other two X-ray sources is uncertain. The distribution of hard X-ray sources in the parameter space made of X-ray hardness ratio, infrared colours and X-ray-to-infrared flux ratio suggests that many of the unidentified sources are new γ-Cas analogues, WRs and low LX HMXBs. However, the nature of the X-ray population with Ks ≥ 11 and average X-ray-to-infrared flux ratio remains unconstrained.

  16. LUX - A recirculating linac-based ultrafast X-ray source

    SciTech Connect

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2003-08-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme.

  17. Advancing x-ray scattering metrology using inverse genetic algorithms

    NASA Astrophysics Data System (ADS)

    Hannon, Adam F.; Sunday, Daniel F.; Windover, Donald; Joseph Kline, R.

    2016-07-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real-space structure in periodic gratings measured using critical dimension small-angle x-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real-space structure of our nanogratings. The study shows that for x-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  18. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  19. Dynamic radiography using a carbon-nanotube-based field-emission x-ray source

    SciTech Connect

    Cheng, Y.; Zhang, J.; Lee, Y.Z.; Gao, B.; Dike, S.; Lin, W.; Lu, J.P.; Zhou, O.

    2004-10-01

    We report a dynamic radiography system with a carbon nanotube based field-emission microfocus x-ray source. The system can readily generate x-ray radiation with continuous variation of temporal resolution as short as nanoseconds. Its potential applications for dynamic x-ray imaging are demonstrated. The performance characteristics of this compact and versatile system are promising for noninvasive imaging in biomedical research and industrial inspection.

  20. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  1. Spectral unfolds of PITHON Flash X-ray source.

    SciTech Connect

    Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Riordan, John C.

    2007-11-01

    Using a differential absorption spectrometer we obtained experimental spectral information for the PITHON Flash X-ray Machine located in San Leandro, California at L-3 Communications. Spectral information we obtained pertained to the 200 keV to 800 keV endpoint operation of PITHON. We also obtained data on the temporal behavior of high energy and low energy spectral content.

  2. Course Manual for Machine Sources of X Rays.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This is the first of a series of three instructor manuals in x-ray science and engineering and is produced as part of a project of Oregon State University's Bureau of Radiological Health. This manual, and the two companion manuals, have been tested in courses at Oregon State. These materials have been designed to serve as models for teaching and…

  3. The Interaction of Radio Sources and X-ray-Emitting Gas in Cluster Cooling Flows

    NASA Astrophysics Data System (ADS)

    Blanton, Elizabeth L.

    2001-10-01

    Recent Chandra observations of cooling flow clusters containing central radio sources reveal an anti-correlation between radio and X-ray emission. Abell 2052 is one such cluster that exhibits this morphology. The cD galaxy at the center of Abell 2052 is host to the powerful radio source 3C 317. "Holes" in the X-ray emission are coincident with the radio lobes which are surrounded by bright "shells" of X-ray emission. Heating by central radio sources has been proposed as one solution to the "missing gas" in cooling flows -- there is a lack of gas detected in the X-ray at temperatures at or below approximately 1 keV. However, the gas surrounding the radio source in Abell 2052 is cool. The data are consistent with the radio source displacing and compressing, and at the same time being confined by, the X-ray gas. The compression of the X-ray shells appears to have been relatively gentle and, at most, slightly transonic. The pressure in the X-ray gas (the shells and surrounding cooler gas) is approximately an order of magnitude higher than the minimum pressure derived for the radio source, suggesting that an additional source of pressure is needed to support the radio plasma. The compression of the X-ray shells has speeded up the cooling of the shells, and optical emission line filaments are found coincident with the brightest regions of the shells.

  4. Determination of the mass of globular cluster X-ray sources

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Hertz, P.; Steiner, J. E.; Murray, S. S.; Lightman, A. P.

    1984-01-01

    The precise positions of the luminous X-ray sources in eight globular clusters have been measured with the Einstein X-Ray Observatory. When combined with similarly precise measurements of the dynamical centers and core radii of the globular clusters, the distribution of the X-ray source mass is determined to be in the range 0.9-1.9 solar mass. The X-ray source positions and the detailed optical studies indicate that (1) the sources are probably all of similar mass, (2) the gravitational potentials in these high-central density clusters are relatively smooth and isothermal, and (3) the X-ray sources are compact binaries and are probably formed by tidal capture.

  5. Observations of low luminosity X-ray sources in Vela-Puppis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Erlemitsos, P. J.; Swank, J. H.

    1978-01-01

    Results of a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg are presented. This region contains at least six low luminosity X-ray sources within approximately 10 deg. of PSRO833-45, which is near the center of the Gum Nebula. The X-ray source associated with the Vela pulsar, 4U0833-45, is observed at twice its 4U catalogue intensity. The lack of X-ray pulsations at the pulsar period, the non thermal power law spectrum, and models of the X-ray come from an extended source approximately 1 deg in radius. The observation of a high temperature spectrum in a field of view containing only Puppis A among known sources has led to the discovery of a new OSO-8 source, OSO752-39. Other spectra from this region are discussed.

  6. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  7. The spatial, spectral and polarization properties of solar flare X-ray sources

    NASA Astrophysics Data System (ADS)

    Jeffrey, Natasha L. S.

    2014-12-01

    X-rays are a valuable diagnostic tool for the study of high energy accelerated electrons. Bremsstrahlung X-rays produced by, and directly related to, high energy electrons accelerated during a flare, provide a powerful diagnostic tool for determining both the properties of the accelerated electron distribution, and of the flaring coronal and chromospheric plasmas. This thesis is specifically concerned with the study of spatial, spectral and polarization properties of solar flare X-ray sources via both modelling and X-ray observations using the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Firstly, a new model is presented, accounting for finite temperature, pitch angle scattering and initial pitch angle injection. This is developed to accurately infer the properties of the acceleration region from the observations of dense coronal X-ray sources. Moreover, examining how the spatial properties of dense coronal X-ray sources change in time, interesting trends in length, width, position, number density and thermal pressure are found and the possible causes for such changes are discussed. Further analysis of data in combination with the modelling of X-ray transport in the photosphere, allows changes in X-ray source positions and sizes due to the X-ray albedo effect to be deduced. Finally, it is shown, for the first time, how the presence of a photospheric X-ray albedo component produces a spatially resolvable polarization pattern across a hard X-ray (HXR) source. It is demonstrated how changes in the degree and direction of polarization across a single HXR source can be used to determine the anisotropy of the radiating electron distribution.

  8. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  9. X-ray source brightness comparison: Rigaku rotating anode source vs. Kevex microfocus tube

    SciTech Connect

    Koch, J A; Dewald, E; Kozioziemski, B

    2010-03-17

    In 2007, we began to explore alternative x-ray sources for application to refraction-enhanced (phase contrast) x-ray radiography of cryogenic NIF ignition capsules containing frozen deuterium-tritium (D-T) ice layers. These radiographs are currently obtained using Kevex microfocus tubes as backlights, and for these sources the x-ray source size is approximately 5 {micro}m. As part of this exploration, we obtained refraction-enhanced radiographs of empty plastic capsules using the Janus laser facility at LLNL, demonstrating that even large ({approx} 100 {micro}m) sources can be utilized in refraction-enhanced radiography provided the source/sample distance is sufficiently large, and provided the final x-ray detector has sufficient spatial resolution. Essentially, in the current geometry, we rely on a small source to provide spatial resolution and on the source/sample distance to provide refraction contrast, but an equally useful alternative geometry is to use a large source and rely on fine detector spatial resolution to provide spatial resolution and on the sample/detector distance to provide refraction contrast.

  10. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  11. Stereoscopic observations of a solar flare hard X-ray source in the high corona

    SciTech Connect

    Kane, S.R.; Mctiernan, J.; Loran, J.; Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G. Los Alamos National Laboratory, NM )

    1992-05-01

    The vertical structure of the impulsive and gradual hard X-ray sources in high coronae and the characteristics of the impulsive soft X-ray emission are investigated on the basis of PVE, ICE, and GOES observations of the energetic flare on February 16, 1984. The average photon spectra observed by these instruments during the impulsive and gradual hard X-ray bursts are summarized. A comparison of these unocculted and partially occulted spectra shows that the sources of the impulsive hard X-ray (greater than about 25 keV) and impulsive soft X-ray (2-5 keV) emissions in this flare extended to coronal altitudes greater than about 200,000 km above the photosphere. At about 100 keV, the ratio of the coronal source brightness to the total source brightness was 0.001 during the impulsive phase and less than about 0.01 during the gradual hard X-ray burst. The sources of the gradual hard X-ray burst and gradual soft X-ray burst were almost completely occulted, indicating that these sources were located at heights less than 200,000 km above the photosphere. 47 refs.

  12. Producing X-rays at the APS

    ScienceCinema

    None

    2016-07-12

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  13. Source effects in analyzer-based X-ray phase contrast imaging with conventional sources

    SciTech Connect

    Hoennicke, M. G.; Manica, J.; Mazzaro, I.; Cusatis, C.; Huang, X.-R.

    2012-11-15

    Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

  14. Source effects in analyzer-based X-ray phase contrast imaging with conventional sources

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Manica, J.; Mazzaro, I.; Cusatis, C.; Huang, X.-R.

    2012-11-01

    Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

  15. Picosecond soft-x-ray pulses from a high-intensity laser-plasma source.

    PubMed

    Pelletier, J F; Chaker, M; Kieffer, J C

    1996-07-15

    We report time-resolved spectroscopic analysis of laser-produced plasma x-ray sources. Plasmas produced by a 400-fs 1-TW tabletop laser are characterized with a transmission grating spectrometer coupled to a soft-x-ray streak camera. Soft-x-ray radiation in the 1-6-nm range with durations of 2-7 ps is observed for copper and tantalum plasmas. The effect of incident laser energy on the x-ray pulse duration is also investigated.

  16. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  17. On the black hole masses in ultra-luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Zhou, Xin-Lin

    2015-05-01

    Ultra-luminous X-ray sources (ULXs) are off-nuclear X-ray sources in nearby galaxies with X-ray luminosities ⩾ 1039 erg s-1. The measurement of the black hole (BH) masses of ULXs is a long-standing problem. Here we estimate BH masses in a sample of ULXs with XMM-Newton observations using two different mass indicators, the X-ray photon index and X-ray variability amplitude based on the correlations established for active galactic nuclei (AGNs). The BH masses estimated from the two methods are compared and discussed. We find that some extreme high-luminosity (LX > 5 ×1040 erg s-1) ULXs contain the BH of 104-105 M⊙ . The results from X-ray variability amplitude are in conflict with those from X-ray photon indices for ULXs with lower luminosities. This suggests that these ULXs generally accrete at rates different from those of X-ray luminous AGNs, or they have different power spectral densities of X-ray variability. We conclude that most of ULXs accrete at super-Eddington rate, thus harbor stellar-mass BH.

  18. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  19. Assessment of silicon carbide x-ray mask overlay performance in the IBM Advanced Lithography Facility x-ray stepper

    NASA Astrophysics Data System (ADS)

    Kimmel, Kurt R.; Chen, Alek C.; Powers, Lynn A.; Vampatella, Ben R.

    1995-05-01

    This paper presents the results of a study to explicitly assess the performance of silicon carbide masks by directly measuring overlay accuracy and precision of exposures made on a state-of-the-art commercially available x-ray stepper, the Suss XRS200/3. The work was done using a mask fabricated at IBM from silicon carbide coated wafers obtained from HOYA Electronics Corp. with exposures completed at IBM's Advanced Lithography Facility (ALF) using synchrotron-generated radiation. The mask pattern design contains many overlay measurement fiducials, resolution patterns, and alignment verniers, and two sets of three alignment marks: one set inboard (kerf) and one set outboard. The performance of an imaging-based alignment system, such as the ALX system on the Suss XRS200/3 steppers, varies depending upon the optical characteristics of the alignment marks on the mask and wafer.

  20. CCD advances for X-ray scientific measurements in 1985

    NASA Technical Reports Server (NTRS)

    Janesick, James; Elliott, Tom; Collins, Stewart; Daud, Taher; Campbell, Dave; Dingizian, Arsham

    1986-01-01

    A theoretical model is presented which predicts the output response of a CCD to soft X-ray spectra. The model simulates the four fundamental parameters that ultimately limit CCD performance: quantum efficiency, charge collection efficiency, charge transfer efficiency, and read noise. Simulated results are presented for a wide variety of CCD structures, and general conclusions are presented about achieving a practical balance of sensitivity, energy, and spatial resolution for an AXAF instrument. The results of the analysis are compared to an existing state-of-the art CCD and improvements which will be made in the near future are projected.

  1. Studies of Supersoft X-ray Sources (SSS) and Quasisoft X-ray Sources (QSS) in the Milky Way and Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Pun, Chun-Shing J.; Li, K.; Kong, A. K. H.; DiStefano, R.

    2010-03-01

    Quasisoft X-ray sources (QSSs) are luminous (L > 1036 erg s-1, kT between 120eV and 350eV) X-ray sources emitting few or no photons at energy above 2 keV yet clearly emitting at above 1.1 keV. While their spectra are harder than luminous supersoft X-ray sources (SSSs), which have characteristic temperatures of tens of eV, QSSs are significantly softer than most canonical X-ray sources. They have been identified in elliptical galaxies, spiral galaxies (in both spiral arms and halos), and globular clusters. We report here on the progress of a comprehensive and systematic search of SSSs and QSSs in the Milky Way and in the Magellanic Clouds using archival X-ray data. Our focus is to conduct an optimized search to identify all candidates in order to differentiate between the different natures of SSSs and QSSs. The candidates collected would be checked for counterparts in other wavelengths, which could possibly help us to determine the fundamental nature of these sources, including the properties, if present, of the accretors and the accretion disks. This work is supported by a Hong Kong SAR Research Grants Council General Research Fund and by a NASA ADP grant.

  2. High Resolution X-Ray Astronomy with the Chandra Observatory Stellar Point Sources and Extended Gaseous Emission of Cen Chandra X-Ray Observations of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo

    2000-02-01

    I will introduce the Chandra Observatory and new results obtained during the Chandra OAC phase. These include the newly discovered X-ray jet in PKS 0637-752; X-ray jet, characteristics of point sources and extended emission in Cen A; and contact discontinuities and merger evidence of A2142.

  3. Dust-grain scattering of X-rays observed during the lunar occultation of a transient X-ray source near the Galactic center

    SciTech Connect

    Mitsuda, K.; Takeshima, T.; Kii, T.; Kawai, N. Institute of Physical and Chemical Research, Wako )

    1990-04-01

    Extended X-ray emission surrounding point X-ray sources has been detected in the energy band 1-10 keV during lunar occultation observations of the Galactic center region. These extended X-rays are most likely due to X-ray scattering by interstellar dust grains. The spatial size and the intensity of the extended emission around the transient X-ray source GS 1741.2-2859/1741.6-2849 have been studied extensively. The spatial size is consistent with the typical grain size of about 0.06 micron. The intensity is used to obtain the energy dependence of the scattering optical depth to the source, which suggests the existence of iron in the grains. The ratio of the iron column density contained in the grains to the hydrogen column density of the neutral gas is roughly consistent with the cosmic abundance of iron. 30 refs.

  4. Shielded radiography with a laser-driven MeV-energy X-ray source

    NASA Astrophysics Data System (ADS)

    Chen, Shouyuan; Golovin, Grigory; Miller, Cameron; Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen; Clarke, Shaun; Pozzi, Sara; Umstadter, Donald

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam's inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  5. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  6. Electrospinning jets as X-ray sources at atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pokorný, P.; Mikeš, P.; Lukáš, D.

    2010-11-01

    Electrospinning jets producing nanofibres from a polymer solution by electrical forces are fine cylindrical electrodes that create extremely high electric-field strength in their vicinity at atmospheric conditions. However, this quality of electrospinning is only scarcely investigated, and the interactions of the electric fields generated by them with ambient gases are nearly unknown. Here we report on the discovery that electrospinning jets generate X-ray beams up to energies of 20 keV at atmospheric conditions. The X-ray nature of the detected radiation is incontrovertibly proved by a spectroscopic experiment. We hypothesize how the field strength increases to gigantic values in the vicinity of charged electrospinning jets, as a consequence of counterion condensation, to accelerate charged particles, at a short distance, comparable with their mean path at atmospheric pressure, up to kinetic energies that give rise to the detection of X-rays. The experimental set-up designed by us for the generation and detection of high-energy electromagnetic radiation from electrospinning is extremely simple.

  7. Small-animal tomography with a liquid-metal-jet x-ray source

    NASA Astrophysics Data System (ADS)

    Larsson, D. H.; Lundström, U.; Westermark, U.; Takman, P. A. C.; Burvall, A.; Arsenian Henriksson, M.; Hertz, H. M.

    2012-03-01

    X-ray tomography of small animals is an important tool for medical research. For high-resolution x-ray imaging of few-cm-thick samples such as, e.g., mice, high-brightness x-ray sources with energies in the few-10-keV range are required. In this paper we perform the first small-animal imaging and tomography experiments using liquid-metal-jet-anode x-ray sources. This type of source shows promise to increase the brightness of microfocus x-ray systems, but present sources are typically optimized for an energy of 9 keV. Here we describe the details of a high-brightness 24-keV electron-impact laboratory microfocus x-ray source based on continuous operation of a heated liquid-In/Ga-jet anode. The source normally operates with 40 W of electron-beam power focused onto the metal jet, producing a 7×7 μm2 FWHM x-ray spot. The peak spectral brightness is 4 × 109 photons / ( s × mm2 × mrad2 × 0.1%BW) at the 24.2 keV In Kα line. We use the new In/Ga source and an existing Ga/In/Sn source for high-resolution imaging and tomography of mice.

  8. Near-infrared Counterparts of Chandra X-ray Sources Toward the Galactic Center

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis; Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Blum, Robert; Olsen, Knut; Sellgren, Kris; Sarajedini, Ata

    2010-10-01

    The Chandra X-ray Observatory has now discovered nearly 10,000 X-ray point sources in the 2° × 0fdg8 region around the Galactic Center. The sources are likely to be a population of accreting binaries in the Galactic Center, but little else is known of their nature. We obtained JHKs imaging of the 17' × 17' region around Sgr A*, an area containing 4339 of these X-ray sources, with the ISPI camera on the Cerro Tololo Inter-American Observatory (CTIO) 4 m telescope. We cross-correlate the Chandra and ISPI catalogs to find potential IR counterparts to the X-ray sources. The extreme IR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. We find 2137 IR/X-ray astrometrically matched sources: statistically, we estimate that our catalog contains 289 ± 13 true matches to soft X-ray sources and 154 ± 39 matches to hard X-ray sources. However, the fraction of true counterparts to candidate counterparts for hard sources is just 11%, compared to 60% for soft sources, making hard source NIR matches particularly challenging for spectroscopic follow-up. We calculate a color-magnitude diagram (CMD) for the matches to hard X-ray sources, and find regions where significant numbers of the IR matches are real. We use their CMD positions to place limits on the absolute Ks -band magnitudes of the potential NIR counterparts to hard X-ray sources. We find regions of the counterpart CMD with 9 ± 3 likely Wolf-Rayet/supergiant binaries (with four spectroscopically confirmed in the literature) as well as 44 ± 13 candidates that could consist of either main-sequence high mass X-ray binaries or red giants with an accreting compact companion. In order to aid spectroscopic follow-up, we sort the candidate counterpart catalog on the basis of IR and X-ray properties to determine which source characteristics increase the probability of a true match. We find a set of 98 IR matches to hard X-ray sources

  9. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  10. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  11. Advances in x-ray computed microtomography at the NSLS

    SciTech Connect

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  12. ADVANCES IN X-RAY COMPUTED MICROTOMOGRAPHY AT THE NSLS.

    SciTech Connect

    DOWD,B.A.

    1998-08-07

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the ''gridding'' algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  13. Telescope Scientist on the Advanced X-Ray Astrophysics Observatory

    NASA Technical Reports Server (NTRS)

    VanSpeybroeck, Leon

    1999-01-01

    The most important activity during this reporting period was the calibration of the AXAF High Resolution Mirror Assembly (HRMA) and the analysis of the copious data which were obtained during that project. The calibration was highly successful, and will result in the AXAF being by far the best calibrated X-ray observatory ever flown, and more accurate results by all of its users. This period also included participation in the spacecraft alignment and assembly activities and final flight readiness reviews. The planning of the first year of Telescope Scientist AXAF observations also was accomplished. The Telescope Scientist team also served as a technical resource for various problems which were encountered during this period. Many of these contributions have been documented in memoranda sent to the project.

  14. Telescope Scientist on the Advanced X-ray Astrophysics Observatory

    NASA Technical Reports Server (NTRS)

    Smith, Carl M. (Technical Monitor); VanSpeybroeck, Leon; Tananbaum, Harvey D.

    2004-01-01

    In this period, the Chandra X-ray Observatory continued to perform exceptionally well, with many scientific observations and spectacular results. The HRMA performance continues to be essentially identical to that predicted from ground calibration data. The Telescope Scientist Team has improved the mirror model to provide a more accurate description to the Chandra observers, enabling them to reduce the systematic errors and uncertainties in their data reduction. There also has been good progress in the scientific program. Using the Telescope Scientist GTO time, we carried out an extensive Chandra program to observe distant clusters of galaxies. The goals of this program were to use clusters to derive cosmological constraints and to investigate the physics and evolution of clusters. A total of 71 clusters were observed with ACIS-I; the last observations were completed in December 2003.

  15. Tomography of human trabecular bone with a laser-wakefield driven x-ray source

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Parker, S.; Symes, D. R.; Sandholzer, M. A.; Mangles, S. P. D.; Najmudin, Z.

    2016-01-01

    A laser-wakefield driven x-ray source is used for the radiography of human bone. The betatron motion of accelerated electrons generates x-rays which are hard (critical energy {{E}\\text{crit}}>30 keV), have small source size (<3 μm) and high average brightness. The x-rays are generated from a helium gas cell which is near-instantly replenishable, and thus the average photon flux is limited by the repetition rate of the driving laser rather than the breakdown of the x-ray source. A tomograph of a human bone sample was recorded with a resolution down to 50 μm. The photon flux was sufficiently high that a radiograph could be taken with each laser shot, and the fact that x-ray beams were produced on 97% of shots minimised failed shots and facilitated full micro-computed tomography in a reasonable time scale of several hours, limited only by the laser repetition rate. The x-ray imaging beamline length (not including the laser) is shorter than that of a synchrotron source due to the high accelerating fields and small source size. Hence this interesting laboratory-based source may one day bridge the gap between small microfocus x-ray tubes and large synchrotron facilities.

  16. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  17. REVIEWS OF TOPICAL PROBLEMS: Recent advances in X-ray refractive optics

    NASA Astrophysics Data System (ADS)

    Aristov, V. V.; Shabel'nikov, L. G.

    2008-01-01

    X-ray refractive optics has made rapid strides to a large degree due to the work of Russian scientists, and has now become one of the most rapidly advancing areas in modern physical optics. This review outlines the results of investigation of refractive devices and analysis of their properties. The conception of planar lenses made of silicon and other materials is set forth. We discuss the applications of refractive lenses to the transformation of X-ray images, photonic crystal research, and the development of focusing devices in high-energy X-ray telescopes.

  18. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  19. Identification of Supersoft X-ray Sources and Quasisoft X-ray Sources in the Magellanic Clouds Using XMM-Newton

    NASA Astrophysics Data System (ADS)

    Tsang, Tsz Ho; Li, K. L.; Pun, C. S. J.; Di Stefano, R.; Kong, A. K. H.

    2011-05-01

    Supersoft X-ray Sources (SSSs) and Quasisoft X-ray Sources (QSSs), collectively known as Very Soft Sources (VSSs), are observationally defined as X-ray sources having no or little emission above 1 keV together with energy spectra exhibiting characteristic temperature of tens of eV and roughly between 175 to 350 keV respectively. A systematic search in the Magellanic Clouds (MCs) was done using public archival data of the XMM-Newton observatory spanning from year 2000 to 2009. The VSSs candidates were identified using an automated source selection program based on hardness ratio criteria defined by count rates in three different energy bands (0.1-1.1 keV, 1.1-2.0 keV, 2.0-7.0 keV). Potential sources were checked for optical (USNO-B1.0) and infrared (2MASS) counterparts using automatic catalogue-querying scripts in order to verify their identity and to screen out foreground stars. The algorithm is effective in recovering previously identified VSSs in the MCs. Moreover, it enables us to investigate long-term X-Ray variability of these sources by comparing multiple data sets and serves as a tool for discovering new VSS candidates in other sky regions. This project is supported by the General Research Fund HKU704709P of the Hong Kong SAR government.

  20. Researches on stability of microfocus electron-impact x-ray source

    NASA Astrophysics Data System (ADS)

    Ma, Yu-tian; Liu, Jun-Biao; Zhao, Wei-xia; Niu, Geng; Han, Li

    2016-10-01

    A microfocus electron-impact X-ray source with micro-beam was introduced in this paper. The tungsten cathode electrogun is used as emitting system, and the focusing system is consists of two magnetic solenoid lenses, it is effective, light and handy. The matching problems between emitting system focusing system are studied on the microfocus X-ray source. The current of the first focusing lens and the second focusing lens is 0.8A and 1.64A at the voltage of 90kV respectively, and the filament current is 2.5A. Under the condition, the micro-beam spot X-ray is gained. The test results of stability showed that the X-ray source have a excellent stability, X-ray intensity of which is 110.6+/-0.03μSr/hr, target current of which is 185.5+/-1.5μA, and the target temperature of which is 96.5+/-0.5°C.The resolution of micro-focus X-ray source is about 4μm by the analysis of JIMA, which meet the application requirement of microfocus X-ray source.

  1. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  2. Probing cluster potentials through gravitational lensing of background X-ray sources

    NASA Technical Reports Server (NTRS)

    Refregier, A.; Loeb, A.

    1996-01-01

    The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.

  3. The X-ray spectral evolution of the ultraluminous X-ray source Holmberg IX X-1

    NASA Astrophysics Data System (ADS)

    Luangtip, Wasutep; Roberts, Timothy P.; Done, Chris

    2016-08-01

    We present a new analysis of X-ray spectra of the archetypal ultraluminous X-ray source (ULX) Holmberg IX X-1 obtained by the Swift, XMM-Newton and NuSTAR observatories. This ULX is a persistent source, with a typical luminosity of ˜1040 erg s-1, that varied by a factor of 4-5 over eight years. We find that its spectra tend to evolve from relatively flat or two-component spectra in the medium energy band (1-6 keV), at lower luminosities, to a spectrum that is distinctly curved and disc-like at the highest luminosities, with the peak energy in the curved spectrum tending to decrease with increased luminosity. We argue that the spectral evolution of the ULX can be explained by super-Eddington accretion models, where in this case we view the ULX down the evacuated funnel along its rotation axis, bounded by its massive radiatively driven wind. The spectral changes then originate in enhanced geometric beaming as the accretion rate increases and wind funnel narrows, causing the scattered flux from the central regions of the supercritical flow to brighten faster than the isotropic thermal emission from the wind, and so the curved hard spectral component to dominate at the highest luminosities. The wind also Compton down-scatters photons at the edge of the funnel, resulting in the peak energy of the spectrum decreasing. We also confirm that Holmberg IX X-1 displays spectral degeneracy with luminosity, and suggest that the observed differences are naturally explained by precession of the black hole rotation axis for the suggested wind geometry.

  4. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-08-10

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L{sub X} {>=} 10{sup 40} erg s{sup -1}). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass {approx}10 M{sub Sun} or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the {approx}>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow.

  5. Observation of Actin Filaments in Leydig Cells with a Contact-type Soft X-ray Microscope with Laser Plasma X-ray Source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Tamotsu, Satoshi; Yasuda, Keiko; Kishimoto, Maki; Nishikino, Masaharu; Kinjo, Yasuhito; Shinohara, Kunio

    Actin filaments in Leydig cells from mouse testes have been observed with a contact-type soft x-ray microscope with laser plasma x-ray source. The Leydig cells were fixed with paraformaldehyde, stained with Phalloidin, and observed with a confocal laser microscope prior to the observation with x-ray microscope. Obtained images by both of the confocal laser microscopy and the x-ray microscopy were directly compared and revealed that not only position of actin filaments but also the shapes can be identified each other. The actin filaments in the x-ray images were clearly recognized and their structures were obtained in more detail compared to those in the confocal laser microscope images.

  6. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  7. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  8. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    SciTech Connect

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of new light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all

  9. Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes

    SciTech Connect

    Bagchi, Suman; Kiran, P. Prem; Yang, K.; Rao, A. M.; Bhuyan, M. K.; Krishnamurthy, M.; Kumar, G. Ravindra

    2011-01-15

    We demonstrate that carbon nanotube coated surfaces produce two orders of magnitude brighter hard x-ray emission, in laser produced plasmas, than planar surfaces. It is accompanied by three orders of magnitude reduction in ion debris which is also low Z and nontoxic. The increased emission is a direct consequence of the enhancement in local fields and is via the simple and well known 'lightning rod' effect. We propose that this carbon nanotube hard x-ray source is a simple, inexpensive, and high repetition rate hard x-ray point source for a variety of applications in imaging, lithography, microscopy, and material processing.

  10. Transient X-Ray Sources in the Magellanic-type Galaxy NGC 4449

    NASA Astrophysics Data System (ADS)

    Jithesh, V.; Wang, Zhongxiang

    2017-02-01

    We report the identification of seven transient X-ray sources in the nearby Magellanic-type galaxy NGC 4449 using archival multi-epoch X-ray observations conducted with the Chandra, XMM-Newton, and Swift telescopes over the years 2001–2013. Among them, two sources are classified as supersoft X-ray sources (SSSs) because of their soft X-ray color; the rest of the sources are X-ray binaries (XRBs). Transient SSSs’ spectra can be fitted with a blackbody of effective temperature ∼80–105 eV, and luminosities were ≃ {10}37{--}{10}38 {erg} {{{s}}}-1 in 0.3–8 keV. These properties are consistent with the widely accepted model for SSSs, an accreting white dwarf with steady nuclear burning on its surface, and the SSS emission has also been observed in many post-nova systems. Detailed analysis of one sufficiently bright SSS revealed strong short-term variability, possibly showing a 2.3-hr periodic modulation, and long-term variability, detectable over 23 years with different X-ray telescopes before the year 2003. The X-ray properties of four other transients are consistent with neutron star or black hole binaries in their hard state, whereas the remaining source is most likely an XRB with a quasi-soft X-ray spectrum. Analysis of archival Hubble Space Telescope image data was also conducted, and multiple massive stars were found as possible counterparts. We conclude that the X-ray transient properties in NGC 4449 are similar to those in other Magellanic-type galaxies.

  11. The Faintest X-Ray Sources from z = 0 TO 8

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Hasinger, G.

    2012-03-01

    We use the new 4 Ms exposure of the Chandra Deep Field-South (CDF-S) field obtained with the Chandra X-ray satellite to investigate the properties of the faintest X-ray sources over a wide range of redshifts. We use an optimized averaging procedure to investigate the weighted mean X-ray fluxes of optically selected sources in the CDF-S over the redshift range z = 0-8 and down to 0.5-2 keV fluxes as low as 5 × 10-19 erg cm-2 s-1. None of the samples of sources at high redshifts (z > 5) show any significant flux, and at z = 6.5 we place an upper limit on the X-ray luminosity of 4 × 1041 erg s-1 in the rest-frame 3.75-15 keV band for the sample of Bouwens et al. This is consistent with any X-ray production in the galaxies being solely due to star formation. At lower redshifts, we find significant weighted mean X-ray fluxes in many samples of sources over the redshift range z = 0-4. We use these to argue that (1) the relation between star formation and X-ray production remains invariant over this redshift range, (2) X-ray sources below the direct detection threshold in the CDF-S are primarily star forming, and (3) there is full consistency between UV and X-ray estimations of the star formation history. Based in part on data obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. Design and characterization of a pulsed x ray source for fluorescent lifetime measurements

    NASA Astrophysics Data System (ADS)

    Blankespoor, S. C.

    1993-12-01

    To search for new, fast, inorganic scintillators, the author and his colleagues have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 HA maximum average cathode current. The laser produces 3 x 10(exp 7) photons at 650 nm per approximately 100 ps pulse, with up to 10(exp 7) pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray photon energy, at tube biases of 20, 25, and 30 kV, is 9.4, 10.3, and 11.1 keV, respectively. They measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10(exp 6) and 3 x 10(exp 6) photons/sec/steradian at tube biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented.

  13. Design and characterization of a pulsed x-ray source for fluorescent lifetime measurements

    SciTech Connect

    Blankespoor, S.C. |

    1993-12-01

    To search for new, fast, inorganic scintillators, the author and his colleagues have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 HA maximum average cathode current. The laser produces 3 {times} 10{sup 7} photons at 650 nm per {approximately}100 ps pulse, with up to 10{sup 7} pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray photon energy, at tube biases of 20, 25, and 30 kV, is 9.4, 10.3, and 11.1 keV, respectively. They measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 {times} 10{sup 6} and 3 {times} 10{sup 6} photons/sec/steradian at tube biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented.

  14. Discovery and Characterization of Gravitationally Lensed X-ray Sources in the CLASH Sample

    NASA Astrophysics Data System (ADS)

    Pasha, Imad; Van Weeren, Reinout J.; Santos, Felipe A.

    2017-01-01

    We present the discovery of ~20 gravitationally lensed X-ray sources in the Cluster Lensing And Supernova survey with Hubble (CLASH) survey, a sample of massive clusters of galaxies between z ~ 0.2-0.9 observed with the Hubble Space Telescope (HST). By combining CLASH imaging with Chandra X-ray Observatory observations of the same clusters, we select those sources in the HST images which are gravitationally lensed X-ray sources behind the clusters. Of those discovered sources, we determine various properties including source redshifts and magnifications, as well as performing X-ray spectral fits to determine source fluxes and luminosities. Prior to this study, only four lensed X-ray sources behind clusters have been found, thus to the best of our knowledge, our program is the first to systematically categorize lensed X-ray sources behind galaxy clusters.This work was supported by the SAO REU program, which is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  15. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  16. Recent advances in X-ray microanalysis in dermatology

    SciTech Connect

    Forslind, B.; Grundin, T.G.; Lindberg, M.; Roomans, G.M.; Werner, Y.

    1985-01-01

    Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complemented by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.

  17. Development of a 1 {mu}s, 40 Hz, x-ray source

    SciTech Connect

    Shope, S.L.; Jojola, J.M.; Prestwich, K.R.

    1993-07-01

    We are developing a 1 cm diameter, 1{mu}s, 300 keV, 1 kA repetitive pulsed electron beam diode to be used in a linear x-ray source. The diode is required to operate from a single pulse mode up to 40 Hz. A single pulse, double x-ray source has been developed and tested. Each source produces a 1 {mu}s electron beam with voltages up to 300 keV, 1 kA for each of the two sources. The electron beams impinge on 5 mil tantalum converters to make the x-rays. The x-rays are produced in field emission diodes powered by a single PPT, a pulsed transformer and a capacitive pulse forming network (PFN).

  18. X-rays beware: the deepest Chandra catalogue of point sources in M31

    NASA Astrophysics Data System (ADS)

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2016-10-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ˜1 Ms, we detected 795 X-ray sources in the bulge, north-east, and south-west fields of M31, covering an area of ≈0.6 deg2, to a limiting unabsorbed 0.5-8.0 keV luminosity of ˜1034 erg s-1. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's D25 isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49 per cent) of our Chandra sources (352 or 44 per cent unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to previous Chandra X-ray sources we detected 259. new sources in our catalogue. We created X-ray luminosity functions (XLFs) in the soft (0.5-2.0 keV) and hard (2.0-8.0 keV) bands that are the most sensitive for any large galaxy based on our detection limits. Completeness-corrected XLFs show a break around ≈1.3 × 1037 erg s-1, consistent with previous work. As in past surveys, we find that the bulge XLFs are flatter than the disc, indicating a lack of bright high-mass X-ray binaries in the disc and an aging population of low-mass X-ray binaries in the bulge.

  19. A miniature metal-ceramic x-ray source for spacecraft instrumentation.

    PubMed

    Koppel, L N; Marshall, J R

    1998-04-01

    Definitive mineralogical identification of materials with x-ray diffraction and fluorescence on remote planetary probes requires the development of a rugged miniature x-ray source that complies with the mass, power, thermal, and electrical management constraints imposed by space missions. Conventional x-ray tubes are generally fragile, glass-envelope designs with heat-sensitive seals. They are too brittle and bulky for planetary missions, and usually require cumbersome and power-consuming cooling systems. Here we describe the development of a novel, rugged miniature x-ray source employing a ceramic BeO substrate upon which a metal target material is deposited. Conventional thermionic emission and high-voltage acceleration of electrons to strike the metal target material produce an x-ray yield comparable to conventional x-ray tubes. Thermal management of the x-ray source is achieved with the excellent heat transport properties of the BeO target substrate coupled with a passive heatpipe.

  20. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source.

    PubMed

    Saito, Masatoshi

    2004-12-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kalpha doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images.

  1. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  2. Long Duration Multi-hohlraum X-ray Sources for Eagle Nebula Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Heeter, Robert; Martinez, David; Casner, Alexis; Villette, Bruno; Mancini, Roberto; Pound, Marc

    2013-10-01

    A novel foam-filled multi-hohlraum long-duration x-ray source has been demonstrated at the Omega EP laser and used to obtain L-band spectra of photoionized Ti. A larger scale version of the source will be used in the Science on NIF Eagle Nebula experiments studying dynamic evolution of distinctive pillar and cometary structures in star-forming clouds, where the long duration and directionality of photoionizing radiation from nearby stars generates new classes of flows and instabilities. At NIF, a target representing an astrophysical molecular cloud will be placed several mm from an x-ray source lasting 40-100 ns. At EP, three hohlraums were illuminated in sequence with 3.3 kJ pulses lasting 6 ns, or 4.3 kJ pulses lasting 10 ns, generating 18 or 30 ns of x-ray output at 90-100 eV color temperature. Performance of the source was validated using the μ DMX and VSG spectrometers, ASBO VISAR, and x-ray pinhole imagery. The HYDRA code suggests the EP-scale source can also be shot at NIF with at least 10 kJ per hohlraum. The multi-hohlraum source concept has potential further application to hard x-ray sources, soft x-ray backlighters, and nonlinear ablative hydrodynamics. Prepared by LLNL under Contract DE-AC52-07NA27344. J. Kane supported by DOE OFES grant HEDLP LAB 11-583.

  3. TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55

    SciTech Connect

    Jithesh, V.; Wang, Zhongxiang

    2016-04-10

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-ray luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.

  4. Quasiperiodic oscillations in bright galactic-bulge X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.

    1985-01-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.

  5. Localization of the X-ray source in the globular cluster G1 with Chandra

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.; Heinke, C. O.; di Stefano, R.; Cohn, H. N.; Lugger, P. M.; Barmby, P.; Lewin, W. H. G.; Primini, F. A.

    2010-09-01

    We report the most accurate X-ray position of the X-ray source in the giant globular cluster G1 in M31 by using the Chandra X-ray Observatory, Hubble Space Telescope (HST) and Canada-France-Hawaii Telescope (CFHT). G1 is clearly detected with Chandra and by cross-registering with HST and CFHT images, we derive a 1σ error radius of 0.15arcsec, significantly smaller than the previous measurement by XMM-Newton. We conclude that the X-ray emission of G1 is likely to come from within the core radius of the cluster. We have considered a number of possibilities for the origin of the X-ray emission but can rule all but two scenarios out: it could be due to either accretion on to a central intermediate-mass black hole (IMBH) or an ordinary low-mass X-ray binary (LMXB). Based on the X-ray luminosity and the Bondi accretion rate, an IMBH accreting from the cluster gas seems unlikely and we suggest that the X-rays are due to accretion from a companion. Alternatively, the probability that a 1.5 Msolar cluster LMXB lies within the 95 per cent X-ray error circle is about 0.7. Therefore we cannot rule out a single LMXB as the origin of the X-ray emission. While we cannot distinguish between different models with current observations, future high-resolution and high-sensitivity radio imaging observations will reveal whether there is an IMBH at the centre of G1.

  6. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    NASA Astrophysics Data System (ADS)

    Garg, Akash Deep; Karnewar, A. K.; Ojha, A.; Shrivastava, B. B.; Holikatti, A. C.; Puntambekar, T. A.; Navathe, C. P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8-18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 μm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  7. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  8. Prospects for X-ray absorption with the super-bright light sources of the future.

    PubMed

    Norman, D

    2001-03-01

    The immense growth in applications of X-ray absorption spectroscopy (XAS) has been enabled by the widespread availability of intense tunable X-rays from synchrotron radiation sources. Recently, new concepts have been proposed for fourth-generation light sources, such as the SASE (self-amplified stimulated emission) X-ray free-electron lasers (XFELs) being pursued at Hamburg (TESLA) and Stanford (LCLS), and the recirculator ring (MARS) at Novosibirsk. These sources offer expected gains of many orders of magnitude in instantaneous brilliance, which will unlock opportunities for qualitatively different science. Examples of new or greatly expanded techniques in XAS could include Raman X-ray absorption fine structure (XAFS), pump-probe experiments, time-resolved XAFS and small-spot X-ray spectromicroscopy, although the limited tunability of the sources might not allow conventional XAFS measurements. Multi-photon X-ray absorption could become a new field of study. There should not be a collective stampede to these new sources, however, and it is likely that storage rings will continue to be necessary for most XAFS applications. The extreme brightness of these future light sources will present difficult challenges in instrumentation, especially detectors and sample containment. Practitioners will also have to exercise caution, because the intensity of the beam will surely destroy many samples and in some cases there will be so many photons absorbed per atom that XAFS will be impossible.

  9. Observations of low-luminosity X-ray sources in Vela-Puppis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    Results are presented for a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg. This region contains at least six low-luminosity X-ray sources within about 10 deg of PSR 0833-45, which is near the center of the Gum nebula. The X-ray source 4U 0833-45, associated with the Vela pulsar, is observed at twice its 4U catalog intensity. The lack of X-ray pulsations at the pulsar period (greater than 99% nonpulsed), the nonthermal power-law spectrum, and models of the X-ray source distribution in this region suggest that a large fraction of the X-rays come from an extended source about 1 deg of arc in radius. The observation of a high-temperature (effective temperature at least 100 million K) spectrum in a field of view containing only Puppis A among known sources has led to the discovery of new OSO 8 source, OS 0752-39. Other spectra from this region are discussed.

  10. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  11. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  12. A wide-beam X-ray source suitable for diffraction enhanced imaging applications

    NASA Astrophysics Data System (ADS)

    Kim, Chang H.; Bourham, Mohamed A.; Michael Doster, J.

    2006-10-01

    Research in diffraction-enhanced imaging (DEI), using a synchrotron source with an X-ray flux of 1.4×10 12 ph/mm 2/s, has shown strong potential in obtaining high-resolution images as compared to conventional radiographs. This research investigates the feasibility of developing a large area circular X-ray source with fluxes comparable to a synchrotron source. The source should be capable of integration into a compact system with peak powers not to exceed 200 kW to be feasible for use in a major medical facility, industrial complex or screening facility (such as cargo or airport). A computational study of a circular concentric filament wide-beam area X-ray source has been investigated in this research. The design features are based on generating electrons from three concentric circular filaments to provide an area electron flux, with a 60 kV accelerating potential and a beam current of up to 3 A. The X-ray target is a grounded stationary oxygen-free copper target with a layer of molybdenum. This target feature differs from standard rotating X-ray targets in conventional X-ray systems. Studies of electron trajectories and their distribution on the target were conducted using the SIMION 3D code. Heat loading and thermal management were studied using heat transfer modules from the coupled FEMLAB multi-physics and MATLAB codes. The Monte Carlo code MCNP 5 was used to obtain the X-ray flux and energy distribution for aluminum and beryllium windows. This computational study shows that this target configuration generates X-rays with photon flux comparable to synchrotron source and sufficient for DEI applications. The maximum target temperature rise is 1357 K after 70 s when cooling the back of the target to liquid nitrogen temperature using cold finger contact, and 325 K for an invaded target, in which liquid nitrogen circulates inside the target.

  13. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  14. X-Ray Sources and High-Throughput Data Collection Methods

    SciTech Connect

    Snell, Gyorgy

    2012-03-15

    X-ray diffraction experiments on protein crystals are at the core of the structure determination process. An overview of X-ray sources and data collection methods to support structure-based drug design (SBDD) efforts is presented in this chapter. First, methods of generating and manipulating X-rays for the purpose of protein crystallography, as well as the components of the diffraction experiment setup are discussed. SBDD requires the determination of numerous protein-ligand complex structures in a timely manner, and the second part of this chapter describes how to perform diffraction experiments efficiently on a large number of crystals, including crystal screening and data collection.

  15. Satellite Observations of Rapidly Varying Cosmic X-ray Sources. Ph.D. Thesis - Catholic Univ.

    NASA Technical Reports Server (NTRS)

    Maurer, G. S.

    1979-01-01

    The X-ray source data obtained with the high energy celestial X-ray detector on the Orbiting Solar Observatory -8 are presented. The results from the 1977 Crab observation show nonstatistical fluctuations in the pulsed emission and in the structure of the integrated pulse profile which cannot be attributed to any known systematic effect. The Hercules observations presented here provide information on three different aspects of the pulsed X-ray emission: the variation of pulsed flux as a function of the time from the beginning of the ON-state, the variation of pulsed flux as a function of binary phase, and the energy spectrum of the pulse emission.

  16. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    SciTech Connect

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light.

  17. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  18. X-ray sources and high-throughput data collection methods.

    PubMed

    Snell, Gyorgy

    2012-01-01

    X-ray diffraction experiments on protein crystals are at the core of the structure determination process. An overview of X-ray sources and data collection methods to support structure-based drug design (SBDD) efforts is presented in this chapter. First, methods of generating and manipulating X-rays for the purpose of protein crystallography, as well as the components of the diffraction experiment setup are discussed. SBDD requires the determination of numerous protein-ligand complex structures in a timely manner, and the second part of this chapter describes how to perform diffraction experiments efficiently on a large number of crystals, including crystal screening and data collection.

  19. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Theobald, W.; Regan, S. P.; Romanofsky, M. H.

    2016-11-01

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  20. Development of a Novel Tunable X-Ray Source for the RPI-LINAC

    SciTech Connect

    Y. Danon; R.C. Block

    2004-11-30

    This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source.

  1. [Development of soft X-ray and vacuum ultraviolet spectrum sources].

    PubMed

    Chen, Bo; Ni, Qi-liang; Cao, Jian-lin; Li, Fu-tian; Chen, Xing-dan

    2005-03-01

    The soft X-ray and vacuum ultraviolet sources developed in CIOMP are presented. The wall-stabilized argon arc source with spectrum stability and repeatability of +/-0.3% is applied to the calibration of spectrum intensity distribution of the vacuum ultraviolet instruments as an absolute standard source. The Penning source, duobplasma source and hollow cathode source are able to produce atomic and ionic line spectra as a wavelength standard source, which covers a few nanometers to several tens nanometers with spectrum radiation stability and repeatability of +/-1.0%. In particular, the low debris laser produced plasma source with liquid aerosol spray target recently developed can emit stronger soft X-ray for soft X-ray lithography and metrology, which has a transfer efficiency as high as 0.75%/2pi x sr/2% bandwidth.

  2. Derivation of total filtration thickness for diagnostic x-ray source assembly.

    PubMed

    Sekimoto, Michiharu; Katoh, Yoh

    2016-08-21

    The method defined by the IEC 60522 for determining the inherent filtration of an x-ray source device is applicable only for a limited range of tube voltage. Because the users cannot legally remove the x-ray movable diaphragm of the x-ray source device, total filtration, which is the sum of the additional filtration diaphragm movable for specific filtration and x-ray, cannot be measured. We develop a method for simply obtaining the total filtration for different tube voltage values. Total filtration can be estimated from a ratio R' of the air kerma [Formula: see text], which is measured with an Al plate with thickness T, and [Formula: see text] measured without an Al plate. The conditions of the target material of the x-ray source device are then entered into the Report 78 Spectrum Processor to calculate the air kerma K x and K x+T for Al thicknesses x and (x  +  T), respectively, to obtain R. The minimum value of x, which is the difference between the R and R', is the total filtration of the x-ray source device. The total filtration calculated using the industrial x-ray source device was within  ±1% in the 40-120 kV range. This method can calculate the total filtration using air kerma measurements with and without the Al plate. Therefore, the load on the x-ray tube can be reduced, and preparation of multiple Al plates is not necessary. Furthermore, for the 40-120 kV tube voltage range, the user can easily measure the total filtration.

  3. Derivation of total filtration thickness for diagnostic x-ray source assembly

    NASA Astrophysics Data System (ADS)

    Sekimoto, Michiharu; Katoh, Yoh

    2016-08-01

    The method defined by the IEC 60522 for determining the inherent filtration of an x-ray source device is applicable only for a limited range of tube voltage. Because the users cannot legally remove the x-ray movable diaphragm of the x-ray source device, total filtration, which is the sum of the additional filtration diaphragm movable for specific filtration and x-ray, cannot be measured. We develop a method for simply obtaining the total filtration for different tube voltage values. Total filtration can be estimated from a ratio R‧ of the air kerma Kx+T\\prime , which is measured with an Al plate with thickness T, and Kx\\prime measured without an Al plate. The conditions of the target material of the x-ray source device are then entered into the Report 78 Spectrum Processor to calculate the air kerma K x and K x+T for Al thicknesses x and (x  +  T), respectively, to obtain R. The minimum value of x, which is the difference between the R and R‧, is the total filtration of the x-ray source device. The total filtration calculated using the industrial x-ray source device was within  ±1% in the 40-120 kV range. This method can calculate the total filtration using air kerma measurements with and without the Al plate. Therefore, the load on the x-ray tube can be reduced, and preparation of multiple Al plates is not necessary. Furthermore, for the 40-120 kV tube voltage range, the user can easily measure the total filtration.

  4. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907

    NASA Astrophysics Data System (ADS)

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A. Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D’Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-01

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of ~1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity ≥ 1041 erg second‑1) might harbor NSs.

  5. Multimodal hard X-ray imaging of a mammography phantom at a compact synchrotron light source.

    PubMed

    Schleede, Simone; Bech, Martin; Achterhold, Klaus; Potdevin, Guillaume; Gifford, Martin; Loewen, Rod; Limborg, Cecile; Ruth, Ronald; Pfeiffer, Franz

    2012-07-01

    The Compact Light Source is a miniature synchrotron producing X-rays at the interaction point of a counter-propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X-rays can be exploited in high-sensitivity differential phase-contrast imaging with a grating-based interferometer. Here, the first multimodal X-ray imaging experiments at the Compact Light Source at a clinically compatible X-ray energy of 21 keV are reported. Dose-compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark-field imaging over conventional attenuation-based projections.

  6. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    PubMed

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10(41) erg second[Formula: see text]) might harbor NSs.

  7. X-ray sources in regions of star formation. I - The naked T Tauri stars

    NASA Technical Reports Server (NTRS)

    Walter, F. M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but 'naked' T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope.

  8. Laboratory source based full-field x-ray microscopy at 9 keV

    SciTech Connect

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  9. Advanced composites characterization with x-ray technologies

    NASA Astrophysics Data System (ADS)

    Baaklini, George Y.

    1993-12-01

    Recognizing the critical need to advance new composites for the aeronautics and aerospace industries, we are focussing on advanced test methods that are vital to successful modeling and manufacturing of future generations of high temperature and durable composite materials. These newly developed composites are necessary to reduce propulsion cost and weight, to improve performance and reliability, and to address longer-term national strategic thrusts for sustaining global preeminence in high speed air transport and in high performance military aircraft.

  10. The structure of the coronal soft X-ray source associated with the dark filament disappearance of 1991 September 28 using the Yohkoh Soft X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Mcallister, Alan; Uchida, Yutaka; Tsuneta, Saku; Strong, Keith T.; Acton, Loren W.; Hiei, Eijiro; Bruner, Marilyn E.; Watanabe, Takashi; Shibata, Kazunari

    1992-01-01

    The structure of the coronal soft X-ray source associated with the dark filament disappearance on September 28, 1991, observed with the Soft X-ray Telescope, is examined as a possible example of the 'eruption-reconnection' model of filament disappearance. The results suggest, however, that this model may not fit. There is a strong possibility that much of the dark filament mass remains in the heated unwinding axial field.

  11. The SPARX Project: R & D Activity Towards X-Rays FEL Sources

    SciTech Connect

    Alesini, D.; Bellaveglia, M.; Bertolucci, S.; Biagini, M.E.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M.; Filippetto, D.; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Ligi, C.; Marcellini, F.; Migliorati, M.; /Frascati /ENEA, Frascati /INFN, Milan /INFN, Rome /INFN, Rome2 /Milan Polytechnic /UCLA /SLAC

    2005-08-05

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata aiming at the construction of a FELSASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on R&D activity on critical components and techniques for future X-ray facilities as described in this paper.

  12. X-ray phase imaging with a laboratory source using selective reflection from a mirror.

    PubMed

    Pelliccia, Daniele; Paganin, David M

    2013-04-22

    A novel approach for hard x-ray phase contrast imaging with a laboratory source is reported. The technique is based on total external reflection from the edge of a mirror, aligned to intercept only half of the incident beam. The mirror edge thus produces two beams. The refraction x-rays undergo when interacting with a sample placed before the mirror, causes relative intensity variations between direct and reflected beams. Quantitative phase contrast and pure absorption imaging are demonstrated using this method.

  13. M31 Globular Cluster X-Ray Sources: XMM-Newton and Chandra Results

    NASA Astrophysics Data System (ADS)

    Trudolyubov, Sergey; Priedhorsky, William

    2004-12-01

    We present the results of an M31 globular cluster (GC) X-ray source survey, based on the data of XMM-Newton and Chandra observations covering ~6100 arcmin2 of M31. We detected 43 X-ray sources coincident with GC candidates from various optical surveys. The inferred isotropic X-ray luminosities of GC sources lie between ~1035 and ~1039 ergs s-1 in the 0.3-10 keV energy band. The spectral properties of the 31 brightest sources in our sample were found to be similar to those of the low-mass X-ray binaries (LMXBs) located in the bulge and the GCs of the Milky Way. The spectral distribution of the M31 GC X-ray sources is consistent with that derived for the bulge of M31 and other nearby galaxies of different morphological type. Several sources demonstrate a correlation between the level of X-ray flux and the hardness of their energy spectrum reminiscent of the Galactic Z and atoll sources. We found that ~80% of the M31 GC sources with multiple flux measurements available show significant variability on timescales from days to years. The X-ray source RX J0043.2+4127, coincident with GC Bo 163, has been found to show recurrent transient outbursts with peak luminosities of ~1038 ergs s-1. Several sources in our sample show significant variability on a timescale of individual observations, ranging from aperiodic fluctuations to regular dipping. The X-ray luminosity function of GC sources is found to be significantly different from that of the point sources in the bulge and disk of M31. The luminosity distribution of M31 GC sources has ~10 times higher peak luminosity and a much higher fraction of bright sources than the Milky Way GC distribution. Six persistent sources in our sample (or ~14% of the total number) have luminosities exceeding 1038 ergs s-1 during all observations, and three other sources occasionally exceed that luminosity level. Our observations indicate that GC sources make the dominant contribution to the bright source counts in the areas of M31 covered by

  14. New hard X-ray sources observed with HEAO-A2

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Boldt, E. A.; Holt, S. S.; Mushotzky, R. F.; Pravdo, S. H.; Rothschild, R. E.; Serlemitsos, P. J.

    1978-01-01

    A search for new hard X-ray sources using data from the first complete view of the sky with the HEAO-A2 experiment discovered 47 new sources, detected 7 sources recently discovered with other experiments, and significantly reduced the size of the error boxes for 6 previously known sources. Intensities and error boxes are given for each of these sources; identifications are suggested when an error contains an object similar to known X-ray sources. The new identifications consist of seven Type 1 Seyfert galaxies, including two whose Seyfert characteristics were discovered due to their location in an X-ray error box; one intermediate Seyfert galaxy; three Abell clusters; five N-galaxies; two bursting radio sources; and an additional three nearby galaxies with bright nuclei and narrow emission lines.

  15. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  16. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    SciTech Connect

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Hohenberger, M.; Regan, S. P.

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  17. Full characterization of a laser-produced keV x-ray betatron source

    NASA Astrophysics Data System (ADS)

    Albert, F.; Phuoc, K. Ta; Shah, R.; Corde, S.; Fitour, R.; Tafzi, A.; Burgy, F.; Douillet, D.; Lefrou, T.; Rousse, A.

    2008-12-01

    This paper presents the complete characterization of a kilo-electron-volt laser-based x-ray source. The main parameters of the electron motion (amplitude of oscillations and initial energy) in the laser wakefield have been investigated using three independent methods relying on spectral and spatial properties of this betatron x-ray source. First we will show studies on the spectral correlation between electrons and x-rays that is analyzed using a numerical code to calculate the expected photon spectra from the experimentally measured electron spectra. High-resolution x-ray spectrometers have been used to characterize the x-ray spectra within 0.8-3 keV and to show that the betatron oscillations lie within 1 µm. Then we observed Fresnel edge diffraction of the x-ray beam. The observed diffraction at the center energy of 4 keV agrees with the Gaussian incoherent source profile of full width half maximum <5 µm, meaning that the amplitude of the betatron oscillations is less than 2.5 µm. Finally, by measuring the far field spatial profile of the radiation, we have been able to characterize the electron's trajectories inside the plasma accelerator structure with a resolution better than 0.5 µm.

  18. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  19. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian; Bievenue, Thomas J.; Burdett, John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  20. ROSAT X-ray sources embedded in the rho Ophiuchi cloud core

    NASA Astrophysics Data System (ADS)

    Casanova, Sophie; Montmerle, Thierry; Feigelson, Eric D.; Andre, Philippe

    1995-02-01

    We present a deep ROSAT Position Sensitive Proportional Counter (PSPC) image of the central region of the rho Oph star-forming region. The selected area, about 35 x 35 arcmins in size, is rich with dense molecular cores and young stellar objects (YSOs). Fifty-five reliable X-ray sources are detected (and up to 50 more candidates may be present) above approximately 1 keV,, doubling the number of Einstein sources in this area. These sources are cross-identified with an updated list of 88 YSOs associated with the rho Oph cloud core. A third of the reliable X-ray sources do not have optical counterparts on photographic plates. Most can be cross-identified wth Class II and Class III infrared (IR) sources, which are embedded T Tauri stars, but three reliable X-ray sources and up to seven candidate sources are tentatively identified with Class I protostars. Eighteen reliable, and up to 20 candidate, X-ray sources are probably new cloud members. The overall detection rate of the bona fide cloud population is very high (73% for the Class II and Class III objects). The spatial distribution of the X-ray sources closely follows that of the moleclar gas. The visual extinctions Av estimated from near-IR data) of the ROSAT sources can be as high as 50 or more, confirming that most are embedded in the cloud core and are presumably very young. Using bolometric luminosities Lbol estimated from J-magnitudes a tight correlation between Lx and Lbol is found, similar to that seen for older T Tauri stars in the Cha I cloud: Lx approximately 10-4 Lbol. A general relation Lxproportional to LbolLj seems to apply to all T Tauri-like YSOs. The near equality of the extintion in the IR J band and in the keV X-ray rage implies that this relation is valid for the detected fluxes as well as for the dereddened fluxes. The X-ray luminosity function of the embedded sourced in rho Oph spans a range of Lx approximately 1028.5 to approximately equal to or greater than 1031.5 ergs/s and is statistically

  1. Chandra X-Ray Observations of the Hydra A Cluster: An Interaction between the Radio Source and the X-Ray-emitting Gas

    NASA Astrophysics Data System (ADS)

    McNamara, B. R.; Wise, M.; Nulsen, P. E. J.; David, L. P.; Sarazin, C. L.; Bautz, M.; Markevitch, M.; Vikhlinin, A.; Forman, W. R.; Jones, C.; Harris, D. E.

    2000-05-01

    We present Chandra X-ray observations of the Hydra A cluster of galaxies, and we report the discovery of structure in the central 80 kpc of the cluster's X-ray-emitting gas. The most remarkable structures are depressions in the X-ray surface brightness, ~25-35 kpc in diameter, that are coincident with Hydra A's radio lobes. The depressions are nearly devoid of X-ray-emitting gas, and there is no evidence for shock-heated gas surrounding the radio lobes. We suggest that the gas within the surface brightness depressions was displaced as the radio lobes expanded subsonically, leaving cavities in the hot atmosphere. The gas temperature declines from 4 keV at 70 kpc to 3 keV in the inner 20 kpc of the brightest cluster galaxy (BCG), and the cooling time of the gas is ~600 Myr in the inner 10 kpc. These properties are consistent with the presence of an ~34 Msolar yr-1 cooling flow within a 70 kpc radius. Bright X-ray emission is present in the BCG surrounding a recently accreted disk of nebular emission and young stars. The star formation rate is commensurate with the cooling rate of the hot gas within the volume of the disk, although the sink for the material that may be cooling at larger radii remains elusive. A bright, unresolved X-ray source is present in the BCG's nucleus, coincident with the radio core. Its X-ray spectrum is consistent with a power law absorbed by a foreground NH~=4×1022 cm-2 column of hydrogen. This column is roughly consistent with the hydrogen column seen in absorption toward the <~24 pc diameter VLBA radio source. Apart from the point source, no evidence for excess X-ray absorption above the Galactic column is found.

  2. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    SciTech Connect

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.; Bland, S. N.

    2015-03-15

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium.

  3. Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping

    NASA Technical Reports Server (NTRS)

    Hu, Zhengwei

    2005-01-01

    X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.

  4. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  5. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  6. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki

    2010-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, consisting of 11 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  7. Chandra Studies of Unidentified X-ray Sources in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki

    2013-09-01

    We propose to study a complete X-ray sample in the luminosity range of > 10^34 erg s^-1 in the Galactic bulge, including 5 unidentified sources detected in the ROSAT All Sky Survey. Our goal is to obtain a clear picture about X-ray populations in the bulge, by utilizing the excellent Chandra position accuracy leading to unique optical identification together with the X-ray spectral properties. This is a new step toward understanding the formation history of the bulge. Furthermore, because the luminosity range we observe corresponds to a ``missing link'' region ever studied for a neutron star or blackhole X-ray binary, our results are also unique to test accretion disk theories at intermediate mass accretion rates.

  8. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  9. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Faenov, A. Ya.; Pikuz, T.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.

    2008-03-01

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800nm ) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%.

  10. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    SciTech Connect

    Fukuda, Y.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.; Faenov, A. Ya.; Pikuz, T.

    2008-03-24

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO{sub 2}, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO{sub 2} clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm{sup 2} scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than {+-}3%.

  11. Upgrade of X-band thermionic cathode RF gun for Compton scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshihiro; Sakamoto, Fumito; Natsui, Takuya; Yamamoto, Tomohiko; Hashimoto, Eiko; Lee, KiWoo; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Higo, Toshiyasu; Fukuda, Shigeki; Akemoto, Mitsuo

    2009-09-01

    A Compton scattering X-ray source consisting of an X-band (11.424 GHz) electron linear accelerator (linac) and Q-switched Nd: YAG laser is currently under development at the University of Tokyo. Monochromatic X-rays are required for a variety of medical and biological applications. The X-ray source produces monochromatic X-rays via collision between a 35-MeV multi-bunch (104 bunches in a 1 μs RF pulse) electron beam and 1.4 J/10 ns (532 nm) Nd: YAG laser pulse. The linac uses an X-band 3.5-cell thermionic cathode RF gun and an alpha magnet as an injector. Until now, electron beam generation (2 MeV, 1 pC/bunch at the exit of the injector), beam acceleration, and X-ray generation have been verified. In order to increase X-ray energy and intensity, we have completed the design and construction of a new RF gun with relevant modifications in some structures. In this paper, we describe the details of the concepts of designing a new RF gun and discuss future works.

  12. Monochromators for small cross-section x-ray beams from high heat flux synchrotron sources

    SciTech Connect

    Ice, G.; Riemer, B.; Khounsary, A.

    1996-10-01

    For some x-ray experiments, only a fraction of the intense central cone of x-rays generated by high-power undulator sources can be used; the x-ray source emittance is larger than the useful emittance for the experiment. For example with microfocusing optics, or for coherence experiments, x-ray beams with cross sections less than 0.1 mm{sup 2} are desirable. With such small beams, the total thermal load is small even though the heat flux density is high. Analyses indicate that under these conditions, rather simple crystal cooling techniques can be used. We illustrate the advantages of a small beam monochromator, with a simple x-ray monochromator optimized for x-ray microdiffraction. This monochromator is designed to achieve negligible distortion when subjected to a narrow (0.1 mm wide) beam from an APS undulator operating at 100 mA. It also allows for rapid and repeatable energy scans and rapid cycling between monochromatic and white beam conditions.

  13. Chandra Observation of the X-ray Source Population of NGC 6946

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Schlegel, E. M.; Hwang, U.; Petre, R.

    2003-01-01

    We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.

  14. Classifying X-ray Sources from the Chandra Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Hynes, Robert

    2012-09-01

    The completion of the Galactic Bulge Survey (GBS) by Chandra in AO-13 identified 400 new X-ray sources (on top of the 1200 already known), many of which are expected to have accessible optical counterparts. Wide-field variability studies can be an extremely powerful tool to classify these sources. In two nights with the new NOAO DECam we can obtain lightcurves of ALL of the optically accessible objects, together with another 400 GBS sources from earlier AOs, and about 1700 additional fainter objects from the Chandra Source Catalog. We therefore propose a joint Archival-NOAO study to obtain these lightcurves, use them to classify the X-ray sources, and pick out ellipsoidal variations and eclipses from the many quiescent low-mass X-ray binaries predicted to be accessible.

  15. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >1035 erg s‑1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  16. Ultraviolet spectroscopy of the supersoft X-ray source RX J0439.8-6809

    NASA Astrophysics Data System (ADS)

    Van Teeseling, Andre

    1997-07-01

    Observationally, supersoft X-ray sources are classified as near-Eddington stellar objects with almost all emission at energies < 0.5 keV. Only 13 supersoft X-ray sources have been optically identified, and of these 11 turn out to be binaries, probably with a shell-burning accreting white dwarf. We have recently identified RX J0439.8-6809 with a V=21.63, very blue star in the LMC. A 3sigma upper limit to the peak-to-peak optical variability is 0.07 mag. Of all optically identified supersoft X-ray sources, RX J0439.8-6809 has the lowest optical-to-X-ray flux ratio. The nature of RX J0439.8-6809 is still unknown. It might be the hottest known pre-white dwarf, suffering a late helium shell flash. Alternatively, RX J0439.8-6809 could be an accreting binary, in which case it might be the first known double-degenerate supersoft X-ray source with a predicted orbital period of only a few minutes. An ultraviolet spectrum is essential to distinguish between these two spectacular possibilities, and to bridge the gap between the X-ray and optical observations. Such a spectrum can only be obtained with the HST STIS. Therefore, we propose to obtain two ultraviolet spectra, which will test the assumption that the optical spectrum is the Rayleigh-Jeans tail of the soft X-ray component, which will determine the spectral energy distribution, and which may provide the first direct evidence for accretion in this source by detecting an excess in the ultraviolet or ultraviolet emission lines like N V Lambda 1240.

  17. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    SciTech Connect

    Puehlhofer, Gerd

    2009-05-11

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula.Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population.Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  18. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  19. XMM-Newton reveals extreme winds in ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Middleton, M.; Fabian, A.

    2016-06-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources with X-ray luminosities above 10^{39} erg/s, thought to be powered by accretion onto compact objects. Viable solutions include accretion onto neutron stars with strong magnetic fields, stellar-mass black holes at or in excess of the Eddington limit or intermediate-mass black holes. The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. In this talk, I will show the discovery of rest-frame emission and blueshifted (˜0.2c) absorption lines arising from highly ionized gas in the deep high-resolution XMM-Newton spectra of two ultraluminous X-ray sources. The blueshifted absorption lines occurs in a fast outflowing gas, whereas the emission lines originate in slow-moving gas around the source. The compact object is therefore surrounded by powerful winds with an outflow velocity of about 0.2c as predicted by models of hyper-accreting black holes. Further, deep, XMM-Newton observations will reveal powerful winds in many other ultraluminous X-ray sources and provide important hints to estimate the energetics of the wind, the geometry of the system, and the black hole masses.

  20. Probing the Evolving X-ray Sources of Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    Wilkins, Dan

    2013-04-01

    Material spiralling into black holes powers some of the most luminous objects we see in the Unviverse; AGN and galactic black hole binaries. X-rays are emitted from a corona of energetic particles around the black hole and are seen to reflect off of the accretion disc. As well as being impressive objects in their own right, the black holes in AGN can emit such large amounts of energy that they are important in governing the growth of galaxies and clusters. Through detailed analysis of the observed reflection features in the X-ray spectrum and the variability of the detected emission showing reverberation time lags between the directly observed continuum and the reflection, it is possible to detect the emission from material right down to the innermost stable orbit around the black hole. Comparing these observations to the results of general relativistic ray tracing simulations allows them to be analysed in the context of the geometry of the X-ray emitting region and it has been possible to constrain the locations of the X-ray sources in a number of AGN including 1H 0707-495, IRAS 13224-3809 and MCG-6-30-15. With high quality data from long X-ray observations of these sources, it has, for the first time, been possible to follow the evolution of the coronal X-ray source as the luminosity of the source goes up and down. We are able to find evidence that the size and other properties of the X-ray source changes on the timescale of a few hours, giving rise to the extreme variability seen in these sources with the source increasing in size as the luminosity increases. Such detailed analysis of observations (both of spectra and variability) and studies of how the X-ray source is changing is paving the way to the science that will be possible with the next generation of X-ray instruments (NuStar and Astro-H) and will allow us to understand the processes at work in the innermost regions of accretion black holes, releasing energy from the accretion flow to power some of the

  1. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  2. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    NASA Astrophysics Data System (ADS)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  3. Multiband Diagnostics of Unidentified 1FGL Sources with Suzaku and Swift X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Kataoka, J.; Maeda, K.; Takahashi, Y.; Nakamori, T.; Tahara, M.

    2013-10-01

    We have analyzed all the archival X-ray data of 134 unidentified (unID) gamma-ray sources listed in the first Fermi/LAT (1FGL) catalog and subsequently followed up by the Swift/XRT. We constructed the spectral energy distributions (SEDs) from radio to gamma-rays for each X-ray source detected, and tried to pick up unique objects that display anomalous spectral signatures. In these analyses, we target all the 1FGL unID sources, using updated data from the second Fermi/LAT (2FGL) catalog on the Large Area Telescope (LAT) position and spectra. We found several potentially interesting objects, particularly three sources, 1FGL J0022.2-1850, 1FGL J0038.0+1236, and 1FGL J0157.0-5259, which were then more deeply observed with Suzaku as a part of an AO-7 program in 2012. We successfully detected an X-ray counterpart for each source whose X-ray spectra were well fitted by a single power-law function. The positional coincidence with a bright radio counterpart (currently identified as an active galactic nucleus, AGN) in the 2FGL error circles suggests these sources are definitely the X-ray emission from the same AGN, but their SEDs show a wide variety of behavior. In particular, the SED of 1FGL J0038.0+1236 is not easily explained by conventional emission models of blazars. The source 1FGL J0022.2-1850 may be in a transition state between a low-frequency peaked and a high-frequency peaked BL Lac object, and 1FGL J0157.0-5259 could be a rare kind of extreme blazar. We discuss the possible nature of these three sources observed with Suzaku, together with the X-ray identification results and SEDs of all 134 sources observed with the Swift/XRT.

  4. High Energy X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T; Clark, E; Eagleton, R; Edwards, R

    2003-09-02

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy at 22 keV is {approx} 3 x 10{sup -4}.

  5. SIGMA discovery of a transient hard X-ray source in the galactic center region.

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Goldwurm, A.; Paul, J.; Denis, M.; Borrel, V.; Bouchet, L.; Roques, J. P.; Jourdain, E.; Trudolyubov, S.; Gilfanov, M.; Churazov, E.; Sunyaev, R.; Khavenson, N.; Dyachkov, A.; Novikov, B.; Chulkov, I.

    1996-09-01

    A new X-ray transient source, GRS 1730-312 (=KS 1730-312), was discovered by the hard X-ray/soft γ-ray coded mask telescope SIGMA/GRANAT in the Galactic Center region during observations performed in September 1994. The flare started on September 22 and lasted approximately 3days, during which the source became the brightest object of the region at energies above 35keV. The average 35-200keV spectrum can be described by a power law with photon index of -2.5 or by a thermal bremsstrahlung model with kT_e_=~70keV. SIGMA data have been found consistent with the spectral shape and with the spectral evolution observed by the TTM/Mir-Kvant telescope at lower energies. This new source belongs to the population of hard X-ray sources already detected by SIGMA in the direction of the Galactic Bulge region.

  6. Developing small vacuum spark as an x-ray source for calibration of an x-ray focusing crystal spectrometer.

    PubMed

    Ghomeishi, Mostafa; Karami, Mohammad; Adikan, Faisal Rafiq Mahamd

    2012-10-01

    A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper Kα and Kβ lines by using a flat α-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.

  7. Ultrafast Time-Resolved X-ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X-ray Source and Microcalorimeter Array.

    PubMed

    O'Neil, Galen C; Miaja-Avila, Luis; Joe, Young Il; Alpert, Bradley K; Balasubramanian, Mahalingam; Sagar, D M; Doriese, William; Fowler, Joseph W; Fullagar, Wilfred K; Chen, Ning; Hilton, Gene C; Jimenez, Ralph; Ravel, Bruce; Reintsema, Carl D; Schmidt, Dan R; Silverman, Kevin L; Swetz, Daniel S; Uhlig, Jens; Ullom, Joel N

    2017-03-02

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. ( Ogi , Y. ; et al. Struct. Dyn. 2015 , 2 , 034901 ; Chen , J. ; Zhang , H. ; Tomov , I. V. ; Ding , X. ; Rentzepis , P. M. Chem. Phys. Lett. 2007 , 437 , 50 - 55 ). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.

  8. Development of a microfocus x-ray tube with multiple excitation sources

    SciTech Connect

    Maeo, Shuji; Kraemer, Markus; Taniguchi, Kazuo

    2009-03-15

    A microfocus x-ray tube with multiple targets and an electron gun with a focal spot size of 10 {mu}m in diameter has been developed. The electron gun contains a LaB{sub 6} cathode and an Einzel lens. The x-ray tube can be operated at 50 W (50 kV, 1 mA) and has three targets, namely, Cr, W, and Rh on the anode that can be selected completely by moving the anode position. A focal spot size of 10 {mu}m in diameter can be achieved at 0.5 mA current. As demonstration of the usability of a multiexcitation x-ray tube, the fluorescence x-rays have been measured using a powder specimen mixed of TiO{sub 2}, Co, and Zr of the same quantity. The differences of excitation efficiency have clearly appeared according to the change in excitation source. From the results discussed here, it can be expected that the presented x-ray tube will be a powerful tool in microx-ray fluorescence spectrometers and various x-ray instruments.

  9. A POPULATION OF ULTRALUMINOUS X-RAY SOURCES WITH AN ACCRETING NEUTRON STAR

    SciTech Connect

    Shao, Yong; Li, Xiang-Dong

    2015-04-01

    Most ultraluminous X-ray sources (ULXs) are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star (NS) accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized NS. In this work we model the formation history of NS ULXs in an M82- or Milky Way (MW)-like Galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birth rate is around 10{sup −4} yr{sup −1} for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass–orbital period plane. Our results suggest that, compared with black hole X-ray binaries, NS X-ray binaries may significantly contribute to the ULX population, and high-mass and intermediate-mass X-ray binaries dominate the NS ULX population in M82- and MW-like Galaxies, respectively.

  10. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    SciTech Connect

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-06-10

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  11. X-ray source considerations in operation of digital detector arrays

    SciTech Connect

    Jensen, Terrence; Wendt, Scott

    2014-02-18

    Digital Detector Arrays (DDA) are increasingly replacing film in radiography applications. Standards exist for characterizing the performance of these detectors, and for using them in specific inspections. We have observed that the selection of the x-ray source to use with these detectors can also have a significant influence on the performance. We look at differences between standard, and micro-focus x-ray tubes, and end-window vs. side-window micro-focus tubes. We find that for best results, one must calibrate the DDA for the source settings used during an inspection. This is particularly true for variable-focus sources.

  12. X-ray grating interferometry with a liquid-metal-jet source

    NASA Astrophysics Data System (ADS)

    Thüring, T.; Zhou, T.; Lundström, U.; Burvall, A.; Rutishauser, S.; David, C.; Hertz, H. M.; Stampanoni, M.

    2013-08-01

    A liquid-metal-jet X-ray tube is used in an X-ray phase-contrast microscope based on a Talbot type grating interferometer. With a focal spot size in the range of a few microns and a photon flux of ˜1012 photons/s×sr, the brightness of such a source is approximately one order of magnitude higher than for a conventional microfocus source. For comparison, a standard microfocus source was used with the same grating interferometer, showing significantly increased visibility for the liquid-metal-jet arrangement. Together with the increased flux, this results in improved signal-to-noise ratio.

  13. The Interaction of Radio Sources and X-Ray-Emitting Gas in Cooling Flows

    NASA Astrophysics Data System (ADS)

    Blanton, E. L.

    Recent observations of the interactions between radio sources and the X-ray-emitting gas in cooling flows in the cores of clusters of galaxies are reviewed. The radio sources inflate bubbles in the X-ray gas, which then rise buoyantly outward in the clusters transporting energy to the intracluster medium (ICM). The bright rims of gas around the radio bubbles are cool, rather than hot, and do not show signs of being strongly shocked. Energy deposited into the ICM over the lifetime of a cluster through several outbursts of a radio source helps to account for at least some of the gas that is missing in cooling flows at low temperatures.

  14. Ultrafast X-ray Science at the Sub-Picosecond Pulse Source

    SciTech Connect

    Gaffney, Kelly J.; /SLAC, SSRL

    2005-09-30

    The ultrafast, high brightness x-ray free electron laser (XFEL) sources of the future have the potential to revolutionize the study of time dependent phenomena in the natural sciences. These linear accelerator (linac) sources will generate femtosecond (fs) x-ray pulses with peak flux comparable to conventional lasers, and far exceeding all other x-ray sources. The Stanford Linear Accelerator Center (SLAC) has pioneered the development of linac science and technology for decades, and since 2000 SLAC and the Stanford Synchrotron Radiation Laboratory (SSRL) have focused on the development of linac based ultrafast electron and x-ray sources. This development effort has led to the creation of a new x-ray source, called the Sub-Picosecond Pulse Source (SPPS), which became operational in 2003 [1]. The SPPS represents the first step toward the world's first hard x-ray free electron laser (XFEL), the Linac Coherent Light Source (LCLS), due to begin operation at SLAC in 2009. The SPPS relies on the same linac-based acceleration and electron bunch compression schemes that will be used at the LCLS to generate ultrashort, ultrahigh peak brightness electron bunches [2]. This involves creating an energy chirp on the electron bunch during acceleration and subsequent compression of the bunch in a series of energy-dispersive magnetic chicanes to create 80 fs electron pulses. The SPPS has provided an excellent opportunity to demonstrate the viability of these electron bunch compression schemes and to pursue goals relevant to the utilization and validation of XFEL light sources.

  15. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    SciTech Connect

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H.

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  16. Seeing Red and Shooting Blanks: Study of Red Quasars and Blank X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Elvis, Martin

    2005-01-01

    A major paper describing the technique and providing a list of 'blanks' was published in the Astrophysical Journal (abstract below). The results revealed a fascinating trove of novel X-ray sources: high redshift clusters of galaxies found efficiently; X-ray absorbed, optically clean AGN, which may be the bright prototypes of Chandra Deep Survey sources; and several with a still unknown nature. Recent XMM-Newton results confirm the existence of this class of X-ray source with much refined positions. During the first year of this project we have made a major discovery. The second 'blanks' X-ray source observed with Chandra was found to be extended. Using Chandra data and ground-based R and K band imaging we estimated this to be a high redshift cluster of galaxies with z approx. 0.85. Spectroscopy agrees with this estimate (z=0.89). This success shows that our method of hunting down 'blank' field X-ray sources is a highly efficient method of finding the otherwise elusive high redshift clusters. With extensive follow-up we should be able to use 'blanks' to make cosmological tests. The paper is now in press in the Astrophysical Journal (abstract below.) The other Chandra source is point-like, showing that there are a variety of 'blank' source types. Other follow-up observations with XMM-Newton, and (newly approved in cycle 2) with Chandra are eagerly awaited. A follow-up paper uses a large amount of supporting data for the remaining blanks. A combination of ROSAT, Chandra and ground based data convincingly identified one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy (abstract below). This program resulted in 3 refereed papers in major journals, 4 conference proceedings and a significant fraction of the PhD thesis of Dr. Ilaria Cagnoni. Details of the publications are given.

  17. Laser-based microfocused x-ray source for mammography: feasibility study.

    PubMed

    Krol, A; Ikhlef, A; Kieffer, J C; Bassano, D A; Chamberlain, C C; Jiang, Z; Pépin, H; Prasad, S C

    1997-05-01

    A laser-produced plasma (LPP) x-ray source with possible application in mammography was created by focusing a laser beam on a Mo target. A Table-Top-Terawatt (TTT) laser operating at 1 J energy per pulse was employed. A dual pulse technique was used. Maximum energy transfer (approximately 10%) from laser light to hot electrons was reached at a 150 ps delay between pulses and the conversion efficiency (hard x-ray yield/laser energy input) was approximately 2 x 10(-4). The created LPP x-ray source is characterized by a very small focal spot size (tens of microns), Gaussian brightness distribution, and a very short pulse duration (a few ps). The spectral distribution of the generated x rays was measured. Images of the focal spot, using a pinhole camera, and images of a resolution pattern and a mammographic phantom were obtained. The LPP focal spot modulation transfer function for different magnification factors was calculated. We have shown that the LPP source in conjunction with a spherically bent, high throughput, crystal monochromator in a fixed-exit Rowland circle configuration can be used to created a narrow band tunable mammography system. Tunability to a specific patient breast tissue thickness and density would allow one to significantly improve contrast and resolution (exceeding 20 lp/mm) while lowering the exposure up to 50% for thicker breasts. The prospects for the LPP x-ray source for mammographic application are discussed.

  18. Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945

    SciTech Connect

    Harrison, Sarah M.; /MIT /SLAC

    2006-09-11

    Recently, X-ray astronomy has been used to investigate objects such as galaxies, clusters of galaxies, Active Galactic Nuclei (AGN), quasars, starburst superbubbles of hot gas, X-ray binary systems, stars, supernova remnants, and interstellar and intergalactic material. By studying the x-ray emission patterns of these objects, we can gain a greater understanding of their structure and evolution. We analyze X-ray emission from the galaxy NGC 4945 using data taken by the Chandra X-ray Observatory. The Chandra Interactive Analysis of Observations (CIAO) software package was used to extract and fit energy spectra and to extract light curves for the brightest off-nuclear sources in two different observations of NGC 4945 (January, 2000 and May, 2004). A majority of sources were closely fit by both absorbed power law and absorbed bremsstrahlung models, with a significantly poorer {chi}{sup 2}/dof for the absorbed blackbody model, and most sources had little variability. This indicates that the sources are accreting binary systems with either a neutron star or black hole as the compact object. The calculated luminosities were about 10{sup 38} erg/s, which implies that the mass of the accreting object is close to 10 solar masses and must be a black hole.

  19. Unveiling the X-ray point source population of the Young Massive Cluster Westerlund 1

    NASA Astrophysics Data System (ADS)

    Clark, J. S.; Muno, M. P.; Negueruela, I.; Dougherty, S. M.; Crowther, P. A.; Goodwin, S. P.; de Grijs, R.

    2008-01-01

    Aims:We investigate the nature of the X-ray point source population within the Young Massive Cluster Westerlund 1. Methods: Chandra observations of 18 ks and 42 ks were used to determine the X-ray properties of emitters within Wd 1, while a comprehensive multiwavelength dataset was employed to constrain their nature. Results: We find X-ray emission from a multitude of different stellar sources within Wd 1, including both evolved high mass and low mass pre-MS stars. We attribute the X-ray emission from the high mass component to both single stars and colliding wind binaries on the basis of their observed flux and spectral properties, with binaries being systematically harder and more luminous than single stars. We are able to infer a high binary fraction for both WN (10/16) and WC stars (7/8), resulting in a combined Wolf Rayet binary fraction of ⪆70%. These represent the most stringent limits currently placed on the binary fraction of very massive (>45 M⊙) stars. We place the first observational constraints on X-ray emission from stars transitioning between the Main Sequence and Wolf Rayet phases, finding that both hot (B hypergiants) and cool (yellow hypergiants and red supergiants) spectral types appear to be intrinsically X-ray faint. The B[e] star W9 is found to be X-ray bright and shows similarities to both the X-ray binary SS433 and the Luminous Blue Variable η Carinae. Globally, we find the point source population to be systematically fainter than those found in younger massive star forming regions such as NGC 3603 and R136/30 Doradus, consistent with a loss of the most massive stars to SNe and a reduction in emissivity from the low mass pre-Main Sequence stars. No unambiguous evidence for X-ray emission due to accretion onto relativistic objects of any mass is found, although the current data do not exclude the presence of either a High Mass X-ray Binary or an Intermediate Mass Black Hole accreting at a low rate. Finally, we suggest the progenitor mass

  20. Advanced x-ray systems for nondestructive inspection and contraband detection

    NASA Astrophysics Data System (ADS)

    Armistead, Robert A.

    1999-10-01

    High-energy X rays provide the capability for examining the interior of large, complex objects, measuring densities and dimensions, finding flaws, and detecting contraband. Although various types of X-ray imaging systems have been in use for some time, recent developments have greatly extended the envelope of capabilities. Two ARACOR X-ray vision systems will be discussed that offer new and advanced capabilities for contraband detection and nondestructive evaluation. The Eagle is a new mobile, transportable, high- efficiency X-ray imaging system designed for inspection cargo and detecting drugs, explosives and weapons at seaports, airports and border crossings. ARACOR's line of industrial computed tomography systems provide quantitative 3D X-ray images for such applications as the inspection of Minuteman and Peacekeeper solid rocket motors, the safety and security of nuclear weapons, and metrology and failure studies of automobile components and castings. Newly developed software enables the accurate reverse engineering of complex parts to form CAD descriptions and the direct input of image data into rapid prototyping systems for the production of replacement parts.

  1. Advances in Domain Connectivity for Overset Grids Using the X-Rays Approach

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kim, Noah; Pandya, Shishir A.

    2012-01-01

    Advances in automation and robustness of the X-rays approach to domain connectivity for overset grids are presented. Given the surface definition for each component that makes up a complex configuration, the determination of hole points with appropriate hole boundaries is automatically and efficiently performed. Improvements made to the original X-rays approach for identifying the minimum hole include an automated closure scheme for hole-cutters with open boundaries, automatic determination of grid points to be considered for blanking by each hole-cutter, and an adaptive X-ray map to economically handle components in close proximity. Furthermore, an automated spatially varying offset of the hole boundary from the minimum hole is achieved using a dual wall-distance function and an orphan point removal iteration process. Results using the new scheme are presented for a number of static and relative motion test cases on a variety of aerospace applications.

  2. Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry.

    PubMed

    Thakral, Seema; Terban, Maxwell W; Thakral, Naveen K; Suryanarayanan, Raj

    2016-05-01

    For poorly water soluble drugs, the amorphous state provides an avenue to enhance oral bioavailability. The preparation method, in addition to sample history, can dictate the nature and the stability of the amorphous phase. Conventionally, X-ray powder diffractometry is of limited utility for characterization, but structural insights into amorphous and nanocrystalline materials have been enabled by coupling X-ray total scattering with the pair distribution function. This has shown great promise for fingerprinting, quantification, and even modeling of amorphous pharmaceutical systems. A consequence of the physical instability of amorphous phases is their crystallization propensity, and recent instrumental advances have substantially enhanced our ability to detect and quantify crystallization in a variety of complex matrices. The International Centre for Diffraction Data has a collection of the X-ray diffraction patterns of amorphous drugs and excipients and, based on the available supporting information, provides a quality mark of the data.

  3. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  4. Research relative to high resolution camera on the advanced X-ray astrophysics facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  5. Astronomy and astrophysics with the Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    1988-01-01

    The optics and instruments of the Advanced X-ray Astrophysics Facility (AXAF) are described. The instrument capabilities are reviewed so that potential users of AXAF may plan supporting research in the years prior to launch. The AXAF is to be built around a large-area high-resolution grazing-incidence X-ray telescope, with a complement of imaging and spectroscopic instruments which can be maintained and/or replaced in orbit. An important feature of the AXAF is the aspect system. It utilizes solid state star cameras and fiducial lights to permit both image reconstruction (on the ground) with minimal blurring due to spacecraft and internal motions, and placement of the X-ray image on the sky to an accuracy of 1 arcsec.

  6. On the origin of two unidentified radio/X-ray sources discovered with XMM-Newton

    NASA Astrophysics Data System (ADS)

    García, Federico; Combi, Jorge A.; Medina, María C.; Romero, Gustavo E.

    2015-12-01

    Aims: We aim at clarifying the nature of the emission of two spatially related unidentified X-ray sources detected with XMM-Newton telescope at intermediate-low Galactic latitude Methods: We use the imaging and spectral capabilities of XMM-Newton to study the X-ray properties of these two sources. In addition, we complement our study with radio data obtained at different frequencies to analyze a possible physical association between the sources. Results: Observations reveal a point-like source aligned with elongated diffuse emission. The X-ray spectra of these sources is best-fitted by an absorbed power law with photon index Γ ~ 1.7 for the point-like source and ~2.0 for the extended source. Both sources show nonthermal radio-continuum counterparts that might indicate a physical association. In addition, from the available data, we did not detect variability on the point-like source in several timescales. Two possible scenarios are analyzed: one Galactic and one extra-Galactic. First, based on HI line absorption, assuming a Galactic origin, we infer a distance upper bound of ≲2 kpc, which poses a constraint on the height over the Galactic plane of ≲200 pc and on the linear size of the system of ≲2.3 pc. In this case, the X-ray luminosities are ≳1032 erg s-1 and ≳7.5 × 1032 erg s-1, for the point-like and extended sources, respectively. Second, an extra-Galactic nature is discussed, where the point-like source might be the core of a radio galaxy and the extended source its lobe. In this case, we compare derived fluxes, spectral indices, and spatial correlation with those typical from the radio galaxy population, showing the feasibility of this alternative astrophysical scenario. Conclusions: From the available observational evidence, we suggest that the most promising scenario to explain the nature of these sources is a system consisting of a one-sided radio galaxy, where the point-like source is an active galactic nucleus and the extended source

  7. A waveguide electron cyclotron resonance source of X-ray emission for low-dose introscopy

    NASA Astrophysics Data System (ADS)

    Sergeichev, K. F.; Ionidi, V. Yu.; Karfidov, D. M.; Lukina, N. A.

    2013-12-01

    It is shown that a "point" target in a conventional evacuated waveguide in the magnetic field of a mirror trap formed by two disk magnets axially magnetized in the direction perpendicular to the electric field vector represents a source of X-ray bremsstrahlung of electrons accelerated in an ECR discharge with a broad range of photon energies up to 0.8 MeV. The dosage rate of the source is ˜1 R/h. The source fed from a conventional microwave oven has small dimensions and a low weight. It is easy-to-use and is suitable as a laboratory tool, in particular, in radiobiology and introscopy. After passing through the object, X-ray emission is recorded by a digital camera with the help of a highly sensitive X-ray fluorescent screen, which converts it into an optical image.

  8. Observations of the X-ray burst source MXB 1636-53

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.; Lewin, W. H. G.; Doty, J.

    1977-01-01

    X-ray bursts have been observed from MXB 1636-53, almost certainly associated with the strong steady X-ray source 2S 1636-536 (Norma X-1, 3U 1636-53). The steady source was observed in January 1977 at roughly half the intensity reported in the 3U catalog and showed about 15% variability on a time scale of hours. The spectra of the X-ray bursts are well fitted by blackbody radiation whose temperature rises rapidly to a maximum of approximately 28 million K and then cools slowly. If the source is at a distance of 10 kpc, the radius of the projected burst emission region is about 10 km, similar to the size of a neutron star.

  9. Closed source experimental system for soft x-ray spectroscopy of radioactive materials

    SciTech Connect

    Modin, A.; Butorin, S. M.; Vegelius, J.; Olsson, A.; Englund, C.-J.; Andersson, J.; Werme, L.; Nordgren, J.; Kaeaembre, T.; Skarnemark, G.; Burakov, B. E.

    2008-09-15

    An instrumental and experimental setup for soft x-ray spectroscopy meeting the requirements of a closed source for radioactivity is described. The system consists of a vacuum sealed cell containing the sample, mounted on a tubing system to ensure compatibility with most standard manipulators. The soft x rays penetrate a thin x-ray window separating the interior of the cell from the vacuum in the experimental chamber. Our first results for single crystal PuO{sub 2} confirm the feasibility of experiments using the setup. The results are consistent with results of first principles calculations and previously recorded spectra obtained using a standard open source setup. The results show that the closed source experimental system can be used to collect valuable experimental data from radioactive materials.

  10. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  11. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  12. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  13. ON THE NATURE OF HARD X-RAY EXTRAGALACTIC SOURCES OBSERVED WITH XMM-NEWTON

    SciTech Connect

    Jimenez-Bailon, E.; Huerta, E. M.; Krongold, Y.; Chavushyan, V.; Schartel, N.; Santos-Lleo, M.

    2012-03-15

    Over the last decade, X-ray surveys have provided outstanding new results due to the lack of the common selection effects present at other wavelengths. Here, we have selected a sample of unidentified sources from the XMM-Newton Slew Survey Catalog, likely to be extragalactic. Five of them were observed with the XMM-Newton observatory. In this work, we present the results of the spectral analysis of these objects in the X-ray and optical bands. Only three of them had useful spectroscopic X-ray data, and follow up observations were carried out in the optical range to determine their coordinates, classification, and redshift. The sources are different types of active galactic nuclei (AGNs) with redshifts ranging from 0.059 to 0.386. The properties at both spectral ranges (X-rays and optical) are compatible with the common properties of their types of AGNs. Although the sources were selected by their hard X-ray properties, none of the three detected objects turned out to be an obscured AGN.

  14. A Central X-ray Source in the Non-thermal Radio Nebula DA 495

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T. L.; Kothes, R.

    2003-01-01

    We report the detection, in archival ROSAT and ASCA observations, of X-ray emission from the direction of DA 495 (G65.7+1.2), a likely supernova remnant of uncertain classification but with similarities to the Crab Nebula. An unusual feature of the radio nebula is its annular morphology, with a flux minimum at the geometrical center. In the soft X-ray band, the ROSAT data resolve a compact source near the edge of the central radio hole ; the hard X-ray morphology, at the limit of ASCA's spatial resolution, is suggestive of extended plerionic emission dropping off from a central flux maximum coincident with the ROSAT source. The spectrum is well-described by a power-law with photon index approximately 1.7, and the X-ray flux is roughly constant with time. Taken together, this evidence suggests identification of the X-ray source with a magnetospherically active neutron star and its associated wind nebula. Timing analysis of the ASCA data yields only a weak upper bound on pulsations with periods longer than approximately 30 ms. These results reveal for the first time the high-energy engine that powers the synchrotron nebula, and strengthen the classification of DA 495 as a plerionic supernova remnant, one that may represent a late evolutionary stage of Crab-like nebulae.

  15. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  16. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  17. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    SciTech Connect

    Haugh, M; Schneider, M B

    2008-04-28

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 {micro}m square pixels, and 15 {micro}m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{Delta}E {approx} 10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  18. IDENTIFICATION OF GALACTIC BULGE SURVEY X-RAY SOURCES WITH TYCHO-2 STARS

    SciTech Connect

    Hynes, Robert I.; Britt, C. T.; Wright, N. J.; Jonker, P. G.; Steeghs, D.; Torres, M. A. P.; Maccarone, T. J.; Greiss, S.; Nelemans, G.

    2012-12-20

    We identify 69 X-ray sources discovered by the Galactic Bulge Survey (GBS) that are coincident with or very close to bright stars in the Tycho-2 catalog. Additionally, two other GBS sources are resolved binary companions to Tycho-2 stars where both components are separately detected in X-rays. Most of these are likely to be real matches, but we identify nine objects with large and significant X-ray-to-optical offsets as either detections of resolved binary companions or chance alignments. We collate known spectral types for these objects, and also examine Two Micron All Sky Survey colors, variability information from the All-Sky Automated Survey, and X-ray hardness ratios for the brightest objects. Nearly a third of the stars are found to be optically variable, divided roughly evenly between irregular variations and periodic modulations. All fall among the softest objects identified by the GBS. The sample forms a very mixed selection, ranging in spectral class from O9 to M3. In some cases, the X-ray emission appears consistent with normal coronal emission from late-type stars, or wind emission from early-types, but the sample also includes one known Algol, one W UMa system, two Be stars, and several X-ray bright objects likely to be coronally active stars or binaries. Surprisingly, a substantial fraction of the spectroscopically classified, non-coincidental sample (12 out of 38 objects) have late B or A type counterparts. Many of these exhibit redder near-IR colors than expected for their spectral type and/or variability, and it is likely that the X-rays originate from a late-type companion star in most or all of these objects.

  19. What is the nature of the high energy X-ray sources in the galaxy?

    NASA Astrophysics Data System (ADS)

    Cuturilo, Sophie; Tomsick, John; Clavel, Maica; Lansbury, George B.

    2017-01-01

    Finding sources of high energy “hard” X-rays allow us to probe the most extreme conditions in the Universe. Such sources include accreting black holes and neutron stars, where we find the strongest gravitational and magnetic fields, as well as pulsars and supernova remnants, where particles are accelerated to produce the hard X-rays. Over the past decade, the INTEGRAL satellite ahs been discovering new high energy sources, and this has allowed us to understand the population of bright hard X-ray sources. Over the past few years, the NuSTAR satellite, with much better sensitivity than INTEGRAL, has been allowing us to find even more hard X-ray sources, and we will present results from studies of sources discovered in the NuSTAR serendipitous source survey. We analyzed seven different potential sources looking for counterparts using NuSTAR, Chandra and ground based optical/NIR observations. Of the seven, two have confirmed counterparts and five need either an optical/NIR detection or further spectroscopy.

  20. Measuring x-ray spectra of flash radiographic sources [PowerPoint

    SciTech Connect

    Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph; Mendez, Jacob; Moir, David C.; Sedillo, Robert; Shurter, Roger P.; Volegov, Petr Lvovich; Webb, Timothy J

    2015-11-02

    The x-ray spectra of flash radiographic sources are difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.

  1. X-ray spectra from the Cornell Electron-Beam Ion Source (CEBIS I)

    SciTech Connect

    Johnson, B.M.; Jones, K.W.; Kostroun, V.O.; Ghanbari, E.; Janson, S.W.

    1985-01-01

    Radiation emitted from the Cornell electron beam ion source (CEBIS I) has been surveyed with a Si(Li) x-ray detector. These spectra can be used to estimate backgrounds from electron bremsstrahlung and to evaluate the feasibility of atomic physics experiments using the CEBIS I source in this configuration. 1 ref., 2 figs.

  2. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    SciTech Connect

    Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Hartemann, F V; Kuba, J; LaSage, G P; Rosenzweig, J B; Slaughter, D R; Springer, P T; Tremaine, A M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  3. X-ray Flaring State in the LBL Source OJ 287

    NASA Astrophysics Data System (ADS)

    Wierzcholska, Alicja; Siejkowski, Hubert

    2015-12-01

    The low energy-peaked BL Lacertae type source OJ 287 (z=0.306) is currently flaring in the optical and infrared regimes (ATEL #8372, #8374, #8378, #8382). The source is also monitored in the X-ray range with Swift-XRT since November, 27th 2015.

  4. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  5. Research study entitled advanced X-ray astrophysical observatory (AXAF). [system engineering for a total X-ray telescope assembly

    NASA Technical Reports Server (NTRS)

    Rasche, R. W.

    1979-01-01

    General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.

  6. Copernicus observations of a number of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Mason, K. O.; Sanford, P. W.; White, N. E.

    1976-01-01

    The Copernicus satellite was launched on 21 August 1972. The main experiment on board is the University of Princeton UV telescope. In addition a cosmic X-ray package of somewhat modest aperture was provided by the Mullard Space Science Laboratory (MSSL) of University College London. Following a brief description of the instrument, a list of galactic sources observed during the year is presented. Although the X-ray detection aperture is small, the ability to point the satellite for long periods of time with high accuracy makes Copernicus an ideal vehicle for the study of variable sources.

  7. Advancement of X-Ray Microscopy Technology and its Application to Metal Solidification Studies

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Curreri, Peter A.

    1996-01-01

    The technique of x-ray projection microscopy is being used to view, in real time, the structures and dynamics of the solid-liquid interface during solidification. By employing a hard x-ray source with sub-micron dimensions, resolutions of 2 micrometers can be obtained with magnifications of over 800 X. Specimen growth conditions need to be optimized and the best imaging technologies applied to maintain x-ray image resolution, contrast and sensitivity. It turns out that no single imaging technology offers the best solution and traditional methods like radiographic film cannot be used due to specimen motion (solidification). In addition, a special furnace design is required to permit controlled growth conditions and still offer maximum resolution and image contrast.

  8. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, Ciro; Middleton, Matthew J.; Fabian, Andrew C.

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 1039 ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (103-105 solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  9. Dual color x-rays from Thomson or Compton sources

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2015-05-01

    We analyze the possibility of producing two color X or γ radiation by Thomson/Compton back-scattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of values for a realistic experiments.

  10. Dual color x rays from Thomson or Compton sources

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Gatti, G.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2014-02-01

    We analyze the possibility of producing two-color x or γ radiation by Thomson/Compton backscattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of realistic experiments.

  11. Accretion Disks in Supersoft X-ray Sources

    NASA Technical Reports Server (NTRS)

    Popham, Robert; DiStefano, Rosanne

    1996-01-01

    We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.

  12. Note: Studies on target placement in TE{sub 111} cylindrical cavity of electron cyclotron resonance x-ray source for the enhancement of x-ray dose

    SciTech Connect

    Selvakumaran, T. S.; Baskaran, R.; Singh, A. K.; Sista, V. L. S. Rao

    2010-03-15

    X-ray source based on electron cyclotron resonance principle has been constructed using TE{sub 111} cylindrical cavity. At present the device is used to provide low energy x-ray field for thermoluminescent dosimeter badge calibration. Theoretical and experimental studies on the effect of target placement inside the TE{sub 111} cylindrical cavity for enhancing the x-ray output are carried out and the results are presented in this note. Optimum target location is identified by theoretical analysis on the electric field distribution inside the cavity using MICROWAVE STUDIO program. By modifying the magnetic field configuration, the resonance region is shifted to the optimum target location. The microwave transmission line is upgraded with a three stub tuner which improves the microwave coupling from the source to the target loaded cavity. Molybdenum target is located at a radial distance of 2.5 cm from the cavity center and the x-ray dose rate is measured at 20 cm from the exit port for different microwave power. With the introduction of the target, the x-ray output has improved nearly from 70% to 160% in the microwave power of 150-500 W.

  13. X-ray illumination of globular cluster puzzles. [globular cluster X ray sources as clues to Milky Way Galaxy age and evolution

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Grindlay, J. E.

    1982-01-01

    Globular clusters are thought to be among the oldest objects in the Galaxy, and provide, in this connection, important clues for determining the age and process of formation of the Galaxy. The present investigation is concerned with puzzles relating to the X-ray emission of globular clusters, taking into account questions regarding the location of X-ray emitting clusters (XEGC) unusually near the galactic plane and/or galactic center. An adopted model is discussed for the nature, formation, and lifetime of X-ray sources in globular clusters. An analysis of the available data is conducted in connection with a search for correlations between binary formation time scales, central relaxation times, galactic locations, and X-ray emission. The positive correlation found between distance from galactic center and two-body binary formation time for globular clusters, explanations for this correlation, and the hypothesis that X-ray sources in globular clusters require binary star systems provide a possible explanation of the considered puzzles.

  14. At-wavelength metrology of x-ray optics at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  15. Phase contrast imaging using a micro focus x-ray source

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  16. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.

    2000-01-01

    We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.

  17. R and D toward a compact high-brilliance X-ray source based on channeling radiation

    SciTech Connect

    Piot, P.; Brau, C. A.; Gabella, W. E.; Choi, B. K.; Jarvis, J. D.; Lewellen, J. W.; Mendenhall, M. H.; Mihalcea, D.

    2012-12-21

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B{approx} 10{sup 12} photons.(mm-mrd){sup -2}. (0.1% BW){sup -1}.s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  18. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  19. A long-period, violently variable X-ray source in a young supernova remnant.

    PubMed

    De Luca, A; Caraveo, P A; Mereghetti, S; Tiengo, A; Bignami, G F

    2006-08-11

    Observations with the Newton X-ray Multimirror Mission satellite show a strong periodic modulation at 6.67 +/- 0.03 hours of the x-ray source at the center of the 2000-year-old supernova remnant RCW 103. No fast pulsations are visible. If genetically tied to the supernova remnant, the source could either be an x-ray binary, composed of a compact object and a low-mass star in an eccentric orbit, or an isolated neutron star. In the latter case, the combination of its age and period would indicate that it is a peculiar magnetar, dramatically slowed down, possibly by a supernova debris disc. Both scenarios require nonstandard assumptions about the formation and evolution of compact objects in supernova explosions.

  20. Development of a model of an x-ray tube transmission source

    SciTech Connect

    Goda, Joetta M; Ianakiev, Kiril D; Moss, Cal E

    2009-01-01

    In support of the development of an x-ray tube based source for transmission measurements of UF6 gas, we have developed a one-dimensional, spreadsheet-based model of the source. Starting with the spectrum produced by an x-ray tube we apply the linear attenuation coefficients for various notch filters, the aluminum pipe, and UF6 gas. This model allows calculation of the transmitted spectrum based on the type of filter, the thickness of the filter, the x-ray tube high voltage, the Al pipe thickness, and the UF6 gas pressure. The sensitivity of the magnitude of the transmission peak produced by the notch filter to any of these variables can be explored quickly and easily to narrow the choices for experimental measurements. To validate the spreadsheet based model, comparisons have been made to various experimental data.